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ASYMPTOTIC BEHAVIOR OF NON LINEAR EIGENVALUE

PROBLEMS INVOLVING p-LAPLACIAN TYPE OPERATORS

THIERRY CHAMPION AND LUIGI DE PASCALE

Abstra
t. We study the asymptoti
 behavior of two nonlinear eigenvalue

problems whi
h involve p-Lapla
ian type operators. In the �rst problem we


onsider the limit as p → ∞ of the sequen
es of the k-th eigenvalues of the

p−Lapla
ian operators. The se
ond problem we study is the homogenization

of nonlinear eigenvalue problems for some p-Lapla
ian type operators with p

�xed. Our asymptoti
 analysis relies on a 
onvergen
e result for parti
ular


riti
al values of a 
lass of Rayleigh quotients, stated in a uni�ed framework,

and on the notion of Γ-
onvergen
e.

Keywords. Non-linear eigenvalues, p-Lapla
ian, ∞-eigenvalue problems,

homogenization, Γ-
onvergen
e.
MSC 2000. 35P30, 35J70, 35J20, 35B27, 49R50, 74Q99.

1. Introdu
tion

An eigenvalue of the p-Lapla
ian is a real number λ ∈ R su
h that the problem

{

−div(|Du|p−2Du) = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

has at least one non trivial solution in W
1,p
0 (Ω). Here solution is intended in the

distributional sense and Ω is assumed to be a regular, bounded, open subset of

R
N
. One easily proves that λ is an eigenvalue if and only if it is a 
riti
al value

of the Rayleigh quotient

‖∇v‖p

Lp

‖v‖p

Lp
. The k-th eigenvalue is obtained by the 
lassi
al

Ljusternik-S
hnirelman theory (see [13, 18, 19℄ for a detailed des
ription), and it is

de�ned as follows

λk
p := inf

{

sup
v∈G

‖∇v‖p
Lp

‖v‖p
Lp

: G ⊂ Lp, genus(G) ≥ k

}

where genus(G) is the Krasnoselskii genus of G (for a pre
ise statement and pre-

sentation we refer to se
tion �2).

In this paper, we study the asymptoti
 behavior of the sequen
e of the k-th

eigenvalues asso
iated with families of monotone operators of p−Lapla
ian type.

The study of this type of problem arises in di�erent settings for various appli
ations,

see for example [5℄, [9℄, [25℄ and the referen
es therein. A natural way to deal with

this asymptoti
 problem in the linear 
ase is the study of the 
onvergen
e of the

resolvent operator (see [16℄ 
h. 10, lemma XI 9.5, more referen
e on the linear 
ase


an be found in [5℄). The present work is motivated by the study of two asymptoti


behavior problems involving sequen
es of p−lapla
ian type operators for whi
h we

propose a uni�ed approa
h in the general setting of the 
onvergen
e of parti
ular


riti
al values of a 
lass of Rayleigh quotients.
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2 THIERRY CHAMPION AND LUIGI DE PASCALE

The �rst problem we 
onsider is the study of the asymptoti
 behavior as p →
∞ of the k-th non-linear eigenvalue of the p-Lapla
ian operator. This problem

was in parti
ular studied in [21℄ and [20℄, where the 
onvergen
e of the �rst two

eigenvalues was examined in details and partial results and 
onje
tures for higher

order eigenvalues were given. Our main 
ontribution to this problem is the proof

of the 
onvergen
e for the generalized sequen
e of the k-th eigenvalues (suitably

renormalized) for any positive integer k and a variational 
hara
terization of this

limit (see �4, Theorem 4.3).

The se
ond problem we 
onsider is the asymptoti
 behavior of k-th eigenvalues

asso
iated with a family (Aε)ε of p-Lapla
ian type operatorAε(v) = −div(aε(·,∇v(·)),
with �xed p. Assuming that Aε derives from a 
onvex and p-homogeneous integral

fun
tional Fε(v) =
∫

Ω
fε(x,∇v(x))dx, the k-th eigenvalue λk

ε of Aε is given by

λk
ε := inf

{

sup
v∈G

Fε(v)

‖v‖p
Lp

: G ⊂ Lp, genus(G) ≥ k

}

,

so that λk
ε is a parti
ular 
riti
al point of the Rayleigh quotient

Fε(v)
‖v‖Lp

(we also refer

to se
tion �2 for a more pre
ise presentation). The main 
ontribution we give to

the problem of this asymptoti
 study is a positive answer to a question raised in

[5℄. In this last work it was proved that the limit of any sequen
e of eigenvalues

is an eigenvalue of the limit problem and that the sequen
e of the �rst eigenvalues

(i.e. when k = 1) 
onverges to the �rst eigenvalue of the limit operator. It follows

from the present work that the sequen
e of the k-th eigenvalues 
onverges to the

k-th eigenvalue for any greater k (see �5, Theorem 5.1).

These two problems of asymptoti
 behavior have the same stru
ture

λn := inf

{

sup
v∈G

Fn(v)

‖v‖Lpn

: G ⊂ Lpn , genus(G) ≥ k

}

,

where the family (Fn)n 
onverges to some limit fun
tional. The te
hnique we use to

study these problems is based on the notion of Γ-
onvergen
e (see the next se
tion
for details). The Γ-
onvergen
e was introdu
ed in [14℄ to deal with 
onvergen
e of

minimizers of sequen
es of fun
tionals. Here we deal with some 
riti
al values of

sequen
es (Fn)n of fun
tionals whi
h Γ−
onverge. This is done by introdu
ing a

new sequen
e of fun
tionals whose arguments are 
ompa
t sets of the Lp
spa
es, and

by endowing with the Hausdor� metri
 the set of 
ompa
t subsets of the suitable

spa
e. This gives rise to a uni�ed treatment in a general framework of the two

problems mentioned above (see �3, Theorem 3.3).

