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Chapter 1

Brain imaging in wide scale

The brain is the most complex organ of our body. It allows us to interact with

the external world integrating sensory input and producing adequate output to en-

vironmental changes. Understanding the mechanisms underlying brain function is

a challenge currently ongoing and the cause of heavy financial investment. In 2005,

IBM, in collaboration with the École polytechnique fédérale de Lausanne, launched

the ”Blue Brain Project” [1], later on, in 2009, the ”Human Connectome Project”

[2] started through a collaboration beetween the Laboratory of Neuro Imaging

and Martinos Center for Biomedical Imaging at Massachussets General Hospital.

Starting from 2013, the European Union has funded the ”Human Brain Project”[3]

which involves more than 90 research institutes and, in the same year, in the United

States, the Obama administration announced the BRAIN initiative[4]. Moreover,

in 2014, also Japan started its own initiative called Brain/MIND [5]. The funding

of all these initiatives is justified by the difficulty to understand the physiology

standing behind brain activity. The brain works as a whole, and a full compre-

hension of the processes governing its functions depends on a complete dissection

of its anatomy, yet there are considerable structural differences in different part

of the nervous system and a great interindividual variability. The connectivity of

the brain can be analyzed at three quite distinct levels [6]:

1. Macroscopically, by examining images of the whole brain (or of large brain re-

gion) by magnetic resonance imaging (MRI), diffusion tensor imaging (DTI),

magnetoencephalography, and electroencephalography.

6
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2. Microscopically, by using optical techniques, which allow for subcellular res-

olution.

3. At ultrastructural level, using electron microscopy (EM), through which is

possible to focus on fine morphological details with nanometric resolution.

While, the first approach enable fast analysis of the whole brain in living organ-

isms, but with a quite coarse resolution (about one millimeter), the last one allows

for the visualization of the finest morphological details, but only in small tissue

sections. Optical techniques offer a trade-off between the two above. They give

us the possibility to investigate morphological details below the micrometric scale,

generally in areas of millimeters, within a depth of hundreds of microns at most.

Recent methodological developments, have expanded potentiality of optical mi-

croscopy, enabling acquisitions of complete datasets of whole rodent brains. It is

possible to distinguish two alternative approaches: one is based on tissue section-

ing [7, 8], while the other one is based on tissue clarification. The latter allows for

fast imaging of chemically-cleared, “transparent” mouse brains without the need

for mechanical sectioning [9, 10, 11]. Both have been used for neuronal or vascular

visualization, however without a complete analysis in the whole brain.

Neuronal activity is supported by an intricate network of blood vessels, which

ensures the delivery of adequate levels of oxygen and nutrients for neuronal metabolism.

Changes in blood supply inside any given brain area permits a dynamic allocation

of resources based on metabolic needs. The regulation of blood flow according

to increases or decreases in neuronal demand is known as neurovascular coupling

[12]. This coupling is exploited for functional studies, in which blood flow changes

are evaluated as surrogates of neuronal activity. Methodologies such as blood oxy-

genation level-dependent (BOLD) functional magnetic resonance imaging (fMRI),

for instance, measure the level of blood oxygenation to extract information about

neuronal activity. However, we do not have complete topological knowledge of the

brain vasculature, especially of its capillary network, through which the exchange

of substances and metabolites takes place. Questions about how these methodolo-

gies relying on blood oxygenation level reflect the underlying neuronal processing,

and which areas of neurological activity correspond to the signals detected, are

still open. Dissecting the topological features of brain vasculature at microscopic
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scale will help to deliver a reliable interpretation of this data. If, on one hand,

microscopic resolution is achievable with different techniques, the application of

those same microscopy technologies over large volumes on the other hand is chal-

lenging. This problem is faced in this thesis presenting a methodological approach

which has the potential of giving a complete comprehension of brain vasculature

organization on a brain-wide scale. A thorough analysis of the vascular component

is essential to step forward towards the comprehension of physiological processes

through which the brain works. Besides, vascular changes are know to be correlated

with neurological disorders, such as stroke [13], neoplasia [14] and dementia [15].

A methodology enabling detailed morphological vascular analysis on a whole brain

scale would in this respect be of remarkable importance. In the next chapters of

the introduction, a close up view on brain organization and imaging methodologies

applied for brain research is presented.



Chapter 2

The architecture of the brain

The brain works as a whole, nevertheless it is composed of specialized areas

managing specific functions. A complex neuronal network allows for the integra-

tion of processed informations between distinct areas and, extending out of the

brain, it also make up the pathways by which sensory stimuli and motor out-

puts travel towards and from the brain. Alongside neuronal pathways, another

network made of blood vessels guarantees the maintaining of adequate levels of

oxigen and nutrients, essential for energy metabolism. Starting from the neuron,

the unit forming the neuronal network, the next sections show a description of

brain’s anatomy with a special focus on the vascular component.

2.1 The brain’s primary functional unit

The human brain contain approximately 86 billion neurons [16], which repre-

sent the fundamental units forming the neuronal network. Specialized structures

identify these cells (fig.2.1). From the cell body, or soma, a large number of exten-

sions called dendrites receive chemical messages from other neurons [18]. All the

signals received are integrated in the soma and eventually conveyed in the form

of electrical impulses thanks to another extension named axon. At the axon end-

ing the signal is converted into a chemical message, consisting of molecules called

neurotransmitters, which travel to the next neuron through a tiny gap known as

synaptic cleft.

9
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Figure 2.1: Neuron structures Messages coming from other neurons are received from
the dendrites and integrated inside the cell body, which contains the nucleus as a separate
cell compartment. If the sum of the messages received exceeds a threshold value, an
action potential is generated. This new message in the form of an action potential runs
along the myelinated axon towards the axon terminals. Image from [17]

When neurotransmitters contact the surface of a neuron downstream, they

interact with membrane receptors which trigger a change of the electrical potential

between the inside and the outside of the cell. The cell membrane potential at

rest is around −70mV . Excitatory signals cause a depolarization of the cell, that

means that the membrane potential is led towards more positive values. When the

depolarization exceeds a threshold value, it elicits an action potential running

along the length of the axon [19]. The action potential is sustained by the aperture

of voltage-gated ion channels allowing for an inward current of Na+, which is then

stopped by a time-dependent closure of the same channels. A delayed aperture of

voltage-gated potassium channels, which causes an outward flow of K+, leads the

membrane potential back to the resting value. At this point the sodium-potassium

pumps work to restore the right concentration of Na+ and K+ inside the cell.

The depolarization has self-sustained properties and propagates from a region

to another along the axon. A myelin sheath wrapped around the axon speeds

up this process considerably. It works as an electrically insulating layer, which

is interrupted in several points, called nodes of Ranvier, where the ions exchange

take place. Hence the impulses propagate by saltatory conduction jumping from

a gap in the myelin sheath to the next [20]. The cells producing myelin and

wrapping themselves around the axons are oligodendrocytes in the central nervous

system (CNS) and Schwann cells in the peripheral nervous system. Considering
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the distance each signal has to cover to reach its target, the presence of myelin

is of primary importance. An axon in human, for instance, can reach up to one

meter of length in the case of a neuron extending from the spinal cord to a muscle

of the foot.

The axon divides into several branches in order to transmit signals to different

neurons simultaneously. The distal terminations of the axon’s branches are called

presynaptic boutons. These sites store the synaptic vesicles containing neurotrans-

mitters, which are released as a consequence of a biochemical cascade triggered

by the activation of voltage-gated calcium channels when the depolarization reach

the end of an axon [21]. Each neuron is able to receive and integrate thousands of

signals. The dendrites protruding from the soma present an elevated number of

ramifications and contain multiple specialized protrusion, the dendritic spines,

which make synaptic contacts. In some cases the degree of dendritic ramification

is as high as to generate up to 100’000 input on a single neuron [22].

The activity of neurons is supported by an heterogeneous population of non

neuronal cells present in the nervous system and indicated together as glial cells.

In addition to the above mentioned oligodentrocytes, in the CNS the population of

glial cells include astrocytes, ependymal cells and microglia. The astrocytes inter-

acting with endotelial cells form the blood brain barrier, which controls the flux of

substances from the blood stream into the brain extracellular fluid, and participate

in the regulation of the local blood flow [23]. Other roles for this abundant popu-

lation encompass the maintenance of the extracellular ion balance [24], metabolic

support [25], modulation of synaptic transmission [26], promotion of the myeli-

nation carried by oligodendrocytes [27], uptake and release of neurotransmitters

[28], and generation of the glial scar during brain repair [29]. The ependymal cells

make the epithelium layer of the ventricular system of the brain and contribute

importantly to the flow of cerebrospinal fluid (CSF) [30]. The microglia, instead,

act as immunoeffector cells and scavengers for plaques and potentially deleterious

debris [31].
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2.2 Anatomy of the brain

Anatomically the brain can be divided into three basic regions [18]: the

hindbrain, the midbrain, and the forebrain. The hindbrain contains three

distinguishable structures: The medulla oblongata, the pons, and the cerebellum.

The medulla oblongata lies directly above the spinal cord and form a continuum

with it. Vital autonomic functions, such as digestion, breathing, and the control of

heart rate are directed in this brain area. The pons is located above the medulla

and in front of the cerebellum. It conveys information about movement from the

cerebral hemispheres to the cerebellum. The cerebellum, placed behind the pons

and connected with it by the cerebellar peduncles, modulates the movements and

is involved in the learning of motor skills. Rostrally to the pons, the midbrain

controls many sensory and motor functions, including eye movements and the

coordination of visual and auditory reflexes. The midbrain, pons and medulla

oblongata constitute the so called brain stem.

The forebrain is the largest part of the brain and can be divided into two main

parts, the diencephalon and the cerebral hemispheres. The diencephalon con-

sist of the thalamus and the hypothalamus. The first relays sensory and motor

signals to the cerebral cortex, while the second regulates autonomic, endocrine,

and visceral functions. The cerebral hemispheres comprise the cerebral cortex, the

basal ganglia, the hippocampus, and the amigdaloid nuclei (fig.2.2a). The cerebral

cortex is the outer part of the brain. Looking at its surface four lobes are evident

for each hemisphere: the frontal lobe, the parietal lobe, the temporal lobe and

the occipital lobe (fig.2.2b). Numerous neuronal cell bodies are present making up

the gray matter of the brain, visually different from the area beneath, (the white

matter), which is composed mainly of long-range myelinated axons. The cerebral

cortex play a key role in memory, attention, perception, awareness, thought, lan-

guage, and consciousness. The basal ganglia is a collective term for a set of struc-

tures in the basal forebrain [34]. In this set we can discern the striatum, which

is the largest component, the pallidum, the substanzia nigra and the subthalamic

nucleus. They participate in regulating motor performance. The hippocampus

plays a critical role in memory storage and it also give a significant contribution to

understand spatial relations within the environment [35]. The amygdaloid nuclei
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(a) Brain structures

(b) Lobes of the cerebral cortex

Figure 2.2: Anatomy of the brain (a) The most prominent brain structures and
their subsections are shown. The forebrain is divided into cerebral hemispheres and
diencephalon. The midbrain along with the pons and the medulla oblongata (so with
the hindbrain excluding the cerebellum) form the brain stem, structurally continuous
with the spinal cord. (b) Representation of the four cortical lobes of the brain: the
frontal, parietal, temporal, and occipital. Both the left and right hemispheres have
one of each cortical lobe. While the frontal lobe is separated from the temporal and
the parietal lobes by fissures in the brain tissue, the other lobes are only separated by
imaginary lines. (a) from [32]. (b) from [33].
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is a critical center for coordinating behavioral, autonomic and endocrine responses

to environmental stimuli, especially those with emotional content.

All vertebrates share common basic components. Studies on different animals

can then give insights about humans, especially those carried on evolutionary

close species. Mammalian animal models, such as mouse, are extensively studied

for understanding the key principles of brain function (fig. 2.3). The most obvious

difference between the brains of mammals and other vertebrates is in terms of size.

On average, a mammal has a brain roughly twice as large as that of a bird of the

same body size, and ten times as large as that of a reptile of the same body size

[36].

Figure 2.3: Comparison between human and mouse brain anatomy. Many
brain structures like cerebral cortex, hippocampus, thalamus, amygdala, hypothalamus,
cerebellum, and medulla oblongata are evolutionary conserved from mouse to human.
Fig. from [37].

