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Introduction

Since its genesis, quantum mechanics has represented a point of discontinuity
from the newtonian classical mechanics in our understanding of nature. The
word discontinuity in this case refers to a generalization. A generalization
about concepts previously considered antithetical, like the corpuscular or
ondulatory interpretation of nature, that are now considered complementary
and only apparently different. A generalization with respect to the inclusion
of the measurement apparatus as an essential part of the system. In this
sense, Bell’s inequalities, and then Leggett’s, Leggett-Garg, Kochen-Specker
and so on, have just formalized with mathematical arguments the several
aspects of discontinuity between quantum and classical mechanics.
However, together with answers to old questions, quantum mechanics came
up with new peculiar problems too. For instance, it was and still is theo-
retically not clear how the interaction with the measurement apparatus can
unitarily evolve just towards the observed outcome. In other words, why
is it necessary an ad hoc rule, Born’s rule, to provide an apparently arbi-
trary non-deterministic character to an otherwise deterministic evolution?
Looking at their potential in the development of new technology, in some
cases quantum features constitute essential tools to exceed the capabilities
of classical computation or communication, in some others they represent
an impediment to realize operations easily implemented by classical systems,
like cloning or negating units of information. The possible application of the
so-called quantum revolution in technology is indeed a highly debated point,
that’s why basic research in the field of quantum mechanics is still necessary
today.

One of the most fertile techniques of investigation, in the quantum frame-
work, is constituted by the so-called quantum state and mode engineering.
Following the words of Rainer Blatt, Gerard J Milburn and Alex Lvovsky
in the editorial of Journal of Physics B to celebrate the 20th anniversary



of quantum state engineering [1], quantum state engineering is ”a field that
studies techniques of preparation, manipulation and characterization of ar-
bitrary quantum states within a Hilbert space associated with a particular
physical system”.

The definition is so clear that it gives us the general recipe for every quantum
state engineering experiment.

First we need to prepare an initial state. It can be the light emitted from a
laser, an atomic gas, the physical vacuum or any other system. It’s funda-
mental to select this state very carefully, firstly because it defines the physical
domain of the research, secondly because it must be useful and appropriate
to enlighten the physics we are interested in.

The second step is the manipulation. Once the initial state has been selected,
it can be transformed by means of whatever operation can be useful for the
purpose.

The last point is the detection. Indeed, in this experimental approach the in-
teresting physical information is encoded in the manipulated quantum state,
that’s why an efficient diagnostic tool to retrieve it is necessary . For ex-
ample, a faithful implementation of a quantum operation can be proven by
observing the way it transforms a given input state [2], the experimental re-
alization of a protocol by measuring how much a given quantity, function of
the state, is affected by the manipulation [3],[4], and so on ([5]). Even if these
experiments look different, they share this three-step approach: the prepara-
tion of an initial state, its manipulation and information retrieval by means
of detection. In the second part of this thesis two state-engineering-based
experiments will be presented. One of them realizes an universal orthogonal-
izer for arbitrary quantum states of light and might constitute the basis for
generalizing the concept of the qubit to the continuous variable regime. The
other experiment uses coherent superpositions of basic quantum operations
to emulate a strong Kerr nonlinearity at the few-photon level, and could be
used to implement new logic gates for quantum computation.

In some sense, complementary to the state engineering is the mode engineer-
ing technique. Indeed, while in state engineering the purpose is the detection
of an unknown state after its manipulation, in mode engineering experiments
the perspective is completely reversed: the final state is assumed to be known
and what has to be inferred are its spatio-temporal features, that is its mode.
Of course, this type of technique requires the use of a mode sensitive de-
tector, and we will see that in this sense homodyne detection represents a
perfect candidate. The third part of this thesis will be then dedicated to
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a mode-engineering-based experiment, where the interaction of broadband
single photons with resonant atomic vapours will be proven just by detecting
the reshaping of the light temporal mode produced by the radiation-matter
coupling. The manipulation of the spatiotemporal mode of a single pho-
ton is a promising new way for encoding quantum information by using a
large alphabet of possible shapes instead of the usual qubit scheme based on
two orthogonal linear polarizations. Moreover, by showing the possibility of
strong transient interaction between ultrashort single photons and resonant
atomic media, this experiment may open the way to alternative schemes of
quantum memories, with applications to quantum communications and com-
puting.

I directly contributed to all the experiments presented in detail in the sec-
ond and third parts of this thesis. Two different but similar experimental
setups were used, based on two pulsed laser sources of different duration. My
personal contribution ranged from the modelling and simulation of the ex-
periments to their actual realization and in the final analysis of the measured
data.
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Part 1

Quantum optics: an
introduction
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In the first part of this thesis, important concepts of quantum optics are
presented to familiarize with the notation used.
The first chapter represents an overview of the main quantum states and
observables used in the following chapters.
The second chapter is instead dedicated to balanced homodyne detection, the
main state characterization technique adopted in the experiments presented
in this work of thesis.
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Chapter 1

Brief introduction to quantum
optics

This chapter represents a very small guide to quantum optics. The aim is
mainly to give an introduction to the notation used in the following chapters.
The first part is an introduction to the various formalisms used to describe
a quantum state.

In the second, we see an overview of the principal quantum pure states of
light. Basically, we start by classifying the different states on the basis of
the different photon number statistics they show in a measurement. Here we
don’t consider the spatio-temporal proprieties of states and operators, i.e.
their mode.

In the final part we rewrite the previously defined states and operators by
taking into account their mode, in a mode-distributed analysis. We finish by
demonstrating that all the results shown in the second part, can be recovered
by limiting the mode distributed formalism to a single mode, independently
of its shape.

1.1 Representation of a quantum state

Quantum formalism is generally developed by making use of vectors [25], in-
dicated as |¥) living in an Hilbert space. Without entering into the meaning
to assign to these vectors (see [73] for example), we can safely assert that
these vectors contain the amount of information necessary for a complete
description of a given system.

17



When we deal with statistical ensembles a density operator based description
is instead necessary [62],[63]. The density operator p is generally defined as
> Pi|W;) (V| and it is then represented by a matrix in a particular basis.
Finally, especially to present the experimental results, we make use of a dif-
ferent formalism based on a quasiprobability distribution and in particular
the so-called Wigner function

I .
W(q,p)—;/ (q+ z|plqg — z)e"™* du. (1.1)

[e.9]

The Wigner function description is especially useful when we deal with quan-
tum systems, as their nonclassicality is often immediately evident from the
negativity of the function itself [62].

1.2 Overview of the main quantum pure states
of light

Fock state The Fock states, or number states |n), represent the eigenvec-
tors of the photon number operator n or, equivalently, the discrete degree of
excitation (the number of quanta) of the electromagnetic free-field Hamilto-
nian [62],[63]

. 1
Hipee = hw (n + 5) . (1.2)

at the frequency w/2m, where this frequency defines a monochromatic field
mode.
It can be proven that the observable n can be written as

n=a'a (1.3)

where a and a define respectively the single photon creation and annihilation
operators, operating on the number states as

atn) = Vn+1l|n+1)
aln) = vnln—1)
aloy = 0 (1.4)
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and are subjected to the commutation relation rule
[a,a'] = 1. (1.5)
Number states are an orthonormal set
(nlm) = bnm. (1.6)

During this thesis we will encounter a Fock state in particular: the single
photon state |1).

Fock states possess a fully non classical character testified by a negative
Wigner function and any attempt to describe them with an effective noise
theory leads to negative probabilities.

Coherent state Coherent states of light |a) [62],[63] can be defined as the
eigenstates of the single photon annihilation operator a [3]

ala) = a|a). (1.7)

Equivalently we can express a coherent state by using its decomposition on
the Fock basis as

) =e 7 3 = |n). (1.8)

In general they are not orthogonal to each other, especially when dealing
with small amplitudes, as
_lo=8P?
(Bla)y = e (1.9)
where |a), |3) are two different coherent states of light.
Sometimes during this thesis, we will make use of the so-called unitary dis-

placement operator ﬁ(a), which alternatively defines coherent states as dis-
placed vacuum states

@) = D(a)|0)
= 280 ) (1.10)

In quantum optics, coherent states are considered the most classical of all
pure states as, in many situations, they can be treated semiclassically, that
is, as a classical light field with the addition of stochastic noise.
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1.3 Brief overview of observables

Electric field quadrature A fundamental observable in quantum optics
is the electric field quadrature, defined as

. ~t 0 | o —if

X (0) = % (1.11)
 where 6 defines the phase of the measurement. Sometimes the quadrature
X (0 =0) is called X quadrature, whereas the quadrature X (6 = m/2) is
called Y.

We will see in Chapter 2 that the electric field quadrature can be measured
by means of balanced homodyne detection.

On-off single photon detection Number operator n has been already
introduced as a measure of the number of particles. Actually this kind of
measurement requires complicated photon number resolving detectors not
easily accessible in the lab. What is more commonly used is a single photon
counting module (SPCM) represented for instance by an avalanche photodi-
ode (APD), a device capable to detect with a given quantum efficiency 7 the
presence or the absence of photons but not to discern their exact number. In
other words, the detector will produce the same positive response, a click, in
the occurrence of photons, independently on their exact number, that’s why
we speak of on-off detector.

Mathematically, the click of an on-off detector erases the vacuum contribu-
tion from the state and can thus be described by

ﬂAPD =1- 10){0]. (1.12)

where I is the identity operator.

1.4 Distributed mode formalism

The single monochromatic mode operators a,a' are ideal operations only
approximately achievable in experiments. Indeed, in all real scenarios a dis-
tributed mode analysis should be considered, with every state and operator
being distributed on a finite wavepacket g(w)*.

"'We ignore any other dependence, like the spatial one, for sake of simplicity.
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For instance we can define the single photon creation operator acting on a
wavepacket g(w) as

il = / dw g(w) 4 (w), (1.13)

and its hermitian, the single photon annihilation operator acting on the same
wavepacket g(w) as

ag = / dw g*(w) a(w), (1.14)

with the meaning of respectively adding and subtracting a photon in a mode
specified by g(w). The spectrum is normalized to 1 as

/ dw [g(@)? = 1. (1.15)

In the same way, we can define also the equivalent of the displacement (1.10)
as

D({a}) = ¢thae (1.16)

where the notation D({a}) is used to differentiate it from the previous case
of eq.(1.10). The mode a(w) is now normalized to the mean photon number
of the displacement, i.e.

/dw a(w)]? = (A). (1.17)

According to these new definitions, the states produced by applying these
operators are distributed on the corresponding modes too, as

1) = allo)
- / duo g(w) & (w) [0)
= /dwg(w)|1w> (1.18)

To avoid confusion with the notation, we indicate |1,) a photon distributed on
a finite wavepacket g(w), and |1,) a monochromatic photon at the frequency

21



w, that is a photon produced by the monochromatic or delta shaped mode
distributed operator a'(w) = [ dw'd(w’ — w)al(w’).
The eigenrelation (1.7) takes now the form

i(w) Ha}) = a(w) {a}), (1.19)

where again the notation |{a}) is used to differentiate the mode distributed
state from the monochromatic one of Eq.(1.7).

This more general formalism has strong consequences when trying to handle
operators and states distributed on different modes. Consider for example
the projection of a single photon in a mode g(w) on another single photon
state with a different wavepacket f(w)

W) = [ dw i) £ [ @ gl @)
_ /dw (1, | f*(w) /dw/g(w/)llwf>
_ / do F*(w) / de g(w) (1o]1.)
- / dw f*(w) / dw’ g(w') G e
~ [ dorto) (1.20)

The result (1.20) depends strongly on the two mode overlap and contrarily
to the delta shaped mode formalism of the previous section (see Eq.(1.4)),
it can be also 0 despite the equivalence of the two states. Equation(1.20)
also shows that a precise manipulation of a quantum system requires a com-
plete experimental control of its spatio-temporal characteristics. This is not
easy at all when dealing with single photons because of the extremely low
intensities. For instance, common methods of spectro-temporal characteriza-
tion, like Frequency-resolved optical gating (FROG), cannot be used in this
regime.

To simplify the formalism, we restrict the manipulation of operators and
states to a single, non monochromatic mode. Indeed, all the ordinary prop-
erties seen in the previous section, like the Fock state orthonormality, can be
retrieved when dealing with single distributed-mode objects.

All along this thesis, we will always consider valid the single mode approxi-
mation except when explicitly stated differently.
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A more complete discussion about non monochromatic modes can be found
in the book [63] where the adjective continuous is used to indicate what is
called distributed, in referring to the modes, in this thesis. This choice is
done to avoid confusion, as the adjective continuous is here mainly used to
refer to the continuous variable (CV) description presented further.

1.5 Discrete and continuous variables

As in classical information processing with digital or analog encoding, also
in quantum systems the discrete or continuous degrees of freedom divide the
states, the operators and the detection schemes considered above into two
large groups: if an element is mathematically characterized by an observable
degree of freedom with discrete spectrum we say that it is a discrete-variable
system (DV), otherwise, when it is described by a continuous spectrum, we
talk about continuous variable (CV). Examples of discrete-variable elements
are Fock states |n) and the single-photon-creation operator a', while for
typical continuous variable we can include states with gaussian probability
distributions like coherent states |a) 2.

Even if this formal distinction apparently looks redundant, DV and CV
worlds do not share generation and manipulation schemes nor quantum-
information-processing (QIP) protocols. For instance, while a single-photon
detector like an avalanche photodiode (APD) can be used to easily perform a
complete tomography of a DV described single photon, it is not sufficient to
characterize a CV coherent state. In this case, a more challenging continuous-
variable measurement like balanced homodyne detection must be considered.
In general, current optical technology enables an on-demand production and
a simple manipulation of CV states with the use of lasers, nonlinear crystals,
beam splitters and homodyne detectors.

However, CV ingredients alone are not sufficient, because several QIP pro-
tocols require the use of non-gaussianities typical of the DV framework as a
fundamental ingredient. The implementation of DV operations is generally
more challenging and tipically it requires the coupling to a discrete level sys-
tem. It has recently been proposed to follow another approach, that is, to
exploit nonlinearities induced by the measurement [8]. The new approach

2The distinction between discrete and continuous variable systems doesn’t concern
the mode. The creation operator dz has still a discrete-variable description even if the
single-photon wavepacket £(t) is a continuous function of the time ¢.
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is probabilistic, since measurement itself is intrinsically a probabilistic pro-
cess, but the use of ancillary single photons together with optical interference
can push the success probability of these measurement-based nonlinear gates
close to unity [9].

Currently, there is a strong tendency towards combining DV and CV ele-
ments in order to build an hybrid QIP technology with protocols and schemes
designed to take advantage of both the worlds [6]. Examples are the imple-
mentation of a DV operation such as single photon creation on a CV coherent
state ([7]), or the characterization of a DV single photon state with a CV
tomographical technique such as balanced homodyne detection [10].
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Chapter 2

Balanced homodyne detection

In this chapter we give a brief picture of the balanced homodyne detection
system used in the characterization of states of light. For the mathematical
details see Appendix A.

2.1 Homodyne operator

A balanced homodyne detector is a detection system allowing the observa-
tion of the electric field quadrature X (6) (see Eq.(1.11)) corresponding to
any phase component of an optical signal. The measurement is enabled by
the interference of an unknown state of light with an intense coherent state
called local oscillator by means of a balanced beam splitter. Then the inten-
sities from the two output arms of the beam splitter are measured with pro-
portional photodiodes and the two photocurrents amplified and subtracted.
The electrical signal produced is then proportional to the quadrature of the
electric field of the unknown state (see Fig.2.1).

To calculate the explicit form of the operator it is useful to remind the
input /output relations for a 50% beam splitter!

A 1,1 -

a, 72 275 aj
= (2.1)
d’Q l\% \/Li s

In writing such a beam splitter matrix, we are implicitly ignoring any effective dis-
persion within the beam splitter material.

25



)

Figure 2.1: In a balanced homodyne detector the electric field quadrature
of a target state is proportional to the difference of the two photocurrents
produced by detecting the intensities at the two output arms 1’,2’ of a 50%
beam splitter. A strong beam with poissonian photon number distribution,
that is a coherent state |a) called local oscillator (LO), and an unknown state
are injected into the two input arms 2, 1.
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where @, » and @) , correspond to the annihilation operators of two input

and output modes, respectively. Given the intensities I 1, I measured at the
two output modes of the 50% beam splitter, the operator corresponding to
the definition of the homodyne measurement is?

~

" = (oapo,llv — Iy|oro,)
= a6 +ae
= 2/nLo X5 (0), (2.2)

where it has been used the distributed mode generalization of the quadra-
ture operator (1.11), defined as

%, — 0ot
2
ak + ag
= nLo —=

= Vo Xa (2.3)

and with the modes a(t) and &(t) respectively normalized according to the
eqs.(1.17) and (1.15), that is a(t) = \/nLod(t) where nyo is the mean photon
number of the local oscillator beam.

We can conclude that balanced homodyne detection enables the measure-
ment of the electric field quadrature (1.11) of the state injected in the beam
splitter on a mode « defined by the local oscillator.

Eq.(2.2) can be easily generalized to the detection of quadratures correspond-
ing to any value of phase by simply shifting the LO phase as azo — aroe®.
Indeed

H(O,a) = 2/nro Xa(0). (2.4)

2.2 Losses

A first important correction can be easily introduced into the ideal observ-
able (2.4) by considering real photodetectors. Indeed, in an ideal photodiode,

2See eq.(A.1) in Appendix A for the mathematical details.
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some current is produced proportionally to the number of photons impinging
on it. Since in real scenarios not all photons can interact into the detector,
the operational parameter quantum detection efficiency n,, is generally in-
troduced in order to take into account only the fraction of absorbed photons.
This inefficiency can be modeled by considering the presence of two iden-
tical beam splitters with transmittivity 7,, in front of each one of the two
homodyne photodiodes [63], [65].

Figure 2.2: Due to the probabilistic nature of the photoelectric interaction,
only the fraction 7, of photons is absorbed into the detector. This situation
can be represented by introducing a beam splitter with transmittivity 7,
along the optical path, before the ideal detection. Then, before impinging
into the photodiodes, a fraction of photons is lost with probability 1 — 1.
In the figure the two output modes 3,4 of the balanced homodyne 50% beam
splitter are the two input mode 1, 1” of the loss beam splitters.