A relative advantage in dealing with these problems using the Γ-
onvergen
e is
that we do not need to have a limit operator and that we know that the limit 
riti
al

value is of saddle type. Let us �nally underline that our method gives a general

s
heme to deal with Γ-
onvergen
e and 
riti
al points obtained via an index theory.

2. Definitions and preliminary results

2.1. Γ-
onvergen
e.
Let X be a metri
 spa
e, a sequen
e of fun
tionals Fn : X → R is said to Γ-
onverge
to F∞ at x if

F∞(x) = Γ − lim inf Fn(x) = Γ − lim sup Fn(x), (2.1)
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where

{

Γ − lim inf Fn(x) = inf
{

lim inf Fn(xn) : xn → x in X
}

,

Γ − lim sup Fn(x) = inf
{

lim sup Fn(xn) : xn → x in X
}

.
(2.2)

The Γ−
onvergen
e was introdu
ed in [14℄, for an introdu
tion to this theory we

refer to [15℄ and [4℄. The following is a variation of a 
lassi
al theorem whi
h reports

properties of Γ-
onvergen
e that we shall use in the following.

Theorem 2.1. Assume that the sequen
e (Fn)n∈N of fun
tionals is su
h that

Γ − lim inf
n→+∞

Fn ≥ F∞ on X,

where F∞ is lower-semi
ontinuous on X. Assume in addition that the sequen
e

(Fn)n is equi-
oer
ive on X, then

(1) lim inf
n→+∞

(

inf
x∈X

Fn(x)

)

≥ inf
x∈X

F∞(x),

(2) if lim
n→+∞

(

inf
x∈X

Fn(x)

)

= inf
x∈X

F∞(x), then one has F∞(x∞) = inf
x∈X

F∞(x)

for any 
luster point x∞ of a sequen
e (xn)n∈N su
h that

∀n ∈ N Fn(xn) ≤ inf
x∈X

Fn(x) + εn

with εn → 0 as n → ∞.

2.2. Krasnoselskii genus.

We re
all here some basi
 fa
ts about the Krasnoselskii genus whi
h will be used

in what follows. We refer to [26, 27℄ for a more 
omplete introdu
tion on the index

theories.

De�nition 2.2. Let E be a real Bana
h spa
e and let A ⊂ E be a nonempty 
losed

symmetri
 set (i.e. A = −A). The genus γ(A) of the set A is the integer de�ned

as

inf{m ∈ N : there exists a 
ontinuous and odd mapping ϕ : A → R
m \ {0}},

where the above in�mum is assumed to be +∞ if the set above is empty.

Remark 2.3. The following elementary properties hold:

(1) If 0 belongs to A then γ(A) = +∞,

(2) A1 ⊂ A2 implies γ(A1) ≤ γ(A2).

We will need the following 
ontinuity property of the genus (see Proposition 5.4

of [27℄ or Proposition 7.5 of [26℄ for a proof).

Proposition 2.4. Assume that A ⊂ E is 
ompa
t, then there is a symmetri


neighborhood N of A in E su
h that γ(N) = γ(A).

2.3. Hausdor� 
onvergen
e of 
ompa
t sets.

Let (X, d) be a metri
 spa
e, and denote by K the set of the 
ompa
t subsets of X .

The distan
e dH : K ×K → R+ is de�ned as

dH(G, F ) := sup
x∈G

d(x, F ) + sup
y∈F

d(y, G).

It is easy to 
he
k that (K, dH) is a metri
 spa
e and to 
he
k the following property

(a referen
e for this part is [1℄)
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Proposition 2.5. If X is 
ompa
t then (K, dH) is 
ompa
t.

As an appli
ation of Proposition 2.5 we obtain two examples whi
h will be useful

in the sequel of the paper.

Example 2.6. Let Ω be an open subset of R
N

with Lips
hitz boundary. By a

standard appli
ation of the Sobolev 
ompa
t embedding theorems we get:

• Let p ∈ [1,∞) and q ≥ 1 su
h that q ∈ [N,∞] or q∗ := Nq
N−q

> p , then the

set

{G ⊂ W
1,q
0 (Ω) | G is 
losed and bounded by C in W

1,q
0 (Ω)}

equipped with the Hausdor� distan
e indu
ed by the Lp
norm is 
ompa
t

for any 
onstant C > 0.
• Let q ∈ (N,∞] and C > 0, then the set

{G ⊂ W
1,q
0 (Ω) | G is 
losed and bounded by C in W

1,q
0 (Ω)}

equipped with the Hausdor� distan
e indu
ed by the sup norm of C0 is


ompa
t.

We will need the following 
hara
terization of the Hausdor� 
onvergen
e whi
h


an be obtained dire
tly from the de�nition:

Proposition 2.7. If (Kn)n is a sequen
e in K, then Kn → K with respe
t to dH
if and only if

(1) for ea
h sequen
e (xn)n su
h that xn ∈ Kn for all n, any a

umulation

point x ∈ X for (xn)n belongs to K,

(2) for ea
h point x ∈ K we 
an �nd a sequen
e xn with xn ∈ Kn 
onverging

to x.

The next lemma of elementary proof will be useful to study the behavior of the

genus with respe
t to the Hausdor� 
onvergen
e of 
ompa
t sets.

Lemma 2.8. Let (Kn)n is a sequen
e in K 
onverging to K with respe
t to dH.

Then any open set A ⊂ X whi
h 
ontains K also 
ontains Kn for n large enough.

2.4. Nonlinear eigenvalues of p-Lapla
ian type operators.

In this se
tion we introdu
e the basi
 de�nition for the eigenvalues of the p-Lapla
ian

and some generalization to p−Lapla
ian type operators.

From now on, Ω denotes a bounded 
onne
ted open subset of R
N
with Lips
hitz

boundary. In the following, p is a real number in ]1, +∞[ and we shall denote by

‖.‖p the usual norm of Lp(Ω) (or Lp(Ω; RN ) when dealing with the gradient of some

element of W
1,p
0 (Ω)).