Inside the brain, it is possible to observe four interconnected cavities called

ventricles. These are filled with cerebrospinal fluid (CSF), which flows from the

ventricles through the whole brain delivering nutrients and washing out waste,

such as neurotoxins and protein aggregates [38]. The brain does not directly take

contact with the skull, but it is surrounded by three membranes called meninges.
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The outer is the dura mater, that adhere directly to the bone and envelops the

other meningeal layers. The other internal layers are the arachnoid and the pia

mater, the last one being the most internal membrane [39]. The arachnoid is linked

to the pia by arachnoid trabeculae that span the subarachnoid space filled with

CSF produced by choroid plexi.

2.3 Brain vasculature

The brain is higly sensitive to insufficient blood supply. When the blood sup-

ply is interrupted, neurons stop firing within seconds and die within minutes [40].

Therefore the cerebral blood flow needs to carry oxygen and nutrients efficiently

to the nervous system and take away carbon dioxide, lactate and other metabolic

products. The CNS receives blood by means of two sets of vessels: the right and

left internal carotid arteries (ICAs) and the right and left vertebral arteries

(VAs) [41] (fig.2.4). While the ICAs are responsible for the anterior circulation of

the brain, the VAs account for the posterior circulation. The VAs merge together

becoming the basilar artery(BA). In humans the BA connects to the ICAs form-

ing a structure known as circle of Willis (fig.2.5). Since the arteries are joint

to form a circle, if one of the main arteries is occluded, for example the carotid

artery, the distal smaller arteries that it supplies can receive blood from the other

upstream arteries (collateral circulation). This happens in particular when, due

to atherosclerosis, slow and progressive occlusion occurs and the vessels have time

to expand allowing the passage of a greater amount of blood [41].

Mouse models are extensively used for studying brain circulation and evaluating

damage following blood flow interruption [43]. However, differences in blood vessel

connections have to be taken into account. The mouse circle of Willis for example

does not form a closed circuit, since there are no connections between the BA and

the ICAs [44].

In humans, the middle cerebral artery (MCA) is the largest branch of the

ICA. It branches out onto the surface of the frontal, parietal and temporal lobes

and feeds most of the cortex and the white matter. Further branches of the MCA

dive deep into the brain feeding the basal nuclei. In mouse, instead, the ICA drains

chiefly into the olfactory artery (OlfA). These differences are consistent with the
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Figure 2.4: Origin of the arteries supplying the brain Branching respectively from
the common carotid arteries and the subclavian arteries, the ICAs and the VAs carry
blood towards the brain circulation. Fig. from [42]

mouse being a nocturnal carnivore that lives on olfactory informations in contrast

to the humans that live diurnally and depends on visual and auditory informations

[44].

The arteries running on the surface of the brain, above the pia mater, are called

pial vessels (fig. 2.6). They give rise to smaller arteries that eventually penetrate

into the brain tissue originating the penetrating arterioles [45]. As penetrating

arterioles descend into the cortex, they gradually ramify until they form the cap-

illary network [46, 47]. From this network originates the venular system, similar

to the arterial system, which guide the blood out of the brain.

The veins of the brain may be divided into two sets, cerebral and cerebellar [51].

The cerebral veins are divisible into an external and internal group according

to whether they drain the outer surfaces or the inner parts of the hemispheres
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Figure 2.5: circle of Willis Bottom view of the circle of Willis in human (left) and mouse
(right). In human the circle of Willis is composed of arteries connecting the basiliar artery
(BA) to the ICAs. The components of this circle are the ICAs, the anterior cerebral
arteries (ACAs), the posterior communicating arteries, and the posterior cerebral arteries
(PCA). In mouse, the BA and the ICA domains are discrete and independent units of
blood supply. Image on the left from [48]. Image on the right adapted from [49].

(fig.2.7a 2.7b). Large veins channels called sinus receive blood from the internal

and external veins. Via a confluence of sinuses, the drained blood is directed

toward the sigmoid sinuses and finally to the jugular veins.

The cerebellar veins are placed on the surface of the cerebellum, and are

categorized into two sets, superior and inferior. The superior cerebellar veins end

in the straight sinus, the inferior cerebellar veins end in the transverse, and

Figure 2.6: Pial vessels Standing above the pia mater, pial vessels extend branches
into the parenchyma forming penetrating arterioles and venules, which are connected by
a capillary network (not shown). Adapted image from [50].
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occipital sinuses. By means of a connecting point called confluence of sinuses

they end in the sigmoid sinus which represent the superior tract of the internal

jugular vein.

Although the connectivity of the major brain vessels is known, we do not

have detailed information about the intricate capillary network, by which the ex-

change of metabolites takes place. Thanks to continuous advances in microscopy

techniques we are now able to analyze the microvasculature on larger portions of

tissues and extend our knowledge about the microcirculation of the brain.
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(a) Veins of the outer surface of the brain

(b) Veins of the inner part of the brain

Figure 2.7: Human venous system The cerebral venous system can be divided into
superficial veins (a) and deep veins (b). (a)The superficial venous system comprises the
sagittal sinuses and cortical veins, subdivided into superior, middle and inferior. (b)
The deep venous system consist of lateral sinuses, sigmoid sinuses, straight sinus and
draining deep cerebral veins. Images from http://ranzcrpart1.wikia.com/wiki/Venous



Chapter 3

Fluorescence optical microscopy

The invention of the microscope has brought a notable evolution in medicine

by making visible fine components of our body. A great number of optical mi-

croscopy techniques have been developed from then improving our capability to

explore the composition of organs and tissues. In particular, fluorescence optical

microscopy has introduced the possibility to highlight specific elements of interest

in biological specimens labeled with fluorescent probes. This chapter describes the

features of fluorescence microscopy and the working principles of two microscopy

techniques, two-photon fluorescence microscopy (TPFM) and light sheet fluores-

cence microscopy (LSFM). The applicability of these two techniques expanded

after the introduction of new chemical treatments which are able to make biologi-

cal tissues optically transparent. The last section is devoted to the description of

these treatments, named ”clearing methods”.

3.1 Fluorescence microscopy

The spontaneous emission of light following light absorption by a molecule,

with a typical emission rate of 108 s-1 is termed fluorescence, and molecules showing

fluorescence emission are known as fluorophores. A characteristic of fluorescence

is the larger wavelength of the emitted radiation with respect to the absorbed one.

This phenomenon, known as Stokes shift, represents a distinctive feature of fluores-

cence and is caused by a loss of energy before emission. The fluorescence process

20
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Figure 3.1: Jablonski diagram
The violet and the blue arrows rep-
resent two examples of electronic
transition upon absorption of pho-
tons. A fast non-radiative process
called internal conversion brings the
molecule down to the lowest vibra-
tional level of S1 before fluorescent
emission. The green arrows depict
the decay to the ground state S0
with photon emission (continuous
line), or by means of a non radiative
process (dotted line). This transi-
tion brings the molecule to one of
the vibrational states of S1.

is usually illustrated by a Jablonski diagram [52] (fig.3.1). A typical Jablonski

diagram shows the electronic states of a fluorophore as horizontal lines, indicated

in fig.3.1 as S0, S1 and S2. Each state can exist in a number of vibrational energy

levels depicted as 0, 1, 2. The transition between states are depicted as vertical

lines. Whatever is the vibrational level of the molecule after light absorption, it

rapidly relaxes to the lowest vibrational level of S1 [52]. This process is named

internal conversion and occurs within 10-12 s. Exceptions exist, for instance, some

molecules are known to emit from the S2 level, but such emission is rare and

generally not observed in biological molecules. The return to the ground state

S0 from S1 occurs with the emission of electromagnetic radiation, which, because

of internal conversion, has a lower energy (or longer wavelength) with respect to

the excitation light. Furthermore fluorophores generally decay to high vibrational

levels of S0, resulting in a further loss of energy. Non radiative transitions from S1

to S0 can also happen, decreasing the rate of fluorescence emission.

Two important characteristics of fluorophores are the fluorescence lifetime and

the quantum yield. The fluorescence quantum yield, Q, is the ratio of the number

of photons emitted to the number absorbed. This is given by

Q =
Γ

Γ + knr
(3.1)
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Where Γ represent the emissive rate of the fluorophore, and knr the rate of non

radiative decay. Substances with larger quantum yield, such as rhodamines, display

brighter emission. The fluorescence lifetime is instead defined by the average time

the molecule spends in its exited state prior to returning to the ground state. It

can be described as

τ =
1

Γ + knr
(3.2)

The intensity of fluorescence can be decreased by a variety of processes col-

lectively termed quenching. Collisional quencing, for instance, is due to contacts

of the fluorophore with other molecules. In such scenario, the energy absorbed is

dissipated by collisions, thereby increasing knr. In the case of static quenching,

the fluorophore reacts with another molecule forming a nonfluorescent complex.

3.2 Optical resolution

The resolution of an optical microscope is defined as the shortest distance

between two points on a specimen that can still be distinguished as separate en-

tities. Image resolution is limited by diffraction, a phenomenon occurring when

light encounters obstacles, or limiting apertures, in its path. The three-dimensional

diffraction pattern of light emitted from a point source in the specimen is called

point spread function (PSF). Fluorescent objects that are closer than the Full

Width at Half Maximum (FWHM) of the PSF cannot be distinguished (fig.3.2).

The Rayleigh criterion states that two point sources are regarded as just resolved

when the maximum of the PSF of one point coincides with the minimum of the

other [53]. This distance (rmin) is called Rayleigh limit. If the distance is greater,

the two points are well resolved, while if it is smaller, they are regarded as not

resolved. The Rayleigh limit for an optical microscope is given by the Abbe for-

mula:

rmin ≈ 0.6λ0
NA

(3.3)

where NA is the numerical aperture of the lens, defined as

NA = n× sinθ (3.4)
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where n is the refractive index of the medium and θ is the half-angle of the maxi-

mum cone of light that can be collected by the microscope objective [54].

In optical systems, the fluorescent light emitted by the sample is collected by

means of detectors which are unable to distinguish light coming from different

planes. The contribution of fluorescent molecules excited in out-of-focus planes

results in image blur. To reduce the contribution of out of focus light, one solu-

tion is to analyze just a thin section of tissue. This approach requires the sample

to be cut, generally in slices with a thickness of tens of microns using a specific

instrument called microtome. Other approaches, however, have been developed

to avoid mechanical sectioning of the sample. One of these is called confocal mi-

croscopy [55]. In confocal microscopes, the out of focus light is rejected by means

of a pinhole placed in front of the detector, which prevents the light coming from

out-of-focus planes to be collected. The capability of getting separated images of

different planes inside tissues without the need of physical removal, but instead

using an optical approach, is called optical sectioning. Two other microscopy tech-

niques, two-photon fluorescence microscope (TPFM) and light sheet fluorescence

microscope (LSFM), achieve optical sectioning by confining the excitation of fluo-

rescence in one plane. The TPFM and LSFM working principles are described in

more detail in the following chapters.

Figure 3.2: Point spread func-
tion The FWHM of the PSF deter-
mines the minimal distance between
two objects in order to distinguish
them as two different entities ccord-
ing to Rayleigh.
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3.3 Two-photon excitation

Two-photon absorption was first predicted by Maria Göppert-Mayer in 1931

[56, 57]. She proposed that a molecule should be capable of absorbing two pho-

tons in the same quantum event within 10-16-10-17s. Because this is a rare event

at ordinary light intensity, it was only in the 1960s, after the development of laser

sources, that the prediction could be experimentally verified [58]. The first appli-

cation of two-photon excitation to fluorescence microscopy was presented at the

beginning of the 1990s by Denk and collegues [59]. Multiphoton processes such

as two-photon excitation are termed ”nonlinear” because the rate at which they

occur depends nonlinearly on intensity. Since TPFM requires the simultaneous

absorption of two photons (within ∼ 10-16s) to excite the molecule, the fluores-

cence signal depends on the square of the illumination intensity [57]. To achieve a

reasonable excitation efficiency, typical TPFM systems focus the excitation pho-

tons into a tiny volume using a high numerical aperture (NA) objective [60, 57].

However, focusing alone is not enough to make two-photon microscopy practical.

A very high laser power would be in fact required for an appreciable fluorescence

emission. To generate enough fluorescence for imaging while keeping the average

power relatively low, a pulsed laser is used. Pulsed lasers increase the probability

of two-photon interactions. The most common ones are titanium sapphire lasers,

which produce ∼80 million pulses per second, with a pulse duration of ∼100 fs.

