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Introduction

The foundation of the theory of complex algebraic curves goes back to the
Nineteenth century, and most of this theory remains valid for curves defined over
a field of zero characteristic. Instead, there are significant differences between zero
and positive characteristic, especially in the properties of automorphism groups but
also in the behavior of the fundamental groups. Furthermore, when the constant
field if finite, new aspects of the algebraic curves arise depending on their F,-
rational points, where F, is a finite extension of the constant field. For instance,
this gives rise to a generalization of the Riemann zeta function which leads to an
analogue of the Riemann hypothesis. The intrinsic theoretical interest towards
algebraic curves over finite fields is boosted by interactions with Number Theory
and Finite Geometry as well as relevant applications to error-correcting codes and
cryptography.

Most of the results of the present work concern maximal curves over a finite
field, their automorphism groups, and applications to Algebraic-Geometric codes.

The fundamental result in this area is the Hasse-Weil bound on the number
N, of Fy-rational points of a curve X of genus g defined over [,

q+1—29/q <N, <q+1+ 29/

Hasse proved the above bound for elliptic curves, although it was Artin to point
out the number of solutions of the congruence

y* = f(z) (mod p)

should satisfy the Hasse-Weil bound. For the general case the Hasse-Weil bound
was proved by Weil.

The curve X is F,-maximal if it attains the Hasse-Weil upper bound, that is,
Ny, = q+ 1+ 2g,/q; this requires g to be a square.

Computing the possible genera of [F,-maximal curves is an open problem, and
their spectrum is well understood only for large genera with respect to g.

By a result of Serre, a curve covered by an F,-maximal curve through an [Fy-
rational morphism is still F,-maximal; in particular, automorphism groups defined

1ii
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over [F, produce quotient curves which are F,-maximal. This gives a strong moti-
vation for the study of automorphism groups of F,-maximal curves.

For applications to Coding Theory, explicit equations of [Fj-maximal curves
are needed. This may be challenging, and tools from Finite Field Theory and
Combinatorics are often required.

The present thesis consists of four chapters.

Chapter 1 collects the basic definitions and results about curves over a finite
field and their function fields. The background on Algebraic-Geometric codes is
also given in Section 1.1. In Section 1.2 remarkable examples of maximal curve over
finite fields are presented. They include classical examples such as the Deligne-
Lusztig curves (Hermitian, Suzuki, and Ree curves), as well as recent examples,
namely the Giulietti-Korchmaros, the Garcia-Giineri-Stichtenoth, and the Garcia-
Stichtenoth curves.

Chapter 2 contains our original contributions to maximal curves. In Section 2.1
we construct Galois subcovers of the Giulietti-Korchmaros curves; we determine
the corresponding Galois groups and compute explicits equations. We also show
that some of such Galois subcovers are not isomorphic to a Galois subcover (in some
cases, to any subcover) of the Hermitian curve. Sections 2.2 and 2.3 are about the
Garcia-Giineri-Stichtenoth and Garcia-Stichtenoth curves, and the smallest Suzuki
and Ree curves. We show that they are not isomorphic to a Galois subcover of
the Hermitian curve. We heavily rely on deeper results on the structure of the
linear group PGU(3,¢) and the simple Suzuki and Ree groups. Section 2.4 is
concerned especially with certain cyclic covers S'q and 7~2q of the Suzuki and Ree
curves. We show that they are not Galois covered by the Hermitian curves H,
and H s respectively, and determine their full automorphism groups. The contents
of this chapter are also found in [54, 56, 92, 55].

Chapter 3 contains our original contributions to Algebraic-Geometric codes.
Section 3.1 deals with Kummer extensions of the rational function field; we extend
known results on the Weierstrass semigroup at many totally ramified points, and
provide new families of so-called pure gaps at these points; this is then applied
to obtain Algebraic-Geometric codes with good parameters. In Section 3.2 we
construct Algebraic-Geometric codes from the Giulietti-Korchmaros curves and
compute their parameters. Our idea is to consider divisors left invariant by a large
automorphism group. This choice provides indeed codes with large automorphism
groups, hence useful for the applications. The contents of this chapter are also
found in [8, 9].

Chapter 4 contains our original contributions regarding applications of curves
in related areas, namely Finite Geometry and Permutation Polynomials. Sections
4.1 and 4.2 deals with (k,r)-arcs in PG(2,q). For r € {3,4}, we construct (k,7)-
arcs from F,-rational points of a rational plane curve of degree r + 1. Their sizes



turn out to be less than ¢; this significantly distinguishes them from the previ-
ously known families. Section 4.3 provides constructions and characterizations of
certain Complete Permutation Polynomials over a finite field. The characteristic
2 case is useful in Cryptography as they give rise to Bent-Negabent functions. We
characterize Complete Permutation Polynomials of F,. of type f,(z) = az® with
d=(¢"—1)/(¢g—1)+ 1 in the case of n + 1 prime, using the known partial clas-
sifications of exceptional polynomials. The contents of this chapter are the object
of three published papers [6, 7, 5] and one submitted paper [10].

Finally, I wish to thank my supervisor, Professor Massimo Giulietti, for his
guidance at each step of my PhD program. This work, as well as many other
things in these years, would not have been possible without his support.
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Chapter 1

Preliminary notions on curves
over a finite field and AG codes

1.1 Algebraic function fields and curves

1.1.1 Algebraic function fields

In this section we summarize some basic concepts about the theory of function
fields. For the proofs and a more detailed exposition, we refer to [107, Chapters
1-4].

Definition 1.1.1. Let K be a perfect field. A function field F' over K is a tran-
scendental field extension F of K such that F' is a finite extension of K(x), for
some (and hence for any) x € F which is transcendental over K. The constant
field of F' is the subfield of the elements of I which are algebraic over K.

Throughout this section, F' will denote a function field over a perfect field K
of characteristic p > 0, with constant field K.

Note that, if K is algebraically closed, then K is the constant field of F'; if K
is a finite field F,, then K is the algebraic closure F, = U2 F.

Definition 1.1.2. A valuation ring of F' is a ring O C F such that K € O and,
for every z € F, we have z € O or 271 € O.

A valuation ring O of F'is a local principal ideal domain, and not a field; hence,
the following definition is well-posed.

Definition 1.1.3. A place of F' is the unique mazimal ideal P of some valuation
ring Op of F. Any generator of P is called a local parameter at P. We denote
by P(F) the set of places of F.
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Note that Op is uniquely determined by its maximal ideal P. Note also that
each z € F'\ {0} has a unique representation of the form z = t"u, where n € Z, t
is a local parameter at P, and u € O\ P; the integer n does not depend on the
choice of u.

Being a local PID, Op is also a discrete valuation ring (DVR); the discrete
valuation of F' associated with Op is the map vp : ' — Z U {00} defined by

000, 0#z=t"urn,

where ¢ is a local parameter at P and v € O\ P. The discrete valuation vp satisfies
the following properties, for all z,y € F' and A € K:

o vp(zy) = vp(r) +vp(Y).

o vp(z +y) > min{vp(z), vp(y)}.

o If up(z) # vp(y), then vp(z +y) = min{vp(z), vp(y)}.
o up(\) = 0.

The local parameters at P are exactly the elements ¢t € F such that vp(t) = 1,
while Op = {z € F' | vp(z) > 0}.

Definition 1.1.4. The residue class field of a place P € P(F) is the field Fp :=
Op/P. The degree of P is defined as deg(P) = [Fp : K|. If deg(P) =1, then P
is said to be a K-rational (or simply rational) place.

For any z € Op, we denote by z(P) the canonical image z + P; if z € F'\ Op,

we set z(P) := oo. Since K C Op and K N P = {0}, K is canonically embedded
n Fp.

Remark 1.1.5. ([107, Prop. 1.1.15]) If P is a place of F and 0 # x € P, then
deg(P) < [F : K(x)] € N.

In particular, deg(P) is finite.
If K is algebraically closed, then all places of F' are rational, and for any z € F

the map P+ z(P) is a function P(F) — K U {oo}.
We define zeros and poles of a non-zero function z € F.

Definition 1.1.6. Let z € F'\ {0} and P € P(F). If vp(z) = m > 0, then P is a
zero of z of order (or multiplicity) m; if vp(z) = —m < 0, then P is a pole of z
of order (or multiplicity ) m;
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Example 1.1.7. An example of function field is the rational function field, that
is, the extension F' = K(z) of K where x is transcendental over K. For any
irreducible monic polynomials p(z) € K[x] we have a valuation ring, namely,

Oy — {% | £.9 € Kla],plo) +g<x>} |

whose associated place is

Po@) = {M € Opw) | p(2) | f (-70)};

g(x)
we also have the valuation ring
_ [ [(@)
0n = {10 . € Klal,doxtf) < dexlo)},

whose associated place is
flx
Pe= {10 | 1.0 € Klol.destf) < desto)}.
g(x)
The so-called infinite place Py, is the only pole of x. The place Py, has degree
1 if and only if p(x) = x — a with a« € K; this happens in particular when K is

algebraically closed. Hence, the places of degree 1 are in one-to-one correspondence
with K U {00}, that is, with the projective line PG(1, K).

In order to state the Riemann-Roch Theorem, we start by defining the divisors
of F.

Definition 1.1.8. A divisor D of F' is an element of the free abelian group Div(F)
generated by the places of F, written additively. Namely,

D= npP, with np € Z, np =0 for almost all P € P(F).
PEP(F)

The support of D is supp(D) := {P € P(F) | np # 0}, the degree of D is

deg(D) = Z np - deg(P).
PEP(F)

Let vp(D) := np be the weight (or multiplicity) of P in D. Then the relation
Dy < Dy <= vp(Dy) <wvp(D3) forall P € P(F)

defines a partial ordering on Div(F'). A divisor D is called effective (or positive)
if D > 0.
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Any non-zero rational function z € F' has a finite number of zeros and poles.
Then the following definition is well-posed.