The operators @), al (a7, ay) are then affected by the loss beam splitters

28



(see Fig.2.2) as

Gy v/ Tlph i/ 1 = Npn a

= (2.5)
s NN »
We can now calculate the non ideal homodyne operator as
?:[(eva7nph) - <aL02702’702”|f4’ - j4//|OéL02,02/,02//>
= pn - H(0,q) (2.6)

2.3 Effect of non-identical photodiodes

Equation (2.6) can be easily generalized to take into account the effect of
photodiodes with different quantum efficiency 7,,. Indeed, calling 7,54 and
Nphar the quantum efficiency of the two photodiodes respectively placed on
the arms 4’ and 4” (see Fig.2.2), the expectation value of the homodyne
operator takes the form

~

H<9> &, Tlpha! nph4’/) = <aL027 02’7 02”’f4/ - f4”|aL027 02’7 02">

_ N At A
= (OéLOQ, 0o, 02'/|77ph4' Qyr Qg7 — Tlphat Qyn CL4//\04L02, 0o, O2~>

= (—nph4/ —;%MH) 2 \/@Xa(e) + (—%M ; nphM) (nLo + n1)
~ (B ) o g Ka(6) + (BT Yo (21

where again nyo is the mean photon number of the local oscillator and
Ny is the photon number operator of the state injected on the input mode
1. The last approximation is due to the common choice of a local oscillator
beam much more intense of the state injected on mode 1, that is (n;) < nro.
Equation (2.7) tells us that the expectation value of the homodyne measure-
ment is affected by any possible unbalancing in the quantum efficiency of the
two photodiodes with a constant offset fixed by the local oscillator intensity.
The effect can be anyway compensated by measuring this constant offset as
given by the vacuum state mean quandrature.

3See eq. (A.2) in Appendix A.
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2.4 Mode matching

Quantum detection inefficiency doesn’t represent the only reason for a non
perfect detection. Indeed another cause of degradation in homodyne mea-
surement is given by non perfect mode matching of the local oscillator to the
state that we want to measure. To see this, let’s calculate the variance of the
observable on a generical target state |¥)*

~ 2 N ~ 2
<AH(nph)) == <\II1,OZLO2,02/,02//| |:]4’ - -[4”:| |l:[117aL02702’702”> -
— (U, ar0,, 02, ()2,,|f4, - f4//\‘1117 L0y, 027, Ogrr)?
~ ~ 12 ~ ~
= (ol + ) = ( [al +aa] )}
+ L= ) [ de (al®an0 + o]
T

= 47712)h <AX<X(9)>2 + 1 (1 = Npn) (/T dt (fu(t)) + nLO) )
(2.8)

where the first term comes directly from the variance of the electric field,
whereas the second one has its origin in the intensity fluctuations due to
the non perfect detection efficiency of the two identical photodiodes. To see
how the matching to the local oscillator mode affects the variance (2.8), let’s
calculate it on a single photon state with a wavepacket 3(t)>°

= 0 { (Ll [l + aa]” [16) = (1] [a] + aa] [19)? )

(1= ) ( [t sl ey 1) + nm)

= 22, + 12, nzo + pn(L — npn) (1 +120) (2.9)

/ dt (1) (1)

4See eq.(A.3) in Appendix A

5See eq.(A.4) in Appendix A.

6All along this thesis we will use the same symbol to indicate the shape of a mode
in the temporal or in the spectral domain, then for instance we will use indifferently the
notation S(w) and B(t). Thus all the calculations done over time could have equivalently
been done over the frequencies just by properly changing the variable and the integration
domain.
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To understand the importance of the mode matching contribution to the
variance, in eq.(2.9) it can be helpful to use again a LO mode normalized to
1, ie. Oé(t) = TLLoéé(t)

2
+ 1o 120 + Tpn (1 = 0pn) (14 120)

/ dt (1) a(1)

27];2;h

2

T / 0t 5°(8) G(8)| + 7m0+ mon (1 — ) (14 m20)
2

22 10 / at 5°(8) a(0)| + 7 o + mn(L — 1) o

Q

2
= 21, 10 / dt 3*(t) a(t)| 4 npn nro (2.10)

where it has been used the fact that the local oscillator beam is generally a
very intense beam with a very high mean photon number. Eq.(2.10) presents
clearly how the variance depends on the square of the complex modulus of the
overlap between the signal and local oscillator modes. We call this important
quantity mode matching efficiency Npmm

2

P ’ / dt () a(t) (2.11)

The worst case of single photon completely unmatched to the LO, that is
Nmm = 0, provides the variance of the vacuum or the shot noise level of the
detector

N\ 2
(AH)W = on 0 (2.12)

i.e. the variance in absence of any signal. FEq.(2.12) shows a fundamental
physical significance, that is, the shot noise level can be amplified by the
local oscillator intensity. In other words, the response of the detector to the
lowest significant signal can be boosted up to overcome the electronic noise
by only increasing the optical power of the local oscillator. This feature is at
the basis of the extraordinary sensitivity of homodyne detection and enables
single-photon-level measurements, hardly achievable with other detectors.
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The shot noise level increases linearly with the LO intensity.
The quadrature variance ratio of a single photon in the mode § respect to
the vacuum, eq.(2.10), can now be calculated as

A\ 2
<AH>photon - 2 n;h NLO Nmm T Tph MLO
< A’}:[) ? Tlph MLO
shot
= 20pn N + 1 (2.13)

three times above the shot noise level in the ideal case of perfect mode match-
ing (7mm = 1) and ideal photodetectors (7,, = 1).

Variance [arb. units]

r [
0.5F o ©
I [
[ J
r [ J
0.4+ Y
i [ J
F o
0.3
F [
[ J
0.2} ([ J
o
[ J
01F
""""'"""""""""'LOpower[mW]
2 4 6 8 10 12 14

Figure 2.3: Vacuum state variance vs. local oscillator power nyo as measured
with the balanced homodyne detector. Saturation and unbalancing of the
photodiodes at high LO power is the cause of the distorsion from the linear
trend predicted by Eq.(2.10).
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2.5 Detection efficiency

The two factors 7,, and 7, even if physically unrelated, have the same
effect of degradation on the measurement. We can operatively summarize
the joint action of all the detection losses, by introducing the total detection
efficiency coefficient n4.; as the product of all the different contributions

Nidet = Tlph * Mlmm * Tel * Nop (214)

where we considered, in addition to the photodiode quantum efficiency
npr, and to the mode matching efficiency 7,,,,, the contribution of the detector
electronic noise 7., due to non-ideal-electronic signal amplification,subtraction,etc.
and the optical losses 1,,, given by the unavoidable optical losses caused by
non ideal optical elements (mirrors, lenses, etc.).
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Part 11

Quantum state manipulation
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This part is dedicated to the experimental methods developed in our lab-
oratory to manipulate the statistical properties of quantum states of light at
the single photon level.

Firstly, we analyze how fundamental quantum operations like the single par-
ticle creation af and the single particle annihilation @ can be experimentally
implemented in the optical domain.

In the second part two experiments, an Universal Continuous-Variable State
Orthogonalizer and Qubit Generator and a Measurement-induced strong Kerr
nonlinearity for weak quantum states of light are presented as applications
of the concepts and experimental methods developed.
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Chapter 3

Experimental single-photon
arithmetics

State manipulation often requires to play with quantum systems at a single
particle level. With this perspective, several experimental techniques have
been developed to handle and fully control the dynamics of photons, atoms,
ions, etc. Among all these operations, the full spirit of quantum mechanics
is probably best represented by two in particular, as the most fundamental
basic quantum transformations: the single quantum addition a' and the sin-
gle quantum subtraction a.

Contrarily to the theoretical conceptual simplicity, the experimental imple-
mentation of &' and @ requires nontrivial efforts. Several techniques have
been proposed and tested in this direction, but only two of them have been
extensively used to successfully manipulate quantum states of light. These
two methods share the same probabilistic approach, based on the detection
of a single photon in an ancillary mode 2, to conditionally implement single
photon creation and annihilation operators on a mode 1.

We can thus figure this technique like the effect of a machine with two
input and two output channels: the first one is the signal channel, designed
to hold the target state before and after the manipulation, the second one
instead announces when the desired transformation has successfully occurred.
Formally, this means that we are looking for two unitary operators with the
form

U= eiaj(al,&g,ai,ag)

, (3.1)
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Figure 3.1: In a conditioned manipulation machine U with two input and two
output channels 1, 2 a given transformation Ois experimentally implemented
in a probabilistic process on a target state | ;) by a proper physical system.
At the first input/output channel we have the target state |¥;) before/after
the probabilistic transformation. Note that this transformation will be op-
erated by the machine nondeterministically with a small success probability
on mode 1. In the second channel (ancilla) we inject nothing (vacuum state)
as input. a) Often the input state will not be changed by the machine and
the first output channel will be identical to the input one. b) In the event of
successful transformation operated by the system, a particular state |iy) will
be produced at the output 2 and its detection will announce the presence of
the desired manipulated state Ol|\111> at the output 1. That’s why we speak
of conditioned (on the ancillary state |¢)9) detection) implementation of the
operation 0.
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with J (a1, as, &L &E) hermitian operator generator of the transformation,
defined in the addition case as

J (a1, a9, 0}, a}) = alal + aqaq (3.2)

and in the subtraction one as

A

J(ay, 4o, a0, ab) = aral + alas (3.3)

The label 1 refers to the mode target of the transformation, the label 2 to
the ancillary mode. For sake of simplicity we now focus the analysis on the
addition case, as nothing changes in the subtraction one. Furthermore, it is
important to point out that we limit the formalism to the pure state case.
In the small parameter regime, # =~ 0, and in the case of small mean photon
number states, the creation operator is implemented nondeterministically on
the mode 1, with a quasi-zero success probability. Thus we can write the
first-order approximation

O10,)[0,) = N{ [i +if (a{a; + alaz) ¥ o<e2)} yxp1>yoz>}
./\/'{|‘111>‘02> + i9d1|‘1’1>|12>} . (3.4)

Q

The detection of a photon in the ancillary mode 2 projects the initial
state on the desired single-photon added one

N {192)102) + 0 |9 [12) | S G ), (3.5)
The key of this approach is that now the creation of a photon in the
mode 1 is always accompanied by the creation of a second photon in the
mode 2. This means that, independently of how small the probability is,
the successful implementation is always announced by the detection of the
ancillary photon.
Actually, a more complicated superposition of other terms including multiple
additions and subtractions should be considered, especially if 62 becomes high
or there are significant contributions from multiphoton components in the
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Fock expansion of the state |¥) = > c¢,|n). All the experiments analyzed
in this work have been however performed in a mean photon number regime
~ 1, thus permitting to ignore the multiple operation contributions. The
error committed by considering valid this approximation is then of the order
of 02, like the magnitude of the coefficient of the first ignored term of the
collapsed mixture selected by single photon detection?

with probability ~ 1 — 6?2

Lo ! (3:6)
U,) with probability = 62

: ot
0191 [0) 2% {

W

heralding (aJ{ ) 2 |

The parameter # must be then chosen as the best compromise between

a faithful implementation of the desired conditioned operation, and a good

rate of events, since as we can see from eq.(3.5), also the success probability
is proportional to 62.

3.1 Conditioned single-photon subtraction

The subtraction of exactly one photon from a travelling wave is a basic
operation intuitively interpretable as a controlled loss. The analogy goes
beyond a simple picture and presents formal analogies with the beam-splitter-
based model of losses, as we will see.

Single photon subtraction inspired several experiments during the years, like
Schrodinger’s cat state realization [?],[33], enhanced quantum metrology [32]
and fundamental tests [34], making this only apparently trivial operation an
indispensable tool in modern quantum optics.

3.1.1 Unitary BS transformation

The unitary transformation of eq.(3.1) with (3.3), can be easily implemented
just considering the effect of a beam splitter on a generic bipartite input
system

U = Upg = e?(mabralaz), (3.7)

'With photon number resolving detectors the analysis will be slightly different.
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Figure 3.2: When a state |¥;) in injected into the mode 1 and the vacuum
|02) into the mode 2 of a small-reflectivity beam splitter, a) almost always no
modification occurs to the initial state but b) there is still a small probability
that one and only one photon of the target beam |¥,), after reflection, will
leave the beam splitter from the other output mode. The detection of this
particle on mode 2 will announce the presence of the desired single-photon-
subtracted target state a;|W) at the output mode 1.
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where cos? 6 is the transmittivity 7 of the beam splitter. Indeed, it is
straightforward to check that if one injects a single photon on one input arm,
the operator (3.7) delocalizes it between the output modes

Ups|1,0) = Ugsallo,0)
= UpsalULsUgs|0,0)
= UpsalUs0,0)
= (&J{ cos O + iy sin 0) |0, 0)
= cosf|1,0) +isin |0, 1) (3.8)

or if instead two photons are injected along the two inputs, at the output
one gets

Uss|1,1) = Ugsalallo,0)
= Upsa\ UL Upsab UL Ups|0,0)
sin(26)

= 5 (12,0) —10,2)) + cos(260)|1, 1), (3.9)

that means no coincidences at all at the output modes in case of a bal-
anced beam splitter, that is when 6 = 7 /4.

3.1.2 Polarization encoding

For the conditioned implementation of single photon subtraction we have to
focus our analysis to the § ~ 0 case, as shown on eq.(3.4). We will inject
our target state |¥;) into mode 1 of a small reflectivity beam splitter, and in
case of single photon detection at the second output mode, the desired single
photon subtracted target state will come out the beam splitter [2].

Actually, all along this work we will never consider spatial degrees of freedom,
as we indeed experimentally preferred to encode the quantum states by mak-
ing use of polarization modes, defined by the light components horizontally
and vertically polarized. In this framework the analogous of a beam splitter
for spatial modes, is certainly represented by an half-wave-plate. This optical
device is a foil of a birefringent material cut with a proper thickness such
to retard of 7 the extraordinary (ordinary) polarization component with re-
spect to the ordinary (extraordinary), for a fixed wavelength. This means
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that a linear polarization going through the plate will be rotated of an angle
27, with the angle v defined by the entering polarization direction and the
ordinary axis of the birefringent crystal (see Appendix C).

The analogy with the beam splitter can be mathematically demonstrated by
considering that the input/output relations

( Z’H ) — ( EHH cnv ) ( i ) (3.10)
\% vH Cvv ay

with cyg = cyy = cos(27),cyy = cyg = isin(27y) together with the
conservation of the number of particles ny +ny = ny +nj, are formally iden-
tical to the beam splitter ones. The small reflectivity condition of eq.(3.4) can
thus be fulfilled by considering a slightly rotated HWP[3], i.e. with v < 1.
Polarization encoding enables an intrinsic stability hardly achievable by us-
ing other degrees of freedom, due to the fact that the two considered modes
travel naturally together within the wave, experiencing the same drifts or vi-
brations of any optical element and thus allowing compensation-free schemes.
Birefringence permits anyway to manipulate the two modes independently
when necessary.
We have seen that the HWP’s subtraction is based on the rotation of one
photon, the ancillary, on an a different polarization mode. However the con-
ditioning detection requires now to separate spatially the two copropagating
H and V modes and this can be accomplished by making use of a polarizing
beam splitter.
Polarization encoding also permits to implement very easily the displacement
operator B(a), as in the small mean photon number regime it can be realized
by mixing a target state with a strong coherent state |a) into a low reflec-
tivity beam splitter (see [23] for further details about the implementation of
the displacement).

3.1.3 Choice of parameters

We have already seen that the parameter # must be chosen as a compromise
between a good fidelity and an high implementation rate of the desired single
photon operation. If we limit to initial states with small amplitudes, for in-
stance single photons |1) or coherent states |«) with a mean photon number
|a*> ~ 1, by setting the HWP angle to 5 degrees, from the Malus law we
find a success probability of ~ 3%. If we consider also that the APD used to
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herald the operation has a detection efficiency of ~ 60% and the single mode
fiber used to couple the light to the same detector has a coupling efficiency
of =~ 80%, by using a pulsed laser with a 80M H z repetition rate, we get a
subtraction rate of ~ 80MHz - 3% - 60% - 80% = 1.1M H .

This choice implies an error of &~ 3% in the a implementation fidelity.

From the experimental point of view this choice seemed an acceptable com-
promise, so all the experiments described in this thesis have been performed
in these conditions.

3.1.4 Single-mode subtraction

The single mode approximation previously discussed (see Sec.1.4), requires
that the single photon subtraction operation has to be implemented on the
same mode of the target state, i.e. that photons with a given mode must
be subtracted from states with the same spatio-temporal properties. To
achieve this condition, the APD used to herald the single photon annihilation
operation has been coupled to the target beam by means of a single mode
fiber. The spatial propagation mode of the fiber has thus been matched
to the spatial mode of the target state by using a system composed of two
lenses, resulting in an efficiency of =~ 80% of fiber-coupled photons.

3.2 Conditioned single-photon addition

The ability to implement the addition of exactly one photon with well defined
spatio-temporal characteristics, is a fundamental task in quantum optics as
it enables the realization of high purity single photon sources used for fun-
damental test of quantum mechanics, cryptography, quantum computation,
etc.