An eigenvalue of the p−Lapla
ian operator −∆p is a real number λ for whi
h

the problem

{

−∆pu := −div(|∇u|p−2∇u) = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

has a non-zero solution in W
1,p
0 (Ω). This problem (and its generalizations to mono-

tone ellipti
 operators) has been widely studied in the literature and for more de-

tailed treatment we refer to [2, 8, 13, 18, 19, 20, 24℄. Mu
h is still unknown about

the eigenvalues of the p−Lapla
ian operator. However let us report some of the
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known results whi
h will be relevant for this paper. Every eigenvalue is a 
riti
al

value for the Rayleigh quotient

v 7→

∫

Ω
|∇v|pdx

∫

Ω |v|pdx

(

=
‖∇v‖p

p

‖v‖p
p

)

whi
h is a Gateaux di�erentiable fun
tional on W
1,p
0 (Ω) outside the origin. More-

over, a sequen
e (λk
p)k≥1 of eigenvalues 
an be obtained as follows (we refer to

[18℄ and [24℄ for details). Denote by Σk
p(Ω) the set of those subsets G of W

1,p
0 (Ω)

whi
h are symmetri
 (i.e. G = −G), 
ontained in the set {v : ‖v‖p = 1}, strongly


ompa
t in W
1,p
0 (Ω) and su
h that γ(G) ≥ k, and set

λk
p = inf

G∈Σp

k
(Ω)

sup
u∈G

‖∇u‖p
p.

Then ea
h λk
p de�ned as above is an eigenvalue of the p-Lapla
ian operator and

λk
p → +∞ as k → ∞. Moreover it is known that λ1

p is the smallest eigenvalue of

−∆p, that it is simple (see [7℄ for a short proof) and that the operator −∆p doesn't

have any eigenvalue between λ1
p and λ2

p.

As a 
onsequen
e of our results (see Corollary 3.6), we shall get that the above

de�nition of the k-th eigenvalue may be rewritten

λk
p = min

G∈Gp

k
(Ω)

sup
u∈G

‖∇u‖p
p. (2.3)

In the above formula Gk
p (Ω) is the set of those subsets G of W

1,p
0 (Ω) whi
h are

symmetri
, 
ontained in the set {v : ‖v‖p = 1}, 
losed and bounded in W
1,p
0 (Ω)

(and thus 
ompa
t in Lp(Ω)) and su
h that γ(G) ≥ k, where γ(G) is the genus of
G as a subset of Lp(Ω).

More generally, 
onsider a p-Lapla
ian type operator A : W
1,p
0 (Ω) → W−1,p(Ω)

of the form A(u) = −div(a(x,∇u(x))) where the fun
tion a : Ω×R
N → R

N
satis�es

(h1) a is a Carathéodory fun
tion i.e. a(x, ·) is a 
ontinuous fun
tion for a.e.

x ∈ Ω and a(·, ξ) is measurable for every ξ ∈ R
n
,

(h2) a(x, ·) is positively homogeneous of degree p − 1 for a.e. x,

(h3) a(x, ·) is odd for a.e. x

(h4) a is 
y
li
ally monotone, i.e.

m
∑

i=1

〈a(x, ξi), ξi+1 − ξi〉 ≤ 0

for a.e. x ∈ Ω, any m ≥ 2 and ξ1, . . . , ξm ∈ R
N

(with ξm+1 = ξ1)

(h5) there exists β > α > 0 su
h that the following growth 
onditions hold

α|ξ|p ≤ 〈a(x, ξ), ξ〉 and |a(x, ξ)| ≤ β|ξ|p−1

for all ξ ∈ R
N

and for a.e. x ∈ Ω.

Then an eigenvalue λ for A is a real number for whi
h the problem

{

−div(a(x,∇u(x))) = λ|u(x)|p−2u(x) for a.e. x in Ω,

u = 0 on ∂Ω

has a non-trivial distributional solution in W
1,p
0 (Ω). Under the hypothesis (h1-5),

there exists an integrand f : Ω × R
N → R+ satisfying the following assumptions

(we refer to Lemma 3.1 and Proposition 3.2 of [5℄):
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(a1) f is a Carathéodory fun
tion,

(a2) f(x, ·) is 
onvex, di�erentiable with gradient a(x, ·),
(a3) f(x, ·) is positively homogeneous of degree p,

(a4) f(x, ·) is even,
(a5) the following growth 
onditions holds

α|ξ|p ≤ f(x, ξ) ≤ β|ξ|p

for all ξ ∈ R
N

and for a.e. x ∈ Ω,

Then for any integer k ≥ 1 one 
an de�ne the k-th eigenvalue of A as being

λk := inf
G∈Gp

k
(Ω)

sup
u∈G

∫

Ω

f(x,∇u)dx. (2.4)

Then, part of the study of the homogenization pro
ess for the eigenvalue prob-

lems asso
iated to a family Aε := −div(aε(·, ·)) of monotone ellipti
 operator of

p−Lapla
ian type redu
es to the study of the limit of a family of problems like

(2.4).

3. A general 
onvergen
e result

In this se
tion we state and prove the main result of the paper. In the following,

(Fε)ε≥0 is a family of fun
tionals de�ned on L1(Ω) with values in [0, +∞] su
h that:

(A1) for any ε > 0, Fε is 
onvex and 1-homogeneous;

(A2) there exists β > α > 0 su
h that for any ε > 0 there exists pε ∈ [1, +∞]
for whi
h

{

α‖∇v‖pε
≤ Fε(v) ≤ β‖∇v‖pε

if v ∈ W
1,pε

0 (Ω),

Fε(v) = +∞ otherwise;

(A3) the family (pε)ε>0 
onverges to some p0 ∈ [1, +∞] and the family (Fε)ε>0

Γ-
onverges in Lp0(Ω) (or C0(Ω) if p0 = +∞) to some fun
tional F0.

Noti
e that the fun
tional F0 also satis�es (A1) and (A2).