Definition 1.1.9. Let 0 # z € F, and let Z1 and Zy denote the set of its zeros
and poles, respectively. Then we define

(2= Y vp()P, (D)= D (~0p(2)P,  div(2) = (2) = ()0 = (2)oes

PeZ; PcZs

which are called respectively the zero divisor, the pole divisor, and the principal
divisor of z.

The number of zeros of z is equal to the number of poles of z, both counted with
multiplicity; in particular, deg(z)o = deg(z)e = [F' : K(2)] ([107, Th. 1.4.11]).
Therefore, div(z) has degree zero.

The principal divisors of F are the elements of the normal subgroup

Princ(F) := {div(z) | z € F,z # 0}
of Div(F). The divisor class group of F is the quotient group
CI(F) := Div(F')/Princ(F).

Two divisors Dy, Dy € Div(F) are said to be equivalent, Dy ~ Dy, if [D1] = [Ds] €
CI(F).

Definition 1.1.10. For a divisor A € Div(F), the Riemann-Roch space associated
to A is the K-vector space

L(A) :={z€ F|div(z) > —A} U{0}.
The dimension of L(A) over K is denoted by ((A).

In other words, the function z € F' is an element of £(A) if and only if any
pole P of z is in the support of A and the order of z at P is less than or equal to
vp(A). The following properties hold (see [107, Sec. 1.4]):

o If A~ B, then L(A) = L(B).
o If deg(A) < 0, then ¢(A) = 0.
e If A< B, then £(A) C £(B) and dim(L(B)/L(A)) < deg(B) — deg(A).

It can be shown ([107, Prop. 1.4.14]) that for any A € Div(F') we have deg(A)+
1 —/¢(A) < m for some m € N independent from A. Hence, the genus of F is well-
defined as follows.
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Definition 1.1.11. The genus of F' is
g(F) := max{deg(A) +1—¢(A) | A€ Div(F)} > 0.
Remark 1.1.12. The rational function field K(x) has genus zero.

We show how the genus of F' is related to the divisors of F'; see [107, Sect. 1.5]
for more details. Let Qp be the differential module of F, that is, Qp := {zdx | z €
F}, where dz is the differential of a separating element € F. For any w € Qp
and P € P(F) we can define the valuation vp(w) of w at P, and consequently the
well-defined divisor

div(w) = Z vp(w)P € Div(F).
PeP(F)

The divisor div(w) is a so-called canonical divisor.

Proposition 1.1.13. ([107, Cor. 1.5.16]) For any canonical divisor W of F,
deg(W) =2¢g(F) — 2.

Riemann-Roch Theorem. ([107, 1.5.15]) Let W a canonical divisor of F.. Then,
for any A € Div(F),

((A) =deg(A) +1—g(F)+ (W — A).

One of the consequences of the Riemann-Roch Theorem is the Weierstrass Gap
Theorem about the divisors supported at one rational place.

Definition 1.1.14. Let P be a place of F. The subsemigroup
H(P):={n € N| there exists z € F with (z)s = nP}

of N is called the Weierstrass semigroup at P. The elements of H(P) and G(P) :=
N\ H(P) are called non-gaps and gaps at P, respectively.

Weierstrass Gap Theorem. Let g be the genus of F' and P be a rational place
of F'. Then there are exactly g gaps at P. The smallest gap is 1, and the greatest
gap s strictly smaller than 2g.

Now we recall some basic properties of extensions of function fields. In the
following, F” denotes another function field over K such that ' C F’ and F'/F is
an algebraic extension.



6 CHAPTER 1. PRELIMINARY NOTIONS ON CURVES AND CODES

Definition 1.1.15. Let P and P’ be places of F' and F’, respectively. If P C P’,
we say that P lies under P' and P’ lies over P; in symbols, P' | P. In this case,
the relative degree of P' over P is f(P'|P) := [F}. : Fp].

The following properties hold (see [107, Sec. 3.1]):
e For any P’ € P(F"), there exists exactly one place P € P(F') lying under P'.

o If P € P(F") lies over P € P(F'), then there exists a positive integer e(P’|P),
called the ramification idex of P' over P, such that vp/(z) = e(P'|P) - vp(2)
for all z € F.

e If F” is another function field over K which is an algebraic extension of F’
and P"” € P(F") lies over P’, then

e(P"|P) = e(P"|P') - e(P'|P), f(P"|P) = f(P"|P")- f(P'|P).
The ramification of places is related to the degree of the extension.

Fundamental Equality. ([107, Th. 3.1.11]) If F” is a finite extension of F', P is
a place of F', and Py,..., P! are all the places of F' lying over P, then

> e(Pl|P)- f(P/|P) = [F': F).

=1
Definition 1.1.16. Let [F' : F] =n € N. The place P € P(F') is unramified (or
splits completely ) in F'/F if there are exactly n distinct places of F' lying over P,
with ramification index 1; P is totally ramified in F'/F if there is just one place
of F' lying over P, with ramification index n.

The genera of F' and F” can be related by the Riemann-Hurwitz genus formula.

To this aim, we start by the definition of the Different divisor.

Definition 1.1.17. (see [107, Sections 3.4, 4.3]) Let P € P(F) and P' € P(F")
with P'| P. The Different exponent of P" over P is defined by

dt

dp/ = d(P/|P> = —Up/ (@) s

where t and t' are local parameters at P and P’, respectively. We have that
d(P'|P) > 0, and d(P'|P) = 0 for almost all P € P(F). Therefore, the effec-
tiwve Different divisor of F'/F' is well-defined by

Diff(F'/F) = Y dpP.

P'eP(F")



1.1. ALGEBRAIC FUNCTION FIELDS AND CURVES 7

The Different exponent d(P’|P) satisfies the following properties, known as
Dedekind’s Different theorem ([107, Th. 3.5.1]):

1. d(P'|P) = e(P'|P) — 1 if and only if p 1 e(P'| P);

2. d(P'|P) > e(P'|P) if and only if p | e(P'|P).
In Case 1 P'|P is said to be tamely ramified, in Case 2 P'|P is wildly ramified.
Riemann-Hurwitz genus formula. ([107, Th. 3.4.13])

29(F") —2=[F": F](29(F) — 2) + deg(Diff (F'/F)).
Now we define Galois extensions of function fields. Let G be the subgroup
G = Aut(F'/F) = {0 : F/ — F" automorphism | 0(z) = z for all z € F'}

of the K-automorphism group Aut(F') of F'. The extension F'/F is Galois if G
has finite order [F” : F]. In this case we write F' = Fiz(G) = F'¢ for the fixed
field of G and Gal(F'/F) := G for the Galois group of F'/F.

If p1 |G|, F'/F is said to be a tame extension; otherwise, a wild extension.

Remark 1.1.18. ([107, Th. 3.7.1, Cor. 3.7.2]) The Galois group Gal(F'/F) acts
naturally on the places of F'. For any place P of F, Gal(F'/F) acts transitively
on the places of F' lying over P, and vy(py(z) = vp(c~*(2)) for allo € Gal(F'/F),
z € F'. This implies that places of F' lying over the same place of F have the
same ramification index and Different exponent.

Definition 1.1.19. Let F'/F be a Galois extension with Galois group G, and P’
be a place of F'. For every i € N the i-th ramification group of P’ is

Gg? ={oe€Glvp(o(z)—2)>i+1 forall z€ Op}.
The 0-th ramification group Gpr := GE[?,) is the stabilizer of P' in G.
For the higher ramification groups the following hold ([107, Prop. 3.8.5]):
Gp has order |Gp/| = e(P'|P).

Gg C Gg,) for i > 7, and Ggf,) = {id} for k sufficiently large.

e For any @ > 0, Gg/ﬂ) is a normal subgroup of Gg?.

Gﬁi,) is a p-group, and Gﬁi’? = Gﬁi,) x H, where H is a cyclic group of order
coprime to p.
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e For any ¢« > 1, Gg, / Gi s isomorphic to an additive subgroup of Fp;
hence, if p > 0, then G(Z, /Gy G s an elementary abelian p-group.

The Different exponent is related to the ramification groups as follows.

Hilbert’s Different formula. ([107, Th. 3.8.7]) Let F'/F be a Galois extension
with Galois group G, and P' be a place of F'. Then

i =3 (1
=0

— 1), and hence deg(Diff(F'/F)) Z Z }G

P/eP(F") 1=

In particular, for tame extensions, we have
deg(Diff(F'/F)) = > (IGp|—1).
P'eP(F")
We present two special types of Galois extensions of function fields.

Kummer extensions. ([107, Prop. 3.7.3]) Let F' be a function field over K,
where K contains a primitive n-th root of unity, with n > 1 and n coprime to p.
Suppose that u € F is an element satisfying

u#w? forall we F and all divisors d > 1 of n.
Let
F'=F(y) with y"=u.
Then F' is said to be a Kummer extension of F'. Moreover,

o T"—u € FI[T] is the minimal polynomial of y over F; hence [F' : F] =n. The
extension F'/F is Galois, with cyclic Galois group generated by o : y +— Cy,
where ¢ 1s a primitive n-th root of unity.

o [f P' € P(F') lies over P € P(F), then

dmmziaMﬂmm:ﬁ

— 1, where rp:= ged(n,vp(u)) > 0.
rp

e The genus of F' is
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Generalized Artin-Schreier extensions. ([107, Prop. 3.7.10]) Let F' a function
field over K with p > 0. Let a(T) € K[T] be an additive separable polynomial of
degree p™ having all its roots in K. Let w € F. Suppose that for each P € P(F)
there is an element zp € I such that

vp(u—a(zp)) >0, or wvp(u—a(zp))=-—m with m>0 and ptm.