3.2.1 Unitary PDC transformation

A very well tested method used to implement the addition of a single photon
on a given target light state is by the parametric down conversion process
(PDC). PDC is a process in which an incoming photon called pump nonlin-
early interacts with the atoms of a crystal, with the subsequent simultaneous
emission of a couple of low-frequency photons[24], called signal and idler,
according to the energy and momentum conservation laws
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Wy = Ws + Wj (3.11)

kp = ks + ki7 (312)

where the subscript p, s,7 denote pump, signal and idler. Actually no
atomic level corresponds to the pump energy, so the photon annihilation cor-
responds to a very short-lived virtual atomic state excitation with the atoms
playing the passive static role of a light transition catalyst. Classically PDC
can be considered a three wave mixing process in which energy is exchanged
between pump and signal/idler with an amplification factor dependent on
the fields relative phase (OPA). In this context, optical amplifiers can be
explained only by admitting the initial presence of the signal (or idler) to
stimulate the conversion. Conversely in quantum mechanics the process can
occur also in spontaneous conditions, i.e. without the low-frequency beam,
because the transition is naturally stimulated by the random vacuum fluctu-
ations. In the first case we speak of stimulated parametric down conversion
(stimulated PDC), in the second of spontaneous parametric down conversion
(spontaneous PDC or SPDC).
Equations (3.11) and (3.12) show that the down-converted photons are cor-
related in energy and momentum in a nonclassical way as we will see next.
To understand the origin of the down conversion process, let’s forget for
the moment the conservation equations (3.11) and (3.12) and introduce the
classical field-matter interaction Hamiltonian [28]

H(t)= /VE(r,t) - P(r,t)dr (3.13)

where E(r,t) is the electric field vector, P(r,t) is the macroscopic po-
larization, i.e. the dipole moment naturally present or induced by E into
the material and V' is the interaction region, i.e. the crystal volume. The
common way to proceed is writing P(r,t) as series of E(r,t)

Pi(r,£) = Xt (1) B (7, 8) + X (1) Enn (7, 1) Ey (r,1) + ..
Vi,m,n=1,2 (3.14)
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where the summation over repeated indices is assumed and the zero order
term of the series has been taken as 0 since we are considering a material with
a vanishing permanent dipole moment. The subscripts [, m,n run over the
two components of polarization and Xl(jr? and Xz(frzn are second and third order
susceptivity tensors. Since we are interested only up to the second order
element of the series, we can ignore the higher terms. By putting eq.(3.14)
into (3.13) we obtain

H) = /V D) B, ) Bn(r,t) dr +

+ / X2 (7)) By(r,t) Ep(r,t) Ey(r,t) dr (3.15)
.
= Ho(t) + Hiu(t). (3.16)

ﬁo(t) represents the electromagnetic free field energy but we are inter-
ested in the interaction dynamics, so let’s only only focus on the second term
f[mt(t). Let’s substitute in it the vector fields with their quantum operatorial
counterparts

Hi(t) = /ngzn(r) Ei(r,t) En(r,t) Ey(r,t) dr (3.17)
174
with the electric field operator

~

E(r,t) = /dl(k,w) emkr=t) ol (k, w) e ® T4 dRdw (3.18)

defined using its plane-wave decomposition. The resulting Hamiltonian
is quite complicated, but basically we are interested in the sole term

Hppo(t) = / Xooh () (Ko, wp) b, (K, ws) al (ks w;) -

e Wk —hs ki) r=(wp—wamwi)l] g, dk, dw, dk; dw; dr
(3.19)

where the subscripts p, s, have been introduced to distinguish the in-
tegration variables. In the interaction representation the operator (3.19)
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governs the temporal evolution of the state according to the Schrédinger’s
equation

i L) = Hppe()]¥(0). (3.20)

We can then define the corresponding unitary time evolution operator

A~

(W (t)) = Uine(t)[¥(0)) (3.21)
and by putting it into eq.(3.20) we obtain the differential equation

d

ihaﬂﬁm@)::ﬁpDC@ﬂZmu) (3.22)
with solution
R ~ 5 [t . R
Uppc(t) =1 — z / Hint (") Ui (') dt’! (3.23)

where the initial condition has been taken as

E&mma:ﬁ

t

By making use of the Dyson series[25], the solution (3.23) can be rewritten
as

UPDC<t) = €7ifi°° I:IPDC(tl) a (324)

and by considering that the coefficients Xl(izn are of the order 10711 +1078,
we can write the first order approximation

t
UPDc(t) ~ j —Z/ f{ppc(t/) dt/. (325)

The transformation (3.24) and its approximated version (3.25), apart
from the integrals necessary to define the mode, has the desired form of the
conditioned single photon addition of eq.(3.1).
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3.2.2 Phase-matching conditions

Suppose now that the wavefunction is at the initial time a coherent state of
amplitude II

[W(0)) = [IT) (3.26)

The injection of this initial state onto the crystal produces an evolution
of the state governed by the propagator of eq.(3.25) as

W(t)) = Uppc(t)T(0))
—m /_ Hppo(t') dt|TT)

t
= |II) — 2// Xl(izn("') o (AR —Awt’)

ay(ky, wp) al (ky,ws) al (ki, w)|11) dk, dw, dk, dw, dk; dw; dt’ dr

_ // len 71 (Ak-r—Awt’) |

I1,(kp, wy) m(ks, Ws) n(kzi, w;)|1IT) dk,, dw, dk dws dk; dw; dt’ dr
(3.27)

where we exploited the eigenrelation?

() |TT) = Ty (R, 0, 1T) (3.28)

and II; refers to the [th component of polarization of the coherent state
IT).
Since we are interested in a final state far from the crystal, the time inte-
gration in eq.(3.27) can be safely extended to ¢ — +oc being the interaction
Hamiltonian zero immediately before and after the interaction within the
crystal. The integral can then be easily performed as

+o0
/ et dt = 5w, — ws — w;) (3.29)

[e.e]

2In eq.(3.27) we implicitly exploited the fact that ;(k,,w,) commutes with af, (ks, ws)
and af (k;,w;) as we will see from eqs.(3.35),(3.29).
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and if Xl(zzn('r) can be considered constant over the integration volume?
eq.(3.27) simplifies further as

W) = [m -
+ / b (e, o, K, cor)ith (R, 0,) @ (s, cos) [T dlles do, dls .
(3.30)

The distribution

Ilmn

bk, ws, ki, wi) = i\ /Hl(kp,ws +w;) K(Ak) dk, dr (3.31)

with

K(Ak) = / eIk gy (3.32)

defines the mode of signal and idler on which the double addition will
take place. Let’s notice that this mode can be interpreted as the convolution
of two contributions, the first one fixed by the absorbed pump photon and the
second one by the volume of the crystal. The state (3.30) can be reexpressed
by explicitly indicating the creation of two entangled photons in the signal
and idler modes, the so-called biphoton state |1,1,)

() = [ — e, 1)
= D)~ [ Gt ) e, e s das )17,

1Zi7wi>

(3.33)

ks,ws

Pay attention that, because of the entanglement, signal and idler modes
can’t be properly defined until their measurement.
Integration over the crystal volume (3.32) can be easily performed as

3We also ignored any dispersive dependence of the susceptivity from the frequency.
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Ly Ly +Lz

2 T P
K(Ak) = /L e~ iAka d$/Ly e~ Bkyy dy/L e~k
-3 2 -5

sin (Ak, L, /2) sin (Ak, L, /2) sin (Ak,L,/2)

which has a maximum in

= 8

(3.34)

Ky = ko + Ky (3.35)

Equations (3.29) and (3.35) are called phase matching conditions and
guarantee that the maximum conversion efficiency occurs according to the
energy and momentum conservation.

Let’s focus now on the polarization. Three cases only are possible: if [ =
m = n, pump, signal and idler posses the same polarization and we speak
of type 0 parametric down conversion, if | # m = n, signal and idler are
differently polarized respect to the pump and we speak of type I parametric
down conversion, if | =m # n or | = n # m, pump and signal or pump and
idler have the same polarization and we speak of type II parametric down
CONVETSION.

By using both the phase matching conditions we obtain in the type 0 PDC

P S )
| n(ws)w5|ks + n(wz)wl‘ki (3.36)
which has no solution in common crystals as the refractive index is tipically
an increasing function of w?.
By considering a crystal with nonvanishing birefringence and indicating with
e, 0 the extraordinary and ordinary polarization components (see Appendix
C) we obtain for the type I

n(ws + w;) (ws + w;)

k k. k;

Neo(ws + w;) (Ws + Wi) 7 = N e (Ws)Ws T + Mo e (Wi )wi (3.37)
and similarly for type II.
We are interested in the type I in the degenerate case of w, = w;, so
k k k;
2 n€,0(2w5>_p = no,e(ws) (_S + . ) (338)
LA LARNLA

4Indeed type 0 PDC can be realized only in periodically poled engineered crystals.
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Figure 3.3: Schematic representation of the degenerate spontaneous para-
metric down conversion (SPDC). A photon in the pump mode is absorbed,
and a couple of photons are emitted in the signal and idler modes. In the
degenerate case signal and idler possess the same frequency.
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Without loss of generality we can choose k,, parallel to the z axis. Eq.(3.38)
then becomes

—0 (3.39)
) (3.40)

In all the experiments presented in this thesis, the pump is horizontal
while signal and idler vertically polarized.
Equation (3.39) asserts that the type I degenerate parametric down conver-
sion emission occurs along cones of different colors.

3.2.3 Single-mode addition

The generation of the biphoton state |1,1,) of eq.(3.33), allows one to use
parametric downconverter crystals as sources of temporally well localized
single photons, via herald detection of the other photon of the pair [24].
Indeed, the simple measure of one of the two particles, let’s say just for
convention the idler one, causes the collapse of the initial state onto a one-
photon state distributed on a statistical mixture of several signal modes®

SFor sake of simplicity, we still consider of injecting vacuum in the signal and idler
modes.
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ﬁs = T {/‘1kiywi><1ki:wi

= Z/(nk;,w;|1ki,wi>(1ki7wi|‘1’(t)>(‘I’(t)|nk;,w;> dk; dw; dk; duw;

- /<1ki,wi

ks dwi|w<t>><\v<t>|}

W) (W) 1k i) ki deos

= /¢(kls,w;7k§7w§)¢*(kg7wga ki wi) M eon) (Mg or | = (Liegon it o) Lo iy ) -

dk; dus; . de dK" o' ke, dus, dk! d”

= /¢(ksjws>ki>wi>¢*(’€saws>ki>wz’) | Lhesoe) (Lo | -
dk; dw; dk dws

= [0tk )

_ /@(ks,ws) 0 (Koy, 2) [0Y(0] ey, ws) ds deos

dk dwg

where T'r; indicates the trace over the idler degrees of freedom. The
result (3.41) has been obtained by exploiting the phase matching conditions
(3.29) and (3.35).
The function

@(ks,ws) = / |¢(k8,w5,ki,wi)|2 dkz dwz (342)

is the marginal probability distribution relative to only the signal beam.
From eq.(3.41) we see that in PDC process the simple detection of one photon
is necessary to implement af, but not sufficient to aim it to a single mode.
A theoretical recipe to implement single mode addition from PDC sources
has been developed by Ou in 1997 [26] and later deepened by Aichele and al.
[27]. The two analyses agree in affirming that a narrowband spatio-spectral
filter should be used in the heralding idler channel to produce high purity
transform-limited single photons in the signal one. Without entering into
the formal details, we can get an intuitive picture of what this means by
considering an ideal delta-shaped filtered idler detection described by the
density matrix
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pa= [ 80 = K)o = ) 1) (L] b s (3.43)

where ky and wy = w,/2 are respectively the central wave vector and
frequency of the ideal idler filter. By substituting into eq.(3.41) the projector
|1k w;) (Lk; ;| With the delta filter (3.43) we obtain the highly pure signal
density matrix

py = T{ / 5(ks — ke )(ws — wp) [Lpen) (L] b dwi|\1f<t>><\11<t>|}
(3.44)

- ‘1k57ws><1k57ws

with ws = w; = w,/2 and k; conjugate of k; = k; according to the phase
matching conditions.

Actually, Aichele and al. showed that under reasonable hypotheses, like
ignoring diffraction, spatial or temporal walkoff (by using a sufficiently short
crystal) and considering gaussian collimated beams, in real scenarios it is
sufficient to filter the idler detection much narrower than the pump spa-
tial and spectral width to achieve high purity P. Indeed the single photon
spectrotemporal purity depends on the ratio y; = 0;/0, between the spectral
width o; of the filter used for the detection of the idler and the pump spectral
width o, as

1

7)em :u e
t p( t) 14‘2#%

Considering also the spatial dependence brings to the same requisite of
narrowband spatial filter

(3.45)

1

,Psp</"t5) = 1+2/,62

(3.46)

where ji, = 07/0,, is the ratio of the width oy of the wave-vector distribu-
tion selected by the filter used for the detection of the idler, and the width
o, of the wave-vector distribution of the pump.

It has been shown that in some special conditions pure single photons can
be produced in parametric down conversion without the necessity of filtering,
permitting much higher production rate [29], [30].
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Figure 3.4: A single photon with high purity can be produced in the signal
mode of a parametric down conversion process, by strongly filtering spectrally
and spatially the heralding detection in the idler mode.
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3.2.4 Single addition approximation

The single photon approximation discussed in the general context of one pho-
ton operations, can be considered quite well justified for PDC in our case.
Indeed, we can easily demonstrate that in our conditions the multiple addi-
tions per pulse is a very unlikely event. Unlike the subtraction’s case, as we
don’t want to complicate too much the analysis because of the phase match-
ing conditions, it is convenient to directly give a look at the experimental
parameters. Starting from a 80MHz repetition rate mode-locked laser, we
inject the BBO nonlinear crystal with a power P ~ 100mW at A = 393nm
or v = 7.5-10"Hz. That corresponds to

j2 0.1 B
o 6.6-101.7.5-1014°

~ 2-10"s7! (3.47)
injected pump photons per second or

2107

8- 107
pump photons per pulse. By measuring a stimulated PDC detection rate in
the idler mode of ~ 2000cps, we can infer a downconversion event every

~2-10° (3.48)

2-10%7
000"~ 10t (3.49)
pump photons or every
210"
5100 10° (3.50)

pump pulses. That means a downconversion probability of about 107 per
pump pulse and a negligible 1071° for double additions within the same pulse.
Taking into account a finite-detection efficiency of the used APD (~ 60%)
and a non-ideal air-fiber optic coupling (= 80%) does not change the conclu-
sion.

Today great efforts are directed towards the development of novel methods
enabling higher single and multiple photon production rates. As previously
mentioned, particular engineered crystals permit special phase matching con-
ditions without the need for tight spectral filtering in the idler mode, allowing
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the direct generation of pure Fock states up to n = 3 [36]. Another approach
is based on exploiting periodically poled crystals (PPC), where the orienta-
tion of a birefringent material is periodically inverted thus allowing photons
to never interfere destructively, even if generated at different longitudinal
positions. Walkoff is also compensated enabling stronger beam focusing. Pe-
riodically poled potassium-titanyl phosphate crystal for instance has been
used as an high rate single photon source allowing an on-the-fly tomography
based alignment of the setup [35]. Finally, multiphoton generation has been
also demonstrated possible with the use of pump enhancement cavities, per-
mitting stronger light-matter nonlinear interactions due to the higher pump
intensity [37], [38].

3.2.5 Preparation efficiency

Like the parameter 74 for the detection stage, for the generation too an
efficiency ngen can be introduced to quantify the quality of the single photon
source. Since we have seen that the simultaneous generation of more than one
couple of photons is an extremely rare event, we can identify in the heralding
process the main cause of degradation in the single photon generation, and
define 7, as the purity P

Ngen = Psp : Ptemp * Ndark (351)

where the additional contribution 7)4..x due to the dark counts in the
APD heralding detector has been considered.
A total efficiency n,; can be then defined as the product of the two terms of
preparation and detection

Ntot = Tgen * Tldet, (352)

therefore taking into account both the sources of experimental errors.
The preparation contribution should be defined according to the particular
expected stateS.
To give some numbers, in our Ti:sapphire (Ti:Al,O3) picosecond-laser setup,

6The preparation efficiency has to depend indeed on the protocol and physical system
exploited in the preparation stage.
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an ultraviolet pump at A\ = 393 nm with a spectral width of AX ~ 0.9nm
and a beam waist wy ~ 200 pm, is used. The conditions (3.45) and (3.46)
respectively on the spectrum and on the wave-vector distribution are fulfilled
by filtering the idler detection with an ethalon cavity with a width AXA = 0.1
and with a single mode fiber capable to select a propagation mode with a
beam waist wy ~ 530 pm. By considering also the dark count contribution,
the resulting observed single-photon purity is estimated in &~ 92%.

3.2.6 Experimental considerations

Visibility and mode matching efficiency When dealing with single
photon beams, it is basically impossible to directly have the control on the
alignment and then on the mode matching efficiency (see Eq.(2.11)). Unfor-
tunately, a good 7., represents for the experimenter a necessary requisite
to perform an effective homodyne measurement.
An additional bright beam, matched to the selected downconverted signal
mode of the single photon, should then be used to check the alignment in-
stead of it. To produce a bright beam with these characteristics we exploited
a three wave mixing process, where a difference frequency wave is generated
by the injection of the ultraviolet pump with a seed infrared idler spectrally
matched to the ancillary detection filter. In other words, an additional co-
herent bright beam aligned to the idler mode is seeded into the crystal in
order to stimulate the generation of a classical beam in the same signal mode
of the single photon, in a three wave mixing nonlinear process. In the spatial
domain a precise coupling with the pump is not necessary and a wider idler
seed beam can be used. A formal demonstration can be found in [27] but we
can intuitively understand it by imaging that the nonlinear interaction takes
place only within the spatial overlap region, i.e. with the narrower pump
acting as filter, so a broader size is a sufficient condition to produce a bright
signal wave well matched to the selected single photon mode.

Since the generated macroscopic classical signal beam is well described by
a coherent state of amplitude ~, it is possible to evaluate the mode matching
efficiency of the single photon by measuring the visibility of the interference
fringes produced by this strong signal beam with the local oscillator. So, by
mixing the v and « coherent states by means of a 50% beam splitter and
supposing the two beams in phase, we get”

"See eq.(A.5) in Appendix A.
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Figure 3.5: An alignment signal beam with the same spatio-temporal mode
of the single photon can be generated in a three-wave-mixing process.
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J dt (Mla], (t)aw(t) |M) — (ml [ dt al,(t)au(t) [m)
Jdt (M, (8 (8) [M) + (ml [ dt af,(t)au(t) |m)

- 2 [ dty*(H)a(t)
E R{Uﬂﬂﬂm?+fmm@m} (3.53)

where |M) = |71, a) and |m) = |y1€"™, az) represent the states injected
into the balanced beam splitter when the maximum and the minimum in-
tensities are observed at the output mode 1’ of the beam splitter. A phase
factor ¢/2 has been absorbed into the definition of a(t) in the calculation.
Once again it can be helpful introducing modes normalized to 1, that is

a(t) = /nroa(t), y(t) = /niy(t), so eq.(3.53) becomes

2\/ni\/n dt v (t)a(t
V(y,a) = 73{ wiio ] dy(1) ()} (3.54)
ny +nro
with R representing the real part. For beams with the same intensities,
i.e. ny = nre it provides an indication for the quality of the single-photon-
mode-matching efficiency of Eq.(2.11), as

Viy,a) = R{/ﬁvﬁm@}. (3.55)

Adding of a single photon to an input beam Addition of single pho-
tons to a target beam can be easily realized provided that the injected signal
seed is spectrally and spatially broader than the addition mode and we are
not anyway interested in the part of the mode unaffected by the addition.
The reason is that, as we have seen in Sec.2, the use of homodyne detection
enables the measurement of a state only in that portion of the mode coupled
to a local oscillator (LO) beam. This fact makes the detector blind to the
unmatched spectral and spatial parts and then, by selecting with the LO only
the portion affected by the addition, we can forget the remaining unchanged
portion.
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3.3 Quantum operator superpositions

The next step is the implementation of superpositions of single photon op-
erations. Superpositions represent one of most critical, crucial and debated
points of the whole quantum theory, as their existence constitutes one of the
crucial points that apparently makes the microscopic and macroscopic worlds
so different (see for instance [39] or [40]).

In the following of this section we analyze more in detail two particular con-
ditioned operator superpositions at the basis of the experiments explained in
the next chapters. The basic idea is just that two heralded quantum opera-
tions can be superposed whenever it is impossible the discrimination of the
two corresponding ancillas.

3.3.1 Subtraction+addition/addition+subtraction

Based on this idea, we can build our superposition device by experimentally
erasing any discriminating information in the heralding events we want to
superimpose, always paying attention to avoid any decoherence effect due to
strong interactions with the environment [43]. For instance quantum com-
mutations rules have been tested following this approach [41], [2], [72], in a
sequential scheme of addition and delocalized subtraction. Two low reflec-
tivity beam splitters are used to implement probabilistic heralded photon
subtraction before and after the downconverter. The reflected modes of the
two beam splitters are then fiber coupled and properly delayed to synchro-
nize the two ancillary path lengths at the entrance modes of a beam splitter.
The beam splitter makes the two paths indistinguishable since the detection
of one photon at the BS output cannot be directly related to one particular
input mode. Then, the following superposition must be considered

c1a'a + cpe®aal (3.56)

where ¢?/c2 and the relative phase ¢ can be experimentally selected by
adjusting the relative intensities and phases of the ancillary announcing the
two events of the superposition (see Sec.4.4.2 for an explicit analysis of the
experimental parameter setting to adjust phase and weights of the superpo-
sition).
Actually, as previously seen in this thesis work, we made use of polarization
degrees of freedom to implement one photon subtraction. In this case, the
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two low reflectivity beam splitters have been replaced by the joint action of
a couple of HWPs together with a polarizer beam splitter to spatially sepa-
rate the horizontally polarized subtraction mode from the travelling vertical
signal wave.