Away from the focal plane, the TPE probability drops off rapidly so that no ap-

preciable fluorescence is emitted. This feature has important consequences. First

of all, it avoids using a pin-hole to exclude out-of-focus light [60, 57]. Since the pin-

hole partially rejects also photons coming from the focus plane, the signal detected

with TPFM is increased with respect to confocal microscopy. Second, continuous

excitation of the same molecule leads to fluorophore damage, and results in a loss

of fluorescence emission. This phenomenon, called photobleaching, is considerably

reduced in TPFM, because fluorophores located away from the focal spot are not

excited.

Since the total energy transfered to a molecule is given roughly by the sum

of two photons, higher wavelength, typically in the infrared spectrum (IR), are

used for excitation. IR wavelengths are less scattered than visible light. Thus IR
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radiation is capable of penetrating deeper inside biological tissues, giving a further

advantage for three-dimensional reconstruction. Because of the non-linearity of the

process, only a tiny spot inside the tissue emits fluorescence. Fluorescence signal

from the remaining volume which the laser passes through is completely avoided,

resulting in lower background fluorescence. The maximum depth achievable with

TPFM is about 800 µm in living animal and around 200 µm in fixed tissues [61, 62],

a considerable improvement compared to less then 100 µm of depth achievable

using confocal microscope. Moreover, the use of IR wavelength results in less

phototoxicity in the case of in vivo imaging. [58].

The fluorophores which undergo two-photon excitation display the same emis-

sion spectra and lifetime as if they were exited by one-photon absorption [52].

Indeed, although the fluorophore may be placed into different excited states, they

emit from the same electronic state, independently of one or two-photon excita-

tion process. A Jablonski diagram describing two photon excitation is shown in

fig. 3.3.

Figure 3.3: Jablonski diagram
showing one- and two-photon
excitation (a) In one photon ex-
citation a single photon having a
specific wavelength is responsible for
the transition to an higher molecu-
lar state. (b) In two-photon exci-
tation the transition to the excited
state is caused by the additive ef-
fect of two photons. The emitted
light (blue arrows) is not depending
on the mode of excitation. Image
from: [60].

In two-photon fluorescence microscopy, as in conventional laser-scanning confo-

cal microscopy, a laser is focused and raster-scanned across the sample. The image

consists of a matrix of fluorescence intensity measurements made by the detector

while the laser sweeps back and forth in the sample. The scanning mode makes

the image acquisition slower than traditional wide field methodologies. Hence, al-

though its capability of imaging deep into specimens, the imaging of large volumes,
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such as whole mouse organs, is time consuming. For whole organ reconstruction,

a different methodology called light sheet microscopy has been recently applied.

3.4 Light-sheet microscopy

The principles of light-sheet microscopy were first described by Richard Adolf

Zsigmondy in a paper published in 1903 [63, 64]. However it was only in 1990s

that it was used for imaging of fluorescent biological samples [65]. Light-sheet flu-

orescence microscopy (LSFM) uses a laser light-sheet for illumination, i.e. a laser

beam which is focused only in one direction using a cylindrical lens. In LSFM,

the sample is illuminated perpendicularly to the detection axis, letting the above

and below planes not subjected to the excitation light (fig.3.4). The axial reso-

Figure 3.4: Light-sheet microscope A light sheet is focused inside the sample gen-
erating a plane of excitation. The fluorescence emitted is collected perpendicularly to
the illumination path by an objective lens. Image adapted from Olaf Selchow and Jan
Huisken: Light sheet fluorescence microscopy and revolutionary 3D analysis of live spec-
imens, Photonk international, 2013.

lution of this technique is depending on the thickness of the light sheet created,
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which is typically a few micrometers. The optical sectioning offers the advantage

of minimizing fluorophore bleaching and phototoxic effects. The fluorescence light

emitted is collected perpendicularly with a microscope objective, and projected

onto a CCD or a cMOS camera. Since an entire plane is illuminated at any time,

this approach is considerably faster than laser scanning microscopy. This high

speed acquisition makes LSFM suitable for reconstructing volumes of tissue which

are prohibitive in terms of time using confocal or TPFM. However, this technique

requires transparent samples to acquire images at depth. This limitation has been

addressed with the development of methodologies able to render tissues optically

transparent, collectively called ”clearing methods”. A number of different solu-

tions also have been developed to improve resolution and reduce artifacts and

aberrations due to the inhomogeneity of the sample. The most crucial of these en-

compass the implementation of structured illumination [66], the replacement of a

classical Gaussian beam with Bessel beam for light-sheet generation [67], the intro-

duction of confocal light sheet microscopy [68, 69], and the use of two light sheets

that combined illuminate the specimen from opposite sides [70]. The coupling of

LSFM with clearing methods has boosted the study of neuronal connectivity in

mouse models on a brain wide scale [71].

3.5 The advent of clearing methods

The possibility to collect images deep inside tissues and organs with optical

techniques is principally prevented by light scattering. Scattering occurs when

the direction of light is deviated by refractive index (RI) inhomogeneities during

light propagation [72]. The RI is described as c
υ
, where c is the speed of light in

vacuum and υ the phase velocity of light in the medium. Since biological tissues are

made of components with different RIs, light is deviated along its path inside the

sample. This deflection hampers photons to reach the common focus for excitation

of fluorescent molecules (fig. 3.5a) and, at the same time, hinders the detection

of the emitted fluorescence (fig. 3.5b). To overcome this limitation, biological

samples are treated with solutions able to homogenize the RI inside tissues, called

clearing agents.

The first report on clearing opaque biological samples dates back to 1914 with
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(a) Excitation path (b) Emission path

Figure 3.5: Scattering inside tissues (a) In non-scattering samples, light rays are all
directed towards the focal spot. In presence of scattering, the percentage of photons
reaching the focal spot decreases. (b) In absence of scattering, the fluorescence propa-
gates uniformly in all directions. In scattering samples, the amount of photons detected
is reduced.

a book published by the German anatomist Walter Spalteholz [73]. In order to

obtain transparent preparations, he tested numerous organic solutions and found

a mixture of benzyl alcohol and methyl salicylate to be most effective for clearing

large specimens. Later on, a modified clearing solution called ”Murray’s clear” was

used for embryo imaging [59, 74]. This solution was applied in combination with

LSFM for imaging of strongly fluorescent biological specimens, including whole

mouse brain [11]. However, this mixture markedly reduces the fluorescence sig-

nal. This reduction is mainly due to the dehydration step which samples must

undergo, being Murray’s solution immiscible with water. In the attempt to reduce

the fluorescence quencing observed, another screening found that dehydration with

tetrahydrofuran, instead of alcohol, and incubation with dibenzyl ether, increased

the fluorescence detected [75]. All these procedures are based on organic sol-

vents, thus making tissue dehydration a necessity. The dehydration process is

responsible for the loss of fluorescence reported. Moreover, the sample becomes

strongly shrunk with respect to its original size. A method called iDISCO [76] in-

troduced the possibility to combine organic-based clearing with immunostaining,

thereby eliminating the need of fluorescence preservation where immunostaining
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approaches can be a valid alternative.

A considerable improved fluorescence preservation was obtain by the develop-

ment of water-based optical clearing, among them Sca/e [77], seeDB [78], ClearT

[79], and CUBIC [20]. Each of these methods presents significant drawbacks, such

as long incubation time, introduction of structural alterations, incompatibility

with immunostaining, poor clearing capability of large samples, or difficult han-

dling procedures. Moreover the transparency achieved is less compared with the

use of organic solvent.

A different approach based on tissue trasformation has obtain a great suc-

cess for its capability of rendering whole mouse brains highly transparent without

flurescence quencing and facilitating dye penetration inside the tissue [80]. This

approach, termed CLARITY, works by removing lipids, which represent the cellu-

lar component mainly responsible for light scattering, while preserving the protein

component. This is achieved by a selective crosslink of proteins with a hydrogel

matrix of acrylamide and formaldehyde created inside the brain. Since the lipids

are excluded from the mesh of hydrogel, they can be selectively washed out using

a soapy solution. The process can be expedited by the application of an electric

field pushing the negatively charged micelles containing lipids away from the tissue

(fig.3.6). The hydrogel-hybridized form of the brain deprived of lipids is then incu-

bated in a refractive index matching solution for imaging. However the extremely

high cost of this solution, called FocusClearTM, limitates the use of CLARITY for

routinely applications. A valid alternative to FocusClearTM consists in a solution

of Thiodiethanol (TDE) in phosphate buffer saline (PBS) [9]. CLARITY-TDE

has demonstrated to be effective in clearing whole mouse brain for LSFM and

to be compatible with immunostaining. The use of TDE is not confined to its

application with CLARITY. It can be applied to fast clearing of brain slices or

portions, such as hyppocampus, in order to achieve organ reconstructions by serial

sectioning methodologies. The possibility to finely change the RI of TDE-PBS

solutions makes it a versatile clearing agent suitable for investigation of different

biological tissues with multiple imaging modalities.

Tissue clearing makes investigations of fine biological structures in a wide scale

possible. To fully exploit this potential, high throughput methodologies with high

resolution are required. LSFM seems well suited for this purpose thanks to its
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Figure 3.6: CLARITY A mouse brain is incubated in a solution of acrylamide
monomers (blue) and formaldehyde (red). Amminic groups allow proteins to covalently
link the monomers. The polimerization triggered by heating creates a hydrogel mesh in
which proteins are included. Finally the application of an electric field across the sample
permits the active transport of micelles containing lipids out of the brain. Image from
[80].

micrometric resolution coupled to a fast image acquisition rate. Brain research is

one of the fields which can take more benefits from these advancements. Alongside

neuronal connectivity, the brain vascular network has also been explored with these

approaches.



Chapter 4

Brain vasculature imaging

The investigation of the brain’s vascular component through imaging anal-

ysis can be accomplished with an increasing number of methodologies. We can

distinguish two groups based on the possibility to apply them in living animal,

or in other words in vivo. In vivo technologies such as magnetic resonance imag-

ing (MRI) or computed tomography (CT) represent important diagnostic means

to identify abnormalities or evaluate vessels occlusions in humans. On the other

hand, they are profoundly wanting on a microscopic level. Nevertheless, because

of their minimal invasiveness, experimental approaches have been developed in

order to improve the resolution of these technologies for in vivo investigations in

animal models. Optical microscopy, instead, offers the possibility to investigate

brain vasculature in a sub-micrometric scale. Since optical microscopy does not

hold the property of visualizing internal structures, surgical procedures such as

craniotomies, implantation of cranial window, or skull thinning are executed in

animals to expose brain portions for in vivo studies. In any case, only superficial

brain layers are accessible.

In the attempt of getting a detailed topological organization of brain vascula-

ture on a wide scale, optical strategies, or other approaches, are applied in excised

organs, namely ex vivo. This chapter takes a view of the methodologies applied

both in vivo and ex vivo in the pursuit of a fine understanding of vasculatur mor-

phology inside the brain.

31
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4.1 In vivo brain vasculature imaging

Different in vivo brain vasculature imaging methods are available, each with

different temporal and spatial resolution, field of view, and invasiveness. Each

of these technologies represents a trade-off between the above parameters. For

whole-brain acquisition, approaches based on MRI or CT are typically adopted,

while optical microscopy instead, is more suited for the analysis of small brain

regions with higher resolution. In vivo whole brain and optical modalities are laid

out separately in this section.

4.1.1 In vivo whole brain methodologies

MRI and CT yield images of internal body structures without the need of

surgical intervention. For this reason they keep a relevant role in the diagnosis of

different pathologies, among them vascular impairments. In addition to diagnostic

use in humans, these methodologies have been applied in small animals to obtain

full datasets of whole brain vasculature. Time of flight angiography (TOF), for

instance, is a non-invasive MR method which allows the visualization of blood

flow in whole mouse brains with a resolution close to 1 mm [81]. In order to

visualize smaller vessels, a contrast agent injected into the blood flow is needed.

With contrast-enhanced MRI, vessels with a diameter down to ∼100 µm have been

detected in whole rodent brain[82].

