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a b s t r a c t

The role of cancer stem cells (CSC) in tumour growth has received increasing attention in the recent

literature. Here we stem from an integro-differential system describing the evolution of a population of

CSC and of ordinary (non-stem) tumour cells formulated and studied in a previous paper, and we investi-

gate an approximation in which the system reduces to a pair of nonlinear coupled parabolic equation. We

prove that the new system is well posed and we examine some general properties. Numerical simulations

show more on the qualitative behaviour of the solutions, concerning in particular the so-called tumour

paradox, according to which an increase of the mortality rate of ordinary (non-stem) tumour cells results

asymptotically in a faster growth.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent paper [2] we considered a mathematical model (in

the wake of [8,10]) that describes the growth of a tumour char-

acterized by the presence of cancer stem cells (CSC). These cells,

that have been identified in many cancers (see [1,4,5,7,11,12]), are

practically immortal and are pluripotent, in the sense that af-

ter mitosis they can generate new CSC (a relatively rare event)

or non-stem cancer cells (CC).1 On the contrary, CC can only

generate CC.

The model mentioned above consists in a system of integro-

differential equations that describe the evolution of the volume

fractions of CSC and of CC, denoted by u(x, t) and v(x, t) respec-

tively.

The system has the following form:

∂u(x, t)

∂t
= DΔu(x, t) + δγ

∫
�

k(x, y, p(x, t))u(y, t)dy, x∈�, t > 0,

(1.1)
∗ Corresponding author. Tel.: +390552751403.

E-mail addresses: fasano@math.unifi.it (A. Fasano), mancini@math.unifi.it (A.

Mancini), primicerio@math.unifi.it (M. Primicerio).
1 As a matter of fact, CSC can generate several lineages of non-stem cells [14]. We

group all of them in a single sub-population since our main focus is on the role of

CSC in the growth of the tumour. c
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∂v(x, t)

∂t
= DΔv(x, t) + (1 − δ)γ

∫
�

k(x, y, p(x, t))u(y, t)dy

+ρ

∫
�

k(x, y, p(x, t))v(y, t)dy − αv(x, t), x∈�, t > 0,

(1.2)

with initial conditions

(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(u0, v0 ∈ [0, 1], u0 + v0 ≤ 1). (1.3)

In (1.1) and (1.2)

p(x, t) = u(x, t) + v(x, t) (1.4)

and:

• γ , ρ are positive constants representing the replication rates of

CSC and CC, respectively,
• δ, 0 < δ < 1, represents the fraction of symmetrical mitosis for

CSC, i.e. the mitosis producing two newborn CSC. In most cases

δ�1,

• k(x, y, p(x, t)) is the probability density that a cell located at y

generates a cell located at x,
• D ≥ 0 is the diffusivity of the cells (see Remark 2.2 below),
• � is the domain where the phenomenon takes place.

The dependence of k on the total cell population at x, p(x, t), ac-

ounts for a crowding effect. In other words, we assume that larger
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2 Here and in the following we use the notation of [9].
alues of p at a given point induce a lower probability that a cell

s generated at that point.

In the sequel, we will make the following natural assumptions:

(x, y, p(x, t)) = F (p(x, t))K(x, y), x, y ∈ �, t > 0, (1.5)

and we will suppose that

(x, y) � 0, K ∈ C(� × �) (1.6)

(p) is Lipschitz continuous in [0, 1], F (0) = 1, F (1) = 0, (1.7)

(p) is non-increasing and strictly decreasing at p = 1. (1.8)

Whenever necessary we will give F(p) constant extensions out

f the “physical” domain [0, 1].

The aim of this paper is to approximate (1.1) and (1.2) by a

ystem of two coupled PDEs of parabolic type, forming a system

f reaction–diffusion equations. The system will be shown to be

ell-posed, some qualitative properties will be analysed and some

umerical simulations will be provided.