More formally in this analysis we should have considered the sequential ap-
plication of an unitary low reflectivity beam splitter transformation (3.7),
followed by the downconverter unitary transformation (3.24) and then an-
other unitary low reflectivity beam splitter transformation in the usual low
probability regime

UBS (65) Uppe (62) Ups 6,) = eieg(alaha{@) eieg(a{a§+a1a3) eiel(a1a§+a{a2)

I+ i (alai + a{a4> :

Q

[ +ibs (a}ag + a1a3> :

T+i6, (ald; + &{&2) (3.57)

where the subscript 1 refers to the signal mode target of the manipulation,
and the ancillas 2,4 and 3 respectively to the two subtractions and to the
addition. If we consider that all the three heralding modes are initially
occupied by the vacuum, we can neglect the terms containing as, as, a4 and
(3.57) becomes

035 (93) UPDC’ (92) UBS (91) ~ [f + 293 dléi} .
[f + iy a{a;} [i +if; dlég}
~ I+ ib; ayal + 0 alal + 05 ayal —
— 0y 0y analalal — 0, 05 avagadal —
— 0y 05 alayalal, (3.58)

where we neglected the third order term. The desired superposition of
T T

ayaq and a;a, can thus be obtained by making the two heralding subtraction
arms 2 and 4 interfere in 50 : 50 beam splitter to erase information about
their paths. The desired superposition is then heralded by an event of double
photon detection, the first at one output arm of this 50 : 50 beam splitter,

the second one on mode 3 announcing the single photon creation|72]
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Figure 3.6: Experimental scheme for the commutator-type superposition.
HWP1 and HWP2 are half wave plates. PBS is a polarizing beam splitter.
APD1 heralds the delocalized subtraction by means of detection on mode
5, APD 2 instead heralds the addition of a photon in the input mode by
detecting a click in mode 3 (see eq.(3.58)). The desired superposition is then
produced just in case of coincident detection events.
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3.3.2 Superposition of addition/identity

Interesting operations can be obtained when considering superpositions of
the identity operator I and single photon creation operator af.

erd + cpe™al (3.59)

To implement the necessary conditioned identity operator I, we can imag-
ine to inject a coherent state of light |/3) aligned along the idler mode directly
into the heralding APD, forcing it to announce the successful event even in
case of no interactions, i.e. with the signal input state unchanged [17],[44].
In this case a perfect superposition is obtained when the mode (frequency,
direction of propagation, waist, etc.) of this second beam is made identical
to that of the heralding ancilla. As it is clear from Eq.(3.43), single mode
addition requires strong filtering conditions on the ancilla’s detection, so by
using the same filtering chain, the indistinguishability can be achieved. We
use an I -heralding beam horizontally polarized to avoid any contribution to
the type I downconversion interaction inside the BBO 8. A polarizer (POL2
in Fig.3.7) must be inserted after the crystal in order to filter an unique
polarization for the two beams (and make the ancillary photons indistin-
guishable in this degree of freedom). Again the relative weights ¢2/c2 and
the relative phase ¢ can be experimentally selected by adjusting the relative
intensities and phase of the ancillary photons announcing the two events of
the superposition (see Sec.4.4.1 for an explicit analysis of the experimental
parameter setting to adjust phase and weights of the superposition).

To threat mathematically this kind of superposition it should be con-
sidered the application of a coherent displacement of amplitude S on the
heralding channel, i.e.

A

D, (B) UPDC(Q) ~ 2 (B) [ 0a1a2}
= Dy <5>i —ifaf D (8)a} (3.60)

where again we considered that initially the mode 2 is in the vacuum
state.

8Signal and idler are vertically polarized while the beam heralding the identity beam
is horizontally polarized when crossing the BBO crystal.
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APD

Figure 3.7: The joint action of the half wave plate HWP and the polarizer
POL2 permits to select the intensity of the I ancilla and fix the weights of
the superposition. PZT is a piezoelectric transducer mounted mirror used
to actively lock the relative phase. The idler injected onto the crystal is
horizontally polarized, the parametric down conversion emission has instead
vertical polarization.
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It is clear that now a click in the heralding channel 2 can also take place
in case of no downconversion as well. Indeed, the detection of a photon
originated in the coherent state used to displace the initial vacuum state,
D5 () |05), heralds the identity I; on mode 1.
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Chapter 4

Universal continuous-variable
state orthogonalizer and qubit
generator

In this chapter we will see the experimental realization of a simple universal
method [11] for producing a quantum state that is orthogonal to an arbi-
trary, infinite-dimensional, pure input one, i.e. to generate a state |V, ) from
|¥), where (U, |U) = 0. The adjective universal indicates that the protocol
works for all possible pure input states and, moreover, that the quality of the
output state, that is the fidelity to ideal expected one, |¥ ) is the same for
any |¥), at least in principle [19].

This simple NOT operation is commonly realized in classical binary systems,
where it allows one to switch between perfectly distinct and orthogonal states
denoted by 0 and 1 defining the computational basis. On the contrary, be-
cause of the superposition principle, this operation is forbidden in quantum
mechanics, where a simple switch operation S acting on a qubit space as
S0y = |1) and S|1) = |0), leaves their superposition unchanged, indeed
S(10) + [1)) = |1) + |0). We will see that the formal reason for this fact
is that the universal orthogonalization operation is antiunitary, i.e. it is
norm-conserving but antilinear, then impossible to be deterministically re-
alized. To overcome this problem, several alternative approaches have been
developed: for instance Buzek et al. and De Martini et al. considered a
NOT-gate for completely unknown polarization states of light at the price of
having a non optimal output state fidelity to the ideal orthogonal one ([12],
[13]), T. C. Ralph et al. and J. L. OBrien et al. designed and built a non-
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deterministic-measurement-based quantum controlled NOT machine in the
coincidence detection basis [14],[9], etc.

Here, following the idea of Vanner et al.[11], we released the hypothesis of
linearity and built a continuous variable universal orthogonalizer only de-
pendent on a minimal information about the input state. In principle, the
method can produce perfect orthogonal state at the price of non-deterministic
operation. Moreover, the required preliminary information is very limited
compared to a complete tomography of the input state, the approach is
advantageous compared to a direct orthogonal state engineering. A similar
orthogonalizer relying on minimal information about the input state required
was already demonstrated for states living in a limited two-dimensional DV
Hilbert space [15].

The experiment presented here shows the typical structure of quantum state
engineering: an initial CV coherent state is manipulated with proper DV
tools and then a quantum CV tomography is performed to characterize the
output. A comparison with the ideal orthogonal state provides the defini-
tive demonstration of the orthogonalization procedure. Again, like all along
this thesis, DV and CV tools are used indifferently in a completely hybrid
framework.

4.1 Quantum state orthogonalizer

An intuitive way to picture the action of the orthogonalizer can be obtained
by looking at the Block sphere (or Poincaré sphere). The Block sphere is
a common way to represent a 2-level quantum pure state (a qubit) on the
surface of a sphere of unitary radius. The north and south poles of the sphere
correspond to the two basis vectors |1) and |0) while all the other points on
the surface correspond to all possible superpositions. The internal points
represent mixed states. Let’s indicate a point on the surface by using a coor-
dinate system given by the two angles # and ¢ defined as the complementary
angle of the latitude with respect to the z-axis (also called colatitude) and
the longitude with respect to the y-axis. In this way we can write the generic
vector as

) = cos (£) |0) + sin (£) |1) (4.1)

As orthogonal state vectors |¥) and |¥ ) are represented by diametrically
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opposite surface points!, the desired operation should be able to map every
point onto its antipodal.

Figure 4.1: Block sphere. The north and south poles corresponds to two
qubit basis vectors.

it is immediate to verify that this transformation is achieved by using the
new coordinates

0 —m—40
O — T+ . (4.2)

Transformation (4.2) conserves the scalar product, that is the probabil-

!That’s why the orthogonalization of a single qubit is sometimes called SPIN-flip
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ity?3, and from the Wigner theorem [16] we can assert that it must be unitary
(and linear*) or antiunitary (and antilinear®). Unitary transformations are
represented by the rotations of the Block sphere and it is obvious that the
desired sphere inversion can’t be achieved by using only rotations. There-
fore the universal orthogonalization is a nonunitary operation and can’t be
deterministically realized.

In the same way, given an initial state «|0) + |1), the antiunitary nature of
the orthogonalizer operator O can be easily inferred by observing its antilin-
ear (and then antiunitary) character

0al0) + B|1) = B*|0) — a*|1). (4.3)

In an infinite dimensional space, a CV orthogonalization can be easily imple-
mented by coherently displacing the state by an arbitrary amount «'. The
overlap between the displaced state and the initial state (o/|D(e/)]a) can be
indeed made arbitrary small, provided that the displacement amplitude o/ is
sufficiently large. Then, the operation can be considered non trivial only on

2The transition probability from the state [¥) = cos () |0)+¢™® sin (§) |1) to the state
|®) = cos (2) [0) + e sin (2) [1)

(@[T)]* = |cos(§)cos(3)+ e (= gin (£)sin (2) |?
3) cos” (3) +sin” () sin® (3) +

+ 2cos () cos (%) sin (§)sin () cos (a — ¢)
doesn’t change after the orthogonalization. Indeed, given |¥’) and |®’) as the states
|¥) and |®) transformed by means of operation (4.2), their transition probability doesn’t
change because of the orthogonalization as

(@[ T)))? = |cos( 29)(:05(7r 7)—&—6’(’“7r @ ”)sm( go)sin(%) ?
§)sin () + cos® (§) cos® (3) +

+ 2cos (Q cos () sin (%) sin () cos (o — ¢)

I
2}
=
=
N
—~

I
]
>

l\D

3In a bidimensional DV space, the scalar product-conserving feature of the orthogo-
nalization operation is obvious.

4An unitary operator is always linear.

5An antiunitary operator is always antilinear.
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case of a limited Hilbert space.
That’s the reason for an alternative strategy.

4.2 Universal continuous-variable state orthog-
onalization strategy

Despite these fundamental limitations, as mentioned before, Vanner et al.
[11] recently proposed that a perfect orthogonalizer can be in principle real-
ized even if only some very limited preliminary information about the input
state is available. They considered that, knowing the phase v of the ex-
pectation value of the annihilation operator a on the input state |a), i.e.
(ala]a) = |ale?, an universal orthogonalizer can be implemented by consid-
ering the application of a superposition of single quanta creation and subtrac-
tion X () = afe?®+ae~*, with the phase 6 fixed by the condition §—~ = 7/2.
Indeed , i.e. (a|X(0)|a) = 0.

The proposal can be generalized as follow: given any arbitrary operator C’,
let’s assume to know its mean value (C') for an input state |¥). Then we can
define an universal CV pure state orthogonalizer Oc as

Oc=C— (O (4.4)

where I is the identity operator. When Oc is applied onto a pure state
|W), the resulting state |W, ) is orthogonal to the input one

(WO = (0c]Y)
= (W[C]) — (C)w )
= 0. (4.5)

Eq.(4.5) is equally valid both for CV and DV pure states, independently
of the dimension of the Hilbert space. Here, we propose and demonstrate
the generalized orthogonalization procedure O¢ to infinite dimensional, pure
CV coherent states of light®.

For mixed states, theoretical simulations show that the procedure can’t be

6 As already mentioned, the experimental demonstration of a DV two-dimensional state
orthogonalizer requiring minimal information required can be found in [15].
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anymore considered universal and the quality of the orthogonalization pro-
tocol is heavily dependent on the particular states and operator C employed
(see further). In this chapter we only focused on ideally pure states of light.
Moreover, although the operator C can be in principle arbitrary, the above
procedure can’t be applied if the input states are among its eigenstates, i.e.
when C|¥) = ¢|¥). Indeed, when trying to orthogonalize an eigenstate |¥)
of C' one gets

Oclw) = (C=(O))1w)
= c|¥) —|¥)
= 0D, (4.6)

and in this case the success probability drops to zero being such a state
impossible to occur. Therefore using an operator to orthogonalize one of its
eigenstates is not feasible.

4.3 Universal orthogonalizer vs. complete to-
mography with state engineering

In principle, a full tomographic reconstruction of a given input state would
allow one to design a specific setup to generate the orthogonal one. How-
ever, such a strategy would be very inefficient and far from universal. State
tomography involves the measurement of observable probabilities for a large
number of experimental settings, thereby requiring many identical copies of
the input state for an accurate estimation after a numerical processing of
the measured data sets. Furthermore, once each state is reconstructed, one
should design an ad hoc experimental scheme to generate the orthogonal one,
and this might in general be far from trivial.

On the contrary, even if the measurement of the mean value of operator C
in our scheme ideally requires a large number of identical copies of the input
state, a measure of accuracy may be found. Specifically, when there are only
N copies, the estimation of the mean value is accurate by AC/ V'N, where
AC is the standard deviation of the measurement outcomes for the expecta-
tion value of the operator C. Thus, even though we do not claim that this
approach requires the least amount of resources, it is certainly much more
resource efficient than those based on a full reconstruction of the state. More
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importantly, a single universal experimental apparatus, only depending on
a single parameter (the mean value (C)), is necessary for our scheme to or-
thogonalize arbitrary states. In the particular case of a set of input states for
which (é’) is the same, no change at all is needed in the apparatus to process
all the elements of the set.

The orthogonalizer is general enough to work based on any operator (é) and
with any pure input state | ). Choosing a particular operator implies design-
ing the experimental setup accordingly, but a specific apparatus would then

work for arbitrary input states, with the proper adjustment of its parameters.

4.4 Experimental implementations

To demonstrate the functioning of the above method and its generality, in
the following the experimental analysis of specific examples based on two dif-
ferent C' operators (therefore implying two completely different experimental
setups) is presented. The first tested version is based on the DV single photon
creation operator af, the second on the DV photon number 7. In both cases,
a CV coherent state |a) has been used as the input state to orthogonalize.

4.4.1 Single-photon creation version
The operator

A particularly versatile version of (4.5) is obtained when C' = af, which has
no eigenstates and can thus succeed in orthogonalizing any pure input state.
In this case the operator takes the particular form

Oyt = af — (0" (4.7)

with I identity operator. It is then easy to see that, when applied to a
coherent state |a), Eq.(4.7) becomes

Ot = a' — a1 (4.8)

Keeping in mind that a coherent state can be written as a displaced

vacuum state (D(«)|0)), one finds that the output state is a displaced single
photon:
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a)[1), (4.9)

which is clearly orthogonal to |a).
Note that we do not assume any knowledge about the initial state except
its amplitude. Thus, simply choosing another coherent state |a) as the
orthogonal one is not a valid alternative. In any case, the overlap of two
coherent states

(/o) [* = 7ol (4.10)

is never zero, especially in a regime of low intensities.

Experimental implementation

Preparation of the initial state In this experiment the mode-locked
Ti:sapphire laser emitting a train of 786 nm picosecond pulses at a repetition
rate of 80 MHz has been used for producing the input coherent states |a), the
ancillary beam |3) (see further) and, after frequency doubling to 393 nm in a
lithium triborate (LBO) crystal, as the pump for degenerate, non-collinear,
parametric down-conversion in a 3-mm long S-barium borate (BBO) crystal.

Manipulation In Fig.4.2 it is shown a simplified scheme of the experimen-
tal setup designed to manipulate the initial state and realize the operation
(4.8). The scheme is basically a conditioned implementation of the two op-
erators a' and I where the photons heralding both the operations are made
indistinguishable (see section 3.3). In such a way, the information about the
origin of a click in the heralding detector is erased and it is fundamentally
indeterminable (by the SPCM click) which of the two events has occurred.
Only in this case a superposition of ' and I can be obtained.

In particular, the photon creation operator can be conditionally realized by
means of stimulated type-I parametric down-conversion (PDC) in a nonlin-
ear crystal synchronously seeded by the vertically polarized (ideally) pure

76



coherent state |«) along the signal mode [7],[18]. Heralded photon addition
in such a mode is conditioned on a single photon detection by the avalanche
photodiode (SPCM) placed in the idler mode after narrow spectral and spa-
tial filters (F) (see Sec.3.2).
For the conditioned implementation of the identity operator I, we have to
make sure that no PDC interaction takes place into the crystal when the cor
responding heralding photon is detected”. Considering that we are working
in a very low gain regime where PDC is an extremely rare process, identity
can be faithfully implemented by just injecting an ancillary coherent state
|3) along the PDC idler mode and detecting one of these photons.
The coherent superposition of photon addition and the identity can be then
realized by mixing the vertically polarized (heralding) idler PDC mode with
the horizontally polarized coherent light field |5) injected along the same di-
rection. Indeed, if an unique polarization is selected by means of a polarizer
and the optical modes of the two beams are matched spatially and temporally
by using the same filtering chain, every difference in the beams is erased and
the beams can be thus considered indistinguishable. As a result, the origin
of the heralding photons detected by the SPCM is fundamentally indeter-
minable and a superposition of ' and I must be considered (see Sec.3.3.2).
Similar techniques, involving phase-space displacement on the heralding
mode of conditional state generation, have been recently used for quantum
state engineering up to two photons [17],[44].

Weights and phase adjustment To implement the desired superposition
of eq.(4.8) we need to experimentally control both the relative phase and the
weights of the photon addition and identity. Before seeing how this can be
achieved, it can be helpful to choose a reference system where the complex
amplitude « is real.