Define mp := —1 in the former case, mp := m in the latter case. Then mp is
well-defined. Let
F'=F(y) with a(y)=u.

If there ezists QQ € P(F') with mg > 0, then F' is said to be a generalized Artin-
Schreier extension of F'. Moreover,

V12

o a(T)—u € FI[T] is the minimal polynomial of y over F; hence [F' : F| = p".
The extension F'/F is Galois, and the Galois group is an elementary abelian
p-group isomorphic to the additive group of roots of a(T).

e Fach P € P(F) with mp = —1 is unramified in F'/F.

e Fach P € P(F) with mp > 0 is totally ramified in F'/F, and
d(P'|P) = (p" = 1)(mp — 1).

e The genus of F' is

Y2

g(F) =p"-g(F) + L=

-2+ Z (mp+1) - deg(P)
PEP(F)

1.1.2 Algebraic curves

In this section we recall some elementary facts about algebraic curves, and
relate them to function fields. For the proofs and a general exposition, we refer to
[40, 67].

Let K be a perfect field, K be its algebraic closure, and PG(n, K) be the
n-dimensional projective space over K. Let V C PG(n, K) be a projective alge-
braic set, that is, V is the set of points of PG(n, K) on which a certain subset
of K[Xy, X1, ...,X,] vanishes. The ideal I(V) of V is the homogeneous ideal of
K[Xo,...,X,] generated by all homogeneous polynomials vanishing on V. The set
V is irreducible over K if and only if I(V) is a prime ideal in K[Xy, ..., X,]; being
K algebraically closed, we also say that V is absolutely irreducible or geometrically
irreducible. If V' is an absolutely irreducible projective algebraic set, then V is
called a (absolutely irreducible, projective, algebraic) variety.
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Definition 1.1.20. If I(V) can be generated by polynomials in K[Xy,...,X,],
then the variety V is said to be defined over K. The K-rational points of V' are
the points of V. whose homogeneous coordinates can be chosen in K.

In the following, V will denote a variety over K in PG(n, K).

Definition 1.1.21. The homogeneous coordinate ring K[V] of V is defined as
K[Xo,...,X,)/I(V), and the function field K (V) of V is the subfield of the field
of fractions of K[V defined by

K(V):= {Zi—m | F, G are homogeneous, deg(F') = deg(G), G ¢ I(V)} .

Let f € K(V), f = = (F'+1(V))/(G+1(V)), and P € V. If G(P) # 0, then
f(P):=F(P)/G(P) € K and f is reqular at P; the local ring of V at P is

K[V]p:={fe K(V)|f isregular at P}.

It is a local ring with maximal ideal Mp := {f € K[V]p | f(P) = 0}. The
K -rational function field of V' can be defined in a similar way.

Let AG(n, K) be the n-dimensional affine space over K with coordinates X1 /Xy,

., X/ Xo. Then we can define in a similar way affine varieties of AG(n, K), their

coordinate rings, local rings, and function fields. If V, is the affine variety as-

sociated with V and P, € V, is the affine point corresponding to P € V', then

there is a natural isomorphism K (V,) = K(V) which induces an isomorphism
K[V,]p, = K[V]p. B -

The dimension of V' is the transcendence degree of K (V')/K; if V has dimension
1, it is a curve. Hereafter, X denotes a curve in PG(n, K) defined over K; we also
require that X’ is non-degenerate, that is, X is not contained in any hyperplane of
PG(n, K).

Clearly, K (X) is generated over K by @1, ..., z,, where ; := (X;4+1(V))/(Xo+
I(V)) is the i-th coordinate function. By [80, Th. X.1] there is a j € {1,...,n}
such that the extension K(X)/K(z;) is finite and separable. By the Theorem
of the Primitive Element ([67, Th. A.1]) we have K(X) = K(x;,y), where y €
K(X) satisfies F(x;,y) = 0 with F € K[X,Y] such that F(z;,T) € K(x;)[T] is
separable; since X' is defined over K, we can also assume F' € K[X,Y].

Note that K (X) is a function field over K, in the sense of Definition 1.1.1.
Conversely, given a function field F over K, we argue as above to conclude that
F = K(x,y), where x is transcendent over K and y satisfies F(z,y) = 0 for some
F € K[X,Y] separable in Y; hence, F is isomorphic to the function field of the
plane curve X" defined by F(X,Y) = 0.

The points of X are related to the places of its function field.
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Definition 1.1.22. A point P € X is called non-singular (or simple) if the local
ring K[X]p is a discrete valuation ring of K(X).

Definition 1.1.22 is consistent with the Jacobi-criterion for plane curves and
with the usual definition of singularity. Moreover, the following holds.

Proposition 1.1.23. [67, Th. 4.32] For any DVR O of K(X), there exists exactly
one point P € X (called the center of O) such that K[X]p C O and the maximal
ideal of K[X]p is the restriction to K[X]p of the place of O.

Proposition 1.1.23 implies that the points of a non-singular curve are in 1 — 1
correspondence with the places of its function field. We shall always identify a
simple point P of X with the place of K(X) centered at P. If a point is singular
with multiplicity m (in the usual sense), then it is the center of at most m places
([67, Th. 4.36]).

Remark 1.1.24. [67, Th. 8.29, 8.31] If a place is K-rational (i.e., it has degree
1 over K ), then its center is K-rational; conversely, if a point is simple and K -
rational, then the corresponding place is K-rational.

Definition 1.1.25. The set of K-rational places of X is denoted by X (K).

If X is a plane curve and C is another plane curve (eventually reducible), then
we can define in a standard way the intersection multiplicity Z(X NC, P) of X and
C at a point P € PG(2, K); see [67, Chapt. 3.1].

Proposition 1.1.26. ([67, Th. 4.36]) Suppose that X : F(X,Y) = 0 is a plane

curve, P is a simple point of X, and o = g((iz)) € K(X). Let G and H be the

plane curves defined by G(X,Y) =0 and H(X,Y) =0, respectively. Then

vp(a) =Z(XNG,P)—IZ(X NH,P).

Recall that the order (or degree) of X' is the number of intersections (counted
with multiplicity) of X with an hyperplane of PG(n, K); if A" is a plane curve
defined by F' € K[X,Y], then the order of X coincides with the degree of F'.

Bézout’s Theorem. ([67, Th. 3.14]) If Y and Z are two (eventually reducible)
plane curves of order di and do, then

Y I(YNZ,P)=did,.

PcPG(2,K)

The genus g(X) of X is defined to be the genus of its function field K (X).
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Proposition 1.1.27. ([67, Th. 5.57]) Let X be a plane curve of order d. Let
Py, ..., P be the singular points of X with multiplicities mq, ..., my. Then

) < LD 25 om0 (11)

FEquality in (1.1) holds if and only if all singular points of X are ordinary, i.e.
there are m; distinct tangent lines to X at P;, 1 =1,... k.

Now we define rationals maps between curves and show that they correspond
to algebraic extensions of function fields.

Definition 1.1.28. A rational map of X into PG(r, K) is an element
o= (Fy:Fy:...: F,) € PG(r,K(X)).

If o € PG(r, K(X)), then ¢ is said to be K-rational (or defined over K ). The
rational map ¢ is defined (or regular) at P € X if the image ¢(P) is defined,
that is, there exists p € K(X)* such that pF; € K[X]p for all i and pF;(P) #
0 for some i; in this case, o(P) is well-defined. We write o(X) for {o(P) |
@ is defined at P}. If ¢ is defined at every point of X, then ¢ is a morphism.

Remark 1.1.29. A rational map ¢ of X into PG(3, K) is defined at every simple
point of X [67, Th. 5.17]. If ¢ is non-constant, then there ezists a unique curve )
of PG(r, K) such that p(X) C Y [67, Th. 5.16]; in this case, we write p : X — Y.

Definition 1.1.30. If ¢ : X — Y is a (K-)rational map, then we say that ¢ is a
(K-)covering, X is a (K-)cover of Y, and Y is a (K-)subcover of X.

Let p = (Fo:...: F): X > Yand ¢ = (Gp:...: Gs) : Y — Z be two
rational maps. Then the composition is defined as

Yop: X = Z, Yogp:=(Gy(Fo,...,F):...: Gs(Fy,..., F)).

Suppose that Fy # 0. Fori=1,...,r, let f; := F;/Fy and let yy,...,y, be the
coordinate functions of Y. Then

x .37 7 (9 y) L g(fi/fos- - 9r/90)
o KY) = K, e (h<y1,_...,y2>) = Wi fo s Fol o)

is a well-defined field K-homomorphism, the pull-back of ¢.
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Remark 1.1.31. Let G be the category of curves and rational maps, and A be
the category of function fields and field homomorphisms. Then the pull-back is a
controvariant functor of G into A.

Definition 1.1.32. If ¢ : X — Y is an invertible morphism in the category G
defined in Remark 1.1.31, then ¢ is called a birational map, and the curves X and
Y are said to be birationally equivalent; if the birational map ¢ is a morphism,
then X and Y are said to be isomorphic.

Corollary 1.1.33. The curves X and Y are birationally equivalent if and only if
their function fields K(X) and K () are K-isomorphic.

Remark 1.1.34. Since every function field is K-isomorphic to the function field
of a plane curve, we have that every curve is birationally equivalent to a plane
curve.

It can be also shown ([67, Remark 8.30]) that every curve is birationally equiv-
alent to a non-singular curve (in some possibly higher dimensional space), which
is said to be a mon-singular model of the curve.

If p: X — Y is a rational map and Py is a place of X, then there is exactly
one place Py of Y such that ¢*(Py) C Py ([67, Th. 5.18]). In this case, we define
¢(Px) := Py.

Since no confusion arises, we will always indicate the maps ¢, ¢*, and ¢ with
the same symbol ¢. We will also identify K())) with its K-isomorphic image
& (R() C K ().