Remark 3.1. In the 
ase pε = +∞, the notation W
1,∞
0 (Ω) stands for W 1,∞(Ω) ∩

C0(Ω). Noti
e that this last spa
e stri
tly 
ontains the 
losure of C∞
c (Ω) in W 1,∞(Ω),

and is thus larger than the spa
e usually denoted by W
1,∞
0 (Ω): the reason for our

notation is that W 1,∞(Ω)∩C0(Ω) is the natural limit spa
e for W
1,p
0 (Ω) as p → +∞.

In the following, the notation Gk
∞(Ω) generalizes that given in �2.4.

We now de�ne a 
ommon framework for the study of the non-linear eigenvalues

of the family (Fε)ε. In the rest of this se
tion, we shall denote by Ks(Ω) the set

of 
ompa
t symmetri
 subsets of Lp0(Ω) (or C0(Ω) if p0 = +∞), and by dH the

Hausdor� distan
e indu
ed on Ks(Ω) by the usual norm of Lp0(Ω).

Lemma 3.2. There exists ε0 > 0 su
h that for any ε < ε0, the set Gk
pε

(Ω) is

in
luded in Ks(Ω). Moreover, the genus of an element G ∈ Gk
pε

(Ω) is the same as

its genus as an element of Ks(Ω).

Proof. We �rst 
onsider the 
ase p0 ∈ [1, +∞[ : as pε → p0, there exists ε0 > 0
su
h that pε > N

N+p0
p0 for any ε < ε0. For su
h ε, sin
e an element G of Gk

pε
(Ω)

is 
losed and bounded in W
1,pε

0 (Ω) we infer from the Sobolev 
ompa
t embedding

theorems that G is in fa
t a 
ompa
t subset of Lp0(Ω). In the 
ase p0 = +∞, it is

su�
ient to take ε0 > 0 su
h that pε ≥ N + 1 for any ε < ε0.
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Let ε < ε0, and assume that pε ≥ p0: then the identity mapping i : Lpε(Ω) →
Lp0(Ω) is 
ontinuous, and sin
e G is 
ompa
t in Lpε(Ω), the sets G and i(G) are

homeomorphi
 so that the genus of G as as subset of Lpε(Ω) is the same as its genus

as a subset of Lp0(Ω). When pε ≤ p0, the same argument works with the identity

mapping i : Lp0(Ω) → Lpε(Ω). �

For any integer k ≥ 1 and number ε ≥ 0, we asso
iate to Fε the fun
tional

Jk
ε : Ks(Ω) → [0, +∞] given by

Jk
ε (G) :=

{

sup
v∈G

Fε(v) if G ∈ Gk
pε

(Ω),

+∞ otherwise.

Generalizing the de�nition (2.3) introdu
ed in �2.4, we de�ne the k-th eigenvalue

of the fun
tional Fε as

λk
ε := inf

G∈Gk
pε

sup
v∈G

Fε(v)

and we dedu
e from Lemma 3.2 that for ε small enough this 
an be rewritten

λk
ε = inf

{

Jk
ε (G) : G ∈ Ks(Ω)

}

.

We 
an now state the main result of this se
tion, whi
h in parti
ular yields that

λk
ε → λk

0 as ε → 0:

Theorem 3.3. Let k be a positive integer, and assume that the family (Fε)ε>0 satis-

�es (A1-3). Then there exists ε0 > 0 su
h that the family (Jk
ε )0≤ε<ε0

is equi
oer
ive

on (Ks(Ω), dH),

Γ − lim inf
ε→0

Jk
ε ≥ Jk

0 on Ks(Ω)

and

lim
ε→0

(

inf
G∈Ks(Ω)

Jk
ε (G)

)

= inf
G∈Ks(Ω)

Jk
0 (G).

Proof. We divide the proof in three steps.

Step 1. Equi
oer
ivity. We �rst 
onsider the 
ase p0 ∈ [1, +∞), and de�ne an

exponent q ≥ 1 depending on the dimension N and p0 as follows:

q(P0, N) := q :=

{

1 if N = 1 or N > 1 and p0 ∈ [1, N
N−1 ],

Np0

N+p0
if p0 ∈ ( N

N−1 , +∞).

Let δ = p0−q
2 and ε0 > 0 su
h that for any ε < ε0 we have pε ≥ q + δ (noti
e

that for p0 = 1 one has δ = 0 thus pε ≥ q for any ε > 0). Observe that the 
riti
al
exponent (q + δ)∗ is always stri
tly greater than p0.

Let ε < ε0 and Gε ∈ Ks(Ω) be su
h that Jk
ε (Gε) ≤ C. By de�nition of Jk

ε and

property (A2) the estimate ‖u‖W
1,pε
0

(Ω) ≤
C
α
holds for all u ∈ Gε and this implies

‖u‖
W

1,q+δ
0

(Ω) ≤ |Ω|
1

q+δ
− 1

pε
C

α
≤ K

where K is a 
onstant independent of ε < ε0. By Proposition 2.5 and the �rst part

of Example 2.6, the sublevels {Jε ≤ C} are 
ontained in a 
ommon 
ompa
t subset

of (Ks(Ω), dH) for ε < ε0, so that the family (Jk
ε )0≤ε<ε0

is equi
oer
ive.

In the 
ase p0 = ∞ we follow the same s
heme but we 
hoose ε0 su
h that

pε ≥ N + 1 for ε < ε0 and use the se
ond part of Example 2.6.
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Step 2. We show the Γ-liminf estimate. To this end, let G ∈ Ks(Ω) and (Gε)ε>0

be a family su
h that Gε
dH→ G, we shall prove that

lim inf
n→∞

Jk
ε (Gε) ≥ Jk

0 (G).

Without loss of generality, we may assume that there exists a 
onstant C > 0
su
h that Jk

ε (Gε) ≤ C for any ε > 0. Let us �rst show that γ(G) ≥ k. By

Proposition 2.4 there exists an open symmetri
 neighborhood N of G in Lp0(Ω) (or
C0(Ω) for p0 = +∞) su
h that γ(N̄) = γ(G). We then infer from Lemma 2.8 that

Gε ⊂ N ⊂ N̄ for ε small enough. By the se
ond property in Remark 2.3, for su
h

an ε > 0 we get

k ≤ γ(Gε) ≤ γ(N̄) = γ(G).

