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ASYMPTOTIC BEHAVIOR OF NON LINEAR EIGENVALUE

PROBLEMS INVOLVING p-LAPLACIAN TYPE OPERATORS

THIERRY CHAMPION AND LUIGI DE PASCALE

Abstrat. We study the asymptoti behavior of two nonlinear eigenvalue

problems whih involve p-Laplaian type operators. In the �rst problem we

onsider the limit as p → ∞ of the sequenes of the k-th eigenvalues of the

p−Laplaian operators. The seond problem we study is the homogenization

of nonlinear eigenvalue problems for some p-Laplaian type operators with p

�xed. Our asymptoti analysis relies on a onvergene result for partiular

ritial values of a lass of Rayleigh quotients, stated in a uni�ed framework,

and on the notion of Γ-onvergene.

Keywords. Non-linear eigenvalues, p-Laplaian, ∞-eigenvalue problems,

homogenization, Γ-onvergene.
MSC 2000. 35P30, 35J70, 35J20, 35B27, 49R50, 74Q99.

1. Introdution

An eigenvalue of the p-Laplaian is a real number λ ∈ R suh that the problem

{

−div(|Du|p−2Du) = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

has at least one non trivial solution in W
1,p
0 (Ω). Here solution is intended in the

distributional sense and Ω is assumed to be a regular, bounded, open subset of

R
N
. One easily proves that λ is an eigenvalue if and only if it is a ritial value

of the Rayleigh quotient

‖∇v‖p

Lp

‖v‖p

Lp
. The k-th eigenvalue is obtained by the lassial

Ljusternik-Shnirelman theory (see [13, 18, 19℄ for a detailed desription), and it is

de�ned as follows

λk
p := inf

{

sup
v∈G

‖∇v‖p
Lp

‖v‖p
Lp

: G ⊂ Lp, genus(G) ≥ k

}

where genus(G) is the Krasnoselskii genus of G (for a preise statement and pre-

sentation we refer to setion �2).

In this paper, we study the asymptoti behavior of the sequene of the k-th

eigenvalues assoiated with families of monotone operators of p−Laplaian type.

The study of this type of problem arises in di�erent settings for various appliations,

see for example [5℄, [9℄, [25℄ and the referenes therein. A natural way to deal with

this asymptoti problem in the linear ase is the study of the onvergene of the

resolvent operator (see [16℄ h. 10, lemma XI 9.5, more referene on the linear ase

an be found in [5℄). The present work is motivated by the study of two asymptoti

behavior problems involving sequenes of p−laplaian type operators for whih we

propose a uni�ed approah in the general setting of the onvergene of partiular

ritial values of a lass of Rayleigh quotients.

1



2 THIERRY CHAMPION AND LUIGI DE PASCALE

The �rst problem we onsider is the study of the asymptoti behavior as p →
∞ of the k-th non-linear eigenvalue of the p-Laplaian operator. This problem

was in partiular studied in [21℄ and [20℄, where the onvergene of the �rst two

eigenvalues was examined in details and partial results and onjetures for higher

order eigenvalues were given. Our main ontribution to this problem is the proof

of the onvergene for the generalized sequene of the k-th eigenvalues (suitably

renormalized) for any positive integer k and a variational haraterization of this

limit (see �4, Theorem 4.3).

The seond problem we onsider is the asymptoti behavior of k-th eigenvalues

assoiated with a family (Aε)ε of p-Laplaian type operatorAε(v) = −div(aε(·,∇v(·)),
with �xed p. Assuming that Aε derives from a onvex and p-homogeneous integral

funtional Fε(v) =
∫

Ω
fε(x,∇v(x))dx, the k-th eigenvalue λk

ε of Aε is given by

λk
ε := inf

{

sup
v∈G

Fε(v)

‖v‖p
Lp

: G ⊂ Lp, genus(G) ≥ k

}

,

so that λk
ε is a partiular ritial point of the Rayleigh quotient

Fε(v)
‖v‖Lp

(we also refer

to setion �2 for a more preise presentation). The main ontribution we give to

the problem of this asymptoti study is a positive answer to a question raised in

[5℄. In this last work it was proved that the limit of any sequene of eigenvalues

is an eigenvalue of the limit problem and that the sequene of the �rst eigenvalues

(i.e. when k = 1) onverges to the �rst eigenvalue of the limit operator. It follows

from the present work that the sequene of the k-th eigenvalues onverges to the

k-th eigenvalue for any greater k (see �5, Theorem 5.1).

These two problems of asymptoti behavior have the same struture

λn := inf

{

sup
v∈G

Fn(v)

‖v‖Lpn

: G ⊂ Lpn , genus(G) ≥ k

}

,

where the family (Fn)n onverges to some limit funtional. The tehnique we use to

study these problems is based on the notion of Γ-onvergene (see the next setion
for details). The Γ-onvergene was introdued in [14℄ to deal with onvergene of

minimizers of sequenes of funtionals. Here we deal with some ritial values of

sequenes (Fn)n of funtionals whih Γ−onverge. This is done by introduing a

new sequene of funtionals whose arguments are ompat sets of the Lp
spaes, and

by endowing with the Hausdor� metri the set of ompat subsets of the suitable

spae. This gives rise to a uni�ed treatment in a general framework of the two

problems mentioned above (see �3, Theorem 3.3).

A relative advantage in dealing with these problems using the Γ-onvergene is
that we do not need to have a limit operator and that we know that the limit ritial

value is of saddle type. Let us �nally underline that our method gives a general

sheme to deal with Γ-onvergene and ritial points obtained via an index theory.

