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ASYMPTOTIC BEHAVIOR OF NON LINEAR EIGENVALUE
PROBLEMS INVOLVING p-LAPLACIAN TYPE OPERATORS

THIERRY CHAMPION AND LUIGI DE PASCALE

ABsTRACT. We study the asymptotic behavior of two nonlinear eigenvalue
problems which involve p-Laplacian type operators. In the first problem we
consider the limit as p — oo of the sequences of the k-th eigenvalues of the
p—Laplacian operators. The second problem we study is the homogenization
of nonlinear eigenvalue problems for some p-Laplacian type operators with p
fixed. Our asymptotic analysis relies on a convergence result for particular
critical values of a class of Rayleigh quotients, stated in a unified framework,
and on the notion of I'-convergence.

Keywords. Non-linear eigenvalues, p-Laplacian, co-eigenvalue problems,
homogenization, I'-convergence.
MSC 2000. 35P30, 35J70, 35J20, 35B27, 49R50, 74Q99.

1. INTRODUCTION

An eigenvalue of the p-Laplacian is a real number A € R such that the problem

—div(|DuP~2Du) = Mul|P~2u in Q,
u =0 on 0,

has at least one non trivial solution in WO1 P(Q). Here solution is intended in the
distributional sense and 2 is assumed to be a regular, bounded, open subset of

RY. One easily proves that \ is an eigenvalue if and only if it is a critical value
IVoll7p
Mol7 »
Ljusternik-Schnirelman theory (see [13, 18, 19] for a detailed description), and it is
defined as follows

of the Rayleigh quotient . The k-th eigenvalue is obtained by the classical

P
pLAEES inf{sup % : G CLP, genus(G) > k}
P velG ||U||LP
where genus(G) is the Krasnoselskii genus of G (for a precise statement and pre-
sentation we refer to section §2).

In this paper, we study the asymptotic behavior of the sequence of the k-th
eigenvalues associated with families of monotone operators of p—Laplacian type.
The study of this type of problem arises in different settings for various applications,
see for example [5], [9], [25] and the references therein. A natural way to deal with
this asymptotic problem in the linear case is the study of the convergence of the
resolvent operator (see [16] ch. 10, lemma XI 9.5, more reference on the linear case
can be found in [5]). The present work is motivated by the study of two asymptotic
behavior problems involving sequences of p—laplacian type operators for which we
propose a unified approach in the general setting of the convergence of particular
critical values of a class of Rayleigh quotients.

1



2 THIERRY CHAMPION AND LUIGI DE PASCALE

The first problem we consider is the study of the asymptotic behavior as p —
oo of the k-th non-linear eigenvalue of the p-Laplacian operator. This problem
was in particular studied in [21] and [20], where the convergence of the first two
eigenvalues was examined in details and partial results and conjectures for higher
order eigenvalues were given. Our main contribution to this problem is the proof
of the convergence for the generalized sequence of the k-th eigenvalues (suitably
renormalized) for any positive integer k& and a variational characterization of this
limit (see §4, Theorem 4.3).

The second problem we consider is the asymptotic behavior of k-th eigenvalues
associated with a family (\A. ). of p-Laplacian type operator A, (v) = —div(ac(-, Vu(+)),
with fixed p. Assuming that A. derives from a convex and p-homogeneous integral
functional F.(v) = [, fe(x, Vo(z))dz, the k-th eigenvalue A¥ of A. is given by

F.
PUERES inf{sup L;}) : G CLP, genus(G) > k} )
vea [|vlIZy

so that A* is a particular critical point of the Rayleigh quotient % (we also refer
to section §2 for a more precise presentation). The main contribution we give to
the problem of this asymptotic study is a positive answer to a question raised in
[5]. In this last work it was proved that the limit of any sequence of eigenvalues
is an eigenvalue of the limit problem and that the sequence of the first eigenvalues
(i.e. when k = 1) converges to the first eigenvalue of the limit operator. It follows
from the present work that the sequence of the k-th eigenvalues converges to the
k-th eigenvalue for any greater k (see §5, Theorem 5.1).

These two problems of asymptotic behavior have the same structure

Ap = inf{sup (V) : G C LP, genus(G) > k},
veG [[vllzen

where the family (F},),, converges to some limit functional. The technique we use to
study these problems is based on the notion of I'-convergence (see the next section
for details). The I'-convergence was introduced in [14] to deal with convergence of
minimizers of sequences of functionals. Here we deal with some critical values of
sequences (Fy, ), of functionals which I'—converge. This is done by introducing a
new sequence of functionals whose arguments are compact sets of the L? spaces, and
by endowing with the Hausdorff metric the set of compact subsets of the suitable
space. This gives rise to a unified treatment in a general framework of the two
problems mentioned above (see §3, Theorem 3.3).