Let now u ∈ G, by the sequential 
hara
terization of the Hausdor� 
onvergen
e

of 
ompa
t sets (Proposition 2.7), there exists a (generalized) sequen
e uε ∈ Gε

whi
h 
onverges to u in Lp0(Ω). By the Γ−liminf inequality for the fun
tionals Fε

(assumption (A3))

F0(u) ≤ lim inf
ε→0

Fε(uε) ≤ lim inf
ε→0

(

sup
Gε

Fε

)

= lim inf
ε→0

Jk
ε (Gε).

Taking the supremum for u ∈ G gives the 
laim.

Step 3. By the two previous steps and Theorem 2.1, we infer that it only remains

to prove that

lim sup
ε→0

(

inf
G∈Ks(Ω)

Jk
ε (G)

)

≤ inf
G∈Ks(Ω)

Jk
0 (G).

We assume that inf
G∈Ks(Ω)

Jk
0 (G) < +∞, otherwise there is nothing to prove.

We �x δ ∈ ]0, 1[ and �rst study the 
ase p0 ∈ ]1, +∞]. Let G0 ∈ Ks(Ω) be su
h
that

inf
G∈Ks(Ω)

Jk
0 (G) ≥ Jk

0 (G0) − δ.

Sin
e G0 is 
ompa
t in Lp0(Ω), there exists a �nite family (ui)1≤i≤m in G0 su
h

that

G0 ⊂

m
⋃

i=1

BLp0(Ω)(u
i,

δ

5
)

We infer from hypothesis (A3) that for any i ∈ {1, . . . , m} there exists a family

(ui
ε)ε in Lp0(Ω) su
h that

ui
ε → ui

in Lp0(Ω) and Fε(u
i
ε) → F0(u

i) as ε → 0.

Taking ε0 as in step 1, for any ε ∈ ]0, ε0[ we de�ne Cε to be the 
onvex 
losure of

the �nite symmetri
 set {±ui
ε : i = 1, . . . , m}. We may assume that Fε(u

i
ε) < +∞

for any i and any su
h ε, so that the �nite dimensional set Cε is a 
ompa
t 
onvex

subset of W
1,pε

0 (Ω) and Lp0(Ω). Now let 1 < q < p0 be su
h that

∀i ∈ {1, . . . , m} ‖ui‖q ≥ 1 −
δ

5
.

We denote by Pε the proje
tion onto Cε for the norm of Lq(Ω), for whi
h Cε is also


ompa
t. Then we noti
e that for any v ∈ G0 there exists i ∈ {1, . . . , m} su
h that
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‖v − ui‖p0
≤ δ

5 , therefore

‖Pε(v)‖q ≥ ‖ui
ε‖q − ‖Pε(u

i) − ui
ε‖q − ‖Pε(v) − Pε(u

i)‖q

≥ ‖ui
ε‖q − ‖ui − ui

ε‖q −
δ

5
.

Sin
e ui
ε → ui

in Lp0(Ω), thus also in Lq(Ω), we get that for any ε small enough

one has

Pε(G0) ⊂ Cε \ BLq(Ω)(0, 1 −
δ

2
).

Also noti
e that the element Pε(G0) of Ks(Ω) satis�es γ(Pε(G0)) ≥ k. Then 
on-

sider the fun
tional ϕε : Pε(G0) → W
1,pε

0 (Ω) given by ϕε(v) := v
‖v‖pε

and set

∀ε ∈ ]0, ε0[ , Gε := ϕε(Pε(G0)).

Sin
e ϕε is 
ontinuous on Pε(G0), Gε belongs to Gk
pε

(Ω). Moreover for ε > 0 small

enough one has pε > q so that

∀v ∈ Pε(G0) 1 −
δ

2
≤ ‖v‖q ≤ ‖v‖pε

|Ω|
1
q
− 1

pε .

As a 
onsequen
e one gets

Jk
ε (Gε) = sup

{

Fε

(

v

‖v‖pε

)

: v ∈ Pε(G0)

}

≤
|Ω|

1
q
− 1

pε

1 − δ
2

sup {Fε (v) : v ∈ Pε(G0)}

≤
2|Ω|

1
q
− 1

pε

2 − δ
sup {Fε (v) : v ∈ Cε} =

2|Ω|
1
q
− 1

pε

2 − 2δ
max

1≤i≤m

{

Fε

(

ui
ε

)}

.

As a 
onsequen
e we have

lim sup
ε→0

(

inf
G∈Ks(Ω)

Jk
ε (G)

)

≤ lim sup
ε→0

Jε(Gε)

≤
2|Ω|

1
q
− 1

p0

2 − δ

(

inf
G∈Ks(Ω)

{

Jk
0 (G)

}

+ δ

)

.

The 
on
lusion of step 3 then follows by letting δ go to 0 and q go to p0.

For the 
ase p0 = 1, one has to slightly modify the above argument. We just

noti
e that G0 being bounded in W
1,1
0 (Ω), it is in fa
t 
ompa
t in L

2N
2N−1 (Ω). We


an then pro
eed as if p0 = 2N
2N−1 and follow the same arguments. Noti
e that this

works be
ause if

ui
ε → ui

in L1(Ω) and Fε(u
i
ε) → F0(u

i) as ε → 0

and if the family (Fε)ε satis�es the uniform growth 
ondition (A2), one infers that

(ui
ε)ε is bounded in W 1,1(Ω) so that

ui
ε → ui

in L
2N

2N−1 (Ω).

�

Remark 3.4. The argument used in the third step of the above proof is an adaptation

of the proof of Lemma 4.3 in [23℄. Noti
e that the approximating family (Gε)ε>0

does not 
onverge to G0 in Ks(Ω), but to a set that 
an be somewhat larger: this
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is due to the 
onvexi�
ation pro
edure, whi
h on the one hand ensures that the

genus does not de
rease, but on the other hand enlarge the approximating sets.