Let’s take a look at the desired state

lay) =

at — oc_f) |a)

Vital ot ozf) |a)
1+a

= V14 a?|a,l) —ala), (4.11)

/N 7N
|

]

TAnd the injected signal beam |) then will pass through the crystal unaffected.
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Figure 4.2: Conceptual experimental scheme of the orthogonalizer based on
photon addition by heralded stimulated PDC. The photon addition is imple-
mented by heralded type-I parametric down conversion (PDC), stimulated
by the vertically polarized coherent state |«) injected along the signal mode.
The horizontally-polarized beam injected along the idler mode doesn’t con-
tribute to stimulated emission, nor it interferes with the vertically-polarized
seed |a) coherent pulses injected along the signal mode, because of the type-I
interaction. A click in the single-photon-counting module (SPCM) normally
heralds a single photon addition to the generic input state |¥). However, if
the PDC vertically polarized idler mode is mixed with a synchronized hori-
zontally polarized coherent state |3) with the use of the polarizator P prior
the detection, a superposition of a' and I can be obtained. Slightly rotating
the polarizer and using a piezoelectric transducer phase shifter (6) enables
the adjustment of weights and phase of the superposition (see further). The
scheme is basically identical to the one shown in Sec.3.3.2.
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where we have introduced the normalized state |a, 1) = \/ﬂ?]@ called

SPACS, acronym for single photon added coherent state®. The coefficients
V1 + a2 and —a must be interpreted as the probability amplitudes for a' and
I to occur and their squared modulus represents the corresponding probabil-
ities Pr,+ and Pry

Pryi 1+a?
Pry =0 (4.12)

The normalization factor /1 + a2 represents the enhancement ratio of

the downconversion probability for the stimulated signal with respect to the
spontaneous case (i.e. when a = 0), see [18].
From the experimental point of view, these probabilities are proportional to
the SPCM clicks count rate due respectively to photons originated from the
PDC process (CRppc), and those injected as ancillary beam |3) (CRape)-
We must pay attention to take into account the unavoidable contribution of
clicks from spontaneous emission (CRgppc), because it does not contribute
to Pry and thus must be subtracted from the ancillary counts (C'Ryy.)

PTQT X CRPDC == CRsppc(l + 052)
P?“[ X CRanc_CRSPDC- (4.13)

By putting together eq. (4.12) and (4.13) we find

1+a? B CRsppc(l + Ckz)

4.14
a2 CRune — CRsppe (4.14)
and so
2
CRune = CRsppo(l+ 042)1 npvhs CRsppc
CRSPDC (062 + 1)
= CRppc (4.15)

8See [7] and [20] for more details about SPACS
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Eq. (4.15) states that for perfect orthogonalization we have to balance
exactly the count rates of SPCM clicks due to the PDC to the ones due to
the ancillary photons injected. To meet this condition we measured the num-
ber of clicks due to the |a)-stimulated emission without the injection of the
ancilla |3), and compared it to the value observed in the opposite condition
of ancilla |5) with no seeding |a). By selecting properly the polarization
component transmitted by the polarizer P, the condition (4.15) has been ex-
perimentally fulfilled.

A second condition requires to fix the relative phase ¢ to w. This has been
done by using the count rate of the heralding SPCM to measure the inter-
ference between the PDC idler and the synchronized coherent state |5). By
using the observed value as a feedback signal, it has been possible to actively
lock the interference fringe to its minimum value (corresponding to a relative
phase of 7) with a mirror mounted on a piezoelectric transducer (PZT) in
the path of the ancilla.

By simply controlling both the relative phase and the probabilities of the two
operations, different superpositions of a' and I can be obtained, in particular
those corresponding to the orthogonalizer.

Detection The conditionally generated output state is finally analyzed
by means of a high-frequency, time-domain homodyne detector (BHD) [21]
triggered by the coincidences between the idler SPCM clicks and the elec-
tronic signal from the mode-locking driver to reduce the dark counts of the
avalanche photodiode.

A full quantum tomographic reconstruction of the density matrix of the states
is finally performed, based on an iterative, maximum-likelihood algorithm
(see Appendix B).

The results

Figure 4.3 illustrates the result (with no detection inefficiency correction) of
the application of the orthogonalizer to coherent states of different initial
amplitudes. The x quadrature distributions show that the Wigner functions
of the orthogonal states are differently displaced versions of a single-photon
Wigner function [10]. A full tomography of the input and output states for
the case with v = 1.0 results in a mutual fidelity of 0.4. The discrepancy
from an ideal value of zero comes from different sources of experimental
imperfections that limit the purity of the prepared and measured states and,
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Figure 4.3: Raw measured = quadrature distributions (marginals of the
Wigner function) for the input coherent states (ribbon-style curves) and for
the corresponding results of the orthogonalization procedure (shaded areas)
with a = 0.5,1.0,2.0.
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as a consequence, their orthogonality (see further).

4.4.2 Photon number version

The operator In order to demonstrate the effectiveness and generality
of the proposed approach, we now consider another scheme to realize the
orthogonalizer. Since the mean number of photons in a state is a parameter
often easy to determine experimentally, one may insert such a mean photon
number (7)), with 7 = a'a, into the definition of the orthogonalizer

~

O, = n— ()

= afa— (afa)l (4.16)
Eq.(4.16) can be rewritten in a more convenient form by exploiting the
bosonic commutation rule. Indeed, from [d, &T] = I it follows that the gen-
eral superposition c;afa + ol can be transformed as

Aata+ Baal = Adta+ B (f n afa)
— (A+B)ala+ BI (4.17)

experimentally testable with a setup similar to the one first developed for
testing the bosonic commutation relation [2] (see Sec.3.3.1).

Therefore, a state orthogonal to a generic one of mean photon number (7)
can be straightforwardly obtained by adjusting the free parameters so that

B .
148 = —(n). (4.18)
that is
B (A)
A T (4.19)

It is seen that, when used in combination to an input coherent state |«),
this scheme results in the same orthogonal state as for the previous example,
since

[ﬁ— (ﬁ)f] o) = [ma— (ﬁ)f] )
- [aeﬁ—mﬁ} ). (4.20)

Note that again we do not assume any knowledge about the initial state
except its mean photon number.
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Experimental implementation

Preparation of the initial state In this second version of the orthog-
onalizer we considered the same ideally pure coherent state |«) as input.
Consequently, the preparation part is identical to the one described for the
photon creation version: same mode-locked Ti:sapphire laser, same frequency
doubling lithium triborate (LBO) crystal, ecc.

Manipulation The operation (4.17) can be implemented with a scheme
basically similar to the one used for bosonic commutation relation. It relies
on the coherent superposition of two inverted sequences of photon creation
and annihilation operators by means of two 5deg rotated half wave plates,
each ensuring a photon subtraction probability of ~ 3% (see 3.3 and 3.1).

A double-click coincidence pattern from two single-photon detectors, one at
the output of the polarizing beam-splitter used to collect the horizontally
polarized subtraction mode, and the other on the herald mode of the pho-
ton addition stage placed between the two subtraction ones, certifies that a
sequence of photon addition and subtraction has certainly taken place, but
leaves their order unknown. By adjusting the two half wave plates rotation
angle and the relative phase between the two subtraction heralding modes, a
generic superposition of the two sequences like eq.(4.17) can thus be realized.

Weights and phase adjustment The relative weights between the two
inverted sequences of operations is then properly adjusted according to the
mean photon number of the input states, according to the condition (4.18).
Like in the photon addition version, in order to connect the superposition
weights to the APD clicks, it is helpful to rewrite eq.(4.16) considering nor-
malized states in the superposition. Let’s start calculating the two norms

N = [(aldtaata )]
— [la (alaa’ |a)]"?

= [l + | (4.21)
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(a]aa’aa’ |o) }1/2

[(

[a| (1+a )(i+a*a) |oz>}1/2
[ af (] + a) <f+ dTOz> |a>} 2

= [1+3]af? +]a]" (4.22)

We can now rewrite the superposition of Eq.(4.17) for an input coherent
state |a) as

aal
[Ad'a + Baa'] o) = ANI%\(J) L BN A (4.23)
and connect the coefficients to the APD clicks
AN > CRui
= a . 4.24
‘B/\fg CRu (4.24)

where again C'R,,+ represents the count rate observed for the successful
event of single photon subtraction and addition, with C'R,;, for the successful
event of single photon addition and subtraction.
By using the orthogonalization condition (4.19) and substituting the values
found in Eqgs.(4.21),(4.22) we obtain the condition for the counts

CR, .t
CRgt,

(o) =

1 2 4 2.4 2
+ 3|af* + |« (]oz| + > ' (4.25)

o + o

So, we see that the orthogonalization condition depends on the amplitude
a.
Experimentally the parameter « is accessible by a simple measure of the
factor 1+ |a|?, as the enhancement factor of the downconversion rate in the
stimulated with respect to the spontaneous cases. The right ratio of Eq.(4.25)
can be then adjusted for each input |a) by adjusting the two half wave plates.
The relative phase in the superposition has been fixed to 7 by inserting an
additional birefringent crystal (see Appendix C) between the two subtraction
HWPs. A slight tilt of the crystal permitted to change the optical length
of the horizontally polarization component between the two half wave plates
until a minimum of interference was observed in the subtraction detector.
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Detection See 4.4.1.

Results

Figure 4.4 shows the reconstructed Wigner functions for input and orthogonal
output states, whose measured mutual fidelity (B.19) is F = 0.34, while
the fidelities F, to an ideal coherent state |a = 0.78) are 0.96 and 0.18,
respectively.

4.5 Universal CV qubit generator

In addition to the CV orthogonalizer, this technique also naturally leads
to a method for producing arbitrary coherent superpositions of orthogonal
quantum states out of any input pure one. For any complex number ¢, the
(unnormalized) superposition

Ty + T, = (cf+NOc> )
= [N(ZW (c—/\/(é>) f} ) (4.26)

is realized by applying the same operation of Eq.(4.5) to the input state,
but with an appropriate change in the weight of the identity operator. There-
fore, once the orthogonalizer is in operation, any quantum superposition of
|¥) and |¥ ), which constitutes a general arbitrary CV qubit, can also be
straightforwardly realized.

4.6 Experimental implementation

We demonstrated the feasibility of the Universal CV Qubit Generator of
Eq.(4.26) by using the same a'-based experimental scheme used for the Uni-
versal CV orthogonalizer. Indeed, a simple adjustment of the coherent state
|3) intensity and phase allows one to produce various CV qubit states.

We want to test the procedure by producing balanced superpositions, i.e.
equal-weight superposition states, of a coherent state |«) and its orthogonal
counterpart, that is
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F=0.18

0
X 2
Figure 4.4: Wigner functions of the input coherent state and of its orthogonal

(a displaced single-photon Fock state) as reconstructed from the homodyne
data after correcting for the limited (70%) detection efficiency.
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[e]a) + )] = yﬁ+(m—@wghw

Sl -

at + (e —a) f] |a)

:\/ 1+ |a?o, 1) 4 (7 — @) f]cw)}

(4.27)

Si=Sl-8l-

for the phases ¢ = 0,7/2, 7, —m/2
Let’s now see how to set the experimental parameters to get the balanced su-
perposition for the ¢ = 0 case, that is 1/v/2 [\/1 + |af?|a, 1) + (1 — «) f]a>]
Let’s consider the same notation of the Eq.(4.12). Then we get

Pr 1+a?
= 4.28
Pr; 1 —af? (4.28)
and from Eq.(4.13)
[1—af
CRane — CR = CR,

SPDC T

— CReppe (1402 L20F (4.29)
SPDC T a2 :

Since we are interested in implementing the superposition for the particular
case a = 1, we see that it must be CR,,. — CRsppc = 0. This means that
we don’t need to inject any ancillary coherent state |/3).

Of course in this particular case there’s no need to actively lock any phase.
From Eq.(4.27) in the particular case ¢ = 0 and a@ = 1 we indeed see that the
desired superposition is just a photon added coherent state (SPACS) [7],[20].
In Fig. 4.5 we show the measured Wigner functions for different equal-
weight superposition states of an input coherent state with |« = 1.0 and
its orthogonal state. In the different plots, the phase of the resulting CV
qubit is simply varied by properly controlling the relative phase between the
two ancillary modes. The fidelities of the reconstructed states to the ideal
superpositions of |a) and |a ) are all quite large, of the order of 90%.
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Figure 4.5: Wigner functions for different balanced superpositions of states
|a) and |ay) with || = 1.0, as reconstructed by correcting for a detection
efficiency of 70%. Panels (a) and (b) correspond to states \/1/2(|a) % |a))
and panels (c) and (d) correspond to states y/1/2(|a) £i|a,)), respectively.
The experimental fidelities F of the generated states to the ideal CV super-
positions are also shown. Different values of F are mainly connected to the
different levels of stability in the experimental superposition phase for the
different states.
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4.7 Extension of the formalism to mixed states
and lack of universality

The quantum state orthogonalizer of Eq.(4.5) relies on the condition (¥|O¢|¥) =
0, which is valid for pure states only. However, this can be formally extended

to the case of mixed input p, so that the orthogonal states would be given
by:

pr = OLpOc (4.30)
where the orthogonalizer operator is defined as:

A N

Oc =C —Tr[Cp|I (4.31)

Following this approach, it is possible to verify how the fidelity between

initial and orthogonal states F'(p,p,) is affected by an impure input one.
For instance, we have simulated a mixed coherent state with o = 1.0 and
a purity of 0.85, obtained by applying some phase noise. In this case, the
fidelity between the phase-diffused input coherent state and the orthogonal
output resulting from Eq.(4.30) is 0.08 and 0.25 for C = al and C = n,
respectively, and the protocol can’t be anymore considered as universal.
The result of the orthogonalization protocol is heavily dependent on the
particular states and operators employed. Although it does not generally
work for mixed states, it is easy to see that some particular forms of mixed
states can be perfectly orthogonalized with the right choice of the C operator.
For example, the orthogonalizer relying on the creation operator a' realizes
a perfect orthogonalization of mixtures of squeezed vacuum states obtained
by adding arbitrary amounts of phase noise.
A general orthogonalizer form for mixed states would require one to find, if
it exists, and for any given input state p, an operator Oc that, depending on
some preliminary information on p, satisfies the condition F\(p,p,) = 0. It
is beyond the scope of this work to extend the discussion to such a general
situation.
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4.8 Effects of experimental imperfections on
state orthogonalization and detection

Several experimental factors limit the generation and detection of perfectly
orthogonal states to a given input one. Since our experimental realization
relies on weak input coherent states generated by our pulsed laser source, it
is reasonable to assume them as pure ones. On the contrary, in the following
we will model all the experimental imperfections as deriving from both the
orthogonal state preparation, via the imperfect implementation of the oper-
ator O¢ and from the measurement processes.

First of all, we consider the effect of the limited accuracy in the estimation of
the mean value of the operator C, by introducing an error € in the realization
of the orthogonalization operator:

€

Oc, = N (é (1) <é>) , (4.32)

where A is a normalization factor. The effect of the error e for input
coherent states |a) can be found analytically and results in the fidelity:

2
F(la){al.Oc]a)(0l0L) = =5 (4.33)

where the same expression is valid for both operators a' and n. A 10%
error in the estimation of the operator mean value has a very small effect
on the final fidelity between the input and output states. From an ideal
zero fidelity, this relatively large error only results in a very slight overlap
(F = 0.01) for an input coherent state of amplitude a = 1.

A more important source of non-ideal experimental results comes from
imperfections in the protocol for the conditional preparation of the states,
which limit their purity. This factor alone puts an upper limit to the mini-
mum overlap achievable between experimental orthogonal states, even if the
contribution of the limited detection efficiency of the homodyne setup (esti-
mated about 70% in the present measurements) is taken into account in the
tomographic reconstructions. For example, we can refer to the specific case
of the state generated in the experiment when feeding coherent states into
the O,, orthogonalizer and presented in Fig.4.4. While the theoretical fidelity
between a coherent state |a) and its orthogonal is indeed 0, the impurities
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connected to imperfect photon addition and subtraction are sufficient to pro-
duce a mixture of the desired orthogonal state with about 10% of the input
coherent one, thus causing a corresponding increase in their mutual fidelity.
Other sources of experimental imperfections further degrade the final states:
unavoidable drifts in the input coherent state amplitude o and instabilities
in the phase lock during long acquisition runs may move the experimental
setup away from the strict phase and amplitude relationships necessary for
the implementation of the correct operator superpositions in the expression
for On.

Moreover, residual fluctuations of the relative phase between the produced
states and the homodyne local oscillator around the nominal set values are
also seen to contribute to the degradation of both the experimentally recon-
structed input coherent state and output orthogonal one.

To be more specific, the model we used is based on the density operator of
the prepared state, which can be written as:

pp(c, @) = mppr(c, @) + (1 = 1)) (af (4.34)

where p, (a, $) = Ola)(a|O is the orthogonal state obtained by applying
the orthogonalization operator 7 — e {ag|i|og)I to the coherent state |a).
The orthogonalizer setup is prepared for the nominal value of oy = 0.78, and
the superposition phase ¢ is introduced in order to account for the setup
phase instability. The preparation efficiency 7, (Eq.(3.51)), keeping into
account both the limited spatial-temporal filtering along the trigger channel
and the dark counts of the SPCM detectors, is estimated to be 7, = 0.9. In
order to model the effect of the local oscillator phase instability we also allow
rotations of the state p, («, ¢) by a phase 6.
The full model state is finally given by:

Pmodel = / do d¢ do g(Oé — O, Ua) g(gbv U¢) g(@, 09) U(Q)pp(()é7 ¢)UT(8)(435)

where g(z,0) = e /27" /\/2n0 and U(f) = € is the phase shifting
operator. The values for the parameter standard deviations used in the sim-
ulations were o, = 0.15,04 = 0.19, 09 = 0.15.
By theoretically modelling the effect of both the preparation-related mixed-
ness and of the above phase/amplitude instabilities, we were able to effec-
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tively simulate the observed experimental states with fidelities of 0.998 (be-
tween measured and simulated coherent states) and 0.97 (between measured
and simulated orthogonal states). For the coherent states, the simulated and
measured state purities are identical at 0.92. For the orthogonal states they
differ only slightly, with the simulated state having a purity of 0.62 compared
to 0.65 for the measured state.

The low purity of the experimental states following orthogonalization ex-
plains the measured residual fidelity of 0.18 observed between the experi-
mental orthogonal state of Fig.4.4 (right panel) and the ideal coherent state
|ap = 0.78), as well as the similar overlap of 0.17 for the simulated orthogonal
state. The amplitude drifts and phase fluctuations during the long acquisi-
tions are also responsible for the less-than-perfect fidelity of 0.96 between
such an ideal coherent state and the experimentally-reconstructed one (left
panel of Fig.4.4). The reduced purities also explain the lower fidelity of 0.76
for both of the simulated and measured orthogonal states relative to the
ideal orthogonal one. Finally, the combined effect of impurities in both the
experimental coherent state and its orthogonalized version results in a mu-
tual fidelity between the nominally orthogonal experimental states of 0.34,
in agreement with the one expected from the model.

92



Chapter 5

Measurement-induced strong
Kerr nonlinearity for weak
quantum states of light

Nonlinear optical interactions represent a major tool for generation and ma-
nipulation of optical fields in both classical and quantum domains, and they
form a basis of countless photonics devices. However, the envisioned ap-
plications of nonlinear interactions in quantum optics and optical quantum
information processing often require strong nonlinear coupling between sin-
gle photons which is not readily available, because the typical nonlineari-
ties of common non-resonant optical media are many orders of magnitude
weaker than what is required to achieve an appreciable nonlinearity at the
single-photon level. Despite years of intensive experimental and theoretical
efforts, and using specially tailored media with enhanced nonlinearities such
as clouds of ultracold atoms, achieving strong optical nonlinearities at the
single-photon level remains a formidable task [93, 94, 95]. Moreover, several
works pointed out that the very nature of light-matter interaction may pre-
vent achievement of a sufficiently strong Kerr nonlinearity for weak quantum
optical fields.