A resolution of about 40 µm, has been instead achieved with microscopic com-

puted tomography (µCT), using a contrast agent and applying adequate radiation

doses [83]. µCT is based on the same underlying physical principle of CT, but

achieves microscopic resolution by taking hundreds of 2D projections from multi-

ple angles around the animal [84]. Both MRI and CT offer the possibility to acquire

images of the whole brain in living animals with minimal invasiveness, although

care has to be taken in the case of CT about the level of ionizing radiations, which

are hazardous to health. Recently another approach based on ultrafast doppler

tomography (UFD-T) has been proposed for whole brain imaging of blood vessels

in rodents [85]. This technique requires skull removal in rats, but could poten-

tially be performed through the skull in mice. Thanks to a tomographic scanning
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Figure 4.1: Whole rodent brain angiography A schematic representation of whole
brain methodology for vasculature imaging is given. Each technique has its own advan-
tage in terms of resolution, acquisition time or invasiveness. TOF-MRI is an absolutely
non invasive method, but offers a lower spatial resolution (∼mm). The use of a contrast
agent injected into the blood enhances the resolution achievable in MRI and CT. UFD-T
is more invasive, but presents advantages in terms of temporal resolution. Adapted from
[85].
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approach requiring successive translation/rotation scans, a voxel dimension of 100

µm3, with a temporal resolution of 10 ms has been obtained in whole rat brain.

The main advantage of UFD-T over CT and MRI modalities is its temporal res-

olution. Dynamic changes of blood volume and blood flow speed can indeed be

retrieved from the images acquired with this technology. Whole in vivo rodent

brain techniques for vasculature analysis are illustrated in fig.4.1.

4.1.2 In vivo optical microscopy

Optical techniques represent the best strategy in order to visualize fine details

in the micrometric range. With optical techniques, however, the possibility to get

images deep inside organs is hindered by light scattering, so that the tissue to be

exterminated must be exposed. Nonetheless, some optical technologies are able

to overcome the effects of light scattering for imaging of blood vessels in animal

models. Photoacustic (PA) imaging techniques use short pulses of laser irradiation

to induce a transient thermoelastic expansion of biological tissues [86, 87, 88]. This

expansion produces ultrasonic waves (also called PA waves), which are detected by

ultrasonic transducers. The production of PA waves is directly related to optical

absorption. With hemoglobin being one of the dominant absorbers in tissues, PA

technology is well suited for vascular imaging. The depth achievable can approach

3 mm, with a coarse resolution when compared with traditional optical approaches

(fig.4.2a).

In near-infrared II fluorescence imaging (NIR-II), light scattering is reduced

thanks to the use of excitation light in the near infrared spectrum [89]. NIR-II

allows fluorescence imaging beyond 2 mm through the mouse skull, with a spatial

resolution of 30 µm and acquisition time of 0.2 s. Furthermore, such an acquisition

speed makes real-time assessments of blood flow anomalies possible. Fig. 4.2b.

Laser speckle (LS) is another method capable of visualizing vasculature tran-

scranially [90, 91]. LS is sensitive to the dynamic scattering of moving blood cells

and can therefore be applied for the continuous imaging of blood flow dynamics.

A combination of LS and dynamic fluorescent imaging, named transcranial optical

vascular imaging (TOVI) can operate trough the intact skull of young mice until

a depth of almost 1 mm with a spatial resolution close to 5 µm [92]. Fig.4.2c.
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Figure 4.2: Non invasive optical approaches (a) Photoacustic (PA) imaging. Ultra-
sonic waves (yellow) are detected by an ultrasonic transducer through the intact skull
of a mouse brain. Imaging depth of 3 mm can be achieved with a resolution of ∼ 70
µm. (b) NIR-II. A near infrared laser is focused by an objective lens trough the mouse
skull. The fluorescent emission is collected. (c) Laser speckle (LS). A laser diode beam
is expanded to illuminate an area of the brain cortex. The signal is detected by a CCD
camera. (d) Transcranial optical vascular imaging (TOVI). Fluorescent probes are ex-
cited by a mercury lamp, while a laser coupled with an optical diffuser is responsible for
the speckle signal. Photons are detected by a CCD camera.
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More invasive optical microscopy techniques are necessary to clearly distinguish

the capillary network connecting large blood vessels. Two photon fluorescence mi-

croscopy (TPFM) permits image acquisitions up to a depth of about 800 µm inside

tissues with subcellular resolution [61, 62]. Since light cannot pass through the

skull, a cranial window is implanted to expose the brain [93]. In order to high-

light the vasculature, a fluorescent marker is usually injected in the blood stream.

With TPFM, changes in vascular organization at the level of the capillary network

can be evaluated in mouse models of vascular impairments [94, 95]. However,

the intrinsic limitations of TPFM confine the mesurements into the brain cortex.

Fig.4.2d.

Small transparent animals, as larvae of zebrafish, can be studied in a non in-

vasive manner using light-sheet fluorescence microscopy (LSFM). These animals

must express fluorescent reporters to visualized the structures of interest. The fast

acquisition speed of LSFM allows to follow physiological processes. For instance,

live imaging of the beating zebrafish heart at a temporal resolution of more than

100 frames/cardiac cycle demonstrates the potentiality of LSFM for vascular dy-

namics analysis [96]. In any case, in vivo LSFM investigation are limited to small

transparent organisms. Analysis of large samples are instead feasible ex vivo on

fixed tissues.

4.2 Ex vivo brain vasculature imaging

Ex vivo methodologies are applied with the purpose of studying regions ac-

cessible only with poor resolution in vivo. For ex vivo analysis, tissues need to

be treated in a way to avoid physical degradation. A classical protocol for mouse

or rat tissue fixation consists of intracardial perfusion with a solution containing

formaldehyde as fixative. Exploiting the vascular network, the fixative is rapidly

and efficiently delivered in every area of the body. All organs or tissues are in this

way preserved and can be used for imaging after excision.

In order to gain exhaustive topological informations on the vascular network,

the apparatus for imaging must be able to finely detect single vessel branches and

capillaries. Second, a clear distinction of blood vessels from others brain structures

is necessary for automated computer analysis. In the attempt to give a clear view
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on the techniques used for morphological analysis of brain vasculature, a classifica-

tion into three categories is presented. These are the corrosion casting approaches,

serial sectioning methodologies, and optical microscopy in combination with clear-

ing methods.

4.2.1 Corrosion casting approaches

Vascular corrosion casts (VCCs) are replications of vessel lumen, obtained

by filling the vasculature with a casting polymer. The entire vascular system of a

whole animal or organ can be injected with a solidifying material, usually resins,

which fills the lumen of blood vessels. The resin is allowed to cure resulting in the

blood vessel network containing a solid material inside. The surrounding tissue

is dissolved with corrosive chemicals, which do not affect the cured resin. VCCs

obtained with this procedure can be later analyzed with different imaging tech-

niques to study vascular morphology. One of these is scanning electron microscopy

(SEM) [97, 15]. SEM is capable of producing high-resolution images of the sam-

ple surface. Very fine details can be examined, such as the shape of imprints left

from endothelial cells on the vascular cast, from which it is possible to distinguish

arteries from veins [98, 99]. Although tiny details are captured, imaging is lim-

ited to the surface of the cast, therefore accurate morphometric measurements are

restricted to the externally visible vessels.

µCT based on conventional X-rays or synchrotron radiation (SRµCT) can be

applied ex vivo with an increased resolution with respect to its applications in vivo

[98, 99, 100]. Entire mouse brain VCCs have been analyzed at 16 µm resolution

with µCT system [98]. A hierarchical approach combining the µCT and SEM has

been proposed in order to get high resolution SEM images of regions of interested

after µCT analysis (fig.4.3).

Using a fluorescent resin, also confocal light microscopy has been used to gain

three-dimensional information from vascular casts, but within a limited volume.

[99, 15]. Since fluorescence offers sufficient contrast with respect to the surrounding

tissue, the chemical degradation step can be avoided. This opportunity permits to

visualized other tissue structures specifically marked with fluorescent probes [15].
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Figure 4.3: Hierarchical approach µCT/SEM µCT can produce a whole brain
dataset from which it is possible to see large pial and cerebral arteries and veins, while
small vessels are not visible. SRµCT can be used to visualized small vessels and capil-
laries in a confined volume. Finally SEM can unveil fine morphological structures in the
nanometer range. The latter is limited to small areas. From: [98].

4.2.2 Serial sectioning methodologies

To access deep regions, serial sectioning can be applied in association with

different optical techniques [8, 101, 102]. Serial sectioning approaches consist of

cycles of imaging alternated with tissue sectioning for mechanical removal of the

imaged volume and exposition of the underlying portion to be acquired.

By slicing the sample, serial images spaced 5µm in the z-axis, showing the

vascular network, have been obtain from a mouse brain perfused with White India

Ink-gelatin [101] (fig.4.4a). In this case a digital camera was adopted to acquire

images of each slice surface, where vessels were visible for the white color of the
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gelatin over a dark background. A volume-rendered image of the whole brain was

obtained by stitching the acquired stereo images. This method, however, suffers of

the presence of noise in the images, represented by white spots and straight lines

not ascribable to blood vessels.

A better image quality is in principle achievable with scanning point microscopy

techniques such as confocal or TPFM, the latter being the one of choice in the case

of imaging in depth. However, the elevated acquisition time for image formation

with scanning point methodologies makes them unsuitable for the acquisition of

large volumes. Applying automatized serial sectioning, Ragan et al. demonstrated

the applicability of TPFM for acquisitions of datasets of whole mouse brain ex-

pressing fluorescence in neurons [8]. This methodology, however, does not produce

comprehensive information in the axial direction because of the sampling adopted,

causing loss of information of 95% . The reconstruction of neuronal or vascular

networks requires a finer z-sampling, which, with this methodology, would be ex-

tremely time consuming and arduous from a computational point of view since

mechanical deformations occur on the cutting plane.

A fine reconstruction of neuronal nuclei and vasculature in whole mouse brain

has been obtained at 1 µm voxel resolution using micro-optical sectioning tomog-

raphy (MOST) [102] (fig 4.4b). Embedding the brain in hard resin, ribbons of

1µm were cut with a diamond knife and simultaneously imaged. The system con-

sists of a reflected bright field microscope in which images are collected trough a

line-scan CCD camera. The ribbons produced are free of distortions, thus align-

ment problems are avoided. However, the procedure is complex and a long time

is required for sample preparation and imaging. Moreover, the resin embedding

does not preserve fluorescence, preventing the application of differential fluores-

cence staining to identify structures of interest. Finally, this methodology, lacks

of a specific vascular staining, relying instead on different levels of signal inten-

sity to distinguish neurons from blood vessels in the images. A MOST technique

compatible with fluorescence (fMOST) [103, 104] has been developed thanks to

a novel resin-embedding method and has been used for imaging of fluorescently

labeled neurons. However, no brain vasculature imaging has been reported so far

with fMOST.
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Figure 4.4: Sectioning methodologies (a) Serial sectioning microscopy. The brain is
sliced with a microtome and images are acquired with a compound microscope equipped
with a CCD camera. Vessels are visible over a dark bakground. (b) MOST. Slicing is
performed by moving the specimen along the x axis to generate ribbons of about 450
mm in width and 1 µm in thickness. The ribbons are simultaneously cut and imaged
using a bright-field microscope. Images are collected by the objective and recorded by a
line-scan CCD. Contiguous images are stitched together using reference coordinates.

4.2.3 Optical microscopy in combination with clearing meth-

ods

Optical microscopy has been adopted to study the brain ex vivo in com-

bination with a variety of approaches. Examples of optical microscopy imaging

associated with vascular casting and serial sectioning have been shown above along

with other imaging techniques. The introduction of novel clearing methods repre-

sented a great innovation in this field. The use of clarified samples, indeed, avoids

the need of mechanical sectioning for ex vivo morphological analysis of a large

volume, even the entire mouse brain, with optical methodologies. The advantage

offered by ex vivo optical microscopy in terms of spatial resolution can be exploited

for imaging of large specimens.

A detailed reconstruction of the vascular network, encompassing the microvas-

culature, has been performed on portions of mouse brain cortex with TPFM [111].
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In this work a clearing agent was applied in order to enhance the depth achiev-

able within the tissue. The vasculature was labeled with a fluorescent gel injected

intracardially. Similarly to vascular casts, the gel undergoes a curing step to fill

the vascular lumen. The fluorescent gel adopted is optically transparent and does

not represent an obstacle along the light path. The image quality is good enough

to perform vessel tracing and dissect specific features of vascular topology of the

mouse brain cortex 4.5.