Remark 3.5. The proof of Theorem 3.3 presented above allows to handle in a

uni�ed way a wide variety of asymptoti
 problems, namely all of those 
overed by

the hypotheses (A1−3), su
h as those of the two following se
tions. We only noti
e

that the 
ase p0 = 1 requires a spe
i�
 treatment in Step 3 to handle the fa
t that

the proje
tion in the L1
-norm may be multivalued sin
e this norm is not stri
tly


onvex.

We noti
e that in the third step of the above proof, for any positive ε the set

Gε 
onstru
ted above belongs to Σk
pε
: indeed, it is �nite dimensional, and thus


ompa
t in W
1,pε

0 (Ω). As a 
onsequen
e, if Theorem 3.3 is applied to a 
onstant

family Fε := F0 for any ε > 0, one obtains the following result.

Corollary 3.6. Let p ∈ [1, +∞], and assume that a fun
tional F : Lp(Ω) →
[0, +∞] is 
onvex, 1-homogeneous and satis�es

{

α‖∇v‖p ≤ F (v) ≤ β‖∇v‖p if v ∈ W
1,p
0 (Ω),

F (v) = +∞ otherwise;

for some 
onstants β > α > 0. Then for any positive integer k one has

inf
G∈Σk

p

sup
v∈G

F (v) = min
G∈Gk

p

sup
v∈G

F (v).

Proof. We just need to justify that the minimum on Gk
p is attained. To this end

we noti
e that the fun
tional Jk
asso
iated with F is 
oer
ive on Ks(Ω) as an

appli
ation of Theorem 3.3, and the Γ-liminf estimate of this Theorem also yields

that Jk
is lower than its lower semi-
ontinuous envelope, so that it is l.s.
. on

Ks(Ω). This fun
tional thus attains its minimum on Ks(Ω). �

4. Limit as p → ∞ of the eigenvalues of the p-Lapla
ian

In this se
tion we will apply the results of Se
tion 3 to the approximation of the

so 
alled ∞-eigenvalue problem [20℄. We �rst �x some notations, and then 
onsider

some 
onsequen
es of the approximation results.

As we will 
onsider the limit as p → ∞ of the k-th nonlinear eigenvalue of the

p-Lapla
ian de�ned by (2.3), throughout this se
tion k will denote a �xed positive

integer. Without loss of generality, we also assume that p ≥ N +1 in the following.

Sin
e W
1,N+1
0 (Ω) is 
ompa
tly embedded in C0(Ω), we shall also assume that we

work with the 
ontinuous representative of every fun
tion v ∈ W
1,p
0 (Ω). Finally,

we denote by Ks(Ω) the set whose elements are the 
ompa
t symmetri
 subsets of

C0(Ω).
For p ∈ [N + 1, +∞], we now de�ne Jk

p : Ks(Ω) → [0, +∞] by

Jk
p (G) =

{

supu∈G ‖∇u‖p if G ∈ Gp
k(Ω),

+∞ otherwise.

As explained above, any element G ∈ Gp
k(Ω) may be 
onsidered as an element of

Ks(Ω) so that one may rewrite (2.3) for p ∈ [N + 1, +∞) as

(λk
p)

1
p = min{Jk

p (G) : G ∈ Ks(Ω)} (4.1)
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where the minimum is attained thanks to Corollary 3.6. In a more detailed form,

(4.1) reads

(λk
p)

1
p = min{sup

v∈G

‖∇v‖p : G ∈ Ks(Ω),

G ⊂ W

1,p
0 (Ω) ∩ {v : ‖v‖p = 1}, γ(G) ≥ k}.

We shall study the Γ-
onvergen
e of the family (Jk
p )p in the spa
e (Ks(Ω), dH):

in what follows, the distan
e dH will denote that indu
ed on Ks(Ω) by the sup norm

‖.‖∞ on C0(Ω).
Noti
e that in the setting of the previous se
tion, the family (Jk

p )p≥N+1 is asso-


iated with the family (Fε)ε≤ 1
N+1

where Fε is given on L1(Ω) by

Fε(v) :=

{

‖∇v‖ 1
ε

if v ∈ W
1,p
0 (Ω),

+∞ otherwise.

As a 
onsequen
e of the proof of Lemma 3.2 we know that the genus of G ∈ Gp
k(Ω)

as a subset of W
1,p
0 (Ω) is the same as its genus as a subset of C0(Ω), so that from

now on, we shall always assume that the genus is that 
omputed in C0(Ω). It

also follows from Theorem 3.3 that the family (Jk
p )p∈[N+1,+∞] is equi
oer
ive on

(Ks(Ω), dH).
We now study the Γ-limit of the family (Jk

p )p≥N+1 as p → ∞. In this 
ase we

are able to prove the full Γ-
onvergen
e of this family to the fun
tional Jk
∞.

Theorem 4.1. Let k be a positive integer. Then the family of fun
tionals (Jk
p )p≥N+1

Γ-
onverges to Jk
∞ in Ks(Ω) as p → +∞.

Proof. The Γ − lim inf inequality follows from Theorem 3.3. We thus turn to the

proof of the Γ − lim sup inequality: let G∞ ∈ Ks(Ω) be su
h that Jk
∞(G∞) < +∞,

we have to de�ne a family Gp
dH→ G∞ su
h that

lim sup
p→∞

Jk
p (Gp) ≤ Jk

∞(G∞).