In 2001, Knill, Laflamme, and Milburn in their landmark paper [8] showed
that effective nonlinear interactions at the single-photon level can be im-
plemented with the use of optical interference, single photon detection and
auxiliary single photons. In this approach, the single photon detection pro-
vides the desired nonlinearity. The resulting linear optical quantum gates are
generally probabilistic, as implied by the fact that they are driven by quan-
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tum measurements, but their success probability can be boosted arbitrarily
close to 1 by using more ancilla photons and more complex interferometric
schemes. This concept has triggered an immense amount of theoretical and
experimental work, which lead to demonstration of various two-qubit and
three-qubit quantum gates for single-photon qubits. This concept has also
been extended to Gaussian operations on continuous-variable states of light,
where it was demonstrated that a squeezing operation can be implemented
using an auxiliary source of squeezed states, interference, homodyne detec-
tion, and feedforward.

A fundamental nonlinear interaction is represented by a Kerr nonlinearity,
which leads to dependence of the refractive index on the intensity of light
that propagates through the nonlinear medium. At the quantum level, this
nonlinearity is described by a Hamiltonian which is a quadratic function of
the photon number operator n,

H = hxa'?a? = hen(i — 1) (5.1)

The resulting unitary transformation of the quantum state of the optical
mode is diagonal in Fock basis, which means that each Fock state |n) acquires
a phase shift which is a non-linear function of n,

In) — i ®(n—1) [n), (5.2)

where ® = xt. Strong Kerr nonlinearity with ® ~ 1 would enable e.g. gener-
ation of macroscopic superpositions of coherent states [96], implementation
of entangling quantum gates for universal quantum computing [97], and com-
plete Bell state measurement in quantum teleportation [98, 99].

In this chapter we present an experiment in which a fundamental (but very
challenging) Kerr-type nonlinear interaction is emulated by means of super-
position of single photon addition and subtraction. In particular we demon-
strate how the effect of third order nonlinearity on weak states of light can
be reproduced by using just a second order nonlinearity (PDC) in a mea-
surement based approach.

5.1 Emulation of Kerr nonlinearity on weak
states of light

In this section we report on the experimental implementation of a strong Kerr
nonlinearity by measurement-induced quantum operations on weak quan-
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tum states of light. Specifically, we emulate this interaction on the smallest
non-trivial subspace spanned by the vacuum, single-photon and two-photon
states, |0), |1) and |2). In this subspace, the Kerr interaction transforms a
generic input state according to

We target a Kerr nonlinearity with ® = /2, which induces a w-phase shift
of the two-photon Fock state with respect to states |0) and |1). Up to a linear
m-phase shift which flips the sign of odd Fock states, and an unimportant
overall phase factor —1, this is equivalent to a m-phase shift in the amplitude
of the vacuum state on the three-dimensional subspace considered, i.e.,

Co|0>+01|1> +CQ|2> — —Co|0>+61|1>+02|2>. (54)

The change of sign in the amplitude of the vacuum component is thus the
signature of the strong Kerr nonlinearity that we wish to demonstrate in our
experiment. We do this by using weak coherent states as the input of an
approximate Kerr Hamiltonian implemented with coherent superpositions of
sequences of photon additions and subtractions, in the same scheme used for
the implementation of the orthogonalizer operator (Sec.4.4.2).

Taking into account that afa = 7 and aa’ = n + 1, we can thus design an
arbitrary operation which is a linear function of the photon number operator

V(n) = (A+ B)i+ A. (5.5)

Here, we want to conditionally implement the gate of Eq.5.4 by means of the
transformation V' (n), therefore we need to set

V(1)

V(0)

V(2)
— 5.6

where besides the desired operation, we allowed a simultaneous noiseless
amplification of gain g, to make our task feasible

col0) + c1|1) + 2]2) — —col0) + ger|1) + gPea|2). (5.7)
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The equations (5.6) now possess two solutions, only one of which admits a
positive gain, that is

B
Z =  _3_4/9
A 3-V2

with  ¢=+v2+1. (5.8)

Note, however, that this additional noiseless amplification does not spoil the
signatures of nonlinearity. On the contrary, it is actually beneficial, because
we intend to probe the quantum operation with weak coherent states and
the amplification makes the observed nonlinear effect even more visible.

5.2 The experiment

Scheme The experimental scheme designed to implement the desired Kerr
emulation is the same used for the implementation of the orthogonalization
procedure in the photon number version illustrated in Sec.4.4.2.

Parameter setting The desired Kerr emulation requires an experimental
parameter setting given by the general condition (4.24) with the particular
condition (5.8)

CRui () 1+3j0f 4 Jaf! < ! \/5) (5.9)

R aP+fal” \T3-

where C'R,,+ represents the count rate observed for the successful event
of single photon subtraction and addition, instead C'R,:, represents the suc-
cessful event of single photon subtraction and addition.

5.3 Results

A full tomographic reconstruction is performed on the input and output
states for three different values of the input coherent state amplitude, a=
0.23, 0.53 and 0.79. We use an iterative maximum likelihood procedure
(see Appendix B) incorporating the effect of a finite (74, = 0.66) detector
efficiency to reconstruct the density matrices in a 8x8 space in the Fock basis.
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Figure 5.1: Reconstructed density matrices of input coherent states and out-
put states after the emulated Kerr nonlinear interaction. The left column
shows the real part of the reconstructed density matrices of the input co-
herent states (the imaginary part is negligible here). For each input state,
the two central columns show the real and imaginary parts for the recon-
structed output states (upper plots), together with those calculated from a
best fit of the parameters in the applied V' (n) transformation (lower plots).
Finally, the right column shows the expected output states (containing no
imaginary parts) that one would obtain from the ideal V' (n) transformation
with B/A = —3 — /2.
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The reconstructed density matrices are shown in Fig.5.1 together with those
calculated by applying the V' (n) operator on the input coherent states.

The desired Kerr nonlinearity signature is evident in all the experimen-

tal data. All the off-diagonal terms containing a vacuum contribution are
clearly negative, witnessing the expected sign change in the amplitude of
the vacuum component. However, when comparing the experimental density
matrices to those expected according to the V(n) transformation with ideal
parameters B/A = —3—+/2 (rightmost column in Fig.5.1), some discrepancy
is apparent. The most notable is the appearance of a small (note the differ-
ent vertical scales) imaginary component. We find that all the experimental
results can be reproduced very well (with fidelities around 90 %) by using a
single set of modified parameters in the V(n) transformation, corresponding
to a B/A ratio of —5.97 and to an additional phase of about —7/7 between
the two terms in the operator superposition. Such small deviations from the
ideal configuration, which only marginally affect the signatures of the sought
nonlinearity, are fully compatible with the delicate alignment and setting of
the proper small rotation angles in the waveplates responsible for the oper-
ator superposition.
In contrast to linear-optical quantum gates for single-photon qubits, our
scheme is not restricted to single-photon inputs, but we have shown it to
work for arbitrary superpositions of Fock states while preserving the quan-
tum coherence. Moreover, the scheme is not based on post-processing, but
the successful implementation of the operation (5.7) is heralded solely by
measurements on auxiliary modes, thus making the output state available
for further processing and applications.
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Part 111

(Quantum) mode manipulation
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The last part of this thesis is dedicated to the mode manipulation tech-
nique, that is to the engineering of the spatiotemporal properties of a light
pulse in a specific quantum state.

The first introductory chapter is dedicated to the general concept of mode
manipulation, pointing out the main difference in respect to the state ma-
nipulation.
In the second chapter the interaction of ultrashort single photons with a
resonant atomic gas is experimentally investigated as an application of the
technique.
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Chapter 6

Mode manipulation

This chapter represents a brief introduction to the mode engineering, an ex-
perimental technique in some sense complementary to the state engineering
seen in Part II.

In Part II it has been observed that in state engineering based experiments,
important physics is inferred by means of manipulation and consequent de-
tection of quantum states. Anyway, it has been pointed out that a faithful
characterization can be performed by means of a balanced homodyne detec-
tor only in case of a good spatio-temporal mode matching (characterized by
the mode matching efficiency 7,,,,) of the the local oscillator to the manipu-
lated state (see Sec.2.11).

In this Part III however we will see that interesting physical features can be
observed by manipulating not the state but rather the mode of a system,
that is by engineering its spatio-temporal features. In this case, a mode sen-
sitive detector should be necessarily used to infer the important physics, and
homodyne would be a perfect candidate in this sense (see Sec.2). However,
since now the mode is the objective of the manipulation, the requirement of
an high mode- matching is initially no more fulfilled. Homodyning is anyway
still possible, provided that the target state is known and the local oscillator
mode can be properly manipulated in the same way. Indeed, in a reversed
perspective to the state engineering approach, once the state is known, one
can tune the homodyne detection mode to that of the state, in order to ob-
serve what is expected for such a state. At that point, the local oscillator
possesses the same spatio-temporal features of the manipulated system. This
procedure enables for instance the observation of important physics at the
single photon level, since the local oscillator mode can be more easily mea-
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sured than that of the single photon by exploiting for instance a common
technique like the Frequency-resolved optical gating (FROG), based on non-
linear effects hardly exploitable at low intensity regimes.

Thanks to the extraordinary sensitivity of homodyne detection, this con-
figuration allowed for instance the mentioned single photon level metrology
[56],[57],[58], quantum enhanced measurements in a so-called adaptive config-
uration [59] as well as promising multimode information encoding by means
of addressable frequency combs [61],[60].
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Chapter 7

Zero-Area Single-Photon Pulses

7.1 Quantum memories

One of the most basic elements of the emerging quantum technologies is
constituted by the so-called quantum memory [46], the quantum analog to
common electronic memories. Quantum memories should permit to deter-
ministicly store and keep safe quantum information for a sufficient amount
of time and subsequently release it on demand for its processing.

Photons are ideally considered as the most privileged information carriers due
to their robustness against environmental interactions, but for the system to
use as a quantum memory the point is still debated and several systems have
been indicated as appropriate. The development of such a device could have
a remarkable importance for future technologies, since a physical system al-
lowing one to trap and release photons could be exploited to convert heralded
photons to on-demand ones, or used as a quantum repeater, permitting effi-
cient long distance quantum communications. Several mechanisms have been
then proposed and tested with this aim. For instance, optical delay lines and
cavities have been used to store and release single photons by means of a
deterministic manipulation of their polarization [47] or by controlling the
transmittivity of optical cavities [48].

Completely different approaches have been instead based on some type of
atom-field interactions, for instance exploiting electromagnetically induced
transparent (EIT) media to optically handle the transmission/absorption of
the light passing through. Anyway, since atomic systems, either made of
cold and ultracold atoms or of hot vapours, have absorption linewidths in
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the Hz to GHz range, the main road to enhancing the atom-photon inter-
action has always been that of using sufficiently narrow-band quantum pho-
tonic states, either produced in cavity-enhanced parametric down-conversion
sources [76],[77],[78],[79], or directly from cold [80][81],[86],[83] or hot [84, 85]
atomic samples. In general, ultrashort single photons with bandwidths much
broader than the atomic bandwidth are therefore not considered useful for
this task because they are thought to interact only very weakly with the
atoms.

Considering that one of the most popular (and efficient) single-photon sources,
the parametric down-conversion in a pulsed pumping regime is broadband,
an effective mechanism to collect and conserve quantum information despite
the huge bandwidth mismatch with the narrowline atomic media could be
very useful.

Then, in this chapter we introduce and discuss the experimental evidence
of an alternative matter-light interaction concerning broadband single pho-
tons propagating in a much narrower linewitdh atomic vapour, referred to as
07 dynamics. The interaction can be considered in some sense unexpected,
since the huge spectral mismatch of the two involved systems clearly leads
to a very small probability for the absorption. To prove the interaction we
consider the traces left on the single photon temporal shape by its encounter
with the atoms, in a mode engineering based experiment.

7.2 Om dynamics

The resonant interaction between ultrashort classical pulses and atomic me-
dia has long been investigated, together with some of its most peculiar ef-
fects. In this section we examine the problem of broadband light propagating
within a medium that can be described as a simple two-level system, that is
a medium with a single absorption line centered at the optical frequency, so
that only one resonant transition can be considered.

Firstly we show that just by propagating through the atoms, broadband low
intensity pulses necessarily experience a reshaping of their temporal profile.
In the following section the problem is analyzed more formally by means of
the Maxwell-Bloch equations, and an important and very general result, the
area theorem is presented. As a particular case of this result, the formation
of zero-area single photon pulses will be analyzed and the sense of the name
"0n” will be more clear.
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7.2.1 On dynamics: an intuitive picture

Let’s imagine a light pulse at the optical frequency wy travelling through a
gaseous atomic medium. Suppose the frequency wy resonant with one and
only one atomic transition, as all the other atomic excitations occur at com-
pletely different frequencies, and consider the inhomogeneously broadened?
absorption line thousand of times narrower than the radiation spectrum. In
this condition it can be demonstrated that the effect of tha propagation over
a distance [ within the medium affects the electric field shape E(w, z) as the
function [74]

—~1
E(w,l) = E(w,0)e' e ”
_ oyl (w—we) T
= F(w,0) (21+<W*3fl>2 T? 721+<W*wf>f2 T2 (7.1)

where E(w,0) is the electric field before having entered the atomic medium,
T =~ 1/20, is the inhomogeneous level lifetime and ~ is the optical density of
the material. This approximate expression, which considers two-level atoms
and an effective single Lorentzian profile for the resonance line of the sample
is enough to convey all the main features of the phenomenon.The real part
of the exponent in Eq.(7.1) explains the exponential decrease of energy due
to the loss within the material at the atomic resonance as depicted by the
Beer-Lambert’s law. The imaginary term describes instead the dispersion
experienced by the field through the medium.

It is evident from Fig.7.1 that because of the huge mismatch in the spec-
tral widths, the more the light pulse propagates, the deeper the infinitesimally
thin hole dug in the center of the spectrum by the atoms. Indeed, due to
the atomic transition being so narrow, the absorbed pulse energy is almost
negligible even in the case of high optical depths, but (combined with the
dispersion) it may still cause a dramatic reshaping of the temporal pulse en-
velope. So, we can get an intuitive picture of the dynamics by thinking that
after a sufficiently long distance of propagation, two separated lobes emerge
in the spectrum at opposite frequencies around wy, inducing the appearance
of temporal beat notes in the pulse profile.

IFor instance due to the Doppler effect.
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Figure 7.1: Simulation of the effect on a broadband resonant light spectrum
due to propagation within a narrowwidth material, calculated according to
Eq.(7.1) respectively with v ~ 0.07,1.1, 12,96, 580, 2825 and a Doppler life-
time T' ~ 323, 307,293, 280, 270, 260 ps. A 8 nm spectral FWHM at 780 nm
has been considerated for the propagating light pulse.
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Figure 7.2: Simulation of phase shift experienced by a broadband resonant
light spectrum induced by the dispersion due to the propagation within a
narrowwidth material, calculated according to Eq.(7.1) with the same values
of Fig.7.1.
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7.2.2 Semiclassical description of the light-matter co-
herent interaction

The 07 dynamics qualitatively justified in the previous section simply by
means of the losses into the material, can be theoretically framed in the
more general context concerning the interaction of resonant ultrashort pulses
with two-level systems. As we will see, this general analysis leads to the
area theorem, a particular case of which is just the Om pulse formation [50],
[51]. Basically the area theorem describes the temporal reshaping experienced
by short light pulses when interacting with resonant absorption narrow-line
materials. The name area refers to the integral of the electric field envelope
E (z,t) over time, i.e.

o) =1 / e dt (7.2)

[e.9]

where p is the transition electric dipole moment. The theorem asserts
that 0(z) is a solution of the equation

d .
%Q(x) = asinf (x). (7.3)

with the constant a depending on the atomic medium. An immediate
consequence is that in stationary conditions the area tends always to assume
fixed values multiples of 7, that is § () = mm. In particular, for extremely
weak fields, like in the single-photon case, the envelope & (z,t) necessarily
has to oscillate between positive and negative values to make the area null
(m = 0 solution).
By considering that we are dealing with radiation so short to be spectrally
much broader than the resonant atomic linewidth (& 10 <10 times), a first
intuitive picture could bring to wrongly expect no light-matter interaction
at all. Indeed because of the huge mismatch in the frequencies, absorption
is expected to barely take place. But counter-intuitively, interaction doesn’t
mean necessarily only absorption.
For sufficiently high intensities to excite atomic nonlinearities, the area theo-
rem has strong consequences as it can predict not only the absence of absorp-
tion in spite of Beer-Lambert’s law, but also the existence of exotic states of
light like solitons, i.e. light pulses that propagate through matter with an
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unperturbed shape.

To explain the process more formally, we consider the interaction of a short
electromagnetic pulse with a collection of N atoms. We suppose the radia-
tion pulse sufficiently short to ignore any dephasing effect (because acting on
longer timescales) and we treat the process semiclassically, i.e. with the field
described by a classical vector and the atoms described by a state living in
a two-level Hilbert space. We will demonstrate a set of general equations fo-
cused on describing the interaction of the radiation with a two-level system.
This approach is equivalent to the one developed by Arecchi and Bonifacio
[53], the starting point for the original demonstration of 1970 by M. D. Crisp
[54]. We do not provide the mathematical proof of the result, but enounce
the area theorem directly. The point here is indeed not a discussion about
the formal details, but only to give a general view of the physical conditions
necessary for the phenomenon to take place. In the final stage, the Om pulse
formation is discussed as the result of the application of the theorem in the
low-intensity regime.

Maxwell equations in presence of matter To start, let’s consider the
joint action of the four Maxwell’s equations for the total electric field Fy.;
within an ensemble of NV active atoms embedded in a passive medium. Sup-
pose to decompose the induced polarization into a passive and an active
atomic contribution, P.ff = Ppess + Paet- We will see that the passive term
is necessary just to define the environment where the interaction takes place.
For the sake of simplicity consider the passive contribution as linearly induced
by the electric field P,uss = €0Xpass Etot

0? 1 02 1 02
<@ - g@) Eior = q)?ﬁpeff
1 92
= L2or (Poass + Pact)
1 02
w02
where c is the light speed and ¢y the absolute permittivity in vacuum.
Then we get

6OXpassfatot + Pact) . (74)

2 2 1 2
(’02 0 _a_) Etot - _a_Pact (75)

Poss 9u2 O
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where we made use of the usual relations

npass = ‘ = \/TXpass - \/Epassﬂpass ~ \/epass . (76)

pass €00 €0

with v,.ss the speed of light within the passive medium. To simplify, let’s
factorize optical frequency wy and wavenumber kj

B, = E <6i(kf:c—wft) + C.C.) P.=P (ei(k’fx—wft) + c.c) (7.7)

and by introducing the slow varying envelope approximation (SVEA)

OFE OFE oP
(,Uf|E| > E kf|E| > 8_95 wf|P] > E (78)
eq.(7.5) becomes
0 0 in
YL 9 \g = ®ip .
(“ax * 8t> o (7.9)
with € = n2,., €o.