Therefore, the rational maps ¢ : X — )Y will be studied through the the-
ory of algebraic extensions K(X)/K(Y) of function fields. In particular, the
K-automorphism group of the function field K(X) will be identified with the
automorphism group Aut(X) of the curve.

Definition 1.1.35. A rational map ¢ : X — Y s said to be a Galois covering if
K(X)/K(Y) is a Galois extension. If p : X — Y is a Galois covering with Galois
group G, then Y is called the quotient curve of X over G and is denoted by X /G.

Clearly, if two automorphism groups G, G’ < Aut(X’) are conjugated in Aut(X),
then the quotient curves X'/G and X' /G’ are isomorphic.
The following lemma for curves over finite fields will be useful.

Lemma 1.1.36. Let C be a curve defined over the finite field F, and consider
the function field F,(C) with constant field F,. Suppose that f € F,(C)[T] is a
polynomial irreducible over F,(C)[T] and z is a root of f. Then F, is the full
constant field of F,(C)(z).
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Proof. Let F, be the constant field of F,(C)(z) over F,. Then
Fy(C) C Fy(C) € Fy(C)(2) = Fy(C)(2).

Since f is irreducible over Fy (C), then [Fy(C)(2) : Fy(C)] = deg(f) = [F,(C)(2) :
F,(C)], hence [Fy(C) : Fy(C)]=1and F, =F, . O

1.1.3 Algebraic-Geometric codes

In this section we use the function field notation to introduce Algebric-Geometric
codes, briefly AG codes. They generalize several previously known families of lin-
ear codes; see [117] for an introduction to coding theory. AG codes were firstly
introduced by Goppa [57, 58], and thus are nowadays referred to also as Goppa
codes; see [113] for a detailed introduction to AG codes.

Definition 1.1.37. Let F, be the finite field with q elements. A linear [n,k,d],-
code is an F -vector subspace C' of Fy. The elements of C are called codewords,
n is the length of C, k is the dimension of C' as an F,-vector space, and d is
the minimum distance. This means that d s the minimum number of entries in
which any two distinct codewords differ; equivalently, d is the minimum number
of entries in which a codeword is non-zero. The Singleton defect is the integer
d:=n+1—k—d. The Singleton bound § > 0 holds. The dual code C* of C' is
the subspace of Ty orthogonal to C with respect to the canonical inner product of
[y

Let F' be a function field of genus g over the finite field F, with ¢ elements and
characteristic p > 0. Let Py,..., P, € P(F) be n distinct F -rational places of F,
D be the divisor P, + ...+ F,, and G be another F,-rational divisor such that

supp(G) Nsupp(D) = 0.
Consider the evaluation map

ep: L(G) — Fy
f = 6D(f>:(f(P1);f(P2),,f(Pn))

The map ep is F,-linear. The functional AG code is Cr(D, G) = ep(L(G)).

Proposition 1.1.38. ([107, Th. 2.2.2, Cor. 2.2.3|) The [n,k,d],-code Cr(D,G)
satisfies the following properties:

o k=((G)— LG —D), d>n—deg(q).

o Ifn > deg(G), then ep is injective and k = ((G).
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o Ifn>deg(G) >2g—2, then k =deg(G)+1—g.

The integer d* := n — deg(G) is called the designed minimum distance of
Cr(D,G). The differential AG code is

Cao(D,G) :={(resp,(w),...,resp,(w)) |w € Qr(G — D)},

where Qp is the differential module of ', Qp(G — D) = {w € Qp | div(w) >
G — D} U {0}, and resp(w) is the residue of w at P; see [107, Section 8.1].

Proposition 1.1.39. ([107, Th. 2.2.7, 2.2.8]) The [n, k, d],-code Cqo(D, G) satisfies
the following properties:

b CQ<D7G) = CL(D7G)J_'
ok

i(G — D) —i(G), where i(A) = ((A) — deg(A) + g — 1.

o d>d :=deg(GQ) — (29 — 2).

o Ifdeg(G)>29—2, thenk =i(G —D)>n+g—1—deg(Q).
o Ifn>deg(G)>2g—2, then k =n+ g — 1deg(G).

In the construction of AG codes, the condition supp(D) Nsupp(G) = 0 can be
removed as follows; see [113, Sec. 3.1.1]. For any P; € supp(D) let b; be the weight
of P;in G and t; € F be a local parameter at P;. The map

ep: L(G) — Fy
£ ep(f) = (")), (=) (Po), ... (" f)(Pn))

is linear. The extended AG code is Ceyt(D,G) = €'(L(G)). Note that e/, is not
well-defined since it depends on the choice of the local parameters; yet, different
choices yield extended AG codes which are equivalent. The code Ceu (D, G) is a
lengthening of Cﬁ(ﬁ, (), where D is the sum of the places in supp(D) \ supp(G).

Remark 1.1.40. For the [n', k', d'|,-code Cept(D, G) the following holds:
o '=(G)—UG—-D),d >n"—deg(G).
o [fn' > deg(G), then €}, is injective and k' = deg(G).
o [fn' >deg(G) > 29 — 2, then k' = deg(G) +1 —g.

We present some results which improve the bounds on the parameters of the
differential code Cq (D, G), through the concept of pure gaps at many places of F’;
see [21, 70] and the references therein. To this aim, we start by generalizing the
notion of Weierstrass semigroup.
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Definition 1.1.41. Let )y, ..., Qs be distinct F-rational places of F'. The Weier-
strass semigroup at Q) ..., Qs is the subsemigroup

H(Q1,...,P) :={(ny,...,ns) EN° |z € F with (2)ee =1 Q1 + -+ + nsQs}

of N°, whose elements are the non-gaps at Q1 ...,Qs; the elements of the comple-

ment G(Q1,...,Qs) =N\ H(Q1,...,Qs) are the gaps at Q1 ..., Qs.

From [21, Lemma 2.2|, an s-tuple (ny,...,ns) € N° is a gap at @Qy,...,Q; if
and only if £( 7, m:Q;) = (X5, niQ:) — Q;) for some j € {1,...,s}.

For s = 1 there are exactly g gaps at )1, by the Weierstrass Gap Theorem.
For s > 2 the number of gaps may vary depending on the choice of the places.
When s = 2 the size of G(Q1,Q2) was given in [70] in terms of G(Q1) and G(Q2),
as follows. Let 1 = a; < as < -~ <agand 1 = b < by < --- < by be the
gap sequences at Q1 and Qq, respectively. For i = 1,...,¢, let y(a;) := min{b €

G(P) | (a;,b) € H(Q1,Q2)}; by [76, Lemma 2.6], {v(a;) |i=1,...,9} = G(Q2).
Therefore, there is a permutation o of the set {1,..., g} such that vy(a;) = b,
and

F(Qla Q2> = {(aia bd(l)) | 1= 17 cee 79}
is the graph of a bijective map 7 between G(Q1) and G(Q2). Define

r(Q1,Q2) == {(z,y) € T(Q1,Q2) | = < y,v(x) > v(y)}-

Theorem 1.1.42 ([70, Th. 1]). Under the above notation, the number of gaps at
Qb QQ is

g

G(Qr,Q2)] = Zai + sz’ —7(Q1,Q2).
i=1

i=1
A characterization of I'(Q1, Q2) is the following.
Lemma 1.1.43 ([70, Lemma 2]). LetI" be a subset of (G(Q1)xG(Q2))NH (Q1, Q).

If there exists a permutation T of {1,...,g} such that I" = {(a;,bru) | i =
1,...,g}, thenT" =T(Q1,Q2).

The Weierstrass semigroup H(Q1,Q2) can be recovered from I'(Q1, Q)2) as fol-
lows. For x = (a1,b),y = (az,by) € N?, define the least upper bound of x and y
as lub(x,y) := (max{ay, as}, max{by, by }). By [76, Lemma 2.2],

H(Q1, Q2) = {lub(x,y) | x,y € T'(Q1, Q2)U(H (Q1) x{0})U({0} x H(Q2))}. (1.2)
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Definition 1.1.44. An s-tuple (ny,...,ns) € N* is a pure gap at Qq,...,Q; if

e(an) = e((ini@) ~Q;) forallj=1,....s
i=1 =1

The set of pure gaps at Q1,...,Qs is denoted by Go(Q1, ..., Qs).
Clearly, a pure gap is always a gap.

Lemma 1.1.45 ([21, Lemma 2.5]). An s-tuple (ny,...,ns) is a pure gap at Qq, . .., Qs
if and only if 0( > ;- niQ;) = €( > (ni — 1)Q;).

Finally, the following results shows how pure gaps can be used to improve the
minimum distance of differential codes.

Theorem 1.1.46 ([21, Theorem 3.4]). Let Q1,...,Qs, Py, ..., P, be pairwise dis-
tinct F,-rational places of F' and (ay, ..., as), (b1, ...,bs) € N® be two pure gaps at
Q1,...,Qs. Consider the divisors D = Py+---+ P, and G = _;_,(a; +b; — 1)Q;.
Suppose that a; < b; for alli =1,...,s, and that each s-tuple (cy, ..., cs) € N* with
a; < c¢; < b; fori=1,...,s 1s also a pure gap at Qq,...,Qs. Then the minimum

distance d of Cq(D, G) satisfies

d>deg(G) — (29 —2) + s+ i(bl — a;).

=1

Now we define the automorphism group of Cr(D,G); see [52, 74]. Here we
make use of algebraic curves, namely, of a curve X defined over F, whose function
field F,(X) is equal to F.