The main limitation of point scanning techniques, such as TFPM, lies in the

long acquisition time, since the sample is scanned point by point by the laser.

In LSFM, instead, the excitation light is shaped as a sheet in order to excite a

plane of the sample. It relies on wide field detection, using CCD or CMOS cam-

eras, to accurately separate photons coming from different points. Its limitation,

consisting in the need of transparent samples, has been finally overcome with the

introduction of clearing technologies able to make whole organs perfectly trans-

parent. With cleared specimens, the use of LSFM can yield complete datasets of

mouse brain vasculature [106, 107]. Past studies, however, anyhow, used clear-

ing agents based on organic solvents which lead to fluorescence quenching with

concomitant reduction of image quality. Moreover, the vascular staining adopted

relies on endothelial markers, which only label the blood vessel wall.
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Figure 4.5: Vascular network reconstruction with TPFM A Volumetric recon-
struction of vasculature and cell nuclei within a volume of 900x650x250 µm3 was obtain
from cortical tissue cleared with sucrose. The vasculature was stained using a gelatin
conteining BSA-FITC. Cell nuclei labeled using DAPI staining. Neuronal nuclei were
identify using antibodies anti-NeuN. From [111].



Chapter 5

Thesis purpose

The acquisition of full vascular datasets of whole mouse brain has been ac-

complished with both in vivo and ex vivo methodologies. The first suffer of poor

resolution and are not suitable for dissecting the topology of the microcircula-

tion. Ex vivo approaches such as LSFM in combination with clearing methods

and MOST have been instead successful in acquiring complete mouse brain vas-

cular datasets encompassing the capillary network. However, no software based

vascular network reconstruction in the whole brain has been performed. In order

to perform morphological analysis, the vascular network needs to be extracted by

means of specific software from the dataset of images. The first step consists of

successfully aligning the images in a 3D space to generate a unique file of the

whole brain. Appropriate software capable of dealing with enormous amount of

data has been developed for such a purpose [108]. However, the most demanding

part from a computational point of view is represented by image segmentation,

which means partitioning the data in an internal volume, represented by blood

vessels, and a separate external volume. Various factors like non-homogeneous

clearing, poor image contrast, and staining imperfections represent a serious prob-

lem in this step. The use of a labeling procedure based on fluorescent gel filling

the vessel lumen, instead of the staining of endothelial wall, could be of help in

this context. Subsequently, from the segmentated images, a continuous vascular

network can be traced and analyzed. This last step, has been accomplished so far

only in brain portions with TPFM [105] or MOST [102]. The establishment of an
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efficient methodology concerning sample preparation, optical microscopy, and data

management and analysis is therefore needed for an adequate morphological re-

construction of the vascular network in whole rodent brain. The high-throughput

offered by LSFM could be a valid tool when used in combination with an adequate

clearing procedure and staining protocol. This thesis presents a pipeline for opti-

mal imaging of whole mouse brain vasculature with LSFM. Potential applications

span from vascular characterization in healthy brain and pathological conditions,

to studies devoted to a better understanding of functional imaging methodologies,

used to retrieve informations about brain activity.
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Chapter 6

Brain vasculature analysis

The present work aims at establishing a methodology for the analysis of the vas-

cular component in the whole mouse brain. Various staining procedures for blood

vessel staining were tested. Along with it, different approaches for tissue clearing

and two optical microscopy techniques were used. In addition to wild type mice, a

transgenic line expressing a fluorescent marker inside neurons was used for simulta-

neous or consecutive vascular and neuronal imaging. A pathological mouse model

was also adopted in order to explore the potential of the staining methodology for

investigations on brain vascular diseases. The mouse models and the variety of

techniques for sample preparation, clearing, optical microscopy and image anal-

ysis necessary to accomplish the characterization of the procedure proposed are

described in detail in the below sections.

6.1 Animal models

6.1.1 Mouse lines

Adult mice from the C57 line were used for blood vessels tomographies. For

simultaneous and consecutive neuronal and blood vessels imaging, a transgenic

line (Thy1-GFP-M line) of mice expressing the Green Fluorescent Protein (GFP)

in sparse pyramidal neurons was used [109]. All experimental protocols involving

animals were designed in accordance with the laws of the Italian Ministry of Health.
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6.1.2 Surgical operations

Craniotomy was performed on an adult mouse in correspondence of the motor

cortex. The mice were deeply anesthetized by intraperitoneal injection of ketamine

(90 mg/kg) and xylazine (9 mg/kg). A small dose of dexamethasone (0.04 ml at 2

mg/ml) was administrated to minimize swelling at the site of surgery. A circular

portion of the skull (5 mm diameter) below the motor cortex was removed and

the exposed region was then covered with a coverglass and sealed with dental

cement. The experimental protocols were designed in accordance with the rules of

the Italian Minister of Health.

6.1.3 Photothrombotic model

The photothrombotic model was designed according to [110]. With this

technique an ischemic damage is induced within a given cortical area by means of

photo-activation of a previously injected light-sensitive dye. Following illumina-

tion, the dye is activated and produces singlet oxygen that damages components

of endothelial cell membranes, with subsequent platelet aggregation and thrombi

formation.

After anesthesia with ketamine (50 mg/kg) and xylazine (15 mg/kg), the ani-

mal was placed in a stereotaxic frame (Lab StandardTM Stereotaxic Insstrument,

Braintree Scientific INC) and the skull was exposed. The bregma was individu-

ated and marked as reference point using a marker pen. Afterwards, 0.2 ml of the

photosensitive dye Rose Bengal (10 mg/ml in PBS) was injected intraperitoneally.

After 5 minutes, during which the dye enter the blood stream, the zone corre-

sponding to the motor cortex was illuminated using cold light focused through

an objective lens (20× ECPLAN-NEOFLUAR, Zeiss, Germany). After 15 min of

illumination, the light exposure was stopped and the wound was sutured. Mouse

perfusion and labeling was performed one month after stroke induction.
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6.2 Blood vessel staining

6.2.1 Hydrogel-BSA-FITC staining

Seeking for a CLARITY compatible blood vessel lumen staining, a step was

added to the CLARITY perfusion protocol described in [80]. Briefly, after per-

fusion with 20 ml of 0.01M of phosphate buffer saline (PBS) solution (pH 7.6),

the mouse was perfused with 10 ml of Hydrogel solution, followed by 20 ml of

Hydrogel in which fluorescein (FITC)-conjugated albumin (no. A9771; Sigma) 1%

(w/v) was dissolved.

6.2.2 Gel-BSA staining

For blood vessel lumen staining the protocol described in Tsai et al., 2009

[111] was used. After deep anesthesia with isoflurane inhalation, the mice were

transcardially perfused first with 20-30 ml of 0.01M of phosphate buffered saline

(PBS) solution (pH 7.6) and then with 60 ml of 4% (w/v) paraformaldehyde (PFA)

in PBS. This was followed by perfusion with 10 ml of a fluorescent gel perfusate,

with the body of the mouse tilted by 30◦, head down, to ensure that the large

surface vessels remained filled with the gel perfusate. The body of the mouse was

submerged in ice water, with the heart clamped, to rapidly cool and solidify the

gel as the final portion of the gel perfusate was pushed through. The brain was

carefully extracted to avoid damage to pial vessels after 30 min of cooling and

incubated overnight in 4% PFA in PBS at 4◦C. The day after the brain was rinsed

3 times in PBS.

6.2.3 Lectin staining

For blood vessel wall staining the mouse was anesthetized with isoflurane

and manually perfused with 15 ml of ice cold PBS 0.01M . The mouse was tilted

by 30◦ head down and perfused with 10 ml of ice cold PBS containing 0.1mg/ml

lectin-FITC from Lycopersicon esculentum (Sigma-Aldrich, L0401). After 7 min

of incubation, during which lectins were allowed to firmly bind the vessel wall,

40 ml of 4% PFA in PBS was injected. The brain was extracted and incubated
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overnight in 4% PFA in PBS at 4◦C. After incubation the brain was rinsed 3 times

in PBS.

6.2.4 Gel compositions

Gel solutions were made of porcine skin gelatin type A (no. G1890; Sigma) in

which fluorescein (FITC)-conjugated albumin (no. A9771; Sigma) or Tetramethyl-

rhodamine (TRITC)-conjugate albumin (Thermo Fisher Scientific A23016) were

dissolved. A 2% (w/v) solution of gelatin is prepared in boiling PBS and allowed to

cool to <50◦C. It was then combined with 1%(w/v) albumin-FITC (BSA-FITC),

or 0.05% albumin-TRITC (BSA-TRITC). The solution was maintained at 40◦C

with stirring before perfusion.

6.2.5 In vivo staining

An adult mouse was anesthetized with an intraperitoneal injection of ketamine (50

mg/kg) and xilazine (9 mg/kg). After placing the mouse in a stereotaxic platform

for head fixation, 0.2 ml of a solution of Texas red-destran (140 µg/ml) in saline

solution was injected into the tail vein.

6.2.6 Differential stainings of arteries and veins

For differential staining using gel and antibody anti-veins endothelium, the

mouse was anesthetized by isoflurane inhalation and transcardially perfusion with

20 ml of ice cold PBS. 200 µg of anti-endomucin FITC conjugated (sc-65495 FITC

Santacruz Biotechnologies) in 10 ml of ice cold PBS were then injected with the

mouse tilted 30◦ head down. After 7 minutes, to allow stable antibody binding to

the endothelium surface, 40 ml of ice cold PFA 4% in PBS solution was injected.

Subsequently, the injected solution was switched to 10 ml of BSA-TRITC gelatin.

The body of the mouse was submerged in ice water, with the heart clamped, for

30 min. The brain was carefully extracted and incubated overnight in 4% PFA in

PBS at 4◦C. The day after the brain was rinsed 3 times in PBS.

For differential staining using BSA-FITC and BSA-TRITC gels, the mouse was

first anesthetized by isoflurane inhalation and transcardially perfused with 30 ml



CHAPTER 6. BRAIN VASCULATURE ANALYSIS 51

of PBS at room temperature. Subsequently, 50 ml of PFA 4% in PBS solution at

room temperature was injected. Afterwards, 10 ml of Gel-BSA-TRITC followed

by 0.2 ml of Gel-BSA-FITC were injected with the mouse tilted 30◦ head down.

The body of the mouse was submerged in ice water, with the heart clamped, for

30 min. The brain was carefully extracted and incubated overnight in 4% PFA in

PBS at 4◦C. The day after the brain was rinsed 3 times in PBS.

6.3 Evaluation of the staining methodology

6.3.1 Morphological changes assessment

After in vivo vasculature staining, imaging was performed with a custom-

made TPFM . Automatic acquisitions of adjacent regions were taken with 50

µm overlap between adjacent stacks, using a custom software written in LabView

(National Instruments, TX). After in vivo imaging, the mouse was perfused for

blood vessel staining with Gel-BSA-FITC. Using big vessels as reference, ex vivo

imaging of the same brain area was performed with TPFM.

Comparison of vessel size diameter between in vivo and ex vivo imaging was

performed with ImageJ software. Blood vessel length was measured by manual

tracing of selected vessels with the Filament Editor of Amira software.

6.4 Signal to background ratio measurements

Images of lectin-FITC and Gel-BSA-FITC samples cleared with TDE 47%

were acquired with TPFM. The signal to background ratio was calculated from

the images every 20 µm over a depth of 500 µm. The mean grey value of selected

ROIs in correspondence with vessels signal or sourrounding background was used

for the measurements. Six stacks for each sample were used.

6.5 Segmentation assessment with TPFM

From the images acquired with TPFM, manual segmentations of Lectin-

FITC and Gel-BSA-FITC stained samples were performed. These were compared
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with automatic segmentation by superimposition of MIPs corresponding to the

same regions. A colocalization tool of ImageJ (JACoP plugin) was applied to re-

trieve the overlap coefficient as percentage value, indicated in the graph as ”true

positive”, and the percentage of non overlapping regions of the automatically seg-

mented stack (false positive) and the percentage of non overlapping regions of the

manually segmentated stack (false negative).

6.6 Imaging modalities

6.6.1 Two-photon microscopy imaging

A custom-made two-photon fluorescence microscope (TPFM) was consti-

tuted by a mode locked Ti:Sapphire laser (Chameleon, 120 fs pulse width, 80

MHz repetition rate, Coherent, CA) coupled into a custom-made scanning system

based on a pair of galvanometric mirrors (VM500+, Cambridge Technologies, MA).