Sin
e G∞ is a 
ompa
t subset of {v : ‖v‖∞ = 1} and the LN+1
-norm is 
ontin-

uous with respe
t to the L∞
-norm we infer

0 < m := min{‖u‖N+1 : u ∈ G∞} ≤ max{|Ω|, 1}min{‖u‖p : u ∈ G∞}

for any p ≥ N +1. Then the appli
ation ϕp : G∞ → C0(Ω) given by ϕp(u) = u
‖u‖p

is

well de�ned, bije
tive and 
ontinuous on G∞. For p ≥ N +1 we set Gp = ϕp(G∞).
Sin
e G∞ is 
ompa
t in C0(Ω), so is Gp in Lp(Ω) and we 
on
lude that γ(G∞) =
γ(Gp). As a 
onsequen
e, Gp ∈ Gk

p (Ω) and we have

∀p ≥ N + 1 Jk
p (Gp) ≤

|Ω|
1
p

min{‖u‖p : u ∈ G∞}
Jk
∞(G∞). (4.2)

Taking the lim sup as p → ∞ one gets

lim sup
p→∞

Jk
p (Gp) ≤ Jk

∞(G∞).

It remains to prove that Gp
dH→ G∞. We infer from the equi
oer
ivity of Jk

p and

the previous argument that the family (Gp)p>N+1 is pre
ompa
t in Ks. It is easily

seen that any 
luster point of (Gp)p as p → +∞ 
ontains G∞. Let (up)p be su
h

that up ∈ Gp for any p and assume that a subsequen
e (upn
)n 
onverges to some
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u ∈ C0(Ω). For any n there exists vn ∈ G∞ su
h that upn
= ϕpn

(vn). Sin
e G∞

is a 
ompa
t subset of C0(Ω), we 
an assume without loss of generality that (vn)n


onverges uniformly to some v ∈ G∞, but then

‖vn‖pn
→ ‖v‖∞ = 1

and it follows that u = v belongs to G∞, so that any 
luster point of (Gp)p in Ks

is in
luded in G∞, whi
h 
on
ludes the proof. �

Remark 4.2. It results from Theorem 4.1 that the fun
tional Jk
∞ is 
oer
ive and

lower semi-
ontinuous on Ks(Ω).

As a 
onsequen
e of the previous Theorem and the basi
 properties of the Γ-

onvergen
e, we get the following 
onvergen
e result for the k-th eigenvalues.

Theorem 4.3. Let λk
p be the k-th eigenvalue of the p-Lapla
ian operator, then

(1) lim
p→∞

(λk
p)

1
p = Λk

∞ where

Λk
∞ := min

G∈G∞

k
(Ω)

sup
u∈G

‖∇u‖∞

= min

{

sup
u∈G

‖∇u‖∞ : G ∈ Ks(Ω),

G ⊂ W

1,∞
0 (Ω) ∩ {v : ‖v‖∞ = 1}, γ(G) ≥ k

}

.

(2) Let (Gp)p be a family in Ks(Ω) su
h that Gp ∈ Gk
p (Ω) and Jk

p (Gp) =

min{Jk
p (G) : G ∈ Ks(Ω)} for any p. If for some sequen
e pk → +∞

one has Gpk

dH→ G∞, then Jk
∞(G∞) = Λk

∞.

Remark 4.4. The point (1) also reads:

lim
p→∞

min
G∈Gk

p (Ω)
sup
u∈G

‖∇u‖p = min
G∈G∞

k
(Ω)

sup
u∈G

‖∇u‖∞.

Moreover, noti
e that if Gp ∈ Gk
p (Ω) is su
h that Jk

p (Gp) = (λk
p)

1
p
for any p, then it

follows from Theorem 4.1 and 4.3(1) that the family (Gp)p≥N+1 is pre
ompa
t in

Ks(Ω).

Proof. We �rst noti
e that the family ((λk
p)

1
p )p is bounded as p → +∞. Let G∞ ∈

Gk
∞ be su
h that supu∈G∞

‖∇u‖∞ < +∞. With the notations of the proof of

Theorem 4.1 and using (4.2), we get

(λk
p)

1
p = min{Jk

p (G) : G ∈ Ks(Ω)} ≤ Jk
p (ϕp(G∞)) ≤

max{|Ω|, 1}

m
Jk
∞(G∞)

for any p ≥ N + 1. Sin
e the right hand side does not depend on p, this proves the


laim.

As a 
onsequen
e, the family (min
Ks

Jk
p )p is bounded, so that (1) and (2) are

straightforward 
onsequen
es of Theorems 2.1 and 4.1. �

We also get the following result for the 
orresponding k-th eigenfun
tions
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Theorem 4.5. For any p ≥ N + 1, let up ∈ W
1,p
0 (Ω) be a distributional solution

of

−div(|∇up|
p−2∇up) = λk

pup|up|
p−2 in Ω.

Assume that ‖up‖p = 1 for any p ≥ N + 1, and that (up to subsequen
es) (up)p


onverges in C0(Ω) to some u∞ ∈ W
1,∞
0 (Ω) as p → ∞. Then there exists G∞ ∈

Ks(Ω) su
h that

u∞ ∈ G∞ and ‖∇u∞‖∞ = Jk
∞(G∞) = Λk

∞.

Remark 4.6. It follows from Lemma 5.2 in [20℄ that the 
luster point u∞ is a

vis
osity solution of







min{|∇u| − Λk
∞u , −∆∞u} = 0 in {u > 0},

−∆∞u = 0 in {u = 0},
max{−|∇u| − Λk

∞u , −∆∞u} = 0 in {u < 0},
(4.3)

and by the de�nition given in [20℄ this means that u∞ is an eigenfun
tion of the

in�nite-Lapla
ian for the ∞−eigenvalue Λk
∞.

Proof. The key point is to show that ‖∇u∞‖∞ = Λk
∞. To this end, we noti
e

that ‖u∞‖∞ = 1 and assume without loss of generality that u∞(x0) = 1 for some

x0 ∈ Ω.

Sin
e ‖∇up‖p = (λk
p)

1
p → Λk

∞, we infer that ‖∇u∞‖∞ ≤ Λk
∞. We show by


ontradi
tion that ‖∇u∞‖∞ ≥ Λk
∞: otherwise, one would have ‖∇u∞‖∞ < L <

Λk
∞ for some L > 0. Let ϕ ∈ W

1,∞
loc (RN ) be de�ned by ϕ(x) = −L|x − x0|, then

u∞ −ϕ attains a stri
t minimum on Ω at x0. For any δ > 0, 
onsider φδ := ρδ ∗ ϕ,

where ρδ is a molli�er, i.e. ρδ(x) := δNρ(x
δ
) for some fun
tion ρ su
h that

ρ ∈ C∞(RN , [0, +∞[) , spt(ρ) ⊂ B(0, 1) and

∫

RN

ρ(x)dx = 1 .