Let M,,, < GL(n,q) be the subgroup of matrices having exactly one non-
zero element in each row and column. For v € Aut(F,) and M = (m,;);; €
GL(n, q), let M? be the matrix (y(m;;)):;. Let W, be the semidirect product
Mg 3 Aut(F,) with multiplication M7y - Myys := My My - 4172, acting on F} by
M~(xq,...,x,) = ((x1,...,2,) - M)?. The automorphism group Aut(Cr(D,Q))
of Cz(D,G) is the subgroup of W, 4 preserving Cr(D, G). Let Autg, (X) be the
F,-automorphism group of &', and

Autg, pa(X) = {o € Autg,(X) | o(D) = D, o(G) ~p G},

where G’ ~p G if and only if there exists u € F,(X') such that G' — G = (u) and
u(P;)=1fori=1,...,n, and let

Autf{q’D’G(X) = {o € Auty, (X) | o(D) =D, o(|G]) = |G|},

where |G| = {G + (f) | f € L(G)} is the linear series associated with G. Note
that Autg, pc(X) C Autg, p o(X).
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Proposition 1.1.47. Let N € N be such that any non-trivial element of Auty, (X)
fizes at most N F,-rational places of X. If n > N, then Aut(C.(D,G)) contains
a subgroup isomorphic to

(Auth7D7g(X) X Aut(Fq)) X FZ

Proof. Arguing as in the proof of [107, Proposition 8.2.3 (b)], we obtain for n > N
a subgroup of Aut(C(D,G)) isomorphic to Autp, pc(X). As in [52], an auto-
morphism group of C(D, G) isomorphic to (Autr, p c(X) x Aut(FF,)) x F} is then
constructed via semilinear and scalar matrices. O

Remark 1.1.48. Suppose that supp(D) U supp(G) = X(F,) and each place in
supp(G) has the same weight in G. Then

Autp, pa(X) = Auth:’D’G(X) = {0 € Auty, (X) | o(supp(G)) = supp(G)}.
Theorem 1.1.49. ([52, Th. 3.4]) Suppose that the following conditions hold:

o (G is effective;

e /((G—P)=UG)—1and {(G—P — Q) =4G) —2 for any P,Q € X;

e X has a plane model T1(X) with coordinate functions z,y € L(G);

o X is defined over F;

supp(D) is preserved by the Frobenius morphism (x,y) — (P, yP);

o n > deg(G) - deg(II(X)).

Then
Aut(Cr(D,G)) = (Aut§q7D,G(X) x Aut(F,)) x ]F;.

1.2 Maximal curves

In this section we present some important families of maximal curves, namely
the Hermitian, Suzuki, Ree, GK, GGS, and GS curves. We refer to [39, 41, 42, 44,
115, 116] and [67, Chapt. 10] for surveys on maximal curves and their applications
in Coding Theory.

We denote by I, the finite field with ¢ element where ¢ is a power of a prime p,
and by K the algebraic closure of F,. Also, PG(r, q) stands for the r-dimensional
projective space PG(r,F,).

The most important result on the number of F, -rational points of a curve
defined over a finite field is the Hasse-Weil bound.
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Hasse-Weil Bound. Let X' be a non-singular curve of genus g defined over IFy.
Then the number X (F,) of its F,-rational points satisfies

X F)l = (g + 1) < 29V/4.

The Hasse-Weil bound is connected to the so-called zeta function of the curve
X. In particular, from the Hasse-Weil bound, the Riemann hypothesis for curves
over finite fields is deduced; see [67, Chapt. 9.2].

Definition 1.2.1. A non-singular curve X of genus g defined over Fp is -
maximal if it attains the Hasse-Weil upper bound, i.e.

X (Fpe)| =+ 1+ 2gq.

A curve which is maximal over a certain finite field is also maximal over an
infinite number of field extensions, as the following result shows.

Proposition 1.2.2. ([67, Eq. (10.1)]) Let X be an Fp-mazimal curve and n be
a positive integer. If n is odd, then X is Fpn-maximal. If n is even, then X is
F2n-minimal (i.e. |X(Fpen)| = ¢* +1—2gq™).

The following results recall various algebraic and geometric characterizations
of maximal curves.

Theorem 1.2.3. (see [67, Chapter 10]) Let X an Fp.-rational curve of genus g.
Then X is F2-maximal if and only if one of the following holds.

e The L-polynomial of X over F 2 is equal to Ly (t) = (t + ¢)*9.

o If X C PG(r,K) is a non-singular model of X and Py is an Fg-rational
point of X, then the divisors gP + ,2(P) and (¢ + 1)Fy are equivalent for
any P € X, where ®2 is the F2-Frobenius collineation of PG(r, K).

o X is Fp-birationally equivalent to an irreducible curve X C PG(r,K) of
degree q + 1 lying on a non-degenerate Hermitian variety of PG(r, ¢?).

Starting from a maximal curve, other maximal curves can be obtained by the
following result, commonly attributed to Serre.

Theorem 1.2.4. ([79, Prop. 6]) Let X', be two algebraic curves defined over F
and suppose that there exists a non-constant rational map ¢ : X — Y defined over
Fpo. If X is Fp2-mazimal, then Y is also IF2-mazximal.

In particular, if X is Fp-mazimal and G < Aut(X) is F2-rational, then the
quotient curve X /G is F 2-mazimal.
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The curves X that we present in Sections 1.2.1 and 1.2.2 are maximal over cer-
tain finite fields Fj2. When a singular model of X is provided, the F-maximality
is meant as the IF2-maximality of a non-singular model of X. Equivalently, the
number of F-rational places (rather than [F2-rational points) attains the Hasse-
Weil upper bound.

1.2.1 The Hermitian, Suzuki, and Ree curves

We introduce the Hermitian, Suzuki, and Ree curves. Altogether, they are
known as Deligne-Lusztig curves and arise in algebraic geometry from the algebraic
groups 245(q), *Bs(q), and 2G+(q), respectively. For an introduction, see [29].

The most important example of an [F2-maximal curve is the Hermitian curve
H,; see [67, Chapter 12.3] and the references therein for a detailed introduction
and the proofs of the results of this section.

The curve H, is defined as any I 2-rational curve projectively equivalent to the
plane curve with affine equation

Xt pyett 41 =0. (1.3)

The model (1.3) is a so-called Fermat model of H,. This Fermat model is F -
isomorphic to the Norm-Trace model of H,, namely,

Yot = X9 4 X, (1.4)
and [Fs-isomorphic to the Singer model of H,, namely,
XY +Y?1+ X =0. (1.5)

Many of the Fj -maximal curves known in the literature are constructed as
[F 2-subcovers (often, Galois subcovers) of the Hermitian curve H,; see [28, 47, 49].

Proposition 1.2.5. ([101],[72],[67, Chapter 12.3]) For the Hermitian curve the
following properties hold:

1. H, has genus g(H,) = q(q—1)/2, is non-singular and has |H,(Fz)| = ¢ +1
Fj2-rational points.

2. If X is an F2-mazimal curve, then g(X) < g(H,), and g(X) = g(H,) if and
only if X is birationally equivalent to H,.

3. The full automorphism group Aut(H,) has order (¢* + 1)¢* and is defined
over Fp.
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4. Aut(H,) acts 2-transitively on Hq(Fz2).

5. A line of PG(2,¢?) has either 1 or ¢+ 1 common points with Hy(Fz2), that
is, it is either a 1-secant or a chord of Hq(F,2).

6. A unitary polarity 11 is associated with H,(F,.2) whose isotropic points are
those of Hy(F,2) and isotropic lines are the 1-secants of Hy(F2), that is, the
tangents to H, at the points of Hq(F,2).

7. Aut(H,) is isomorphic to the group PGU(3,q) < PGL(3,q?) of projectivities
which commute with I1. The action of Aut(H,) on H,(Fp2) is equivalent to
the action of PGU(3,q) in its natural 2-transitive permutation representa-
tion.

The group PGU(3,¢q) contains a subgroup PSU(3,¢) of index ged(3,q + 1),
the special subgroup arising from elements of PGL(3, ¢*) with determinant 1. We
present the classification of maximal subgroups of PSU(3, ¢), going back to Mitchell
[90] and Hartley [65].

Theorem 1.2.6. ([90, 65], see also [69],[67, Th. A.10]) Let ¢ = p™ and d =
ged(3,q + 1). Up to conjugacy, the following is a coomplete list of mazximal sub-
groups of PSU(3, q).

(i) The stabilizer of an Fz-rational point of H,, of order ¢*(¢* — 1)/d.

(ii) The stabilizer of an Fg-rational point of PG(2,¢*) \ H, (equivalently the
stabilizer of a chord of Hy(F,2)), of order (¢ — 1)(¢ + 1)?/d.

(iii) The stabilizer of a self-polar triangle with respect to 11, of order 6(q + 1)?/d.

(iv) The normalizer N of a cyclic Singer subgroup S, of order |[N| = 3(¢* — q +
1)/d. The group N preserves a triangle in PG(2,¢%)\PG(2, ¢*) left invariant
by the Frobenius collineation ®p : (X,Y,T) — (XT, Y7 T9) of PG(2,K)
and fized pointwise by S.

Further, for p > 2:
(v) PGL(2,q) preserving a conic.
(vi) PSU(3,p™) with m | n and n/m odd.

(vii) Subgroups containing PSU(3,p™) as a normal subgroup of index 3, when
m | n, n/m is odd, and 3 divides both n/m and q+ 1.
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(viii) The Hessian groups of order 216 when 9 | (¢ + 1), and of order 72 and 36
when 3 | (¢ + 1).
(iz) PSL(2,7) when p =7 or —7 is not a square in F,.

(z) The alternating group Ag on siz letters, when either p = 3 and n is even, or
5 is a square in Fy but Fy contains no cube root of unity.

(zi) The symmetric group Sg on six letters, when p =5 and n is odd.

(zii) The alternating group Az on seven letters, when p =5 and n is odd.
Further, for p = 2:
(ziit) PSU(3,2™) with m | n and n/m an odd prime.

(ziv) Subgroups containing PSU(3,2™) as a normal subgroup of indexr 3, when
n = 3m with m odd.