The plan of the paper is the following: in Section 2 we will

how how (1.1) and (1.2) can be approximated by a reaction–

iffusion system by an argument similar to the one discussed in

3]; in Section 3 we will discuss the well-posedness of the prob-

em; in Section 4 we will give some numerical examples showing

hat the system exhibits the “tumour paradox” (i.e. larger mortality

f CC may correspond to faster growth of the tumour).

. The reaction–diffusion model

From now on, we refer to a one-dimensional case and we take

≡ (−∞,+∞).

Moreover, we assume that function K in (1.5) depends on x and

just through the distance between the two points, i.e.

(x, y) = K(|x − y|), x, y ∈ R. (2.1)

It will be a natural choice to assume that K(z) is a decreasing

unction of its argument, with “small” variance, of the order – say

of a few cell diameters. An obvious example is

(x, y) = σ−1π−1/2exp[−(x − y)2/σ 2]. (2.2)

At this point, we can approximate the integral on the r.h.s. of

1.1) as follows:

+∞

−∞
F (p(x, t))K(|x − y|)u(y, t)dy

= F (p(x, t))

∫ +∞

−∞
K(|x − y|)

× [u(x, t) + (y − x)ux(x, t) + (y − x)2uxx(x, t)/2 + h.o.t. ]dy,

o that, to the leading order

+∞

−∞
F (p(x, t))K(|x − y|)u(y, t)dy∼=F (p(x, t))[Au(x, t)

+Buxx(x, t)] (2.3)

here A is the integral of K and B is half of its second order mo-

ent, while the first order moment cancels, due to the symmetry

f K.

Of course, in case (2.2) we would have

= 1, B = σ 2/4. (2.4)

The same procedure can be applied to the integral involving v.

hus, we obtain the following system of reaction–diffusion equa-

ions:

t = Duxx + δγ F (p)[Au + Buxx], x ∈ R, t > 0, (2.5)
t = Dvxx + (1 − δ)γ F (p)[Au + Buxx]

+ρF (p)[Av + Bvxx] − αv, x ∈ R, t > 0. (2.6)

These two equations are supplemented with initial conditions

(x, 0) = u0(x) ∈ [0, 1],

v(x, 0) = v0(x) ∈ [0, 1], u0 + v0 ≤ 1, x ∈ R. (2.7)

Obvious conditions at ∓∞ are u = v = 0.

emark 2.1. It is clear that the integral term on the r.h.s of (1.1)

s non-negative. However, after the approximation (2.3), we cannot

ake for granted that the second term on the r.h.s. of (2.5) is non-

egative too; indeed, we do not have a priori information on the

ign and size of Buxx. Nevertheless, Au + Buxx will be non-negative

or “reasonable” initial data and for sufficiently “small” σ .

emark 2.2. There is a large debate in the literature on the rele-

ance of diffusive terms in (1.1) and (1.2). We believe that, in any

ase, if diffusion is taken into account it should depend on “crowd-

ng” and thus on p, and vanishing in the limit p = 1. In the spirit

f our approach, the diffusive terms, which is anyway very small,

an be included in the coefficient B.

For this reason we will put D = 0 in (2.5) and (2.6) from now

n.

. An existence proof

We will prove an existence result, locally in time.

heorem 3.1. Let u0, v0 ∈ C2+α and such that, for any x ∈ R

p0(x) = u0(x) + v0(x) ≤ 1 − M, M ∈ (0, 1), (3.1)

then problem (2.5)–(2.7) has a classical solution (u, v) in a suitably

mall time interval (0, T∗) which is such that

(x, t) + v(x, t) < 1 in R × [0, T ∗). (3.2)

roof. We use a fixed point argument.

We define the set (u, v) ∈ � as follows: take u, v both in
α, α

2 (R × (0, T ))2 for some T > 0, and such that u(x, 0) = u0(x),

(x, 0) = v0(x) for any x in R.

Moreover, assume

+ v ≤ 1 − N, 0 < N < M, ||u||α, ||v||α < K, (3.3)

or some K > 0 and not less than ||u0||α , ||v0||α .