As ϕδ → ϕ uniformly on Ω as δ → 0, we infer that u−ϕδ attains a lo
al minimum

on Ω at some xδ for δ small enough, and that xδ → x0 as δ → 0. Sin
e u∞ is

a vis
osity solution of (4.3), we 
on
lude that |∇ϕδ(xδ)| ≥ Λk
∞u(xδ) for δ small

enough. It remains to noti
e that

|∇ϕ(xδ)| =

∣

∣

∣

∣

∫

RN

ρ(y)∇ϕ(xδ − y)dx

∣

∣

∣

∣

≤ L

and u(xδ) → 1 to obtain the 
ontradi
tion L ≥ Λk
∞ by letting δ go to 0.

Now, let F∞ ∈ Ks(Ω) be su
h that Jk
∞(F∞) = Λk

∞, and set G∞ := F∞∪{±u∞},
then G∞ satis�es the desired property. �

Remark 4.7. Noti
e that for a given G ∈ Ks(Ω) with Jk
∞(G) = Λk

∞, a fun
tion

u ∈ G su
h that ‖∇u‖∞ = Λk
∞ is not ne
essarily a vis
osity solution of (4.3).

Indeed any fun
tion v ∈ W
1,∞
0 (Ω) with ‖∇v‖∞ = Λk

∞ and ‖v‖∞ = 1 may be

�added� to su
h a set G by 
onsidering G ∪ {±v}, but in general su
h a fun
tion


an't be expe
ted to be a solution of (4.3). The above Theorem asserts that the

limits of 
riti
al points of the Rayleigh quotients are also in the vis
osity sense


riti
al for the limit problem.
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5. Homogenization of nonlinear eigenvalue problems for p-Lapla
ian

type operators

In the following, p is a �xed real number in [1, +∞[ and k a positive integer. Let

fhom and the family (fε)ε>0 be integrands on Ω × R
N

satisfying the assumptions

(a1) to (a5) of �2.4 for some 
ommon positive 
onstants α, β. For any ε > 0, we
de�ne the fun
tional Fε : Lp(Ω) → [0, +∞] by

Fε(v) :=







∫

Ω

fε(x,∇v(x))dx if v ∈ W
1,p
0 (Ω),

+∞ elsewhere.

For any ε > 0 we 
onsider the k-th eigenvalue problem for Fε, whi
h 
an be written

thanks to Corollary 3.6 in the following way

λk
ε := min

G∈Gp

k
(Ω)

sup
u∈G

∫

Ω

fε(x,∇u)dx := min
G∈Gp

k
(Ω)

sup
u∈G

Fε(u).

We are interested in the 
onvergen
e of the family (λk
ε)ε>0 as ε → 0. Following

se
tion �3, we shall denote by Ks(Ω) be the set whose elements are the 
ompa
t

symmetri
 subsets of Lp(Ω), equipped with the Hausdor� distan
e dH indu
ed on

by the norm ‖.‖p. We also de�ne Jk
ε : Ks(Ω) → [0, +∞] as follows:

Jk
ε (G) :=

{

sup{Fε(u)
1
p : u ∈ G} if G ∈ Gk

p (Ω),
+∞ otherwise.

The notations Fhom, λk
hom and Jk

hom are de�ned in the same way as above. Sin
e

any element G ∈ Gp
k(Ω) may be 
onsidered as an element of Ks(Ω) one has

∀ε > 0 λk
ε = min{Jk

ε (G)p : G ∈ Ks(Ω)}.

As a dire
t 
onsequen
e of Theorem 3.3 we then get the following 
onvergen
e

result.

Theorem 5.1. Let the above hypotheses hold, and assume that the family of fun
-

tionals (Fε)ε>0 Γ-
onverges in Lp(Ω) to Fhom as ε → 0, then for any positive integer

k one has

λk
ε → λk

hom = min
G∈Gp

k
(Ω)

sup
u∈G

Fhom(u)

as ε goes to 0.

In [5℄ the authors 
onsider the homogenization for non-linear eigenvalue problems

related to a family of monotone ellipti
 operators of the form Aε := −div(aε(·, ·))
whi
h G−
onverge to an operator Ahom of the same form. Under the assumptions

(h1-5) the operators Aε are the sub-di�erentials of integral fun
tionals of the type

Fε whose integrands satisfy (a1-5), see �2.4. Theorem 5.1 then implies that for any

positive integer k the generalized sequen
e of the k-th eigenvalues (as de�ned in

se
tion �2.4) of the operators Aε 
onsidered in [5℄ 
onverges to the k-th eigenvalue

of the limit operator.

Remark 5.2. Theorem 3.3 also yields that Γ − lim inf Jk
ε ≥ Jk

hom on Ks(Ω), but
unlike in the previous se
tion one 
an't expe
t the family (Jk

ε )ε to Γ-
onverge to
Jk

hom. Indeed, in Theorem 5.1 it is only assumed that (Fε)ε>0 Γ-
onverges in Lp(Ω)
to Fhom, whereas in se
tion �4 the fun
tionals Fε(v) = ‖∇v‖ 1

ε
not only Γ-
onverge

but also pointwise 
onverge to F0(v) = ‖∇v‖∞ on C0(Ω), whi
h allows to obtain the
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Γ-limsup estimate for (Jk
ε )ε. Of 
ourse the proof of Theorem 4.1 
ould be adapted

to get that (Jk
ε )ε Γ-
onverges to Jk

hom when (Fε)ε>0 also 
onverges pointwise, but

this last hypothesis is not usual in the 
ontext of homogenization.
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