(zv) A group of order 36 when n = 1.

Case (ii) of Theorem 1.2.6 is related with the automorphism group of the
projective line. Therefore, we present the classification of subgroups of PGL(2, q),
which is due to Dickson [31].

Theorem 1.2.7. ([31, Chapter XII|, see also [67, Th. A.8]) Let ¢ = p", d =
ged(q —1,2). Consider the group PGL(2, q) in its natural 3-transitive action on a
line £ C PG(2K). The following is the complete list of subgroups of PGL(2,q) up
to conjugacy:

(i) The cyclic group Cy of order h with h | (¢ £ 1). The group C), fizes two
points P,Q € € and acts semireqularly on ¢\ {P,Q}. If h | (¢ — 1), then
P.Q € PG(2.q); if h| (g +1), then P.Q € PG(2,¢?) \ PG(2,q).

(ii) The elementary abelian p-group E,; of order p! with f < k. The group E,
fizes an [F,-rational point P € £ and acts semireqularly on ¢\ {P}.

(111) The dihedral group Dy, of order 2h with h | (¢ £ 1), containing C,.
(iv) The alternating group Ay for p > 2, or p =2 and k even.
(v) The symmetric group Sy for 16 | (¢* — 1).

(vi) The alternating group As forp=>5 or5 | (¢* —1).
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(vii) The semidirect product Eys x Cy, with f < k and h | (¢—1), of order p’ (h—1),
stabilizing the fived point of E,;.

(viii) PSL(2,p’) for f | k.

(iz) PGL(2,p") for f | k.

Now we present a second class of Deligne-Lusztig curves, namely the Suzuki
curves. For an exposition of results on the Suzuki curve and its quotients, we refer
to [108, 109, 111, 112, 53] and [67, Chapter 12.2].

Let s be a positive integer, ¢go = 2° and ¢ = 2¢} = 22*™'. The Suzuki curve S,
over [, is defined by the affine equation

S, YI4Y =X"X7+X). (1.6)
Proposition 1.2.8. For the Suzuki curve S, the following properties hold:
1. S, has genus g(Sy) = qo(q — 1) and is Fa-mazimal.

2. 8, has ¢* + 1 F-rational points. The unique singular point of S, is the point
at infinity Ps. There is a unique place of S, centered at Ps,.

3. The full automorphism group S(q) := Aut(S,) has order (¢* + 1)¢*(¢ — 1)
and is defined over F,.

4. S(q) has exactly 2 short orbits on' S,. One is non-tame of size ¢*+1, consist-
ing of all F,-rational points. The other is tame of size ¢*(q—1)(q+2qo+ 1),
consisting of all IFja-rational points which are not Fq-rational.

5. S(q) acts 2-transitively on S,(F,).

6. S(q) is isomorphic to the group Sz(q) < PGL(4,q) of projectivities preserv-
ing the Suzuki-Tits ovoid Og in PG(3,q). The action of S(q) on S,(F,) is
equivalent to the action of Sz(q) on Og in its natural 2-transitive permutation
representation.

7. S(q) is generated by the stabilizer
S5(@)co = {Vape : (x,y) = (ax +b,a® 'y + 0%z +¢) | a,b,c € Fy,a # 0}

of Ps, together with the involution ¢ : (z,y) — (a/B,y,[), where a :=
y2QO + 290+l ond B = ny2q0 + o290
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The classification of maximal subgroups of S(g) is known.

Theorem 1.2.9. (see [67, Th. A.12]) Up to conjugacy, S(q) has the following

maximal subgroups:
(i) The stabilizer of an F,-rational point, of order ¢*(q — 1).

(i1) The normalizer N, of a cyclic Singer subgroup Sy. The group Sy has order
q+ 29+ 1 and fizes 4 Fja-rational points of Sy, the group Ny has order
4(q+2qo + 1), and N, /Sy is a cyclic group permuting transitively the fized
points of S,

(111) The normalizer N_ of a cyclic Singer subgroup S_. The group S_ has order
q — 290 + 1 and fizes 4 Fpa-rational points of Sy, the group N_ has order
4(q —2q0 + 1), and N_/S_ is a cyclic group permuting transitively the fized
points of S_.

(iv) The Suzuki subgroups S(G) where ¢ = ¢™ with m prime.
Further, the subgroups listed below form a partition of S(q):
(v) All subgroups of order ¢*.
(vi) All cyclic subgroups of order ¢ — 1.
(vii) All cyclic Singer subgroups of order q + 2qo + 1.
(viii) All cyclic Singer subgroups of order ¢ — 2qo + 1.

Finally we present the third class of Deligne-Lusztig curves, namely the Ree
curves. For an exposition of results on the Ree curve and its quotients, we refer
to [112, 99, 35, 81, 18, 19] and [67, Chapter 12.4].

Let s be a non-negative integer, go = 3° and ¢ = 3¢2 = 3**™!. The Ree curve
R, over [, is defined in PG(3,K) by the affine equations

Ry Yi—-Y=XPX1-X), Z9—7Z=X"X"-X). (1.7)
Proposition 1.2.10. For the Ree curve R, the following properties hold:
1. Ry has genus g(Ry) = 3q0(q — 1)(¢ + qo + 1) and is Fs-mazimal.

2. Ry has ¢*+1 F -rational points. The unique singular point of R, is the point
at infinity Ps. There is a unique place of R, centered at Py.
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3. The full automorphism group R(q) := Aut(R,) has order (¢* + 1)¢*(q — 1)
and is defined over Fy.

4. R(q) has ezactly 2 short orbits on R,. One is non-tame of size ¢* + 1,
consisting of all F,-rational points. The other is tame of size ¢*(¢ — 1)(q +
3qo + 1), consisting of all F-rational points which are not Fy-rational.

5. R(q) acts 2-transitively on S,(F,).

6. R(q) is isomorphic to the group Ree(q) < PGL(7,q) of projectivities pre-
serving the Ree-Tits ovoid Og in PG(6,q). The action of R(q) on R4 (F,) is
equivalent to the action of Ree(q) on Og in its natural 2-transitive permuta-
tion representation.

7. R(q) 1s generated by the stabilizer

R(Q)oo = {¢a,b,c,d | a, b> c, de an a 7£ 0}7

Vaped: (T,Y,2) = (az+b,a® M y+ab®r+c,a®®H 2 — a1 b0y 4+ ab® Pz + d),

of P, together with the involution ¢ : (x,y,z) — (we/ws, wig/ws, w’ /wg),
for certain polynomial functions w; € F3[x,y, z].

The classification of maximal subgroups of R(q) is known.

Theorem 1.2.11. (see [67, Th. A.14]) Up to conjugacy, R(q) has the following
mazximal subgroups:

(i) The stabilizer of an F,-rational point, of order ¢*(q — 1).

(ii) The centralizer of an involution ¢ € R(q), isomorphic to v x PSL(2,q), of
order q(¢* — 1).

(i1i) The normalizer Ny of a cyclic Singer subgroup Sy. The group Sy has order
q+3qo + 1 and fizes 6 Fs-rational points of Ry, the group Ny has order
6(q+3q0+ 1), and N, /Sy is a cyclic group permuting transitively the fized
points of S,

(iv) The normalizer N_ of a cyclic Singer subgroup S_. The group S_ has order
q —3qo + 1 and fizes 6 F-rational points of Ry, the group N_ has order
6(q —3qo+ 1), and N_/S_ is a cyclic group permuting transitively the fized
points of S_.
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(v) A subgroup of order 6(q + 1), which normalizes a cyclic subgroup of order
qg—+1.

(vi) The Ree subgroups R(q) where ¢ = ¢™ with m prime.

1.2.2 The GK, GGS, and GS curves

In this section we present three classes of maximal curves recently constructed.
The first curve is the so-called GK curve, named after Giulietti and Korchmaros
who constructed it in [50], which we refer to for an exposition of the results below.
The GK curve was the first [F2-maximal curve shown not to be covered by the
Hermitian curve H,. This result motivated a new interest towards maximal curves,
subcover (or Galois subcovers) of the Hermitian curve, and subcovers of other
maximal curves. Examples of subcovers of the GK curve can be found in [38, 110].

Let n be a power of a prime p, and ¢ = n®. The GK curve GK,, is defined in
PG(3,K) by the affine equations

n2—n+1 __ X"27X
GK, : { Z =Y | (1.8)

yntl = Xn + X
By direct checking, equivalent equations for GIC,, are
Zrntl —ynt _y, oyt = X4 X
Note that G/IC,, has a unique infinite point P..
Proposition 1.2.12. ([50]) For the GK curve GK,, the following properties hold:
1. GKC,, is non-singular.

2. GK,, has genus g(GK,,) = WH and has |GK,,(F6)| = n®—n®+n’+1

IF,s-rational points. Hence, GK,, is [F,s-mazximal.
3. Forn > 2, GIC,, is not covered by the Hermitian curve H,;s.

4. The full automorphism group Aut(GK,) has order n3(n® + 1)(n* — 1)(n* —
n+ 1) and is defined over Fe.

5. Aut(GKC,) has exactly 2 short orbits on GK,,. One is non-tame of size n34+1,
consists of all F,2-rational points of GK,,, and is given by the intersection of
GK, with the plane Z = 0. The other is tame of size n3(n3 + 1)(n* — 1),
consisting of all Fe-rational points of GIC,, which are not [F2-rational.
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6. Aut(GK,) has a normal subgroup of indexr d = ged(3,n + 1) isomorphic
to SU(3,n) x Cin2_pi1y/a, where SU(3,n) is the special unitary group which
preserves GK,(F2) and Cp2_pni1y/q s cyclic of order (n> —n+1)/d. The
subgroup isomorphic to SU(3,n) is normal in Aut(GK,,).