Take (u, v) ∈ � and solve the uniformly parabolic system (recall

1.8))

t = δγ F (u + v)[AU + BUxx], x ∈ R, t > 0, (3.4)

t = (1 − δ)γ F (u + v)[AU + BUxx]

+ρF (u + v)[AV + BVxx] − αV, x ∈ R, t > 0. (3.5)

(x, 0) = u0(x), V (x, 0) = v0(x), x ∈ R. (3.6)

Eq. (3.4) can be solved independently of (3.5), providing U ∈
2+α for x ∈ R, t > 0 (see Theorem 8.1, p. 495 of [9]). Moreover

he norm ||U||α can be estimated only in terms of ||u0||α and N

see Theorem 1.1, p. 419 of [9]).

Taking the function Y (t) = ||u0||exp(δγ At), we consider the

ifference

(x, t) = Y (t) − U(x, t)

and we find

t − δγ F (u + v)(Aω + Bωxx) = δγ A[1 − F (u + v)]Y>0. (3.7)
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Fig. 1. t = 20.

Fig. 2. t = 30.
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So we conclude that ω > 0 on the basis of Theorem 5, p. 39

of [6].

Thus U ≤ ||u0||exp(δγ At) and we can choose T∗ small enough

to have

≤ ||u0|| + ε1 in R × (0, T ∗) (3.8)

for some positive ε1.

Moreover, the norm ||U||2+α
is estimated (see Theorem 8.1,

p. 495 of [9]) in terms of N, K and ||u0||2+α
. This gives an es-

timate for the first term in the r.h.s. of (3.5). Therefore, we can

possibly reduce T∗ to have

≤ ||v0|| + ε2, in R × (0, T ∗) (3.9)
or some positive ε2, so that

+ V ≤ 1 − N, in R × (0, T ∗). (3.10)

It remains to get an estimate for ||Vα || . If we proceed as we did

or U, the latter is going to depend on ||Ut||. Similarly, ||V ||2+α
will

epend on ||Ut||
α .

This means that it would be difficult to find a value of K such

hat ||V||α < K. Thus we proceed differently. Recalling again Theo-

em 1.1, p. 419 of [9] we realize that in order to get the desired es-

imate for ||V||α it is enough to start from an estimate of the norm
(2, 1) of U. Now, Theorem 9.1, p. 341 of [9] provides the desired

stimate, independent of K.

Next step to get the existence is to prove that the transforma-

ion (u, v) → (U, V) is a contraction in the norm of the uniform

onvergence, possibly in a smaller time interval.
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Fig. 3. t = 40.

Fig. 4. Integral of p = u + v as a function of time.
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Indeed, take (u1, v1) and (u2, v2) in � and consider the corre-

ponding problems (3.4)–(3.6). Because of their linearity in U, V, it

s easy to see that

|U1 − U2||0 + ||V1 − V2||0 ≤ CT [||u1 − u2||0 + ||v1 − v2||0], (3.11)

here ||.||0 is the uniform norm in R × (0, T) and the constant C

epends on the Lipschitz constant of F and on the C2+α norms of

i and Vi that were already estimated in terms of K and N. This

eans that, after a possible further reduction of T∗, the proof is

oncluded. �

emark 3.1. As a matter of fact the existence result just proved

efers to a problem that is more general than the physical problem.

ndeed, we did not use the assumptions on the positivity of the

nitial data. As a consequence, we did not get the positivity of U

nd V. We can observe that the positivity of U is an immediate

onsequence if u0 ≥ 0 (see e.g. Theorem 5, p. 39 of [6]); but even

or positive v the positivity of V is not granted unless we have
0
hat the second term on the r.h.s. of (2.3) is non-negative. As we

oted in Remark 2.1 this is in fact true for reasonable initial data

nd in any case in a suitable time interval if Au0 + Bu
′′
0

≥ λ > 0.

emark 3.2. If we suppose that the solution we have found is such

hat ut ≥ 0 (thus implying v > 0), then we can prove that it exists

or all times.