2. Definitions and preliminary results

2.1. Γ-onvergene.
Let X be a metri spae, a sequene of funtionals Fn : X → R is said to Γ-onverge
to F∞ at x if

F∞(x) = Γ − lim inf Fn(x) = Γ − lim sup Fn(x), (2.1)
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where

{

Γ − lim inf Fn(x) = inf
{

lim inf Fn(xn) : xn → x in X
}

,

Γ − lim sup Fn(x) = inf
{

lim sup Fn(xn) : xn → x in X
}

.
(2.2)

The Γ−onvergene was introdued in [14℄, for an introdution to this theory we

refer to [15℄ and [4℄. The following is a variation of a lassial theorem whih reports

properties of Γ-onvergene that we shall use in the following.

Theorem 2.1. Assume that the sequene (Fn)n∈N of funtionals is suh that

Γ − lim inf
n→+∞

Fn ≥ F∞ on X,

where F∞ is lower-semiontinuous on X. Assume in addition that the sequene

(Fn)n is equi-oerive on X, then

(1) lim inf
n→+∞

(

inf
x∈X

Fn(x)

)

≥ inf
x∈X

F∞(x),

(2) if lim
n→+∞

(

inf
x∈X

Fn(x)

)

= inf
x∈X

F∞(x), then one has F∞(x∞) = inf
x∈X

F∞(x)

for any luster point x∞ of a sequene (xn)n∈N suh that

∀n ∈ N Fn(xn) ≤ inf
x∈X

Fn(x) + εn

with εn → 0 as n → ∞.

2.2. Krasnoselskii genus.

We reall here some basi fats about the Krasnoselskii genus whih will be used

in what follows. We refer to [26, 27℄ for a more omplete introdution on the index

theories.

De�nition 2.2. Let E be a real Banah spae and let A ⊂ E be a nonempty losed

symmetri set (i.e. A = −A). The genus γ(A) of the set A is the integer de�ned

as

inf{m ∈ N : there exists a ontinuous and odd mapping ϕ : A → R
m \ {0}},

where the above in�mum is assumed to be +∞ if the set above is empty.

Remark 2.3. The following elementary properties hold:

(1) If 0 belongs to A then γ(A) = +∞,

(2) A1 ⊂ A2 implies γ(A1) ≤ γ(A2).

We will need the following ontinuity property of the genus (see Proposition 5.4

of [27℄ or Proposition 7.5 of [26℄ for a proof).

Proposition 2.4. Assume that A ⊂ E is ompat, then there is a symmetri

neighborhood N of A in E suh that γ(N) = γ(A).

2.3. Hausdor� onvergene of ompat sets.

Let (X, d) be a metri spae, and denote by K the set of the ompat subsets of X .

The distane dH : K ×K → R+ is de�ned as

dH(G, F ) := sup
x∈G

d(x, F ) + sup
y∈F

d(y, G).

It is easy to hek that (K, dH) is a metri spae and to hek the following property

(a referene for this part is [1℄)
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Proposition 2.5. If X is ompat then (K, dH) is ompat.

As an appliation of Proposition 2.5 we obtain two examples whih will be useful

in the sequel of the paper.

Example 2.6. Let Ω be an open subset of R
N

with Lipshitz boundary. By a

standard appliation of the Sobolev ompat embedding theorems we get:

• Let p ∈ [1,∞) and q ≥ 1 suh that q ∈ [N,∞] or q∗ := Nq
N−q

> p , then the

set

{G ⊂ W
1,q
0 (Ω) | G is losed and bounded by C in W

1,q
0 (Ω)}

equipped with the Hausdor� distane indued by the Lp
norm is ompat

for any onstant C > 0.
• Let q ∈ (N,∞] and C > 0, then the set

{G ⊂ W
1,q
0 (Ω) | G is losed and bounded by C in W

1,q
0 (Ω)}

equipped with the Hausdor� distane indued by the sup norm of C0 is

ompat.

We will need the following haraterization of the Hausdor� onvergene whih

an be obtained diretly from the de�nition:

Proposition 2.7. If (Kn)n is a sequene in K, then Kn → K with respet to dH
if and only if

(1) for eah sequene (xn)n suh that xn ∈ Kn for all n, any aumulation

point x ∈ X for (xn)n belongs to K,

(2) for eah point x ∈ K we an �nd a sequene xn with xn ∈ Kn onverging

to x.

The next lemma of elementary proof will be useful to study the behavior of the

genus with respet to the Hausdor� onvergene of ompat sets.

Lemma 2.8. Let (Kn)n is a sequene in K onverging to K with respet to dH.

Then any open set A ⊂ X whih ontains K also ontains Kn for n large enough.

2.4. Nonlinear eigenvalues of p-Laplaian type operators.

In this setion we introdue the basi de�nition for the eigenvalues of the p-Laplaian

and some generalization to p−Laplaian type operators.

From now on, Ω denotes a bounded onneted open subset of R
N
with Lipshitz

boundary. In the following, p is a real number in ]1, +∞[ and we shall denote by

‖.‖p the usual norm of Lp(Ω) (or Lp(Ω; RN ) when dealing with the gradient of some

element of W
1,p
0 (Ω)).