7. The stabilizer Aut(GK,)p,, of Ps has order n*(n® — 1)(n* — n + 1) and
constains a subgroup (Qns X Hype_1) X Crp2_pny1y/q, where Qps is a Sylow p-
subgroup of Aut(GK,,) and H,2_; is cyclic of order n*> — 1.

8. The action of SU(3,n) on GK,,(IF,2) is equivalent to the action of PGU(3,n)
in its natural 2-transitive permutation representation. The group SU(3,n) is
normal in Aut(GKC,,), and Aut(GK,,)/SU(3,n) acts trivially on GIC,,(F,2).

9. The principal divisors of the coordinate functions x,y, z are
[} (I‘) = (n3 + 1)P(07070) — (n3 + 1>P007
(y) = (TLZ —n + 1) (Za:a”-{-a:(} P(a,O,D)) - ( 3 — 77/2 + n)POO7

[ ]
0 (2) = (Super yarsacsmss Plaso)) = 1P,
where Py is the place centered at the affine point (a,b,c) € GIC,.

The GK curve was generalized to a broader class of maximal curves GGS,, 1,
by Garcia, Giineri, and Stichtenoth in [43], where the authors show the F,z2m-
maximality of GGS,, ,,,. The automorphism group of GGS,,,, was determined in
[60] and [61], and the quotient curves of GGS,, ., are investigated in [3]. In [34] it
was shown that GGS,, ,,, is not Galois covered by H,» whenever n > 3.

Let n be a power of a prime p and m > 5 be an odd integer. The GGS curve
GGS,,m is defined in PG(3,K) be the affine equations

nM41

Zwn =YY" Y
Snm
gg s {Yn+1:X7L+X

Note that GGS,, ., coincides with GK,, when m = 3.
Proposition 1.2.13. For the GGS curve GGS,, ., the following properties hold:

1. GGS,, . has a unique point at infinity P, which is F2m-rational and is the
center of a unique place of GGS,, 1.

2. GGS,m has genus g(GGS,m) = (n—1)(n™ ™ +n™ —n?)/2 and has n*"2 —
n™ 3 + ™2 + 1 Fem-rational places. Therefore, GGS, 1 is Fp2m-mazimal.



28 CHAPTER 1. PRELIMINARY NOTIONS ON CURVES AND CODES

3. Forn > 3, GGS,,m 15 not Galois covered by the Hermitian curve H,m.

4. The full automorphism group Aut(GGS, ) has order n*(n—1)(n™+1) and
is defined over IF,2m.

5. Aut(GGS,.m) fizes Py, and P is the unique fized place of Aut(GGS,, ).
6. If n is a power of 2, then the number of IF,2m-rational places of GGS,, m 15 a
multiple of 3.

Finally we introduce the Garcia-Stichtenoth curves. Garcia and Stichtenoth
constructed in [45] the following curve in characteristic 3:

GS;: Y =X"_-X.

The authors proved that GS3 is not Galois covered by the Hermitian curve Hor;
this was the first example of maximal curve shown not to be Galois covered by the
Hermitian curve. This curve was generalized in [1] to the curve

n

m41 2
Yo = XV X

, (1.9)

which was shown to be maximal over FF,2m; this also follows from the IF,2m-
maximality of the GGS curve GGS,, 1, since the curve (1.9) is F,2m-covered by
GGSnm-

We restrict to the case m = 3, and consider the Garcia-Stichtenoth curve
GS,: Y™l x"_Xx
n - .

Note that GS,, is an F,s-subcover of the GK curve GK,,, and hence GS,, is F,-
maximal.

Proposition 1.2.14. (see [67, Chapter 12.1]) For the GS curve GS,, the following
properties hold:

1. GS, has genus (n®>—n)(n®>—1)/2 and has n” —n®+n*+1 F,s-rational places;
hence, GS,, is F,6-mazimal.

2. GS,, has a unique singular point, namely the point at infinity Py,. There is
a unique place of GS,, centered at P.

3. Py is the unique fized point of Aut(GS,,).
4. GSs5 is Galois covered by the Hermitian curve Hsg.

5. GS3 is not Galois covered by the Hermitian curve Haz.
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Results on maximal curves

2.1 Maximal curves from subcovers of the GK

curve

In this section we construct and investigate families of Galois subcovers of the
GK curve GKC,,. In particular, we compute explicit equations and the genera for
a number of Galois subcovers of GIC,,. Also, we provide new examples of F,6-
maximal curve that are not covered, or Galois covered, by the Hermitian curve
H,s. In several cases, such curves give new values in the spectrum of genera of
F,s-maximal curves. The results obtained in this section are the object of [56].

Throughout this section, n is a power of a prime p, ¢ = n3, and K is the
algebraic closure of IF,,.

2.1.1 A new model of the GK curve

Let GK,, be given by the equations (1.8). Let p € F,2 with p+p™ = 1. Consider
the I 2-projectivity ¢ associated to the matrix A, where

10 0 1-—p
01 0 0
A= 00 -1 0
10 0 —p

Then X := ¢(GK,,) has equations

XnHq

) ZnQ—n—l—l =Y X"Z—X
A { ynt+l — ynt+l _q

29
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We will consider subgroups of the following tame [F.-automorphism group G
of X of size (n + 1)*(n* —n +1):

G = {ga,b,)\ : (X7 Y7 Z> T) = (CLX7 b}/a )\Z7 T) | aTH-l - bn+1 - ]-7 )\nQ—n—o—l = CLb} .
(2.1)
By conjugation, an Fz-automorphism group G* = A7'GA of X is obtained:

G* = {gf,b,)\ |a"tt =" =1, AL ab} ,  where

ap+p* 0 0 ap—ap*—p*t
. | o w0 0
Jabr =1 0 0 A 0

a—1 0 0 a—ap+p

According to the notation of [38], we compute the projection GA of G* over
PGU(3,7n) and the intersection G4 of G with

A= {@A (XY, Z,T) = (X,Y,\Z,T) | X7~ = 1} : (2.2)

GAi=A, GA= {Gap | "' =0""" =1}, where
ap+pn 0 ap_ap2_pn+1
ga,b = 0 b 0
a—1 0 a—ap+p
Note that G4 = A-1GA = A-1GA, where A (resp. G) is obtained by deleting

the third row and column in A (resp. in the matrices of G). Let 7 be the plane
Z = 0. Then Aut(X') has a non-tame short orbit

O:=X(F,:2)=XnNr,

which is the image under ¢ of the non-tame short orbit of Aut(GK,) described
in Proposition 1.2.12. Hence, G4 acts naturally on O = H,(F,2), where the
Hermitian curve H, has the Fermat equation Y"1 = X"+ — 1,

2.1.2 A family of Galois subcovers of X

In this section we find out equations and genera for a family of curves covered
by the curve X, depending on three parameters.
Let dy,ds, ds be divisors of n + 1, and consider the [F)-rational morphism
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over the function field K(z,y, z) of X. Then for the subfield K(u,v,w) we have
the relations

di(n—1 n+1

do _ ,d
p— v? =y — 1. (2.3)

Let G < Aut(X) as in (2.1) and L < G be the following subgroup of G:
L={(X,Y,Z,T)— (\0"X,bY,\Z,T) | " = A"+ =1} .

Clearly, L has order (n + 1)?, and the fixed field Fiz(L) contains z"™!, y"*! and
2" Actually, Fiz(L) coincides with K(z" ™, ¢! 2"t since K (2™, y’”rl 2"
coincides with K(z"*1, 2"*1) and the degree of the extension K(z, y, z)|K(z"*1, 2" +1)
is at most (n+1)%. Then Fiz(L) C K(u,v,w) and we consider the double extension
of function fields
Fiz(L) C K(u,v,w) C K(z,y, 2).

Since K(z,y, z)|Fiz(L) is a Galois extension, K(x, y, 2)|K(u, v, w) is Galois as well,
that is, K(u, v, w) is the function field of the quotient curve of X over some auto-
morphism subgroup H < L.

In order to provide irreducible equations for X' /H, consider the rational func-
tion « € K(u,v) defined as

udl(n—l) -1 n+1
ud — 1 '

o =u(u® —1) (
By direct computation the principal divisor of o in K(u,v) is obtained:

div(a) = dy %, Qoi+ da X, Q,
di(n— didan(n (d2,2d1) )
+(n + 1) Z (n=2) Z Qﬁl 1((122 édl D Z 2 Qoo,i

where Qo ; lies over the zero Py of u, Q,, lies over the zero P,, of u™ — 1, Qg, ; lies
over the zero Ps, of (u®(=Y —1)/(u® — 1), and Qu; lies over the pole P, of u.