The laser was focused into the specimen by a water immersion 20× objective lens

(XLUM 20, NA 0.95, WD 2mm, Olympus, Japan) for uncleared speciments and in

vivo mesurements. A tunable 25× objective lens (LD LCI Plan-Apochromat, NA

0.8, WD 0.55mm, Imm Corr DIC M27, Zeiss, Germany) was used for correlative

experiment. A tunable 25× objective lens (Glyc MP FN18, NA 1.00, Olympus,

Japan) was instead used for stroke analysis. For Gel-BSA-FITC and lectin-FITC

stained samples cleared with 47%TDE/PBS (RI 1.42), a tunable 20× objective

lens (Scale LD SC Plan-Apochromat, NA 1, WD 5.6mm, Zeiss, Germany) was

used.

The system was equipped with a motorized xy stage (MPC-200, Sutter In-

strumente, CA) for lateral displacement of the sample and with a closed-loop

piezoelectric stage (ND72Z2LAQ PIFOC objective scanning system, 2mm travel

range, Physik Instrumente, Germany) for the displacement of the objective along

the z axis. The fluorescent light is separated from the laser optical path by a

dichroic beam splitter (DM1) positioned as close as possible to the objective lens

(non-de-scanning mode). A two-photon fluorescence cut-off filter (720 SP) elim-

inates reflected laser light. A second dichroic mirror (DM2) is used to split the

two spectral components of the fluorescence signal. The fluorescence signals are
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filtered with 630/69 and 510/42 filters (FF1 and FF2) and collected by two or-

thogonal photomultiplier modules (H7422P, Hamamatsu Photonics, Japan). The

instrument was controlled by custom software, written in LabView (National In-

struments, TX).

6.6.2 Light-sheet microscopy imaging

Whole brains were imaged using a custom-made light-sheet microscope de-

scribed in [112]. The light sheet is generated using a laser beam scanned by a gal-

vanometric mirror (6220H, Cambridge Technology, MA); confocality was achieved

by synchronizing the galvo scanner with the line read-out of the sCMOS camera

(Orca Flash4.0, Hamamatsu Photonics, Japan). The laser light was provided by

a diode laser (Excelsior 488, Spectra Physics) and an acoustooptic tunable filter

(AOTFnC- 400.650-TN, AA Opto-Electronic, France) was used to regulate laser

power. Excitation was λ= 561nm for TRITC and λ=491nm for GFP and fluo-

rescein. The excitation objective was 10X, 0.3 NA Plan Fluor from Nikon, while

the detection was 10X, 0.6 NA Plan Apochromat from Olympus. This latter has

a correction collar for the refractive index of the immersion solution, ranging from

1.33 to 1.52.

The samples were place in a quartz cuvette containing the mounting medium

63% TDE/PBS and placed in a custom made chamber filled with the mounting

medium. The samples were mounted on a motorized x-, y-, z-, θ-stage (M-122.2DD

and M-116.DG, Physik Instrumente, Germany) which allowed free 3D motion and

rotation. The microscope was controlled via custom written LabVIEW code (Na-

tional Instruments) which coordinated the galvo scanners, the rolling shutter and

the stack acquisition.

Although in principle with LSFM it is possible to generate a light sheet wide

enough to illuminate an entire mouse brain section, some constraints limit the

width of the light sheet. The wider is the laser width, the lower is the laser power

at any point of the illuminated volume. This eventually results in a less efficient

fluorescence excitation. A second limiting factor is the width of the digital camera

used for acquisitions. To keep an high image resolution, larger imaged areas must

be focus on larger cameras with the same pixel density. This lead to a remarkable
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price increase of the apparatus. The setup used for this thesis is provided with

a sCMOS camera of 1.3 mm2. In order to reconstruct the entire volume, regions

of superimposition were present among the acquired stacks. Ultimately, a specific

software was used for volumetric reconstruction (see 6.8.1).

6.7 Samples clearing procedures

6.7.1 TDE clearing

For two-photon imaging, fixed brain slices labeled with gel BSA-FITC or

Lectin-FITC were cleared with serial incubations in 20 ml of 20% and 47% (vol/vol)

2,2’-thiodiethanol in 0.01M PBS (TDE/PBS), each for 1 hour at 37◦C in gentle

oscillation.

Dissected mouse brain cortex were cleared with two serial incubation in TDE

30% for 1h at room temperature (RT) and TDE 63% for 3h (RT) while rotating.

After clearing they were ready for imaging.

6.7.2 CLARITY-TDE clearing of whole mouse brain

Fixed mouse brains were incubated in Hydrogel solution (4% (wt/vol) PFA,

4% (wt/vol) acrylamide, 0.25% (wt/vol) VA044) in 0.01M PBS at 4◦C for 1 week

following the protocol described in [80] for fixed tissues. Samples were degassed and

incubated at 37◦C for 3 hours to allow hydrogel polymerization. Subsequently, the

brains were extracted from the polymerized gel and incubated in clearing solution

(sodium borate buffer 200 mM, 4% (wt/vol) Sodium dodecyl sulfate) (pH 8.5) at

37◦C for one month while gently shaking. The samples were then washed with

PBST (0.1% TritonX in 1X PBS) twice for 24 hours each at room temperature.

Mouse brain samples treated with CLARITY were optically cleared with serial

incubations in 50 ml of 30% and 63% (vol/vol) 2,2’-thiodiethanol in 0.01M PBS

(TDE/PBS), each for 1 day at 37◦C while gently shaking before imaging with

light-sheet microscope as described in [9].
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6.8 Image processing and data analysis

6.8.1 Image stitching and 3D rendering

LSFM produced a series of 3D stacks with regions of superimpositions. To

achieve a 3D image of whole specimens from raw data the Terastitcher tool[108],

a sofware capable of dealing with teravovel-sized images, was used.

Graphs and data analysis were done with OriginPro 9.0 (OriginLab Corpora-

tion). Image stacks were analyzed using both Fiji (http://fiji.sc/Fiji) and Amira

5.3 (Visage Imaging) software. 3D renderings of stitched images were produced

from downsampled files using the Amira Voltex function. The Filament Editor of

Amira was used to manually trace vessels segments.

6.8.2 Image segmentation

For segmentation of two-photon images, a segmentation algorithm based on

Markov random field described in [113] was used. The segmentation of a transverse

section from the stitched data of the whole brain dataset, acquired with LSFM,

was obtain by simple thresholding with imageJ.

6.9 Brain cortex vasculature analysis with TPFM

6.9.1 blood vessels orientation and density analysis

Mice were perfused with the protocol described for vessel staining (see 6.2.2).

The cortex was subsequently dissected from the fixed brain under a stereomicro-

scope. The dissected cortex were cleared with TDE 63% and flattened with a

quartz coverslip. Region of 1x2 mm caudally from the stroke and 700 µm depth

were imaged with a z-step of 3µm. For each sample MIPs of 160 µm were taken,

under the surface in order to avoid big vessels. Four MIPs of proximal regions

(within 500 µm from stroke), and four MIPs of distal regions (between 1 and 1.5

mm from stroke) for each mouse were used for analysis of vessels orientation. The

imagej plugin orientationj was used for orientation profile measurements.
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For vessels density analysis the stacks were first binarized using an automatic

thresholding with ImageJ. The sum of the pixel count from the histogram was used

as measure of blood vessel density, starting 100 µm under the surface in order to

avoid large superficial vessels.
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Chapter 7

Validation of vessel staining

methods

Vascular staining relying on lectin binding to sugar complexes on endothelial

walls has been applied in combination with clearing methods based on organic

solvents [106] or tissue transformation [115]. The high transparency achieved with

these clearing methods allows whole mouse brain imaging without mechanical

sectioning. However, the lack of staining in the vessel lumen makes the develop-

ment of software-based methodologies for vascular network reconstruction ardu-

ous. Among the clearing methods proposed in literature, tissue transformation,

i.e. CLARITY, offers an improved fluorescent preservation with respect to or-

ganic solvents, and was chosen in this thesis as preferential clearing procedure for

whole mouse brain imaging. In search for a vascular staining able to fill blood ves-

sels, and compatible with CLARITY, two different approaches have been tested.

The one resulting in optimal outcome has been compared with lectin staining for

automated image segmentation.

7.1 CLARITY compatible blood vessels lumen

staining

In CLARITY, tissue transparency is obtained by selective removal of lipids.

Proteins are instead retained thanks to functional groups binding acrylamide and
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PFA monomers. Hence, a protein-conjugated fluorophore was used for labeling,

specifically, albumin-FITC conjugate (BSA-FITC). The high molecular weight of

albumin ensures that the marker is retained inside blood vessels, indeed serum

proteins such as BSA cannot cross the blood vessels wall.

In CLARITY, a solution of hydrogel is used during mouse perfusion in place of

PFA. For vessel labeling, a perfusion step was added to the CLARITY perfusion

protocol, in which a solution of hygrogel containing BSA-FITC was injected. It was

then determined whether cross-links between hydrogel monomers and BSA-FITC

allowed the marker to completely fill the blood vessels lumen. Unfortunately, the

staining did not result homogeneous. In particular big holes were present in large

blood vessels (fig. 7.1a) and void spaces could also be detected in capillaries (fig.

7.1b). Lots of trials were done in the pursuit to solve the problem: changes in

the concentration of hydrogel components, tilting of the mouse during perfusion,

degassing of solutions before perfusion, variations on time and temperature of the

polymerization step, changes on the time of degassing step and the use of high

power vacuum pump. In any case none of the protocol changes improved the

labeling.

A protocol described in Tsai et al. [111], which uses a fluorescent solution com-

posed of BSA-FITC dissolved in porcine skin gelatin, has shown to be effective for

blood vessel lumen staining. Both the fluorescent marker and the gel are made

of proteins, so they are in principle able to be retained in the hydrogel matrix

during the aggressive washing out of the lipid component. However, the intrac-

ardiac injection of this gelatin is incompatible with hydrogel perfusion because of

the different temperatures of polimerization of hydrogel and gelatin.

Even so, a passive diffusion of acrylamide monomers and PFA throughout the

tissue can be achieved by simple incubation of fixed samples in hydrogel solution

for some days. The staining procedure of Tsai et al. (hereafter Gel-BSA-FITC)

was then used in combination with CLARITY protocol for fixed samples. In

this case the marker appeared homogeneously distributed both inside pial vessels

(fig. 7.1c) and capillary network (fig. 7.1d). It is supposed that the protein

component of the gel is retained inside blood vessels, promoting the creation of an

homogeneous network inside vessel lumen upon polymerization. The capability of

hydrogel monomers to cross the vessels wall, instead, would not allow a dense and
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even distribution inside blood vessels, creating void spaces.

Transgenic lines expressing a fluorescent marker inside neurons are extensively

used in research. A vascular detection based on fluorescence, enables related stud-

ies of fluorescently labeled neurons and vascular component. In order to avoid flu-

orescence overlap, the fluorescence emission spectra associated with blood vessels

can be changed using a different BSA conjugated fluorophore. To simultaneously

visualize vessels and neurons in Thy-1 GFP-M mouse, BSA-FITC was replaced

with BSA-tetramethylrhodamine (BSA-TRITC) (Fig. 7.2).

7.2 Gel staining vs lectin staining

The advantage of Gel-BSA-FITC staining over lectin-FITC consists of the

capability to fill the lumen of blood vessels (fig. 7.3). As a first consequence, a

greater fluorescent signal is detected, as evaluated in terms of signal to background

ratio over depth (fig. 7.3e). Averaging the signal detected at any depth, it results

in ten fold increase in signal/background using the gel (fig. 7.3f). The 3D repre-

sentation shown in fig. 7.4 gives an idea about differences of the signal detected

along depth.

The better signal to background ratio offers an easier demarcation of blood ves-

sels, which is relevant for partitioning the image in an internal volume, consisting

of blood vessels, and an external volume. This process is called image segmenta-

tion and represent a crucial step for subsequent morphological analysis. Because

of the amount of data, image segmentation must be automatized with specific

softwares. The presence of fluorescence only in the vessels wall using lectins is

not a trivial detail, since the volume inside blood vessels, detected as void space,

must be discerned from the external void by the segmentation algorithm. Such a

computational step is instead completely avoided with the use of gels filling the

vessels lumen. The results of automatic segmentation for Lectin-FITC and and

Gel-BSA-FITC staining are shown in fig. 7.5. Because of the low signal with

Lectin-FITC staining, no blood vessels are detected after few hundred microns.