A relative advantage in dealing with these problems using the I'-convergence is
that we do not need to have a limit operator and that we know that the limit critical
value is of saddle type. Let us finally underline that our method gives a general
scheme to deal with I'-convergence and critical points obtained via an index theory.

2. DEFINITIONS AND PRELIMINARY RESULTS

2.1. I'-convergence. _
Let X be a metric space, a sequence of functionals F, : X — R is said to I'-converge
to Fo at x if

Fyo(z) = T —liminf F,,(x) = T' — limsup F, (z), (2.1)
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where
{ I —liminf F,(z) = inf {liminf F,(z,,) : @, — z in X},

2.2
I —limsup Fy,(z) = inf {limsup F,(z,) : an — z in X }. (22)

The I"'—convergence was introduced in [14], for an introduction to this theory we
refer to [15] and [4]. The following is a variation of a classical theorem which reports
properties of I'-convergence that we shall use in the following.

Theorem 2.1. Assume that the sequence (F,)nen of functionals is such that

I' —liminf F,, > Fq on X,

n—-+o0o

where Fo is lower-semicontinuous on X. Assume in addition that the sequence
(Fy)n is equi-coercive on X, then

n—-+oo \z€X

(1) limin (inf Fn(:z;)> > inf Foo(z),

(2) if lim (mf Fn(;v)> = Ilg;f( Foo(z), then one has Foo(2o0) = mlg;f{ Fo(x)

n—+oo \zeX
for any cluster point xo of a sequence (x,)nen such that

Vn eN F(x,) < ini F.(x)+e,
EAS
with €, — 0 as n — oo.

2.2. Krasnoselskii genus.

We recall here some basic facts about the Krasnoselskii genus which will be used
in what follows. We refer to [26, 27| for a more complete introduction on the index
theories.

Definition 2.2. Let E be a real Banach space and let A C E be a nonempty closed
symmetric set (i.e. A= —A). The genus y(A) of the set A is the integer defined
as

inf{m € N : there exists a continuous and odd mapping ¢ : A — R™ \ {0}},

where the above infimum is assumed to be +oo if the set above is empty.

Remark 2.3. The following elementary properties hold:

(1) If 0 belongs to A then v(A) = +oo,
(2) Al C AQ implies ’}/(Al) < "y(AQ)

We will need the following continuity property of the genus (see Proposition 5.4
of [27] or Proposition 7.5 of [26] for a proof).

Proposition 2.4. Assume that A C E is compact, then there is a symmetric

neighborhood N of A in E such that v(N) = v(A).

2.3. Hausdorff convergence of compact sets.
Let (X, d) be a metric space, and denote by K the set of the compact subsets of X.
The distance dy : K x K — Ry is defined as
dn (G, F) :=supd(x, F) 4+ sup d(y, G).
zeG yeF
It is easy to check that (K, d3) is a metric space and to check the following property
(a reference for this part is [1])
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Proposition 2.5. If X is compact then (IC,dy) is compact.

As an application of Proposition 2.5 we obtain two examples which will be useful
in the sequel of the paper.

Example 2.6. Let Q be an open subset of RV with Lipschitz boundary. By a
standard application of the Sobolev compact embedding theorems we get:
e Let p € [1,00) and ¢ > 1 such that ¢ € [N, 0] or ¢* := NN—_qq > p , then the
set

{G c W) | G is closed and bounded by C in W, %(Q)}

equipped with the Hausdorff distance induced by the LP norm is compact
for any constant C' > 0.
e Let g € (N,00] and C > 0, then the set

{G c W) | G is closed and bounded by C in W, %(Q)}

equipped with the Hausdorff distance induced by the sup norm of Cy is
compact.

We will need the following characterization of the Hausdorff convergence which
can be obtained directly from the definition:

Proposition 2.7. If (K,,), is a sequence in K, then K,, — K with respect to dy
if and only if
(1) for each sequence (), such that x, € K, for all n, any accumulation
point x € X for (x,)n belongs to K,
(2) for each point x € K we can find a sequence x,, with x,, € K, converging
to x.

The next lemma of elementary proof will be useful to study the behavior of the
genus with respect to the Hausdorff convergence of compact sets.

Lemma 2.8. Let (K,,), is a sequence in IC converging to K with respect to dy.
Then any open set A C X which contains K also contains K, for n large enough.

2.4. Nonlinear eigenvalues of p-Laplacian type operators.
In this section we introduce the basic definition for the eigenvalues of the p-Laplacian
and some generalization to p—Laplacian type operators.