An eigenvalue of the p−Laplaian operator −∆p is a real number λ for whih

the problem

{

−∆pu := −div(|∇u|p−2∇u) = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

has a non-zero solution in W
1,p
0 (Ω). This problem (and its generalizations to mono-

tone ellipti operators) has been widely studied in the literature and for more de-

tailed treatment we refer to [2, 8, 13, 18, 19, 20, 24℄. Muh is still unknown about

the eigenvalues of the p−Laplaian operator. However let us report some of the
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known results whih will be relevant for this paper. Every eigenvalue is a ritial

value for the Rayleigh quotient

v 7→

∫

Ω
|∇v|pdx

∫

Ω |v|pdx

(

=
‖∇v‖p

p

‖v‖p
p

)

whih is a Gateaux di�erentiable funtional on W
1,p
0 (Ω) outside the origin. More-

over, a sequene (λk
p)k≥1 of eigenvalues an be obtained as follows (we refer to

[18℄ and [24℄ for details). Denote by Σk
p(Ω) the set of those subsets G of W

1,p
0 (Ω)

whih are symmetri (i.e. G = −G), ontained in the set {v : ‖v‖p = 1}, strongly

ompat in W
1,p
0 (Ω) and suh that γ(G) ≥ k, and set

λk
p = inf

G∈Σp

k
(Ω)

sup
u∈G

‖∇u‖p
p.

Then eah λk
p de�ned as above is an eigenvalue of the p-Laplaian operator and

λk
p → +∞ as k → ∞. Moreover it is known that λ1

p is the smallest eigenvalue of

−∆p, that it is simple (see [7℄ for a short proof) and that the operator −∆p doesn't

have any eigenvalue between λ1
p and λ2

p.

As a onsequene of our results (see Corollary 3.6), we shall get that the above

de�nition of the k-th eigenvalue may be rewritten

λk
p = min

G∈Gp

k
(Ω)

sup
u∈G

‖∇u‖p
p. (2.3)

In the above formula Gk
p (Ω) is the set of those subsets G of W

1,p
0 (Ω) whih are

symmetri, ontained in the set {v : ‖v‖p = 1}, losed and bounded in W
1,p
0 (Ω)

(and thus ompat in Lp(Ω)) and suh that γ(G) ≥ k, where γ(G) is the genus of
G as a subset of Lp(Ω).

More generally, onsider a p-Laplaian type operator A : W
1,p
0 (Ω) → W−1,p(Ω)

of the form A(u) = −div(a(x,∇u(x))) where the funtion a : Ω×R
N → R

N
satis�es

(h1) a is a Carathéodory funtion i.e. a(x, ·) is a ontinuous funtion for a.e.

x ∈ Ω and a(·, ξ) is measurable for every ξ ∈ R
n
,

(h2) a(x, ·) is positively homogeneous of degree p − 1 for a.e. x,

(h3) a(x, ·) is odd for a.e. x

(h4) a is ylially monotone, i.e.

m
∑

i=1

〈a(x, ξi), ξi+1 − ξi〉 ≤ 0

for a.e. x ∈ Ω, any m ≥ 2 and ξ1, . . . , ξm ∈ R
N

(with ξm+1 = ξ1)

(h5) there exists β > α > 0 suh that the following growth onditions hold

α|ξ|p ≤ 〈a(x, ξ), ξ〉 and |a(x, ξ)| ≤ β|ξ|p−1

for all ξ ∈ R
N

and for a.e. x ∈ Ω.

Then an eigenvalue λ for A is a real number for whih the problem

{

−div(a(x,∇u(x))) = λ|u(x)|p−2u(x) for a.e. x in Ω,

u = 0 on ∂Ω

has a non-trivial distributional solution in W
1,p
0 (Ω). Under the hypothesis (h1-5),

there exists an integrand f : Ω × R
N → R+ satisfying the following assumptions

(we refer to Lemma 3.1 and Proposition 3.2 of [5℄):
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(a1) f is a Carathéodory funtion,

(a2) f(x, ·) is onvex, di�erentiable with gradient a(x, ·),
(a3) f(x, ·) is positively homogeneous of degree p,

(a4) f(x, ·) is even,
(a5) the following growth onditions holds

α|ξ|p ≤ f(x, ξ) ≤ β|ξ|p

for all ξ ∈ R
N

and for a.e. x ∈ Ω,

Then for any integer k ≥ 1 one an de�ne the k-th eigenvalue of A as being

λk := inf
G∈Gp

k
(Ω)

sup
u∈G

∫

Ω

f(x,∇u)dx. (2.4)

Then, part of the study of the homogenization proess for the eigenvalue prob-

lems assoiated to a family Aε := −div(aε(·, ·)) of monotone ellipti operator of

p−Laplaian type redues to the study of the limit of a family of problems like

(2.4).

3. A general onvergene result

In this setion we state and prove the main result of the paper. In the following,

(Fε)ε≥0 is a family of funtionals de�ned on L1(Ω) with values in [0, +∞] suh that:

(A1) for any ε > 0, Fε is onvex and 1-homogeneous;

(A2) there exists β > α > 0 suh that for any ε > 0 there exists pε ∈ [1, +∞]
for whih

{

α‖∇v‖pε
≤ Fε(v) ≤ β‖∇v‖pε

if v ∈ W
1,pε

0 (Ω),

Fε(v) = +∞ otherwise;

(A3) the family (pε)ε>0 onverges to some p0 ∈ [1, +∞] and the family (Fε)ε>0

Γ-onverges in Lp0(Ω) (or C0(Ω) if p0 = +∞) to some funtional F0.

Notie that the funtional F0 also satis�es (A1) and (A2).

Remark 3.1. In the ase pε = +∞, the notation W
1,∞
0 (Ω) stands for W 1,∞(Ω) ∩

C0(Ω). Notie that this last spae stritly ontains the losure of C∞
c (Ω) in W 1,∞(Ω),

and is thus larger than the spae usually denoted by W
1,∞
0 (Ω): the reason for our

notation is that W 1,∞(Ω)∩C0(Ω) is the natural limit spae for W
1,p
0 (Ω) as p → +∞.