Atomic equations To close eq.(7.9) we need a microscopic model to con-
nect the atomic polarization with the macroscopic electric field. Our hypoth-
esis will be to consider the total polarization as composed of N independent
atomic dipoles

P = Np. (7.10)

Supposing a near resonance radiation field, the atomic system can be then
described by using a simple two-level system

[U) = a1|¥1) + a2|Vs), (7.11)

where |¥;) and |¥,) are orthonormal eigenvectors corresponding to the
ground and excited levels of an Hamiltonian Hy. The effect of an external
electric field results in an additional interaction term in the Hamiltonian, as
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]:Itot = ﬁfo—i‘—’:fmt

= Hy— eXE,y (7.12)
where ]:]mt = —eX E; represents the dipole interaction Hamiltonian. By

projecting the Schrdinger equation on (¥, | and (V5| we obtain the probability
amplitudes

ihoar = (01| Hyor | T)
= hw1 — el'lgEtotag (713)
and
o0y = (ol )
th—ay = o
ot "2 2|0t
= h(.OQ — 6[L‘21Et0ta1. (714)

Eqgs.(7.13) and (7.14) have been derived by supposing the Ej, constant
over the integration volume and considering a vanishing permanent atomic
dipole moment on both the levels ((¥1]|X|W;) = (¥y| X |Ty) = 0).
Multiplicating each equation by the other, we obtain for the density matrix
elements

0 0

apm = ECLQ%
= —i(wy —wy)asgaj + i%Etot (ara] — agay)
= —i(wy—wi)par+ i%Etot (p11 — p22) (7.15)
0 0 0 » 0 .
JR— — _— = —Qa1a04 = ——QAa90
o a2 T M T T
= i%Etot (agal — ayay)
= i%Etot (,021 - P12) (7-16)

where the dipole matrix element exs; = exs; = p has been taken as real.
If we now decompose eqs.(7.15),(7.16) as (7.7) and neglect fast oscillating
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terms by introducing the rotating wave approrimation, in the hypothesis
(7.10) of N independent oscillating dipoles we obtain the final set of equations

o 0 _ iwyNo
(”ax * 5) bE= =g (7.17)
a b
57 = (We —wy) o+ ZﬁEn (7.18)
Y "
5t = 7 (E*oc — Eo*). (7.19)

where we introduced the population difference n = p;; — p2o and po; =
geilwrt=ksz) ond Wy = Wy — W1.

To generalize a bit more eqs.(7.17),(7.18),(7.19), we can take into account
the inhomogeneous dispersion of the atomic frequency for example due to
Doppler spread, by making the substitution o — [ g(w)o(w)dw and n —
J 9(w)n(w) dw where the resonance condition implies ¢g(w) maximum at the

optical frequency

o 0 iwrNo
<v% + §> E = ” /g(w)a(w) dw (7.20)
ag W
57 = ¢ (W —wf)a—l—zﬁEn (7.21)
Y ‘
5" = i3 (E*oc — Ec™). (7.22)

Area theorem By means of a proper manipulation of the equations (7.20),(7.21),(7.22),
the area theorem can be at this point obtained without necessity of any fur-

ther hypothesis. Defining the so-called area as the integral over time of the

electric field envelope & (z, 1)

e(x,t):%/;

where the envelope is defined as £ = & (z,t) @, the area theorem
states that in stationary conditions

E(z,t) dt’ (7.23)

ie (x) =

— (7.24)

asind (x),
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with the material constant given by

Nrplwen
= —— 2
“ 2h6passvpassg (Wf) (7 5)
and
t£+moo 0(x,t)=0(z). (7.26)

A complete mathematical proof is beyond the purpose of this work and
can be found in [55], [54],[71] or [22].
We notice that the theorem implies the existence of a class of stationary
solutions, for which 6 (x) = mm, that propagates through atoms without
further alteration of the area. In any case, depending on the initial value,
6 (z) will always tend to an integer multiple of 7.
We notice that the area theorem finds an interesting interpretation in the
oscillation of atomic population in the Rabi’s theory of interaction. Indeed,
an area value of mm can be simply viewed as a flipping of an mn angle of
the atomic dipole induced by the passage of the light pulse.

Range of validity It is important to observe now that the eqs.(7.20),(7.21),(7.22)
have been obtained by ignoring any possible cause of dephasing. This can
be considered the consequence of an implicit hypothesis of having considered
the loss of coherence taking place on a much longer temporal scale compared
to the duration of the interaction.

Actually, in the interaction between the radiation and a two-level system
the dynamics can be basically described by making use of two fundamental
time scales: the longitudinal relaxation time representing the lifetime of the
excited atoms (or molecules) staying in the high energy level and defined as
Ty = 1/6Vhom, where 0vpey, is the natural linewidth of the transition, and
the inhomogeneous relaxation time governing the time scale on which the
loss of coherence takes place, defined as Ty = 1/0Vinhom, where dVippom is the
inhomogeneous broadening linewidth of the same resonant transition. For
solid-state media at very low temperature, it usually holds that Tb < T}
whereas for gaseous media at normal temperature (and not extremely high
pressure) the inequality is stronger since Ty < 7.

A regime of coherent propagation is thus considered valid whenever
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At < T, T1 (7.27)

with At given by the pulse duration[71]. For instance, the resonant inter-
action of broadband light within a gas with a much narrower linewidth gas
can be considered to occur in a coherent regime.

The area of a single photon Here we are interested in the consequences
of the area theorem in the extreme case of a single photon pulse. In this low
intensity regime the dynamics takes the particular name of Om propagation,
since the small initial area will tend always to 0.

We can easily verify that the value of #(x) is really small in the case of
single photons. Let’s consider for instance the conditions for the experiment
described in this chapter: 50 um for the beam waist wg, 100 fs for the pulse
duration At and a 800 nm wavelength A. We can estimate an electromagnetic
energy density for the single photon as

60|g|2 &

2 V
he

A mwd At ¢

B 6.6 -1073 7
8-10-77 - (50-10-6)210-13

= 107%J/m?,

that implies an electric field amplitude

2104
€o

500V /m. (7.28)

€l =

Q

At this point we can verify from eq.(7.23) that the single-photon area
0 (x)
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= 4-10"%rad. (7.29)

where ag is the Bohr radius.

Or dynamics In the condition of small area we can faithfully approximate
sin @ (z) with its argument 6 (z) and, from the area theorem, we get

%9 () ~ af(x). (7.30)
Note that the constant « is negative for atoms initially in the ground state.
Eq.(7.30) then leads to an exponential decrease of the area, accomplished by
the appearance of evident oscillation between positive and negative values
in the shape of the envelope £. Then, the more the light pulse propagates,
the higher the decrease of the area until it approaches zero without further
distortions. Indeed, once formed, a zero-area pulse is remarkably robust and
propagates without further losses.

7.3 Om quantum memory

Although most studies concentrated on the effects of propagation on the
shape of the optical pulse itself, it has also been pointed out that zero-area
pulses can significantly enhance the transient excitation of the atoms [74],
even though the final excitation left in the medium after the passage of the
pulse is negligible. This transient excitation, however, can be mapped into
a final, nonnegligible excitation of a different atomic level by means of a
second ultrashort field acting on the excited state during the transient [74].
Such a small excitation probability per atom distributed throughout a large
atomic ensemble may lead to the final absorption of a single photon and its
mapping to a collective state, in a broadband version (due to the broadband
nature of the two photon transition) of various single-photon memories with
atomic ensembles that have been proposed and successfully implemented in
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the narrow-band regime [86, 83, 84].

All previous experimental studies of broadband pulse interaction with narrow-
band atomic ensembles were carried out with weak classical light pulses (see,
for example [84, 85, 86, 87]). However, the formation of zero-area single-
photon (SP) pulses has been recently proposed as a possible way to engineer
quantum states using time-dependent effects and for time-domain quantum
information processing[75].

7.4 The experiment

Here we present the first experimental demonstration of zero-area pulse for-
mation within the wave packet temporal mode of a single photon. We propa-
gate ultrashort heralded photons with a broad bandwidth centered at 780 nm
through a cell containing resonant hot rubidium vapour and find that, de-
spite a negligibly small absorption, the transmitted SP wave packets acquire
the strong temporal modulation characteristic of zero-area pulses. We use
our recently developed techniques of ultrafast, mode-selective, time-domain,
homodyne detection to measure the coherently modulated SP profiles and to
verify that the quantum character of the input states is not degraded upon
transformation of the mode.

The master light source for our experiment (see Fig.7.3) is a mode-locked
Ti:sapphire laser, emitting a train of 100 fs, 780 nm pulses at a repetition
rate of 80 MHz. Note that in this case we used a different laser with a much
shorter pulse duration compared to the experiments described in the previ-
ous chapters. Most of the laser emission is frequency doubled to produce
the pump pulses for generating single photons in a travelling wave packet
mode from heralded spontaneous parametric down-conversion in a 300 pum
thick crystal of type-I S-barium borate (BBO). Frequency-degenerate signal
and idler photons are emitted along a cone; the detection of an idler photon
in a fiber-coupled avalanche photodiode (APD) placed after narrow spectral
and spatial filters [a 1 nm FWHM interference filter (F) and the APD single-
mode fiber (SMF)] heralds the generation of pure broadband single photons
resonant with the 551/, — 5P3/9 D2 transition of Rb in the conjugated sig-
nal mode. Previous investigations [56] have shown that our setup is able to
generate SP pulses in a quasi-transform-limited wave packet mode with a
duration of about 100 fs.

A smaller portion (about 8 mW) of the laser emission serves as the local os-
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cillator (LO) for heralded, homodyne detection (see Sec.2) after mixing with
the signal on a 50% beam splitter (BS). When analysing heralded single
photons, we measure a state which can be generally written as

P = TNtot |1><1‘ + (1 - ntot) |0><O’ (731)

i.e., a mixture of vacuum and SP Fock states in the mode defined by the
homodyne LO. The global efficiency 7;,, as already mentioned in Sec.3.52,
depends upon several factors: limited state preparation efficiency, limited
quantum efficiency of the homodyne photodiodes, optical losses, electronic
noise, and dark counts in the APD. Above all, however, it depends on the
mode matching 7,,,, between the heralded state and the LO, i.e., on how well
the spatial and spectrotemporal profiles of the LO are overlapped to those of
the state to be measured (see Eq.(2.11)). Spatial matching is simply obtained
by means of lens combinations after pinhole spatial filtering. Spectrotemporal
mode matching can be achieved by shaping the spectral amplitude and phase
of the LO by means of a liquid-crystal pixelated spatial light modulator in a
4 — f, zero-dispersion, configuration [56, 88]. This results in the generation
of LO pulses with arbitrarily shaped spectrotemporal profiles. Using an
optimized spatiotemporal LO mode, we routinely measure SP fractions up
to &~ 62% in our setup for the freely propagating conditions.

7.4.1 Unmodulated local oscillator

Classical pulse cross correlation In order to preliminarily test the sys-
tem and optimize the homodyne detection of modulated SP wave packets,
we first make use of the intense stimulated emission that takes place in the
output signal mode of the parametric crystal when seeded by intense syn-
chronized 780 nm pulses in the input idler mode (see Fig.7.3) Emission of
this intense classical radiation is known to take place into a mode that closely
matches that of the heralded photons [27]. A temperature-stabilized 8 cm
long cell containing natural abundance Rb is placed in the common path of
the classical and SP wave packets.

Figure 7.4 shows the visibility of the interference fringes measured at
one exit of the homodyne beam splitter between such classical pulses and
unmodulated LO pulses with the same intensity. According to Eq.(3.55)
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Figure 7.3: Experimental scheme used to measure the linear cross-correlation
of Fig.7.4, between an unmodulated LO pulse and classical pulses passing
through the resonant Rb cell. A seed coherent pulse is used to provide refer-
ence classical pulses in the same spatiotemporal mode of the single photons.
Two mirrors have been mounted on a motorized linear translation stage to
adjust the delay 7 between the two optical paths. LBO is a lithium triborate
crystal for second harmonic generation. All other symbols are defined in the
text.
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such a visibility is given by

V(Ba,7) = R {/ dt (1) alt + T)} (7.32)

with () representing the mode of the classical pulse and a(t + 7) that of
the local oscillator as a function of the relative delay. The measurement has
been repeated for different values of the cell temperature. Starting from a
single peak at zero delay, this linear cross-correlation curve develops growing
lobes at higher temperatures that clearly testify to the formation of classical
zero-area pulses.

Single-photon homodyne detection The seed idler pulses are then blocked
to perform homodyne measurements of the modulated SP wave packets (see
Fig.7.5). When the Rb cell is first inserted in the path of the heralded single
photons at room temperature, the only effect is a slight decrease in the total
efficiency n;,; due to residual losses in the antireflection coated cell windows.
However, increasing the temperature of the cell has the effect of rapidly de-
grading the measured global efficiency if the LO mode is left unchanged.
In these situations, we expect the SP temporal mode to start being heavily
modulated by atomic dispersion, so that the homodyne detector sees larger
and larger fractions of vacuum in the original LO mode as the temperature
(and the atomic density) increases (see Eq.(7.31)). Indeed we can see from
Eq.(2.11) (and Eq.(3.52)) that the detection efficiency 7, (and then the
total efficiency 7,4 too) is quadratically degradated by the mismatch of the
local oscillator to the heralded signal mode.

The first series of measurements consists of acquiring phase-averaged
quadrature distributions and extracting the global SP efficiency 7;,; of Eq.(7.31)
as a function of the delay 7 between the modulated SP pulse and the un-
modulated (and phase-randomized) LO (see Fig.7.5). This results in a sort of
cross-correlation measurement, similar to the classical one described above,
but now performed with the exceptional sensitivity typical of homodyne de-
tection. Actually, this kind of time-dependent measurement can be viewed in
the more general framework of intensity-field correlations [89, 90, 91], which
are known to open enormous possibilities for the analysis of the quantum
properties of the field and may provide detailed information about the co-
herent atomic excitation dynamics.

Figure 7.6 shows several plots of 7, (7) for different temperatures of the Rb
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Figure 7.4: Experimental visibility of the interference fringes as a function of
the delay (linear cross-correlation) between an unmodulated LO pulse of ~
100fs FWHM duration and classical pulses passing through the resonant Rb
cell. At higher temperatures, corresponding to higher estimated Rb densities,
the pulses are seen to acquire a typical zero-area shape extending over several
picoseconds. Solid black curves are field amplitudes calculated according
to Eq.(7.1), with optical depths vl = 70, 180,440, 1000, 2200 (from top to
bottom), and using for 7" the Doppler inhomogeneous lifetimes (between 280
and 260 ps) at the measured temperatures.

122



BHD

TYNOIS
—_
~—

DELAY STAGE

VUMP

APD

Figure 7.5: Experimental setup. Heralded spontaneously downconverted
single-photon pulses interact with a resonant Rb vapour and are analyzed
by a balanced homodyne detector (BHD). The seed coherent beam is now
blocked.
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cell. At low temperatures, a single peak of high efficiency is observed, be-
cause the LO mode reproduces well the almost unperturbed SP mode. At
higher densities, the efficiency curves are seen to acquire strong modulations
at increasing delays while the maximum efficiency in the main lobe drops. In
these cases, the short LO is no longer well overlapped to the heavily modu-
lated SP, and only a fraction of the latter is detected in the LO mode at any
delay.

T=100 °C 1 /’
1
T=116°C
0.01+

04 T=130°C 1 {[2
0.01 =

T T T T T T 1

T=145°C i “\

Homaodyne efficiency
n)

0.1

Delay T (ps)

Figure 7.6: Measured homodyne efficiency curves (in logarithmic scale) as a
function of the delay between the unmodulated LLO pulses and heralded single
photons that interacted with the Rb atoms in the cell. The temporal mode of
the single photons is heavily distorted at sufficiently high cell temperatures.
Theoretical intensity curves calculated with the same parameters of Fig.7.4
are shown in the insets.

The red experimental data points of Fig.7.7 correspond to the maximum
efficiencies of these curves, and clearly illustrate the rapid loss of the SP
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component from the LO mode as the optical depth increases with temper-
ature. The nonmonotonic behaviour of the data at higher temperatures is
easily explained by the fact that, in these conditions, the SP mode gets so
distorted that the main lobe actually contains a smaller SP fraction than the
first secondary lobe (see last curve of Fig.7.6).
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Figure 7.7: Experimental data and theoretical curve for the maximum ho-
modyne efficiency in the detection of distorted single-photon wave packets
with unmodulated LO.

Dropping peak efficiencies might suggest that the original, relatively pure,
single photons have been irremediably lost and converted to classical mix-
tures with vacuum after passing through hot resonant atomic vapours with
optical depths in excess of 2000. However, the absorption by the narrow (of
the order of GHz) atomic resonance is not to be blamed for this, due to the
much larger SP bandwidth (of the order of THz). In fact, the generated
single photons are only lost from the homodyne detection mode defined by
the unmodulated LO. The red solid curve represents the peak efficiency 7.
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calculated by simulating the mode matching (Eq.(2.11)) of a gaussian shaped
local oscillator with a single photon pulse reshaped according to Eq.(7.1).
Note that in all these plots the variations of the 7, value are only due to
variations in the mode-matching contribution 7,,,,, so apart from a normal-
ization factor, the symbols n;,; and 7,,,, represent the same quantity.

7.4.2 Modulated local oscillator

Classical pulses cross-correlation In order to recover high homodyne
efficiency and verify the generation of highly nonclassical zero-area SP wave
packets, one has to measure them in the right mode. This is done by shap-
ing the spectrotemporal profile of the reference LO by means of the pulse
shaper (see Fig.7.8) properly programmed to mimic the effect of Eq.(7.1). A
preliminary tuning of the LO shape is performed, for each cell temperature,
by maximizing the fringe visibility at zero delay between the shaped LO and
the classical zero-area pulses.

Single-photon homodyne detection These shaper settings then serve
as the starting point for LO mode optimization in the homodyne setup to
detect the shaped single photons (Fig.7.9). The different measurement sce-
narios are pictorially illustrated in Fig.7.10, with the different levels of match-
ing between the (shaded) LO shape and the modulated single-photon wave
packet.

The blue data points in Fig.7.10 correspond to the peak efficiencies ob-
tained with properly shaped LO modes. A matched LO is clearly seen to
detect the modulated single photons with a much higher global efficiency.
The known homodyne detection efficiencies (the quantum efficiency of the
photodiodes 7,, = 98% and electronic noise 7, = 86%) and the residual
optical losses 1,, = 93%, see Eq.(2.14), are then taken into account for
maximum-likelihood (see Appendix B) reconstruction of the density matrix
of the states in the mode defined by the LO, using a Fock-state basis up to
n = 2. Clearly negative Wigner functions are obtained [see Fig.7.10(a)] for
all the SP states measured with the properly shaped LO.