From now on, € denotes a bounded connected open subset of R with Lipschitz
boundary. In the following, p is a real number in |1, +o0o[ and we shall denote by
|||l the usual norm of LP(Q) (or LP(2; RY) when dealing with the gradient of some
element of W,*(2)).

An eigenvalue of the p—Laplacian operator —A, is a real number A for which
the problem

—Apu = —div(|VulP~2Vu) = Mu|P~2u  in Q,
u=0 on 01,

has a non-zero solution in VVO1 'P(Q). This problem (and its generalizations to mono-
tone elliptic operators) has been widely studied in the literature and for more de-
tailed treatment we refer to [2, 8, 13, 18, 19, 20, 24]. Much is still unknown about
the eigenvalues of the p—Laplacian operator. However let us report some of the
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known results which will be relevant for this paper. Every eigenvalue is a critical
value for the Rayleigh quotient

V=

JoVolrds - ||Vv||g)

Jo lvlpdz vl

which is a Gateaux differentiable functional on W, *() outside the origin. More-
over, a sequence ()\];)kZI of eigenvalues can be obtained as follows (we refer to
[18] and [24] for details). Denote by XF(€) the set of those subsets G of WP ()
which are symmetric (i.e. G = —@G), contained in the set {v : ||v||, = 1}, strongly
compact in W, ?(Q) and such that v(G) > k, and set
A = Gelgf,;f(m ael IVelly

Then each )\’; defined as above is an eigenvalue of the p-Laplacian operator and
)\’; — +o00 as k — oo. Moreover it is known that )\Zl) is the smallest eigenvalue of
—Ap, that it is simple (see [7] for a short proof) and that the operator —A, doesn’t
have any eigenvalue between )\Zl) and )\12).

As a consequence of our results (see Corollary 3.6), we shall get that the above
definition of the k-th eigenvalue may be rewritten

A= min  sup |[|[Vul?. 2.3
P = Gl uegH 15 (2.3)

In the above formula G¥(€2) is the set of those subsets G of W,?(€) which are

symmetric, contained in the set {v : ||[v||, = 1}, closed and bounded in W, ()
(and thus compact in LP(€2)) and such that v(G) > k, where v(G) is the genus of
G as a subset of LP().

More generally, consider a p-Laplacian type operator A : Wol’p(Q) — W=LP(Q)
of the form A(u) = —div(a(x, Vu(x))) where the function a : QxRY — RY satisfies
(h1) a is a Carathéodory function i.e. a(x,-) is a continuous function for a.e.
z € Q and a(+, ) is measurable for every £ € R™,
(h2) a(x,-) is positively homogeneous of degree p — 1 for a.e. z,
(h3) a(x,-) is odd for a.e.
(h4) a is cyclically monotone, i.e.
> al@, &), &y — &) <0
i=1
for a.e. ¥ € Q, any m > 2 and &, ...,&, € RY (with &,11 = &)
(h5) there exists 3 > a > 0 such that the following growth conditions hold

alel” < (a(z,€),&)  and  la(z,)| < BlEFT
for all £ € RY and for a.e. z € Q.
Then an eigenvalue A for A is a real number for which the problem
{ —div(a(x, Vu(z))) = Nu(z)[P2u(z) for a.e. z in Q,
u=0 on OS2
has a non-trivial distributional solution in W, (). Under the hypothesis (h1-5),

there exists an integrand f : Q x RV — R, satisfying the following assumptions
(we refer to Lemma 3.1 and Proposition 3.2 of [5]):
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(al) f is a Carathéodory function,

(a2) f(x,-) is convex, differentiable with gradient a(z,-),
(a3) f(x,-) is positively homogeneous of degree p,

(a4) f(x,-) is even,

(ab) the following growth conditions holds

alé]? < f(z,§) < BIEP
for all ¢ € RY and for a.e. z € Q,
Then for any integer k£ > 1 one can define the k-th eigenvalue of A as being

M= inf  su / x, Vu)dx. 2.4
cadiy S Jo TV 24

Then, part of the study of the homogenization process for the eigenvalue prob-
lems associated to a family A. := —div(ac(-,-)) of monotone elliptic operator of

p—Laplacian type reduces to the study of the limit of a family of problems like
(2.4).