In the following, the notation Gk
∞(Ω) generalizes that given in �2.4.

We now de�ne a ommon framework for the study of the non-linear eigenvalues

of the family (Fε)ε. In the rest of this setion, we shall denote by Ks(Ω) the set

of ompat symmetri subsets of Lp0(Ω) (or C0(Ω) if p0 = +∞), and by dH the

Hausdor� distane indued on Ks(Ω) by the usual norm of Lp0(Ω).

Lemma 3.2. There exists ε0 > 0 suh that for any ε < ε0, the set Gk
pε

(Ω) is

inluded in Ks(Ω). Moreover, the genus of an element G ∈ Gk
pε

(Ω) is the same as

its genus as an element of Ks(Ω).

Proof. We �rst onsider the ase p0 ∈ [1, +∞[ : as pε → p0, there exists ε0 > 0
suh that pε > N

N+p0
p0 for any ε < ε0. For suh ε, sine an element G of Gk

pε
(Ω)

is losed and bounded in W
1,pε

0 (Ω) we infer from the Sobolev ompat embedding

theorems that G is in fat a ompat subset of Lp0(Ω). In the ase p0 = +∞, it is

su�ient to take ε0 > 0 suh that pε ≥ N + 1 for any ε < ε0.
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Let ε < ε0, and assume that pε ≥ p0: then the identity mapping i : Lpε(Ω) →
Lp0(Ω) is ontinuous, and sine G is ompat in Lpε(Ω), the sets G and i(G) are

homeomorphi so that the genus of G as as subset of Lpε(Ω) is the same as its genus

as a subset of Lp0(Ω). When pε ≤ p0, the same argument works with the identity

mapping i : Lp0(Ω) → Lpε(Ω). �

For any integer k ≥ 1 and number ε ≥ 0, we assoiate to Fε the funtional

Jk
ε : Ks(Ω) → [0, +∞] given by

Jk
ε (G) :=

{

sup
v∈G

Fε(v) if G ∈ Gk
pε

(Ω),

+∞ otherwise.

Generalizing the de�nition (2.3) introdued in �2.4, we de�ne the k-th eigenvalue

of the funtional Fε as

λk
ε := inf

G∈Gk
pε

sup
v∈G

Fε(v)

and we dedue from Lemma 3.2 that for ε small enough this an be rewritten

λk
ε = inf

{

Jk
ε (G) : G ∈ Ks(Ω)

}

.

We an now state the main result of this setion, whih in partiular yields that

λk
ε → λk

0 as ε → 0:

Theorem 3.3. Let k be a positive integer, and assume that the family (Fε)ε>0 satis-

�es (A1-3). Then there exists ε0 > 0 suh that the family (Jk
ε )0≤ε<ε0

is equioerive

on (Ks(Ω), dH),

Γ − lim inf
ε→0

Jk
ε ≥ Jk

0 on Ks(Ω)

and

lim
ε→0

(

inf
G∈Ks(Ω)

Jk
ε (G)

)

= inf
G∈Ks(Ω)

Jk
0 (G).

Proof. We divide the proof in three steps.

Step 1. Equioerivity. We �rst onsider the ase p0 ∈ [1, +∞), and de�ne an

exponent q ≥ 1 depending on the dimension N and p0 as follows:

q(P0, N) := q :=

{

1 if N = 1 or N > 1 and p0 ∈ [1, N
N−1 ],

Np0

N+p0
if p0 ∈ ( N

N−1 , +∞).

Let δ = p0−q
2 and ε0 > 0 suh that for any ε < ε0 we have pε ≥ q + δ (notie

that for p0 = 1 one has δ = 0 thus pε ≥ q for any ε > 0). Observe that the ritial
exponent (q + δ)∗ is always stritly greater than p0.

Let ε < ε0 and Gε ∈ Ks(Ω) be suh that Jk
ε (Gε) ≤ C. By de�nition of Jk

ε and

property (A2) the estimate ‖u‖W
1,pε
0

(Ω) ≤
C
α
holds for all u ∈ Gε and this implies

‖u‖
W

1,q+δ
0

(Ω) ≤ |Ω|
1

q+δ
− 1

pε
C

α
≤ K

where K is a onstant independent of ε < ε0. By Proposition 2.5 and the �rst part

of Example 2.6, the sublevels {Jε ≤ C} are ontained in a ommon ompat subset

of (Ks(Ω), dH) for ε < ε0, so that the family (Jk
ε )0≤ε<ε0

is equioerive.

In the ase p0 = ∞ we follow the same sheme but we hoose ε0 suh that

pε ≥ N + 1 for ε < ε0 and use the seond part of Example 2.6.
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Step 2. We show the Γ-liminf estimate. To this end, let G ∈ Ks(Ω) and (Gε)ε>0

be a family suh that Gε
dH→ G, we shall prove that

lim inf
n→∞

Jk
ε (Gε) ≥ Jk

0 (G).

Without loss of generality, we may assume that there exists a onstant C > 0
suh that Jk

ε (Gε) ≤ C for any ε > 0. Let us �rst show that γ(G) ≥ k. By

Proposition 2.4 there exists an open symmetri neighborhood N of G in Lp0(Ω) (or
C0(Ω) for p0 = +∞) suh that γ(N̄) = γ(G). We then infer from Lemma 2.8 that

Gε ⊂ N ⊂ N̄ for ε small enough. By the seond property in Remark 2.3, for suh

an ε > 0 we get

k ≤ γ(Gε) ≤ γ(N̄) = γ(G).