To evaluate the accuracy of automatic segmentation, it has been superimposed

with a manual segmentation of the same maximum intensity projections (MIPs)

and the percentages of shared pixels (true positive) as well as the percentage of
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Figure 7.1: Vessel staining (a, b) The direct injection of the marker concurrently with
hydrogel perfusion did not result in optimal vessel staining, neither for large pial vessels
(a) or capillaries (b). Vessel staining using gelatin mixed with BSA-FITC demonstrated
instead to be effective for homogeneous marker distribution (c, d). Images acquired with
TPFM. Scale bar=500 µm.
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(a) Neurons (GFP)

(b) Vessels (TRITC)

(c) Merge

Figure 7.2: Simultaneous neuron and vessel imaging GFP expressing neurons and
blood vessels can be simultaneously visualized replacing BSA-FITC conjugate with gel
BSA-TRITC conjugate in the gel composition. Images were acuired with TPFM and
stack were stitched in 3D dimensions using the Terastiching software [108]. 3D rendering
with Amira software. Images dimension 1x1x0.7 mm.
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Figure 7.3: Comparison between Lectin-FITC and Gel-BSA-FITC staining
Fluorescence is absent inside blood vessel lumen in Lectin stained samples (a,b). Gel-
BSA-FITC staining completely fills the lumen inside blood vessels (c,d). Red Insets on
vessels arranged perpendicularly to the plane of imaging. Scale bars=50 µm. Images
acquired with TPFM. (e,f) Graphs showing signal over background ratio along depth
(e) and on average (f). n=6.
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Figure 7.4: Comparinson between 3D rendered images Images showing differences
in the signal detected along depth between Lectin-FITC and Gel-BSA-FITC stained
samples. The rapid decrease of the signal detected in the Lectin-FITC labeled sample
causes a substantial worsening in image quality after a few hundred microns. In Gel-BSA-
FITC stained sample, image quality was preserved along the depth of the stack. The
samples were cleared with TDE 47% before imaging to increased the depth achievable.
Images acquired with TPFM and 3D rendered with Amira. Image dimension 0.3x0.3x1
mm.
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Figure 7.5: Image segmentation A comparison between segmented lectin-FITC and
Gel-BSA-FITC stacks is shown. The better image contrast of gel staining allowed for
a proper segmentation in deep regions. 3D renderings of the segmented stacks were
obtained with Amira software. Image dimension 0.3x0.3x1 mm.
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pixels detected only by automatic segmentation (false positive) or only by man-

ual segmentation (false negative) have been quantified over a depth of 240 µm,

after which the poor image contrast of Lectin-FITC staining did not allow for a

clear blood vessel distinction (fig. 7.6). While with Gel-BSA-FITC staining the

overlap coefficient remained stable over depth to a value higher than 90%, with

Lectin-FITC was observed a rapid drop from 0.84% to 0.44% at a depth of 200

µm. False positive are due to an oversegmentation of the algorithm with respect

to the manual segmentation. The false positive values remained stable over depth

for both methods, being however lower with Gel-BSA-FITC (ca. 0.1% against

0.16%). Becouse of the poor signal, the false negative increased considerably with

Lectin-FITC stain, from 0.16% within 100 µm in depth to 0.77% after 200 µm.

Using Gel-BSA-FITC staining a small increase from 0.05% to 0.08% was observed.

7.3 Evaluation of morphological changes with re-

spect to in vivo

Possible morphological alterations due to the staining procedure, could yield

misleading topological results, not consistent with the real morphology. To verify

the accuracy of the data produced, a comparison between in vivo and ex vivo imag-

ing has been carried out (fig 7.7). For in vivo TPFM, craniotomy was performed

in order to expose a region of the mouse brain.

After staining, changes in blood vessels diameter were visible. While some

vessels enlarged their diameter, others reduced their size. Red and yellow insets

in fig. 7.7b highlight respectively an enlarged and a shrunk vessel with respect

to in vivo imaging (fig. 7.7a). Plotting the vessel diameter size calculated from

in vivo and ex vivo images, the fitting curve shows a slope towards the ex vivo

axes, indicating a general increase in vessel diameter (fig. 7.7c). Nonetheless, the

majority of the capillary segments analyzed is above the fitting curve, suggesting

a different trend for small vessels. The differences in vessel diameter between ex

vivo and in vivo could be ascribed to altered flow rates during perfusion along

with the effects of fixative solutions. However it has to be taken in consideration

that in living animals cerebral blood regulation implicates differential perfusion of
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Figure 7.6: Evaluation of automatic segmentation (a, b) MIPs from original stacks
of Lectin stained (a) and Gel-BSA-FITC stained (b) vasculature, 110 µm under the
surface. (c, d) Superimpositions of MIPs from automated and manually segmented
stacks. Regions of superimposition are represented in yellow. Green and red color
correspond to manual and automatic segmentation respectively. Scale bar=50 µm. (e,
f) Overlap coefficient (yellow bars), and the false positive (red) and false negative (green)
percentage at different depths.
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brain areas based on cerebral activity. This mechanism, known as neurovascular

coupling, determines changes in blood flow and vessels intraluminar diameter in

vivo [12].

A map of the vascular network, can however be traced independently from

vessel diameter. To evaluate the possibility to perform accurate vascular tracing,

the length of vessel segments, measured in 3D modality, was compared (fig. 7.7d).

In this case, the slope of the fitting curve was close to 1, revealing an overall main-

taining of vessel length. Moreover, a great correlation value was found (R=0.999),

indicating a good preservation at the level of single vessels, and not only a main

trend. From these measurements it can be inferred that a map of the vascular

network can be reliably extracted.

7.4 Distinction between arteries and veins

From both a structural and a functional point of view, blood vessels can be

distinguished in arteries and veins, interconnected by a bed of capillaries. With the

pursuit to obtain a differential staining of the two sets, two different approaches

were tried. The first one is based on the use of a fluorophore-conjugated antibody

(anti-endomucin-FITC) capable of binding to a specific component of the venular

endothelium (fig 7.8 left). Venous endothelium labeling with anti-endomucin-FITC

was added to the lumen staining protocol with Gel-BSA-TRITC. As a consequence,

only the venular endothelium was labeled with the antibody (green fluorescence),

while the lumen of both arteries and veins was instead labeled with Gel-BSA-

TRITC (red fluorescence).

The second approach is based on the use of two gels containing two different

fluorophores, which are BSA-FITC and BSA-TRITC. The procedure consists in a

first intracardial perfusion with Gel-BSA-TRITC, after which the whole vascula-

ture is uniformly labeled. In a second step, a minimal quantity of Gel-BSA-FITC

(0.2 ml) is used for perfusion. While the Gel-BSA-TRITC is forced out from ar-

teries towards veins, the quantity of Gel-BSA-FITC injected is not enough to exit

veins. The consequence of this is a differential staining of arterial and venous

vascular lumen.

While the first approach relies on a specific vein staining, the second one is
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Figure 7.7: Evaluation of morphological changes (a,b) Comparison between in vivo
and ex vivo vascular staining. For a visual comparison, stacks were rotated using Amira
software to obtain the same orientation. Red and yellow insets showing respectively
enlarged and shrunk vessels upon ex vivo staining. (c) Comparison of vessel dimension
between in vivo and ex vivo. While part of the vessels retain the same size, others
show a major or minor size with respect to in vivo imaging. The slope of the fitting
curve indicates an overall increase in vessel diameter ex vivo, however, capillaries seem
to follow and opposite trend. n=50. (d) Comparison of vessel length. The slope value of
the fitting curve, along with the high correlation coefficient, indicates a high preservation
of vessels length, both for short and long segments. n=10.
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Figure 7.8: Differential staining of arteries and veins (left) Anti-endomucin-FITC
conjugate (green) is injected before Gel-BSA-TRITC (red) injection. It results in red
staining of whole vessels lumen and green staining of veins endothelium. (right) After
Gel-BSA-TRITC (red) staining, a small quantity of Gel-BSA-FITC (green) solution is
injected. Veins appear red, while arteries, which lie upstream with respect to veins, are
filled with Gel-BSA-FITC and appear green. However, the accuracy of this unspecific
staining has to be carefully evaluated.

aspecific and differences in the length of the arterial path between mice and/or in

different parts of the same brain can produce wrong data. A careful evaluation of

both methods has to be performed to verify their reliability.



Chapter 8

Blood vessel analysis with TPFM

Before moving forward to whole brain imaging, the potential of the staining

method used was tested for the evaluation of vascular remodeling using TPFM.

Contrary to whole brain imaging with LSFM, TPFM does not require tissue clear-

ing. However, in fixed non cleared specimens, imaging is limited to roughly 200

µm in depth. To further expand the depth achievable, a fast clearing procedure

described in Costantini et al. [9], consisting in serial incubations of TDE/PBS

solutions, was adopted. Although this clearing procedure is not suitable for whole

brain, tissue clearing of brain slices is performed in a few hours without the need

of specialized devices, which represents an advantage over tissue transformation.

The staining procedure described in the previous chapter, in combination with

TDE clearing, proved to be a fast and valid methodology for analysis of brain

vasculature in confined regions of interest with TPFM.

8.1 Vascular remodelling in a mouse model of

stroke

Morphological changes to brain vasculature were evaluated in a photothrom-

botic model of stroke. This model involves the systemic administration of a light-

sensitive dye that can be rapidly and reliably photoactivated, leading to localized

damage in a specific area of the brain cortex in a relatively noninvasive manner.

One month after the photothrombotic damage, vascular remodeling was evaluated.
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Figure 8.1: Vessel orientation after stroke (left) 3D rendering of damaged (upper
image) and intact (lower image) cortical region. Two-photon images were stitched with
TeraStitcher software and 3D rendered with Amira software. (Right) MIP of 160 µm
showing vessels orientation by color code. Red color in the upper image indicates a
preferential orientation towards the ischemic region.

As a control group, mice not subjected to cortical damage were used. Imaging of

the caudal region adjacent to the stroke was preformed with TPFM on dissected

cortex cleared with TDE 63% in PBS. From the images acquired, blood vessels

orientation was first investigated using the imageJ plugin orientationJ (fig 8.1).

In the control group, the analysis of vessel orientation showed an even dis-

tribution in all directions (fig. 8.2a). One month after stroke, there is a strong

orientation towards the lesion within 500 µm from the core of the damage (fig

8.2b,). A less strong orientation towards the damaged core was observed also in

distal areas located 1 to 1.5 mm away from the ischemic region (fig. 8.2c).

Investigations on changes in blood vessels density were carried out in
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Figure 8.2: Blood vessels analysis (a - c) MIPs flanked by polar plots showing the
orientation of the vasculature. The color code of the MIPs indicate different orientations.
Red color in b and c depict vessels orientated towards the lesion. (a) Control group. (b,
c) Stroke group. (d) The pixel counts of binarized image stacks were used as a measure of
vessel density. No statistically differences in vessel density were found in the periinfartic
region in animals affected by stroke with respect to the control group. n=12, s.d.
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addition to vessels orientation. In order to perform these analysis, threshold based

binarization was applied on image stacks, and the pixel count was taken as a value

of vessels density. The values found did not show a significant difference with

respect to the control group neither in the proximal nor in the distal region. (fig.

8.2d).



Chapter 9

Whole mouse brain tomography

with LSFM

The analysis of the vascular staining encouraged the application of this

method for imaging of whole cleared mouse brains. Thus, as a subsequent step,

whole mouse brain tomographies with LSFM were performed, using wild type or

Thy1-GFP-M mice for both neuronal and vascular imaging. In order to analyze

whole brain data, image segmentation represents a key step to follow. Image

quality is an important factor affecting the results of this step. Sophisticated algo-

rithms able to identify and fix segmentation artifacts [117] are in development. In

addition, machine learning strategies have been used for automatic identification of

brain structures [114], and could be of help to overcome staining inhomogeneities.