3. A GENERAL CONVERGENCE RESULT

In this section we state and prove the main result of the paper. In the following,
(F:)e>o0 is a family of functionals defined on L!(2) with values in [0, +-0c] such that:
(A1) for any £ > 0, F; is convex and 1-homogeneous;
(A2) there exists 8 > « > 0 such that for any € > 0 there exists p. € [1, +o0]
for which

{ a|Volp, < Fe(v) < B|IVoll,,  if ve Wy (),

F.(v) = +o0 otherwise;

(A3) the family (pc)e>o converges to some pg € [1,+00] and the family (F;)c=o
I-converges in LP°(Q2) (or Cp(R2) if pg = +00) to some functional Fp.

Notice that the functional Fj also satisfies (A1) and (A2).

Remark 3.1. In the case p. = +o0, the notation W, () stands for W1 (Q) N
Co(f2). Notice that this last space strictly contains the closure of C°(Q2) in W1°(Q),
and is thus larger than the space usually denoted by WO1 °°(Q): the reason for our
notation is that W1°°(2)NCo(Q2) is the natural limit space for W, (Q) as p — +oo.
In the following, the notation G¥ () generalizes that given in §2.4.

We now define a common framework for the study of the non-linear eigenvalues
of the family (F.).. In the rest of this section, we shall denote by Ks(£2) the set
of compact symmetric subsets of LP°(Q2) (or Co(R2) if pg = 4+00), and by dy the
Hausdorff distance induced on ICs(2) by the usual norm of Lo (Q).

Lemma 3.2. There exists o > 0 such that for any e < eo, the set GE (Q) is
included in Ks(2). Moreover, the genus of an element G € gj;s (Q) is the same as
its genus as an element of Ks(Q).

Proof. We first consider the case py € [1,+00[: as p. — po, there exists g > 0
such that p. > %popo for any € < gg. For such ¢, since an element G of Qﬁs Q)
is closed and bounded in W, *<(2) we infer from the Sobolev compact embedding

theorems that G is in fact a compact subset of LP°(£2). In the case pg = +00, it is
sufficient to take €9 > 0 such that p. > N + 1 for any ¢ < €g.
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Let € < ¢, and assume that p. > po: then the identity mapping ¢ : LP=(Q) —
LPo(Q) is continuous, and since G is compact in LP<(Q), the sets G and i(G) are
homeomorphic so that the genus of G as as subset of LP= () is the same as its genus
as a subset of LP°(Q). When p. < pg, the same argument works with the identity
mapping i : LP°(Q) — LP<(Q). O

For any integer £ > 1 and number £ > 0, we associate to F; the functional
JE KCs(2) — [0, +00] given by

sup F.(v) if G € GF (),
JHNG) = veG b
+00 otherwise.
Generalizing the definition (2.3) introduced in §2.4, we define the k-th eigenvalue
of the functional F. as

A= inf  sup FL(v
£ GGQ’;E veg 5( )

and we deduce from Lemma 3.2 that for € small enough this can be rewritten
A= inf {JFG) : Ge k()] .

We can now state the main result of this section, which in particular yields that
M Ak as e — 0

Theorem 3.3. Let k be a positive integer, and assume that the family (F.)e>o satis-
fies (A1-3). Then there exists g > 0 such that the family (J¥)o<c<<, is equicoercive
on (Ks(Q),dy),

[ — lim inf JE > b on Ky(Q)

and
li inf J¥G) )= inf JHG).
ey (Gell?s(ﬂ) 4t )) Gexa(9) 0(@)
Proof. We divide the proof in three steps.
Step 1. Equicoercivity. We first consider the case py € [1,400), and define an
exponent g > 1 depending on the dimension N and pg as follows:

1 if N=1or N >1andpo € [1, 5],

q(Po, N) :=q:= .
(Po, N) {]{,Vf;o if po € (2, +00).

Let § = 224 and g9 > 0 such that for any ¢ < g9 we have p. > ¢ + ¢ (notice
that for pg = 1 one has 6 = 0 thus p. > ¢ for any ¢ > 0). Observe that the critical
exponent (q + 6)* is always strictly greater than py.

Let ¢ < g9 and G. € K4(Q) be such that J*(G.) < C. By definition of J* and
property (A2) the estimate ||u||W01,p5 @ < € holds for all u € G. and this implies

a1 C
lullwg.ovs gy < Q7775 — < K

where K is a constant independent of € < €g. By Proposition 2.5 and the first part
of Example 2.6, the sublevels {J. < C} are contained in a common compact subset
of (Ks(Q),dy) for & < &g, so that the family (J*)o<.<c, is equicoercive.

In the case pg = oo we follow the same scheme but we choose ¢y such that
pe > N + 1 for € < €9 and use the second part of Example 2.6.
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Step 2. We show the I'-liminf estimate. To this end, let G € Ks(Q2) and (Ge)eo
be a family such that G, g G, we shall prove that

liminf JA(G.) > JE(G).