Let now u ∈ G, by the sequential haraterization of the Hausdor� onvergene

of ompat sets (Proposition 2.7), there exists a (generalized) sequene uε ∈ Gε

whih onverges to u in Lp0(Ω). By the Γ−liminf inequality for the funtionals Fε

(assumption (A3))

F0(u) ≤ lim inf
ε→0

Fε(uε) ≤ lim inf
ε→0

(

sup
Gε

Fε

)

= lim inf
ε→0

Jk
ε (Gε).

Taking the supremum for u ∈ G gives the laim.

Step 3. By the two previous steps and Theorem 2.1, we infer that it only remains

to prove that

lim sup
ε→0

(

inf
G∈Ks(Ω)

Jk
ε (G)

)

≤ inf
G∈Ks(Ω)

Jk
0 (G).

We assume that inf
G∈Ks(Ω)

Jk
0 (G) < +∞, otherwise there is nothing to prove.

We �x δ ∈ ]0, 1[ and �rst study the ase p0 ∈ ]1, +∞]. Let G0 ∈ Ks(Ω) be suh
that

inf
G∈Ks(Ω)

Jk
0 (G) ≥ Jk

0 (G0) − δ.

Sine G0 is ompat in Lp0(Ω), there exists a �nite family (ui)1≤i≤m in G0 suh

that

G0 ⊂

m
⋃

i=1

BLp0(Ω)(u
i,

δ

5
)

We infer from hypothesis (A3) that for any i ∈ {1, . . . , m} there exists a family

(ui
ε)ε in Lp0(Ω) suh that

ui
ε → ui

in Lp0(Ω) and Fε(u
i
ε) → F0(u

i) as ε → 0.

Taking ε0 as in step 1, for any ε ∈ ]0, ε0[ we de�ne Cε to be the onvex losure of

the �nite symmetri set {±ui
ε : i = 1, . . . , m}. We may assume that Fε(u

i
ε) < +∞

for any i and any suh ε, so that the �nite dimensional set Cε is a ompat onvex

subset of W
1,pε

0 (Ω) and Lp0(Ω). Now let 1 < q < p0 be suh that

∀i ∈ {1, . . . , m} ‖ui‖q ≥ 1 −
δ

5
.

We denote by Pε the projetion onto Cε for the norm of Lq(Ω), for whih Cε is also

ompat. Then we notie that for any v ∈ G0 there exists i ∈ {1, . . . , m} suh that
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‖v − ui‖p0
≤ δ

5 , therefore

‖Pε(v)‖q ≥ ‖ui
ε‖q − ‖Pε(u

i) − ui
ε‖q − ‖Pε(v) − Pε(u

i)‖q

≥ ‖ui
ε‖q − ‖ui − ui

ε‖q −
δ

5
.

Sine ui
ε → ui

in Lp0(Ω), thus also in Lq(Ω), we get that for any ε small enough

one has

Pε(G0) ⊂ Cε \ BLq(Ω)(0, 1 −
δ

2
).

Also notie that the element Pε(G0) of Ks(Ω) satis�es γ(Pε(G0)) ≥ k. Then on-

sider the funtional ϕε : Pε(G0) → W
1,pε

0 (Ω) given by ϕε(v) := v
‖v‖pε

and set

∀ε ∈ ]0, ε0[ , Gε := ϕε(Pε(G0)).

Sine ϕε is ontinuous on Pε(G0), Gε belongs to Gk
pε

(Ω). Moreover for ε > 0 small

enough one has pε > q so that

∀v ∈ Pε(G0) 1 −
δ

2
≤ ‖v‖q ≤ ‖v‖pε

|Ω|
1
q
− 1

pε .

As a onsequene one gets

Jk
ε (Gε) = sup

{

Fε

(

v

‖v‖pε

)

: v ∈ Pε(G0)

}

≤
|Ω|

1
q
− 1

pε

1 − δ
2

sup {Fε (v) : v ∈ Pε(G0)}

≤
2|Ω|

1
q
− 1

pε

2 − δ
sup {Fε (v) : v ∈ Cε} =

2|Ω|
1
q
− 1

pε

2 − 2δ
max

1≤i≤m

{

Fε

(

ui
ε

)}

.

As a onsequene we have

lim sup
ε→0

(

inf
G∈Ks(Ω)

Jk
ε (G)

)

≤ lim sup
ε→0

Jε(Gε)

≤
2|Ω|

1
q
− 1

p0

2 − δ

(

inf
G∈Ks(Ω)

{

Jk
0 (G)

}

+ δ

)

.

The onlusion of step 3 then follows by letting δ go to 0 and q go to p0.

For the ase p0 = 1, one has to slightly modify the above argument. We just

notie that G0 being bounded in W
1,1
0 (Ω), it is in fat ompat in L

2N
2N−1 (Ω). We

an then proeed as if p0 = 2N
2N−1 and follow the same arguments. Notie that this

works beause if

ui
ε → ui

in L1(Ω) and Fε(u
i
ε) → F0(u

i) as ε → 0

and if the family (Fε)ε satis�es the uniform growth ondition (A2), one infers that

(ui
ε)ε is bounded in W 1,1(Ω) so that

ui
ε → ui

in L
2N

2N−1 (Ω).

�

Remark 3.4. The argument used in the third step of the above proof is an adaptation

of the proof of Lemma 4.3 in [23℄. Notie that the approximating family (Gε)ε>0

does not onverge to G0 in Ks(Ω), but to a set that an be somewhat larger: this



10 THIERRY CHAMPION AND LUIGI DE PASCALE

is due to the onvexi�ation proedure, whih on the one hand ensures that the

genus does not derease, but on the other hand enlarge the approximating sets.