Such computational methods, however, require hard image processing, making the

segmentation of the whole brain dataset a demanding process. Thanks to the high

image contrast provided by the methodology used for vessel staining coupled with

tissue clearing, a simple segmentation method based on thresholding was applied

as a proof of the high image quality yielded by the proposed pipeline.
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9.1 Aquisition of whole brain vasculature datasets

with LSFM and image segmentation

With LSFM, the acquisition of a complete dataset of whole mouse brain

with microscopic resolution is accomplished in a few hours. The imaging process

generates a series of contiguous stacks containing overlapping regions with the

neighbours in 3D space. Overlapping regions are needed to stitch the images in

three dimensions in order to generate a single file of the whole brain (fig. 9.1),

using specialized software capable of dealing with teravoxel-size images [108].

The segmentation of whole mouse brain vasculature is a computationally

demanding process. Time and computer performance needed depend, however, on

the algorithm used, and the quality of images is a decisive factor for the choice of

the segmentation algorithm. A high image quality permits the application of sim-

ple segmentation methods, which, for instance, do not need to distinguish different

levels of signal/background throughout the whole sample. Sample inhomogeneities

would require instead sophisticated algorithms able to correctly adequate the pa-

rameters used. Thanks to the elevated image quality and signal to background

ratio, a simple thresholding was applied for separating blood vessels from the sur-

rounding space. The result of the thresholding based segmentation method was

compared with the original image (fig. 9.2).

9.2 Whole mouse brain vascular and neuronal

imaging

Since the imaging modality does not damage or destroy the sample, the

methodology offer the possibility to perform consecutive imaging sessions of the

same brain for acquisition of datasets of different fluorescently labeled structures,

such as vessels and neurons. Whole brain neuronal and vascular tomographies of

the same sample were carried out using a Thy1-GFP-M mouse line, in which a

subset of neurons express GFP (fig. 9.3). BSA-TRITC was used for gel preparation

in order to avoid overlap on the fluorescent emission spectra of the GFP-expressing

neurons and vascular marker.
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Figure 9.1: Brain vasculature tomography (a) 3D rendering showing the whole brain
vasculature obtained after stitching. Consecutive stacks acquired with LSFM are aligned
and stitched together using the TeraStitcher software. (b) close view of a ROI from a
transverse section of the stitched brain. Renderings with Amira software.



CHAPTER 9. WHOLE MOUSE BRAIN TOMOGRAPHY WITH LSFM 79

Figure 9.2: Segmentation of the stitched brain with simple thresholding (upper)
MIPs of transverse sections from the whole stitched brain showing a comparison between
original (left) and segmented (right) images. (lower) Close views of a region from the
upper images. Thresholding based image segmentation performed with ImageJ.
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Figure 9.3: Consecutive whole brain neuron and vessel imaging Whole brain
datasets of GFP-expressing neurons (left) and blood vessels (right) were acquired dur-
ing consecutive imaging sessions. Both row data were stitched using the TeraStitcher
software. MIPs of whole brain optical sections are shown.
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Conclusions
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Chapter 10

Discussion

In the present work, a methodology for whole mouse brain vasculature analy-

sis was presented. The brain vasculature accounts for different sets of vessels, which

diameter vary from hundreds of µm for the large cerebral arteries and veins to few

microns for the vessels forming the capillary network. Large superficial vessels can

be easily detected with a variety of techniques. A fine morphological analysis of

the brain vasculature, however, requires a clear visualization of the finest capil-

laries. The resolution needed for visualizing the capillary network is achievable

with optical microscopy. Nevertheless, some constrains limit the applications of

optical microscopy for imaging of intact tissues. The main issue is represented

by light scattering, which hinders light penetration inside samples. Efforts have

been done in the last years in the pursuit to find treatments capable of render-

ing biological specimens optically transparent, although first clearing approaches

date back to one century ago [73]. In parallel we have witnessed the rebirth of

another one-hundred old technique, the LSFM. The peculiarity of LSFM allows

for whole mouse brain imaging in just a few hours, while keeping a sub-cellular

resolution. LSFM, however, is compatible only with transparent samples. Hence,

the first step consist on establishing an efficient clearing methodology. Among the

clearing approaches proposed in literature, CLARITY [80] seems to be the best

choice in term of transparency achievable and fluorescence preservation. However,

the very expensive mounting medium FocusClearTM, presented in the CLARITY

protocol, limits its use for routinely application and represents a constrain for a
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proper characterization of brain vasculature both in physiological and in patholog-

ical conditions. This problem has been addressed by replacing FocusClearTM with

a TDE/PBS solution [9]. CLARITY-TDE was then chosen as preferred clearing

procedure for whole brain imaging in this work.

The second issue concerns vascular staining. Previous works showing whole

brain vasculature imaging with LSFM used fluorophore-labeled lectins, which are

molecules able to bind sugars present on the endothelium. As a result, only the

endothelial walls of blood vessels is labeled, leaving the internal lumen devoid of

fluorescence. A staining capable of filling the blood vessels lumen and compati-

ble with CLARITY was therefore established. Comparative analysis showed the

advantages of the use of a fluorescent gel over the use of lectin-fluorophore con-

jugate. First of all, a greater signal is detected, which results in an higher signal

to background ratio and consequently an improved image quality over depth. The

higher signal permits an easier discrimination of blood vessels from the surround-

ing space by automatic algorithms for image segmentation. Comparison among

MIPs at different depths of segmented images showed an important loss of blood

vessels upon automatic segmentation of the Lectin-stained sample with respect to

a manual segmentation. The staining of vessel lumen with gelatin permits instead

a considerable improving. Superimpositions between automatically and manually

segmented stacks, the last assumed as ground truths, showed a greater overlap

coefficient for Gel-BSA-FITC stained samples, especially in deep regions. An ac-

curate automatic segmentation is a key step for a topological reconstruction of

the vasculature in the whole brain. The large amount of data derived from whole

organ imaging can indeed only be processed with automatic tools.

Alterations to the vascular network can lead to spurious results. To verify pos-

sible morphological changes due to the staining procedure, a comparison between

in vivo and ex vivo imaging of the same region was carried out. As a result of this

investigation, the overall topology appeared well maintained, although changes on

blood vessels diameter were detected. However, it is worthy to keep in mind that

in physiological conditions the blood vessels size undergo constant changes de-

pending on brain region activity, a process known as neurovascular coupling [12].

On the contrary, the creation of a map representing the vascular network can be

addressed in a reliable fashion with this methodology, since the length of vessel
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segments resulted preserved after staining.

The vascular network is composed of a set of arteries and a set on veins con-

nected by capillaries. In the presented work, two different approaches were sug-

gested for a clear distinction of the arterial and venular component. The estab-

lishment of a reliable differential staining for arteries and veins would permit an

easier comprehension of the arterial and venular routes inside the brain.

TPFM imaging showed a possible application on a pathological model of vas-

cular impairment. When the region of interest is confined to a small volume, a

simple and fast clearing procedure can be applied, however whole brain analysis

are feasible only on completely transparent samples with LSFM. The combination

of Gel-BSA-FITC staining with CLARITY-TDE method for tissue clearing offer

an improved image quality for LSFM investigation with respect to previous ap-

proaches using fluorescent lectins, facilitating the application of automatic tools

for whole brain analysis.

LSFM allow non destructive investigation of whole organ. Samples are kept

intact and are available for possible future examinations. Furthermore, different

structures can be analyzed in the same sample without the need of an imaging ap-

paratus capable of simultaneous distinction of separated fluorescent signals. This

feature give for instance the possibility to consecutively investigate the vascular

component and the neuronal circuitry using transgenic mouse lines expressing flu-

orescent proteins inside neurons. On the contrary, serial sectioning methodology

negates the possibility of future inspections of the same specimen after imaging.

The applicability of tools for image segmentation was also shown. This is a key

step for subsequent analysis and vascular network reconstruction in whole brain.

Detailed information of vascular network anatomy is required for understanding

several aspects of microcirculation, including regulation of blood flow, oxygen and

nutrients transport, and interpretation of hemodynamically based functional imag-

ing methods. Clarifying these aspect is important for a better interpretation of

diagnostic tools used for vascular inspection. Similarly, cerebral vascular diseases

phenotypes can be defined from a systematic analysis of multiple specimens of

pathological models. A robust characterization of morphological alterations found

in specific pathologies, as well as the determination of physiological variations,

require the analysis of a vast amount of samples. Thus, fast sample preparation
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and imaging modality are crucial for obtaining the volumes of data needed in a

reasonable time. In the present work, LSFM is used as imaging technique, which

achieve complete mouse brain tomography in few hours. The clearing procedure

adopted here consist of a passive removal of lipids, which required one month for

a single sample, but with the possibility of preparing multiple samples in parallel,

since no specific device are needed. However, with recent advancements in the

clearing protocol and the implementation of a commercially available device for

electrophoretic tissue clearing, a complete transparency can be obtained in few

days.



Chapter 11

Future perspective

The acquisition of whole mouse brain datasets with micrometric resolution

is the first step for a complete comprehension of the vascular architecture. The

analysis of this data is not trivial and require a powerful computer technology.

A single brain vascular dataset acquired with LSFM accounts for Terabytes of

data. Robust algorithms capable of dealing with such amount of informations,

and dedicated computer platforms, are needed for retrieving morphological infor-

mations from the raw dataset. An accurate evaluation of the processed data is

necessary for avoiding generating wrong results. Future informatics developments

will help to obtain more reliable information through an automatic individuation

and interpretation of possible imperfections present in the raw dataset. Machine

learning approach are likely to be the best choice for accomplishing this task. Al-

gorithms able to recognize and fix staining inhomogeneities are in development

and represent an important resource for more accurate analysis [117].

Whole mouse brain vascular analysis of multiple samples will generate a database

from which will be possible extracting morphological information about physi-

ological variability. The collection of databases relating to cerebral pathologies

will instead allows for the identification of cerebral vascular diseases phenotypes,

enhancing our knowledge about brain vascular alterations associate to specific

pathologies. Vascular changes have, for instance, an essential role in the regenera-

tive process occurring after stroke. Furthermore, mechanisms involved in neuronal

and vascular wiring share deep similarities [118]. This suggests that beyond the
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role of providing oxygen and nutrient, molecular messages coming from blood ves-

sels may act as clues for neuronal rewiring. Topological studies of the vascular

network can then provide substantial informations about the mechanisms occur-

ring during the regeneration process after brain damages. Associations between

studies on functional recovery, with morphological analysis of the vasculature, will

also provide a better understanding of this processes.

In cancer, the creation of new vessels from the existing network (angiogenesis)

represent an important pathogenic event for cancer growth and metastatic process

[119]. Drugs inhibiting angiogenesis are used for cancer therapy and others are

in development. It is also known that the level of vascular perfusion can predict

response or outcome in patients treated with anti-angiogenic agents. Imaging

techniques permitting inspection of vascular morphology may provide further and

important predictive information on both experimental and approved therapies.

Also Alzheimer’s disease (AD), one of the most common cause of cognitive im-

pairments in elderly, include vascular alterations in its pathophysiological mecha-

nisms, and the role of vascular pathologies as a factor contributing to AD is a topic

of current interest [120]. Epidemiological studies have shown that AD and cere-

bral vascular diseases share common risk factors, suggesting additive or synergistic

effects of both pathologies on cognitive decline.

A detailed characterization of the brain vascular network will have a positive

impact also for a correct interpretation of functional imaging techniques, such as

BOLD-fMRI. This technique reveal changes on the oxygenation level in venous

blood as endogenous contrast for visualizing brain areas with increased cerebral

activity [121]. Larger veins, often have higher signal than smaller venules and

capillaries. This lead to inaccurate localization of the cerebral regions in which

changes in neural activity occur. High-resolution vascular imaging, capable of

detecting the finest vessels, provide investigators with a tool to examine the rela-

tionship between fMRI signal and vascular structures. In order to perform these

analysis, an accurate automatic method for vascular segmentation and vectoriza-

tion is needed. Furthermore, it is necessary that the data yield by the vectorization

process contain precise informations about the vessels diameter in addition to the

track of the vasculature network. Measurements of microvascular geometry and

oxygen distribution in vivo in rodents has been performed with TPFM in order to
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retrieve physiological informations in association with the BOLD signal [122]. A

greater comprehension of the areas associated with the signals detected will allow

more accurate spatial mapping of brain responses. In this context, techniques al-

lowing imaging of the vascular network with micrometric resolution in whole brain

modality, will give important help, along with functional studies, for a correct

interpretation of the data gained from BOLD-fMRI.
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