Without loss of generality, we may assume that there exists a constant C > 0
such that J¥(G.) < C for any e > 0. Let us first show that v(G) > k. By
Proposition 2.4 there exists an open symmetric neighborhood N of G in LP°(Q) (or
Co(Q) for pg = +00) such that y(N) = v(G). We then infer from Lemma 2.8 that
G. C N C N for ¢ small enough. By the second property in Remark 2.3, for such

an € > 0 we get

k< ~(Ge) < y(N) =7(G).
Let now u € G, by the sequential characterization of the Hausdorff convergence
of compact sets (Proposition 2.7), there exists a (generalized) sequence u. € Ge
which converges to u in LP°(£2). By the I'—liminf inequality for the functionals F
(assumption (A3))

e—0

Fy(u) <lim iélf F.(ue) <liminf (sup FE) = lim i(IJlf Jsk(GE).
E—> Gs E—>
Taking the supremum for u € G gives the claim.

Step 3. By the two previous steps and Theorem 2.1, we infer that it only remains
to prove that

li inf JEG)) < inf JHG).
lgljgp<cellgs(ﬂ) e )) = Gers (@) 0 (@)

We assume that . il?f(ﬂ) J§(G) < 400, otherwise there is nothing to prove.
€

s

We fix 6 €]0,1[ and first study the case py €]1,4+00]. Let Gy € Ks(€2) be such
that

inf JN(G) > J§(Go) -6
GEII?S(Q) 0(G) = J5(Go)
Since Gy is compact in LP°(L2), there exists a finite family (u');<;<m in Go such
that
Go C " BLPD(Q)(Ui,é)
i=1 g
We infer from hypothesis (A3) that for any ¢ € {1,...,m} there exists a family
(ul)e in LPo(Q) such that

ul — u'in LP°(Q) and F.(ul) — Fp(u') as € — 0.

Taking ¢ as in step 1, for any € €]0, o[ we define C: to be the convex closure of
the finite symmetric set {+ul :i=1,...,m}. We may assume that F.(ul) < +o0
for any ¢ and any such &, so that the finite dimensional set C; is a compact convex
subset of W,7* () and L?(Q). Now let 1 < ¢ < po be such that

5
Vie {l,...,m} Juily = 1- 2.

We denote by P- the projection onto C. for the norm of L4(2), for which C. is also
compact. Then we notice that for any v € G there exists i € {1,...,m} such that
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[v—ui|p, < £, therefore
1P-()llq = Nulllq = 1P (u') = uilly = [ Pe(v) = Pe(u')]q
)
%
Since ul — u® in LP°(2), thus also in L%(Q), we get that for any e small enough
one has

> ugllg = lu' = uglly -

d
PE(GQ) c C; \ BLq(Q)(O,l - —).

2
Also notice that the element P.(Gp) of K4(Q) satisfies v(P-(Go)) > k. Then con-
sider the functional ¢ : P.(Go) — Wy P () given by ¢.(v) := Hvﬁp and set
Ve €]0,¢e0[, Ge = ¢:(P:(Gp)).

Since ¢. is continuous on P.(Gp), G- belongs to G (€2). Moreover for & > 0 small
enough one has p. > ¢ so that

[« %)

1

Yo € P.(Go) 1—2 < |ollg < JJollp. |75

\]

As a consequence one gets

JHG.) = sup{FE <ﬁ> :vePE(GO)}

Qs #e
< ﬁsup {F. (v) : ve P(Go)}
)
2|02 7 200~ v :
~ T{SSHP{FE (’U) : ’UECE} = 2_725128;:” {Fg (U’E)}
As a consequence we have
li inf J¥G)) < 1 J.(G
o (ol #9) = e
1 1
2|Qs 7o K
< - f .
- 02— <Ge11&(9) o (@))+ 5>

The conclusion of step 3 then follows by letting § go to 0 and ¢ go to pog.
For the case pg = 1, one has to slightly modify the above argument. We just

notice that Gy being bounded in W, (), it is in fact compact in Lo (©). We
can then proceed as if py = % and follow the same arguments. Notice that this
works because if
u' — u'in L'(Q) and F.(ul) — Fy(u') as e — 0
and if the family (F;). satisfies the uniform growth condition (A2), one infers that
(ul). is bounded in W11(€2) so that
ul — ' in LoV (Q).

O

Remark 3.4. The argument used in the third step of the above proof is an adaptation
of the proof of Lemma 4.3 in [23]. Notice that the approximating family (Ge¢)eso0
does not converge to Gy in ICs(£2), but to a set that can be somewhat larger: this
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is due to the convexification procedure, which on the one hand ensures that the
genus does not decrease, but on the other hand enlarge the approximating sets.