Remark 3.5. The proof of Theorem 3.3 presented above allows to handle in a

uni�ed way a wide variety of asymptoti problems, namely all of those overed by

the hypotheses (A1−3), suh as those of the two following setions. We only notie

that the ase p0 = 1 requires a spei� treatment in Step 3 to handle the fat that

the projetion in the L1
-norm may be multivalued sine this norm is not stritly

onvex.

We notie that in the third step of the above proof, for any positive ε the set

Gε onstruted above belongs to Σk
pε
: indeed, it is �nite dimensional, and thus

ompat in W
1,pε

0 (Ω). As a onsequene, if Theorem 3.3 is applied to a onstant

family Fε := F0 for any ε > 0, one obtains the following result.

Corollary 3.6. Let p ∈ [1, +∞], and assume that a funtional F : Lp(Ω) →
[0, +∞] is onvex, 1-homogeneous and satis�es

{

α‖∇v‖p ≤ F (v) ≤ β‖∇v‖p if v ∈ W
1,p
0 (Ω),

F (v) = +∞ otherwise;

for some onstants β > α > 0. Then for any positive integer k one has

inf
G∈Σk

p

sup
v∈G

F (v) = min
G∈Gk

p

sup
v∈G

F (v).

Proof. We just need to justify that the minimum on Gk
p is attained. To this end

we notie that the funtional Jk
assoiated with F is oerive on Ks(Ω) as an

appliation of Theorem 3.3, and the Γ-liminf estimate of this Theorem also yields

that Jk
is lower than its lower semi-ontinuous envelope, so that it is l.s.. on

Ks(Ω). This funtional thus attains its minimum on Ks(Ω). �

4. Limit as p → ∞ of the eigenvalues of the p-Laplaian

In this setion we will apply the results of Setion 3 to the approximation of the

so alled ∞-eigenvalue problem [20℄. We �rst �x some notations, and then onsider

some onsequenes of the approximation results.

As we will onsider the limit as p → ∞ of the k-th nonlinear eigenvalue of the

p-Laplaian de�ned by (2.3), throughout this setion k will denote a �xed positive

integer. Without loss of generality, we also assume that p ≥ N +1 in the following.

Sine W
1,N+1
0 (Ω) is ompatly embedded in C0(Ω), we shall also assume that we

work with the ontinuous representative of every funtion v ∈ W
1,p
0 (Ω). Finally,

we denote by Ks(Ω) the set whose elements are the ompat symmetri subsets of

C0(Ω).
For p ∈ [N + 1, +∞], we now de�ne Jk

p : Ks(Ω) → [0, +∞] by

Jk
p (G) =

{

supu∈G ‖∇u‖p if G ∈ Gp
k(Ω),

+∞ otherwise.

As explained above, any element G ∈ Gp
k(Ω) may be onsidered as an element of

Ks(Ω) so that one may rewrite (2.3) for p ∈ [N + 1, +∞) as

(λk
p)

1
p = min{Jk

p (G) : G ∈ Ks(Ω)} (4.1)
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where the minimum is attained thanks to Corollary 3.6. In a more detailed form,

(4.1) reads

(λk
p)

1
p = min{sup

v∈G

‖∇v‖p : G ∈ Ks(Ω),

G ⊂ W

1,p
0 (Ω) ∩ {v : ‖v‖p = 1}, γ(G) ≥ k}.

We shall study the Γ-onvergene of the family (Jk
p )p in the spae (Ks(Ω), dH):

in what follows, the distane dH will denote that indued on Ks(Ω) by the sup norm

‖.‖∞ on C0(Ω).
Notie that in the setting of the previous setion, the family (Jk

p )p≥N+1 is asso-

iated with the family (Fε)ε≤ 1
N+1

where Fε is given on L1(Ω) by

Fε(v) :=

{

‖∇v‖ 1
ε

if v ∈ W
1,p
0 (Ω),

+∞ otherwise.

As a onsequene of the proof of Lemma 3.2 we know that the genus of G ∈ Gp
k(Ω)

as a subset of W
1,p
0 (Ω) is the same as its genus as a subset of C0(Ω), so that from

now on, we shall always assume that the genus is that omputed in C0(Ω). It

also follows from Theorem 3.3 that the family (Jk
p )p∈[N+1,+∞] is equioerive on

(Ks(Ω), dH).
We now study the Γ-limit of the family (Jk

p )p≥N+1 as p → ∞. In this ase we

are able to prove the full Γ-onvergene of this family to the funtional Jk
∞.

Theorem 4.1. Let k be a positive integer. Then the family of funtionals (Jk
p )p≥N+1

Γ-onverges to Jk
∞ in Ks(Ω) as p → +∞.

Proof. The Γ − lim inf inequality follows from Theorem 3.3. We thus turn to the

proof of the Γ − lim sup inequality: let G∞ ∈ Ks(Ω) be suh that Jk
∞(G∞) < +∞,

we have to de�ne a family Gp
dH→ G∞ suh that

lim sup
p→∞

Jk
p (Gp) ≤ Jk

∞(G∞).

Sine G∞ is a ompat subset of {v : ‖v‖∞ = 1} and the LN+1
-norm is ontin-

uous with respet to the L∞
-norm we infer

0 < m := min{‖u‖N+1 : u ∈ G∞} ≤ max{|Ω|, 1}min{‖u‖p : u ∈ G∞}

for any p ≥ N +1. Then the appliation ϕp : G∞ → C0(Ω) given by ϕp(u) = u
‖u‖p

is

well de�ned, bijetive and ontinuous on G∞. For p ≥ N +1 we set Gp = ϕp(G∞).
Sine G∞ is ompat in C0(Ω), so is Gp in Lp(Ω) and we onlude that γ(G∞) =
γ(Gp). As a onsequene, Gp ∈ Gk

p (Ω) and we have

∀p ≥ N + 1 Jk
p (Gp) ≤

|Ω|
1
p

min{‖u‖p : u ∈ G∞}
Jk
∞(G∞). (4.2)

Taking the lim sup as p → ∞ one gets

lim sup
p→∞

Jk
p (Gp) ≤ Jk

∞(G∞).