Indeed, the existence proof can be iterated unless if u + v
eaches the value 1. If this happens (for the first time) at some

x∗, t∗), then ut (x∗, t∗) + vt (x∗, t∗)≥0. However, since ut (x∗, t∗) = 0,

hen vt has to be non-negative requiring v(x∗, t∗) = 0.

However, on the other hand, we would also have

t ≤ δγ F (u)(Au + Buxx), x ∈ R, t ∈ (0, t∗) (3.12)

and hence

(x, t) ≤ Z(t) x ∈ R, t ∈ (0, t∗), (3.13)
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Fig. 5. Time evolution of the isoline p(x, t) = 0.8.
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where Z(t) is the solution of the ODE

dZ/dt = Aδγ F (Z)Z t ∈ (0, t∗), Z(0) = ||u0||, (3.14)

and Z(t) < 1 for any finite time, because of the Lipschitz continuity

of F.

4. Numerical examples

We took K as in (2.2), with different values of the widths σ u

and σ v of the Gaussian curves. We calculated the solutions of

(2.5)–(2.7) with different values of α (the mortality of CC), to see

whether they show the tumour paradox.

For numerical purposes, we normalized space coordinate w.r.t.

σ u and we calculated the solutions in the interval (−50, 50) that

is much larger of the region occupied by the cells. We imposed no-

flux conditions on −50, +50. Initial conditions (in the space nor-

malized variable) are

u(x, 0) = exp(−x2), v(x, 0) = 0, x ∈ (−50, 50). (4.1)

For symmetry reasons we can calculate the solution in (0, 50)

with zero flux at the boundaries.

For all the numerical simulations we based our code on the for-

tran library BACOLR [13] due to its adaptive error control capabili-

ties that resulted in a flexible and robust test bed.

Here we display some results obtained with the following val-

ues of the constants:

γ = 1, ρ = 1, δ = 0.2, σu = 0.5, σv = 0.1

and we considered two values for α, α = 0.25, α = 2.5.

Figs. 1–3 show u, v and p = u + v, as function of the (normal-

ized) space coordinate, at non-dimensional times t = 20, t = 30,

= 40, respectively.

Fig. 4 displays the integral of p = u + v as a function of time.

Finally, Fig. 5 shows the line where p(x, t) = 0.8 in the (x, t) plane.

The simulation clearly exhibits the appearance of the tumour

paradox.

5. Conclusions

We have described the evolution of a tumour where two differ-

ent malignant populations are present: ordinary, non-stem cancer
ells (CC) and cancer stem-cells (CSC). Starting from the integral–

ifferential formulation given in [2], a system of reaction–diffusion

quations was obtained and its well-posedness was proved.

Numerical simulations were performed in order to emphasize

he occurrence of the so called tumour paradox, a phenomenon

haracterized by an accelerated spread of cancer in presence of a

igher CC mortality rate (e.g. drug-induced).

A first evidence of the paradox is displayed in Figs. 1–3, where

he evolution of two tumours with different CC mortality rates

case (A): α = 0.25; case (B) α = 0.5 ) is compared.

Fig. 1 shows that at time t = 20 the total population p for case

A) is still everywhere larger than the one for case (B). The paradox

s evident in Figs. 2 and 3 showing that an interval where pB > pA

ppears and spreads.

The plots of u and v t = 20, 30, and 40 show that a higher

eath rate for CC leaves more space for the invasion of CSC.

Finally, a very clear illustration of the paradox occurrence is

rovided by Figs. 4 and 5. The former shows that the total tu-

oural mass in case (B) eventually supercedes the one correspond-

ng to lower mortality rate. Fig. 5 shows that the line p = 0.8 travel

aster in case (B) than in case (A), meaning that the tumour expan-

ion is paradoxically higher in case of higher CC mortality rate.
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