Remark 3.5. The proof of Theorem 3.3 presented above allows to handle in a
unified way a wide variety of asymptotic problems, namely all of those covered by
the hypotheses (A1 —3), such as those of the two following sections. We only notice
that the case pp = 1 requires a specific treatment in Step 3 to handle the fact that
the projection in the L'-norm may be multivalued since this norm is not strictly
convex.

We notice that in the third step of the above proof, for any positive ¢ the set
G. constructed above belongs to E’;E: indeed, it is finite dimensional, and thus

compact in Wol’ps (©). As a consequence, if Theorem 3.3 is applied to a constant
family F. := Fy for any € > 0, one obtains the following result.

Corollary 3.6. Let p € [1,400|, and assume that a functional F : LP(Q) —
[0, +00] is convex, 1-homogeneous and satisfies

al|Voll, < F(v) < BIVoll, if ve Wy (9),
F(v) =400 otherwise;

for some constants 3 > « > 0. Then for any positive integer k one has

inf sup F(v) = min sup F(v).

Gesk veq GeGr vea
Proof. We just need to justify that the minimum on g;; is attained. To this end
we notice that the functional J* associated with F is coercive on Ks(Q2) as an
application of Theorem 3.3, and the I'-liminf estimate of this Theorem also yields
that J* is lower than its lower semi-continuous envelope, so that it is l.s.c. on
Ks(£2). This functional thus attains its minimum on KCs(2). O

4. LIMIT AS p — o0 OF THE EIGENVALUES OF THE p-LAPLACIAN

In this section we will apply the results of Section 3 to the approximation of the
so called oco-eigenvalue problem [20]. We first fix some notations, and then consider
some consequences of the approximation results.

As we will consider the limit as p — oo of the k-th nonlinear eigenvalue of the
p-Laplacian defined by (2.3), throughout this section & will denote a fixed positive
integer. Without loss of generality, we also assume that p > N + 1 in the following.
Since W, 1(Q) is compactly embedded in Co(Q), we shall also assume that we
work with the continuous representative of every function v € W, ?(Q). Finally,
we denote by Ks(Q2) the set whose elements are the compact symmetric subsets of
Co(9).

For p € [N + 1,+00], we now define J% : K,(€2) — [0, 40c] by

k _ SupuEG ||vu||10 it G € glzc)(Q)u
Jp(G) = { +00 otherwise.

As explained above, any element G € Gr(2) may be considered as an element of
Ks(€2) so that one may rewrite (2.3) for p € [N + 1, +00) as

A5YF = min{J*(@) : G € K,(Q)} (4.1)
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where the minimum is attained thanks to Corollary 3.6. In a more detailed form,
(4.1) reads

(/\’;)5 = min{sggHVva : G e Ks(Q),

G CWoP( @) n{v: ol = 1},7(G) > k}.

We shall study the I'-convergence of the family (J)), in the space (K,(€2), dy):
in what follows, the distance ds; will denote that induced on ICs(£2) by the sup norm
Il on Co ().

Notice that in the setting of the previous section, the family (J;f)pz N1 IS asso-
ciated with the family (F.).«_1_ where F. is given on L'(Q) by

— N+1

F.(v) :—{ Vol it v e Wo™(®),
+00 otherwise.

As a consequence of the proof of Lemma 3.2 we know that the genus of G € G} (Q)
as a subset of Wol’p(Q) is the same as its genus as a subset of Co(£2), so that from
now on, we shall always assume that the genus is that computed in Cy(2). It
also follows from Theorem 3.3 that the family (lef)pe[ N+1,400] 18 equicoercive on
(ICS (Q)7 dH)

We now study the I'-limit of the family (JZ’f)pZNH as p — oo. In this case we
are able to prove the full I'-convergence of this family to the functional J% .

Theorem 4.1. Let k be a positive integer. Then the family of functionals (J,lf)pzNH
I'-converges to JE in K4(Q) as p — +oc.