It remains to prove that Gp
dH→ G∞. We infer from the equioerivity of Jk

p and

the previous argument that the family (Gp)p>N+1 is preompat in Ks. It is easily

seen that any luster point of (Gp)p as p → +∞ ontains G∞. Let (up)p be suh

that up ∈ Gp for any p and assume that a subsequene (upn
)n onverges to some
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u ∈ C0(Ω). For any n there exists vn ∈ G∞ suh that upn
= ϕpn

(vn). Sine G∞

is a ompat subset of C0(Ω), we an assume without loss of generality that (vn)n

onverges uniformly to some v ∈ G∞, but then

‖vn‖pn
→ ‖v‖∞ = 1

and it follows that u = v belongs to G∞, so that any luster point of (Gp)p in Ks

is inluded in G∞, whih onludes the proof. �

Remark 4.2. It results from Theorem 4.1 that the funtional Jk
∞ is oerive and

lower semi-ontinuous on Ks(Ω).

As a onsequene of the previous Theorem and the basi properties of the Γ-
onvergene, we get the following onvergene result for the k-th eigenvalues.

Theorem 4.3. Let λk
p be the k-th eigenvalue of the p-Laplaian operator, then

(1) lim
p→∞

(λk
p)

1
p = Λk

∞ where

Λk
∞ := min

G∈G∞

k
(Ω)

sup
u∈G

‖∇u‖∞

= min

{

sup
u∈G

‖∇u‖∞ : G ∈ Ks(Ω),

G ⊂ W

1,∞
0 (Ω) ∩ {v : ‖v‖∞ = 1}, γ(G) ≥ k

}

.

(2) Let (Gp)p be a family in Ks(Ω) suh that Gp ∈ Gk
p (Ω) and Jk

p (Gp) =

min{Jk
p (G) : G ∈ Ks(Ω)} for any p. If for some sequene pk → +∞

one has Gpk

dH→ G∞, then Jk
∞(G∞) = Λk

∞.

Remark 4.4. The point (1) also reads:

lim
p→∞

min
G∈Gk

p (Ω)
sup
u∈G

‖∇u‖p = min
G∈G∞

k
(Ω)

sup
u∈G

‖∇u‖∞.

Moreover, notie that if Gp ∈ Gk
p (Ω) is suh that Jk

p (Gp) = (λk
p)

1
p
for any p, then it

follows from Theorem 4.1 and 4.3(1) that the family (Gp)p≥N+1 is preompat in

Ks(Ω).

Proof. We �rst notie that the family ((λk
p)

1
p )p is bounded as p → +∞. Let G∞ ∈

Gk
∞ be suh that supu∈G∞

‖∇u‖∞ < +∞. With the notations of the proof of

Theorem 4.1 and using (4.2), we get

(λk
p)

1
p = min{Jk

p (G) : G ∈ Ks(Ω)} ≤ Jk
p (ϕp(G∞)) ≤

max{|Ω|, 1}

m
Jk
∞(G∞)

for any p ≥ N + 1. Sine the right hand side does not depend on p, this proves the

laim.

As a onsequene, the family (min
Ks

Jk
p )p is bounded, so that (1) and (2) are

straightforward onsequenes of Theorems 2.1 and 4.1. �

We also get the following result for the orresponding k-th eigenfuntions
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Theorem 4.5. For any p ≥ N + 1, let up ∈ W
1,p
0 (Ω) be a distributional solution

of

−div(|∇up|
p−2∇up) = λk

pup|up|
p−2 in Ω.

Assume that ‖up‖p = 1 for any p ≥ N + 1, and that (up to subsequenes) (up)p

onverges in C0(Ω) to some u∞ ∈ W
1,∞
0 (Ω) as p → ∞. Then there exists G∞ ∈

Ks(Ω) suh that

u∞ ∈ G∞ and ‖∇u∞‖∞ = Jk
∞(G∞) = Λk

∞.

Remark 4.6. It follows from Lemma 5.2 in [20℄ that the luster point u∞ is a

visosity solution of







min{|∇u| − Λk
∞u , −∆∞u} = 0 in {u > 0},

−∆∞u = 0 in {u = 0},
max{−|∇u| − Λk

∞u , −∆∞u} = 0 in {u < 0},
(4.3)

and by the de�nition given in [20℄ this means that u∞ is an eigenfuntion of the

in�nite-Laplaian for the ∞−eigenvalue Λk
∞.

Proof. The key point is to show that ‖∇u∞‖∞ = Λk
∞. To this end, we notie

that ‖u∞‖∞ = 1 and assume without loss of generality that u∞(x0) = 1 for some

x0 ∈ Ω.

Sine ‖∇up‖p = (λk
p)

1
p → Λk

∞, we infer that ‖∇u∞‖∞ ≤ Λk
∞. We show by

ontradition that ‖∇u∞‖∞ ≥ Λk
∞: otherwise, one would have ‖∇u∞‖∞ < L <

Λk
∞ for some L > 0. Let ϕ ∈ W

1,∞
loc (RN ) be de�ned by ϕ(x) = −L|x − x0|, then

u∞ −ϕ attains a strit minimum on Ω at x0. For any δ > 0, onsider φδ := ρδ ∗ ϕ,

where ρδ is a molli�er, i.e. ρδ(x) := δNρ(x
δ
) for some funtion ρ suh that

ρ ∈ C∞(RN , [0, +∞[) , spt(ρ) ⊂ B(0, 1) and

∫

RN

ρ(x)dx = 1 .