7.4.3 Pulse shaping

The mode-matching efficiency 7,,,, has been defined in Eq.(2.11) as the over-
lap between the normalized mode of the local oscillator &(w) and that of the
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Figure 7.8: Experimental scheme used to tune the pulse shaper parameters,
by means of a maximization of the classical pulse interference fringe visibility.
Basically, it is the same setup of Fig.7.3 with the pulse shaper inserted along
the local oscillator path.
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Figure 7.9: Experimental scheme used to prove the single photon 07 inter-
action. The local oscillator is shaped by using the same parameter found by
the maximization of the classical visibility (scheme of Fig.7.8).
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Figure 7.10: Experimental data and theoretical calculations for the maxi-
mum homodyne efficiency in the detection of distorted single-photon wave
packets. Red points, experimental data for detection with unmodulated LO;
blue points, experimental data with optimally shaped LO; red and blue solid
curves, expected maximum homodyne efficiency in the two cases (including
the effect of limited spectral resolution in the LO shaper). Red points and
red curve are the same already shown in Fig.7.7. (a) and (b) show the recon-
structed Wigner functions of the states, corrected for a detection efficiency
of 78.5% (= Nop Ner M, see Eq.(2.14) ), as measured in the LO mode for the

two cases at 115°C, with and without LO shaping, respectively.
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target state, in this case a single photon, f(w). Since homodyne detection
requires a good mode matching, a faithful single photon quadrature distri-
bution can be measured only in case that the two profiles &(w) and f(w)
are sufficiently similar. This condition forces to reshape the local oscillator
temporal profile in the same way experienced by the single photon through
the atomic vapour. To do this, we made use of a liquid-crystal-based pulse
shaper, in which the refractive index of different spectral components can
be modulated by means of the application of an external voltage. By prop-
erly controlling this voltage, the liquid-crystal mask can absorb and induce a
dispersion over the spectrum &(w) of the local oscillator. In our experiment
the mask has been programmed according to Eq.(7.1), in order to produce
an effect similar to that produced by the hot atomic ensemble affecting the
single-photon profile.

7.4.4 Atoms vs Pulse Shaper

The residual decreasing trend of the measured SP fraction for increasing
temperature is mostly due to the limited spectral resolution of the LO pulse
shaping system. Indeed, the current combination of gratings, lenses, and
liquid-crystal modulators leads to a minimum spectral resolution A\ of about
0.6 nm, which bounds the range of temporal modulations that it can achieve
to &~ 1/Av = X2/cAX = 107'% 5, that is a few picoseconds. When the high
atomic optical depth causes the single photons to significantly spread over
longer delays, the shaped LO mode 3 cannot perfectly overlap any more and
the resulting homodyne efficiency decreases. By taking the effect of limited
spectral resolution of our shaping system into account while calculating the
maximum expected homodyne efficiency, we obtain the solid blue curve of
Fig.7.10, which reproduces quite well the observed decrease with tempera-
ture. The parameters 7" and v of Eq.(7.1) used to simulate the effect of the
pulse shaper at different temperatures of the curve have been calculated re-
spectively as the Doppler width (7") and by fitting the optical density values
(7) used to maximize the efficiency at the temperatures of the experiment
100°,130°,145°,115°C. The possible distortion of the SP wave front due to
turbulence close to the hot cell surfaces is probably responsible for the addi-
tional degradation observed in the experimental data points at the highest
temperatures.

130



7.4.5 Conclusion

In conclusion, we have demonstrated the reshaping of the spectrotemporal
mode of ultrashort single-photon pulses while propagating through dense res-
onant atomic vapours. While the single-quantum character of the broadband
light states is preserved due to negligible absorption by the narrow atomic
transition, the temporal shape of the photon wave packet is deeply modified,
assuming a characteristic zero-area modulated profile, never observed before
for nonclassical light pulses.

The phenomenon of zero-area classical pulse formation is generally connected
to successive interfering cycles of absorptions and stimulated emissions of the
pulsed incident radiation by the resonant atomic ensemble [74]. Its obser-
vation at the single-photon level implies an intriguing change of perspective
and has interesting links to the phenomenon of single-photon superradiance
[92] and to new possibilities for the storage of quantum information. Our
experiment is just the first step in a new direction that, by allowing one to
directly follow the time evolution of the quantum light state, may deepen
our understanding of the light-atom interaction at unexplored time scales.
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Appendix A

Homodyne operator

In this appendix I present explicit calculations relative to the balanced ho-
modyne detection. All the symbols are referred to the notation already in-
troduced and used in Chapter 2 and Section 3.2.6.

Homodyne operator (see eq.2.2)

~

H = (aro,/lv — Iy|aro,)

= /T dt{ao,| [I}(t) — IAQ'(t)} laro,)
= [ dt s [ah (o)) = b (02 0] laso)

Where the phase factor €”/2 has been absorbed into the mode a.
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Losses (see eq.2.6)

7:[(9, a, 7]) = <OéL02, 02/, 02//|j4/ — f4//|aL02, 02/, 02”>
= [ dtaro,, 0,000 [(0) = (9] 2101, 02, 007)
T

= / dt {s0,, 03,020 [l (D (8) =l (Diase ()| [z, 027, 00)
T

= / dt <aL027 02’7 02”‘ :
T

(Vimmad(t) = in/T=npnaly (1)) (vgna (£) + in/T = i (1)) —
(VA (t) = i/ T= (1)) (/s (t) + iy/T= pniiz (1) -

|O{L02, 02’7 02”>
= / 0t (00, 0o, 0| @(8)aa(8) — i (1)ias (1)l cvzon., 0o, Oa)
T

= npn - H(0, Q) (A.2)
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Mode matching (see eq.2.8)

(a#(m)

) 92
(U1, apo,, 07, 09| [[4' — 14”] |W1, apoy, 0o, Ogir) —

2
(U1, o, , 0y, 02"’14/ — [4”|‘I’1> Lo, 0, 09r)

// dty dts ( Cl4/ (t1)aq(t )a4,(t2)a4/(t2)

daly (t1)ak (tr)aly (t2) ko (t2) — al (t1) ks (t1)al, (t2)al (t2) +

il ()il (1)l (1) (1) ) —
i [ de ey 6) = al, (i (1)

2 / / dty dty(al, (t1)ay () [a}(ma}(@) —alu(t2)al (t)
T

alu(t)aw (t) [dif(b)dif(@) — b (t)al, (tz)]> +

nph(l — nph) // dtl dtg .
T

(@, (t1 ) (t1)al, (2)an (t2) + @l (1) age (t1)ad, (ta)asn (t2) ) —
2 / dt { &, ()i (1) — 61 (D (1))?

| [ aral @it - aloav(o)] )-

i [ deal @) = (i)

Nph (1 = 1pn) // dty dty O(t, — to) [ 1 (t)a () —|—a1,,(t1)a1~(t2)]>
nzh{<[/T dta(t)cﬁ(t)+a*<t>a1<t>r> ([ deaaln +a (v W}
w1l =) [ at (a0 (0 + a0 (0)])

e { ([l + @] = ([ah +aa] )2}

mnlL =) [ at (a0 (0 +laF])

s (A%a0)) "+ a1 =) ([t Gino) o )
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Single photon efficiency (see eq.2.9)

o {<1B| (6, + o] [15) — (1] [, + da] |1/3>2}
(=) ([ e (1 ) 119 + 0

nph<1ﬁ| [ a’a + (la } |1,3> + nph(l - 77ph) (1 —+ nLo)
nph<1ﬁ| [2 (g 00 + ”LO] [1g) + (1 —n) (1+nLo)

2n§h/ dt dty dty dt’ B* (1) B()a(ty ) (ta) (14]al (t1)a(ts)|1y) +
N 120 + Mpn(1 = 0pn) (1 +120)
212, / dt dty dty dt’ B*(t) Bt )a(t)a*(ta) 0(t —t1) 6(ta — ') +
1o 120 + Mpn (L = 0pn) (L +120)

[ dswa

+1on nzo + nen(L —mpn) (1 +n20)  (A4)

277;27h

Visibility and mode-matching efficiency (see eq.3.53)

Vv, )

J dt (Mlal,(t)ay (t) |M) = (m| [ dt al, (t)ar (t)| )
Jdt (Mlal,(£)ar (t) |M) + (m| [ dt al, (t)ar (t) |m

i [ dty*(H)a(t) —y(H)a*(t) — v (H)ea(t) + y(t)ema*(t)]

2[[ dt (1) fdt|0é t)?]

i [ dty*()a(t) — (e ()]

L[ dt |y(&)2+ [ dt |o(t)?]

([ dt v (t)au(t)e™? + ~(t)a* (t)e /2]

L dt [y + [ dt |a(t)]?]

_ R{[ 2 J dt*(ta(t) H} (A5)

[t @) + [ dt|a(t)
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Appendix B

Quantum state characterization

In any state and mode engineering experiment the final stage is always rep-
resented by a complete characterization of the manipulated state. Indeed we
previously observed that important physical informations can be embedded
in any systems by means of appropriate operations, so in the final stage it
will be necessary extract them to get the proper conclusions. An effective
method to accomplish it should permit to characterize the system as fully
as possible and prevent in principle any possible ignorance. Such a complete
information deduction is what is commonly called state tomography.
Whatever is its experimental implementation, all state tomography processes
share two common stages. The first one consists in the acquisition of a series
of measurements of observables properly selected to characterize completely
the system. This selection must be carefully made because not all the possi-
ble measurements provide a complete picture of the system. For instance, the
position probability distribution P(x) alone is not sufficient to represent the
state |¥(x)|e®), since lacking in any phase information. A set of observables
sufficient to characterize completely the system is instead called quorum. It
is clear that in selecting the quorum, a fundamental role will be played by
the continuous or discrete variable nature of the target state description. In
this work the quorum will be always given by series of quadrature measure-
ments X (6), each one performed with balanced homodyne detection for a set
of values of the phase 6.

Once the quorum is achieved, it is necessary to somehow invert the relation

r="Tr {pX (0)}, (B.1)
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to get as much information as possible about the density matrix p from
the observed values z. The solution methods proposed and used during these
years, often called reconstruction algorithms, have been based on different
approaches to the problem. The first one is called inverse Radon transfor-
mation [65], and is based on the idea of inverting the quadrature probability
distribution

+o0
Pr(xz(0),0) = W(z,y)d(x () —xcosf —ysinh) dz, (B.2)
marginal distribution of the Wigner function W (z,y) with a mathemat-
ical tool based on the Radon transformation formalism to retrieve just the
Wigner function

+o0
W(x,y) = %/ (x + k|plz — k) ™ dk. (B.3)

Actually it is necessary to introduce some ad hoc hypothesis to restrict
the number of degrees of freedom and permit the application of this algo-
rithm [64]. Moreover, the procedure works well only when the uncertainties
in the observed quadrature distributions are negligible, that is in the limit of
a very large number of data and very precise measurements. Otherwise, the
errors can lead to inaccurate, even unphysical, features in the reconstructed
state, like negative values on the diagonal elements of the density matrix p.
However, in this work, a statistical inference method based on the maximiza-
tion of the likelihood function has been followed.

B.0.1 Quantum state tomography

In this section we show the method used to reconstruct the density matrix p
from the acquired quadrature measurements.

From electric field measurements to quantum state reconstruction:
max likelihood algorithm A very popular principle of statistical infer-
ence largely used in physics is the socalled likelihood mazimization algorithm.
In mathematical statistics the likelthood function L represents the presumed
probability of observing a given set of values {y;} as a consequence of a mea-
surement on a system described by the density matrix p. The maximization
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of £ over the independent degrees of freedom p,, ,, that is over the density
matrix elements, ensures a density matrix that predicts just the data set
experimentally observed as the most probably measured.

In 2002 Z. Hradil et al. [66] demonstrated with variational methods that
the maximum value of the likelihood can be found by solving the non linear
system

R(p,y)p = p, (B.4)
with

Zfz v il (B.5)

i’ yllply’t

and f; given by the frequency of the observed value y;. Basically the
system (B.4) can be iteratively solved according to the equation

R(p™, y)pt™ = prtD), (B.6)

with the initial condition

P = NA{I}. (B.7)

Unfortunately eq.(B.6) can lead in some special cases to non positive
density matrices, then in 2004 Hradil et al. [67],[68] proposed a slightly
different and unphysical-results-free equation like

R(p™,y)p™ R(p™, y) = p" Y. (B.8)

Currently this improved version is the most used algorithm to experimen-
tally reconstruct the density matrix from measurements.
In this thesis the data set {y;} is always represented by different series of
quadrature measurements each one performed with the homodyne detector
for a fixed value of the phase 0; defined by the local oscillator, so

{vit = {zi(05),0;} (B.9)
lyi)(yil = |2 (6;),05)(xi (05), 0. (B.10)
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max likelihood algorithm implementation To implement the abstract
algorithm of eq.(B.8) it is necessary to prOJect it on a properly chosen basis
and give a specific form to the operator R ( ) y) and to the density matrix
p. In this thesis we have always chosen the Fock representation, and then

P = (m|R(p™, y)p™ R(p ("),y)|n>
= Y IR, y) k)l (IR, ) )

k,l
= > Rui(0™, 9)p) Bin(p™, y) (B.11)
k,l

with I%mk(p(”), y), matrix element at the nth iteration, given by

~

Roi(p™,y) = (m|R(p™,y)|k)
 (mlzi (6;),0;)(x: (6;) , 6;|k)
2 6,7 01 (0,6,

(m, (8,) .0,z 6, 0,11
2 gy 1)

and the nth iteration probablhty

Pri (a; (6;),0;) = (2i(0;).0lplzi (0 ') ,93')
= > (@i (6;), 0,001 (slwi (6,).6;).  (B.13)
t,s
We can observe that the probability Pr™ (z; (6;),6;) doesn’t depend on
m and k so its value is the same for all the elements R, ;(p™,y) and can
then be calculated only once for each iteration.

The projection of the quadrature eigenstates on the number states (n|z; (6;) ,0;)
recurs many times in the calculation and is equal to

(nlz(0).0) = (0!\/EUT!$() 0)
e’ <%> H M6_$2 (B.14)



with H, [z] denoting the Hermite polynomials.

It is important to observe that in collecting the quadrature data set, the
continuous photocurrents values must be converted into the digital numbers
{z; (#;),0;}. To minimize such a unavoidable conversion error, a narrow bin-
ning is used such that basically a quadrature value never repeats and thus
the frequencies f; ; can assume only the values 0 or 1.

Actually the maximum likelihood implementation involves a necessary hy-
pothesis still not mentioned. Indeed, the computation of the numerical series
in egs.(B.11), (B.12), (B.13) requires the truncation to a finite number of
terms. This means that a proper assumption to limit the Fock space must
be introduced. Hradil et al. in [69] overcame this problem by suggesting an
objective method based on the eigenvalues of a proper operator G , allowing
the truncation of the Fock space without the necessity of further hypothesis.
Anyway, in all the experiments described in this thesis, the Fock space has
been limited a priori by exploiting the preliminary approximate knowledge
of the investigated states and limiting the Fock space to the expected non
null density matrix elements.

Losses A good advantage of the max lik technique is the possibility to
incorporate directly into the reconstruction procedure the effects of the de-
tection inefficiencies. We have already introduced the beam splitter model
for the losses in photodiodes (see appendix A), so now it is only necessary to
reconsider the ingredients of the algorithm as transformed by an 7 transmis-
sivity beam splitter. In egs.(B.11), (B.12), (B.13) we must then introduce
the transformations [65], [68]

P = P (B.15)
|z (6),0)(x (0),6] — [x(0),6,m){x (), (B.16)

with
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(mlpyln) = Y Bumikm (1) Buirn (n) (m+ k| p|n+k)

) (B.17)
|wi (ej) ’ ej’ 77> <xz (ej) 70j7 77| = Z Bm+k,m (77) Bn—i—km (77) )
(e (65) ,65) (w: (65) 6 1m) -

In + k)(m + k| (B.18)

where By, = 1/ ("Zk)n”nk are the Bernoulli coefficients representing
the effect of the loss beam splitter. Note that into the reconstruction stage
only a correction for non-perfect detection efficiency 74 is allowed. This
adjustment enables the reconstruction of what has been really experimen-
tally generated without considering the deterioration due to a non-perfect
observation. Thus, a correction for the generation efficiency 7., is senseless.

B.0.2 Quantum state fidelity

Once the density matrix p; describing the measured system has been re-
constructed, it is often useful to compare this experimental result with the
po expected from theoretical predictions. To quantify their likeness we can
introduce a fidelity for mixed states as [70]

F(p1,p2) = {TT{ \/E-pz-\/p_l}r. (B.19)
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Appendix C

Birefringence

Both the photon subtraction and addition operations considered in this work,
have been implemented by exploiting the well known phenomenon of bire-
fringence, so it can be useful to spend a few words on it. Indeed we have seen
how birefringence enables the use of half-wave-plates to implement a and ful-
fil phase matching conditions necessary for the parametric down conversion
nonlinear interaction at the basis of the experimental a' realization.

A material is said birefringent when it shows different optical properties re-
spect to differently polarized light, in particular when the refractive index
is depending on the directions of polarization and propagation of the light
beam, as a consequence of a natural or induced anisotropy. We will focus
on a particular type of birefringent crystal, said uniaxial, in which the re-
fractive index takes different values if taken along the direction defined by a
particular crystal axis or in its perpendicular plane. This particular axis is
referred to as the extraordinary axis'. An electric field experiences a refrac-
tive index n.(3), said extraordinary (e), if lying in the plane defined by this
direction and the direction of the wave propagation k, while if oscillating in
the orthogonal plane it feels a refractive index n,, called ordinary (o). The
extraordinary refractive index n.(3) depends on the angle /5 defined by the
wave vector k and the extraordinary direction according to this equation:

1 _ sin? () N cos? (B) (1)

ng(9) ng ng

where 712 is the refractive index experienced by a purely extraordinary

!The extraordinary axis is sometimes called also optical axis.
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polarization.

This has strong consequences for the beam propagation, and the e and o
polarization components of a randomly polarized beam spatially separate
when travelling inside the crystal. Indeed the electric displacement field D,
and the electric field E of the e polarization are no more parallel due to
the anisotropy of the material and the wavector k., orthogonal to D., is
deviated respect to the ordinary beam direction of propagation k,2. This
phenomenon, called spatial walkoff, prevents to use beams waists too small
within the crystal to avoid complete complete geometrical separations of the
outgoing beams.

2Consider the linear approximation

P.=xVE, (C.2)
where x is a 3 x 3 matrix
X11 X12 X13
X=| X21Xx22X23 |- (C.3)
X31 X32 X33

The electric displacement field D, can be written as

De = 6U-Ee + Pe
= EOEG + GOXEG
= e(1+x)E.. (C.4)

Then for the extraordinary ray, in an anisotropic material, D, is no more parallel to
E.. For the ordinary component the suscettivity is diagonal and D, is still parallel to E,.
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