Proof. The I' — liminf inequality follows from Theorem 3.3. We thus turn to the
proof of the I' — lim sup inequality: let G, € Ks(£2) be such that JX (Goo) < +o00,

we have to define a family G, ™ G such that

lim sup J]f(Gp) < JE(Gu).

p—00

Since G is a compact subset of {v : ||v||oc = 1} and the L™V *!-norm is contin-
uous with respect to the L*°-norm we infer

0 <m :=min{||u||n+1: v € Goo} < max{|Q, 1} min{||ull,: v € Goo}
for any p > N +1. Then the application ¢, : Goo — Co(2) given by ¢, (u) = Tl 18
p

well defined, bijective and continuous on G. For p > N +1 we set G, = ¢p(Goo).
Since G is compact in Co(2), so is Gp in LP(Q) and we conclude that v(G) =
v(Gp). As a consequence, G, € GF(€2) and we have

Qs
>N+1 k < | k (Goo). 4.2
Vp=> N+ Jp (Gp) < min{||ull,: u € GOO}JOO(G ) (4.2)

Taking the lim sup as p — oo one gets
lim sup JZIf(Gp) < J* (Gy).
pﬂoo
It remains to prove that G by Go- We infer from the equicoercivity of JI’f and
the previous argument that the family (G)p)p>n+1 is precompact in /Cs. It is easily

seen that any cluster point of (G)), as p — 400 contains G. Let (u,), be such
that u, € Gp, for any p and assume that a subsequence (u,, ), converges to some
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u € Co(€2). For any n there exists v, € G such that up, = ¢p, (vn). Since G
is a compact subset of Cy(2), we can assume without loss of generality that (v, ).,
converges uniformly to some v € G, but then

[onllp, = lolle =1

and it follows that u = v belongs to G, so that any cluster point of (G,), in Ky
is included in GG, which concludes the proof. (I

Remark 4.2. It results from Theorem 4.1 that the functional J is coercive and
lower semi-continuous on ICs(2).

As a consequence of the previous Theorem and the basic properties of the I'-
convergence, we get, the following convergence result for the k-th eigenvalues.

Theorem 4.3. Let )\’; be the k-th eigenvalue of the p-Laplacian operator, then
(1) lim (A7 = A% where

p—00

AF = min  sup ||Vu
°° GegiE () ueg” e

= min{ sup ||Vulleo : G € Ks(9Q),
ueG

G C Wy (@) N {v: vl = 13,7(G) = k}.

(2) Let (Gp)p be a family in KCs(Q2) such that G, € gﬁ(ﬂ) and J]f(Gp) =
min{J}(G) : G € Ks(Q)} for any p. If for some sequence pr — +00

one has Gy, dn o, then JE (Go) = AR,
Remark 4.4. The point (1) also reads:

lim min sup|Vul[, = min sup|Vul .
p—0o0 GeGE(Q) weG GeGr () ued

Moreover, notice that if G, € G}(Q) is such that J]f(Gp) = ()\’;)% for any p, then it
follows from Theorem 4.1 and 4.3(1) that the family (G})p>n+1 is precompact in
Ks(9).

Proof. We first notice that the family ((/\’;)%)p is bounded as p — +o0. Let G €
G% be such that sup,cq_ [|[Vulloo < +oo. With the notations of the proof of
Theorem 4.1 and using (4.2), we get

max{|Q], 1}Jk (Go)

()7 =min{JF(G) : G € Kal@)} < I (0p(Cec)) € =

for any p > N + 1. Since the right hand side does not depend on p, this proves the
claim.
As a consequence, the family (n’tlcln J]f)p is bounded, so that (1) and (2) are

straightforward consequences of Theorems 2.1 and 4.1. (]

We also get the following result for the corresponding k-th eigenfunctions
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Theorem 4.5. For any p > N + 1, let u, € Wy P(Q) be a distributional solution
of
—div(|Vuy[P~2Vu,) = )\I;up|up|p_2 in €.

Assume that ||upllp, = 1 for any p > N + 1, and that (up to subsequences) (up)p

converges in Co(2) to some us € Wol’OO(Q) as p — oo. Then there ezxists G €
Ks(Q) such that

Uoo € Goo and [Viuslloo = JE(Gs) = A%

Remark 4.6. It follows from Lemma 5.2 in [20] that the cluster point ue, is a
viscosity solution of

min{|Vu| — A¥ u, —Au} =0 in {u> 0},
~Aoou =0 in {u =0}, (4.3)
max{—|Vu| — A¥ u, ~Agu} =0 in {u <0},

and by the definition given in [20] this means that us is an eigenfunction of the
infinite-Laplacian for the co—eigenvalue A*_.

Proof. The key point is to show that ||Vus|lcc = AX,. To this end, we notice
that ||uco|loc = 1 and assume without loss of generality that ueo(xo) = 1 for some
o € .