As ϕδ → ϕ uniformly on Ω as δ → 0, we infer that u−ϕδ attains a loal minimum

on Ω at some xδ for δ small enough, and that xδ → x0 as δ → 0. Sine u∞ is

a visosity solution of (4.3), we onlude that |∇ϕδ(xδ)| ≥ Λk
∞u(xδ) for δ small

enough. It remains to notie that

|∇ϕ(xδ)| =

∣

∣

∣

∣

∫

RN

ρ(y)∇ϕ(xδ − y)dx

∣

∣

∣

∣

≤ L

and u(xδ) → 1 to obtain the ontradition L ≥ Λk
∞ by letting δ go to 0.

Now, let F∞ ∈ Ks(Ω) be suh that Jk
∞(F∞) = Λk

∞, and set G∞ := F∞∪{±u∞},
then G∞ satis�es the desired property. �

Remark 4.7. Notie that for a given G ∈ Ks(Ω) with Jk
∞(G) = Λk

∞, a funtion

u ∈ G suh that ‖∇u‖∞ = Λk
∞ is not neessarily a visosity solution of (4.3).

Indeed any funtion v ∈ W
1,∞
0 (Ω) with ‖∇v‖∞ = Λk

∞ and ‖v‖∞ = 1 may be

�added� to suh a set G by onsidering G ∪ {±v}, but in general suh a funtion

an't be expeted to be a solution of (4.3). The above Theorem asserts that the

limits of ritial points of the Rayleigh quotients are also in the visosity sense

ritial for the limit problem.
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5. Homogenization of nonlinear eigenvalue problems for p-Laplaian

type operators

In the following, p is a �xed real number in [1, +∞[ and k a positive integer. Let

fhom and the family (fε)ε>0 be integrands on Ω × R
N

satisfying the assumptions

(a1) to (a5) of �2.4 for some ommon positive onstants α, β. For any ε > 0, we
de�ne the funtional Fε : Lp(Ω) → [0, +∞] by

Fε(v) :=







∫

Ω

fε(x,∇v(x))dx if v ∈ W
1,p
0 (Ω),

+∞ elsewhere.

For any ε > 0 we onsider the k-th eigenvalue problem for Fε, whih an be written

thanks to Corollary 3.6 in the following way

λk
ε := min

G∈Gp

k
(Ω)

sup
u∈G

∫

Ω

fε(x,∇u)dx := min
G∈Gp

k
(Ω)

sup
u∈G

Fε(u).

We are interested in the onvergene of the family (λk
ε)ε>0 as ε → 0. Following

setion �3, we shall denote by Ks(Ω) be the set whose elements are the ompat

symmetri subsets of Lp(Ω), equipped with the Hausdor� distane dH indued on

by the norm ‖.‖p. We also de�ne Jk
ε : Ks(Ω) → [0, +∞] as follows:

Jk
ε (G) :=

{

sup{Fε(u)
1
p : u ∈ G} if G ∈ Gk

p (Ω),
+∞ otherwise.

The notations Fhom, λk
hom and Jk

hom are de�ned in the same way as above. Sine

any element G ∈ Gp
k(Ω) may be onsidered as an element of Ks(Ω) one has

∀ε > 0 λk
ε = min{Jk

ε (G)p : G ∈ Ks(Ω)}.

As a diret onsequene of Theorem 3.3 we then get the following onvergene

result.

Theorem 5.1. Let the above hypotheses hold, and assume that the family of fun-

tionals (Fε)ε>0 Γ-onverges in Lp(Ω) to Fhom as ε → 0, then for any positive integer

k one has

λk
ε → λk

hom = min
G∈Gp

k
(Ω)

sup
u∈G

Fhom(u)

as ε goes to 0.

In [5℄ the authors onsider the homogenization for non-linear eigenvalue problems

related to a family of monotone ellipti operators of the form Aε := −div(aε(·, ·))
whih G−onverge to an operator Ahom of the same form. Under the assumptions

(h1-5) the operators Aε are the sub-di�erentials of integral funtionals of the type

Fε whose integrands satisfy (a1-5), see �2.4. Theorem 5.1 then implies that for any

positive integer k the generalized sequene of the k-th eigenvalues (as de�ned in

setion �2.4) of the operators Aε onsidered in [5℄ onverges to the k-th eigenvalue

of the limit operator.

Remark 5.2. Theorem 3.3 also yields that Γ − lim inf Jk
ε ≥ Jk

hom on Ks(Ω), but
unlike in the previous setion one an't expet the family (Jk

ε )ε to Γ-onverge to
Jk

hom. Indeed, in Theorem 5.1 it is only assumed that (Fε)ε>0 Γ-onverges in Lp(Ω)
to Fhom, whereas in setion �4 the funtionals Fε(v) = ‖∇v‖ 1

ε
not only Γ-onverge

but also pointwise onverge to F0(v) = ‖∇v‖∞ on C0(Ω), whih allows to obtain the
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Γ-limsup estimate for (Jk
ε )ε. Of ourse the proof of Theorem 4.1 ould be adapted

to get that (Jk
ε )ε Γ-onverges to Jk

hom when (Fε)ε>0 also onverges pointwise, but

this last hypothesis is not usual in the ontext of homogenization.
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