Since ||Vuyll, = ()\k)P — A* | we infer that |Vus|lee < AX . We show by
contradiction that || Vuee|leo > AL : otherwise, one would have ||Vue|loo < L <
A% for some L > 0. Let ¢ € V[/lifo(RN) be defined by ¢(x) = —L|x — x¢|, then
Uso — ( attains a strict minimum on Q at xg. For any 6 > 0, consider ¢s5 := ps * @,

where ps is a mollifier, i.e. ps(z) := 6" p(%) for some function p such that

p € C(RYM [0, +00]), spt(p) C B(0,1) and / p(x)dx =1.
RN

As s —  uniformly on Q as § — 0, we infer that v — ¢; attains a local minimum
on 2 at some z;5 for § small enough, and that x5 — z¢p as § — 0. Since u is

a viscosity solution of (4.3), we conclude that |Vs(zs)| > AR u(zs) for § small
enough. It remains to notice that

[V(zs)| ‘/ Y)Ve(zs —y)dx| < L

and u(zs) — 1 to obtain the contradiction L > A by letting J go to 0.
Now, let Fu, € Ks(€2) be such that JE (Fl) = Ak ,and set Goo 1= Foo U{Fus},
then G satisfies the desired property. O

Remark 4.7. Notice that for a given G € K4(Q2) with JE(G) = A%, a function
u € G such that |Vu|w = AL is not necessarily a viscosity solution of (4.3).
Indeed any function v € Wy (Q) with |[Vv|ee = A% and ||v]ee = 1 may be
“added” to such a set G by considering G U {£v}, but in general such a function
can’t be expected to be a solution of (4.3). The above Theorem asserts that the
limits of critical points of the Rayleigh quotients are also in the viscosity sense
critical for the limit problem.
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5. HOMOGENIZATION OF NONLINEAR EIGENVALUE PROBLEMS FOR p-LAPLACIAN
TYPE OPERATORS

In the following, p is a fixed real number in [1,+00[ and k a positive integer. Let
from and the family (f:)c>o be integrands on € x RY satisfying the assumptions
(al) to (ab) of §2.4 for some common positive constants «, 3. For any € > 0, we
define the functional F; : LP(2) — [0, +o00] by

(z, Vo(z))dz  if ve WHP(Q),
YRS B WECA 20 (@)
400 elsewhere.

For any € > 0 we consider the k-th eigenvalue problem for F., which can be written
thanks to Corollary 3.6 in the following way
M= min sup [ fo(z,Vu)dz := min  sup F.(u).
Gegr(Q) wea Ja GEGL(Q) uea
We are interested in the convergence of the family (A\F).~o as ¢ — 0. Following
section §3, we shall denote by Ks(€2) be the set whose elements are the compact

symmetric subsets of LP(Q2), equipped with the Hausdorff distance dz induced on
by the norm ||.||,. We also define J* : ICs(€2) — [0, +00] as follows:

JHG) = sup{F.(u)? : ue G} if G e Gh(Q),
€ +00 otherwise.

rom and JF - are defined in the same way as above. Since
any element G € G} () may be considered as an element of Ks(£2) one has

Ve>0 A = min{J*G)? : G € K,(Q)}.

As a direct consequence of Theorem 3.3 we then get the following convergence
result.

The notations Flom, AF

Theorem 5.1. Let the above hypotheses hold, and assume that the family of func-
tionals (F:)e>o I'-converges in LP () to From ase — 0, then for any positive integer
k one has

PU 4 =  min sup Fhom(u
£ hom GGQQ(Q) ypr om( )

as € goes to 0.

In [5] the authors consider the homogenization for non-linear eigenvalue problems
related to a family of monotone elliptic operators of the form A, := —div(a.(:,"))
which G—converge to an operator Ap, of the same form. Under the assumptions
(h1-5) the operators A, are the sub-differentials of integral functionals of the type
F. whose integrands satisfy (al-5), see §2.4. Theorem 5.1 then implies that for any
positive integer k the generalized sequence of the k-th eigenvalues (as defined in
section §2.4) of the operators A. considered in [5] converges to the k-th eigenvalue
of the limit operator.

Remark 5.2. Theorem 3.3 also yields that T' — liminf J* > JF =~ on Ks(€2), but
unlike in the previous section one can’t expect the family (Jsk)8 to I'-converge to
JF .. Indeed, in Theorem 5.1 it is only assumed that (F.).~o [-converges in LP(Q)
t0 Fhom, whereas in section §4 the functionals F(v) = ||Vo[[1 not only I'-converge

but also pointwise converge to Fo(v) = ||Vv||eo on Co(€2), which allows to obtain the
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[-limsup estimate for (J¥).. Of course the proof of Theorem 4.1 could be adapted
to get that (J). T-converges to JF = when (F.).~o also converges pointwise, but
this last hypothesis is not usual in the context of homogenization.
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