Let
dldgn(n — 1)>
(d272d1) ’
M = ged (D,dg(n2 —n+ 1)) = ged (dl,dz,dg(n2 —n+ 1)) )

If M =1, then K(u,v,w)|K(u,v) is a Kummer extension of degree d3(n? —n + 1)
from equations (2.3), and the quotient curve has irreducible equations

n+1
de(n27n+1) — Udlvd2 (Udl(nfl)_1>
: Uh—1
?(/H.{ s

(2.4)

D = ged (dl,dg,n +1,
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More generally, for M > 1, both sides of the firs equation in (2.3) are a power of
M, and we can factor the equation to obtain an irreducible curve

n+1
43 (2 _pt1) 4 dy fhdi(n-1)_1\ M
wM™M = uMyM =

X/H - (2.5)

v =qyh — 1

Remark 2.1.1. We compute the order of the group H, that is, the degree of the
extension [K(x,y,z) : K(u,v,w)]. By the Fundamental Equality after Definition
1.1.15, the zero divisor of x in K(x,y,2) has degree [K(x,y,2) : K(z)] = n® + 1,
and

nt1 (n+1)2n?—n+1)

[K(z,y,z) : K(u)] = deg(z 9 ) = a » K, v) : K(u)] = da.
Hence,
n 2(n® —n n® —n
K(z,y,2): K(u,v)] = (n+1) d(l,dz T 1)7 K(u,v,w) : K(u,v)] = W
Therefore
M 1)?
|H| = [K(z,y, 2) : K(u,v,w)] = %

The general equations (2.5) of X'/H have been obtained by working on dy, d,
d3(n® —n+1)/M. If we start from dy /M, dy, ds, or from dy, dy/M, ds, then we get
irreducible equations for other quotient curves, respectively:

d n
WdS(nQ,nJrl) — []dﬁ1 (U}%(n_l) . 1> (UJ\/II:’_I)—1>
UM -1 ,

Vi — U — 1

[ v e (22
da

Va =Uh — 1

Over the function fields of these curves we can also consider the morphism

2
(u:v:w o 1),

7L277L
for any divisor e of n? —n + 1. Then, for s = w - H, K(u, v, s) is the function

field of new subcovers of X. The degree [K(z,y, 2) : K(u,v, s)] of these coverings
is easily computed arguing as in Remark 2.1.1. To sum up, the following result is
obtained.
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Theorem 2.1.2. Let dy, do, and ds be divisors of n+1, e be a divisor of n> —n-+1,
and M = ged (dy, dy, ds(n* — n +1)). The following equations define F,s-mazimal
curves which are Galois subcovers of X :

n+1
d3,  podioda fppdy(n-1)_q\ M
C Sué=UmVwm (W) ’ (2.6)
Vi = g — 1
Sdge — U% (U%(n—l) _ 1) (Ui}iinl)_l)n
Ca: . UM -1 ; (2.7)
Ve =Uw —1
gdse — [y ([rda(n—1) _ 1 (Udu;z—l),l)”
Cs: { le - ( . ) v -1 . (2.8)
M — —
The degree of the covering is (n?— ”821131%3"“ for Cy and Cs, and % for
Cs.
Note that, when (Pont DMt 1)? ) (Pond D) 1, Theorem 2.1.2

edydads edidads
provides models for the GK curve; in some cases they are plane models.

Now we compute the genera of the curves described in Theorem 2.1.2 for e =
n? —n+ 1, ie. for s = w. This is done via Kummer theory.

Theorem 2.1.3. Let e = n?> —n+ 1. Then the genera of the curves Cy, Cy, and
Cs described in Theorem 2.1.2 are the following:

9(C1) = 1+ 3| did B0 (1) — dy( 3, B

—di(§, CUT) iy (n - ) (B ) (29)

M

— ((dy, do) Bl 2 |

and, fori = 2,3,

g(Ci) =1+ % [hkr(n —1) — k(h,r) — h(k,r) — hk(n — 2)(r,n + 1) — ((h, k)r, 2hk)],
(2.10)

r=ds(n® —n+1), h:{ i /M for Cz k:{ d2 forCs

dy forCs ’ do/M forCs
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Proof. We start with C;, and use the notation of (2.4) for

4 dy udl (n—1) __ 1

M
o =uMyM (W) S K(U, U).

Since K(u, v)|K(u) is a Kummer extension of degree ds, we have

da

€ a; = T 177 v
<Q ng(dl, dg)

Poq) = d?a e(QO,i‘pO) = 17 e(Qﬁz,j

Pg,) =1, e(Qus,i Pc)

and K(u,v) has genus

1
g(K(u,v)) =1+ é(dldQ —dy — dy — ged(dy, dy)).

Let Py be the zero and P, the pole of v in K(v). Then the places lying over
Py in K(u,v)|K(v) are Qq,, - - - ; Qa,, , With ramification index 1. The places over
Py are Quot, - - -, Qoo (d1,d), With ramification index d; / ged(dy, ds).
ds

In the Kummer extension K(u, v, s)|K(u, v) of degree $3(n* —n + 1),

n+1

di(n—1) _ M
dy U 1 — dg d2
UQai (a) — e(Qai|Pai) . ,UPai (uM <’Uld1_1> ) + e(QCh|PO) . UPO (U Af) = M?

and hence
Qu) = ar—n+1)
o ged (%(nQ—n%—l),dﬁ)’

where R, ; is a place of K(u, v, s) lying over (),,. The theory of Kummer extensions
also gives the ramification indices

6<R0¢z’7j

Ln? —n+1)
ged (£(n2 — n+1),vg(e))

of the places of K(u,v,s) lying over @, for all places @ of K(u,v). Then the
different divisor of K(u, v, s)|K(u,v) has degree A equal to

sa (o () (o ()

o (m) 4o ()

<|&
S
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e o (252 0 o (o 25)

where m = d3(n* —n + 1)/M. Finally, the Riemann-Hurwitz formula applied to
the Galois extension K(u,v, s)|K(u,v) provides the genus of C;.
The curves Cy and C3 are both defined by equations of the form

C: { ST=uU" (U —1) (Uagl:;,l)n

Vb=U"-1

The genus of K(u, v) is obtained as above:
1
g(K(u,v)) =14+ é(ab —a—b—ged(a,b)).

Similar computations yield the degree A of the different divisor of the Kummer
extension K(u, v, s)|K(u,v):

A=a(r—ged(r,b)+b(r—ged(r,a))+

Fa(n — )b (r — ged (rn 4+ 1)) + ged(a, b) (r ~ ged <r, #‘f’b))) ,

and the Riemann-Hurwitz formula applied to K(u, v, s)|K(u, v) provides the genus
of C;, for i = 2, 3. O

Remark 2.1.4. The previous results provide new equations of IF2-mazximal curves
for many genera. Consider for instance the case n = 5. Then Theorem 2.1.2
provides new equations for the following genera:

37,74,109, 121, 148, 220, 242, 361, 442, 484, 724, 1450,
160, 233, 469, 478, 496, 737, 1477, 1486.

Up to our knowledge, the integers in the second row are new values in the spectrum
of genera of Fse-mazimal curves.

2.1.3 The Galois groups of some Galois extensions

In this section we assume that
ng (dl, dg, dg(?’bg —n+ 1)) =1.

In some cases we are able to give an explicit description of the automorphism

groups H of order % such that Fiz(H) = K(u, v, w).
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We also provide an alternative computation of the genus of X'/H, by means of
the Riemann-Hurwitz genus formula and [38, Prop. 3.2]. We use [38, Prop. 3.2] in
a slightly different form: in the original paper [38], the authors consider a model
X of the GK curve lying on the cone K over the Hermitian curve with equation
Y™ +Y = X" Tt is not difficult to see that the same computations hold for the
curve X.

This relies on the fact that X and X are projectively equivalent, with a projec-

tivity defined over FF,,s which maps the Hermitian cone I to the Hermitian cone
over Y" +Y = X"t

Proposition 2.1.5. [38, Prop. 3.2] Let L be a tame subgroup of Aut(X), L the
projection of L to PGU(3,n) and Ly = LNA, where A is defined in equation (2.2).
Assume that no non-trivial element in L fizes a point in H,, \ Hn(Fpe), where H,
is the Hermitian curve Y™ = X"t — 1. Then:

(n® +1)(n% — |Lp| — 1) — |La|(n? —n — 2)
2|L]| ’

gr, = gf +

where g, is the genus of the quotient curve H, /L.

Case 2.1.6. Suppose that dy divides 3ds and ged(dy,ds) = 1. Then K(u,v,w) is
the function field of the quotient curve of X with respect to the group

H={(X,Y,2,T) = (30X, 0Y,\Z,T) | btz = N5 =1},

In fact, by Remark 2.1.1, the size (n+1)?/(dydads) of H coincides with the degree
K(x,y, 2) : K(u,v,w)]. Also, u, v, and w are all fized by H since

AOHD/ds )/ ()i
and

(A3t D/dr — (\(n+1)/da)3da/dap=((n+1)/dr) — (p=((n1)/drde)yda — 1
The projection H of H on PGU(3,n) is

B (n+1)2
d1d2d3 ng (3, nd_—;l) ’

H= {61 | b = \E =1} with ||

where [N30",b,1] denotes the automorphism (X,Y,T) — (A30"X,bY,T). No non-
trivial element in H fizes a point in H, \ Hn(Fpe), and

Hy = {[1, L] AP =\ = 1}
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has size ged (”d—J;l, 3). Then by Proposition 2.1.5 the genus of X /H s
) 1) — ged(3, 551 (n2 0 - 2)

o d1d2d3[(n3 + 1)(712 — ng(3, 3
98 =9a + 2(n +1)2

where gg is the genus of H,/H. The only points of H, that can be fized by a
non-trivial element in H are the fundamental points. It is easily seen that

)

(i) [N30",b,1] fizes P, = (0,04,1), i =1,...,n+ 1, if and only if b= 1;
(/ijo,l), ] = 1,...,71“‘17 Zfa,nd Only Zf)\3 :b’.

(ii) [N3b™,b,1] fizes Q; =
(iii) [A30",b,1] fives Ry, = (Br, 1,0), k =1,...,n+ 1, if and only if \3 = b*.

Let Hp denote the stabilizer of P in H. We distinguish two cases.
(A) 3 does not divide (n +1)/ds. Then X+ N> is an automorphism of the
n+1

multiplicative group of the ((n + 1)/ds)-th roots of unity.
— n+1 —
(Z) We have HPi = {[)\37171] | A ds = 1}7 and hence |HP’L| ="

(ii) We have

Ha, = {[1,b,1] | 6% = 1,6 = * for some A with A% =1},

hence

_ n+1 n+1
Hy, | = ged .
(111) We distinguish two subcases.

ntl s even. Then

dida
Hy, = {[b.0.1) | ()

hence
- n+1 n+1 2(n+1) n+1
Hp | =2¢gcd = gcd .
| Hry | = 28 ( ds ’2d1d2) ge ( ds ’dlczg)

is odd. Then b+ b* is an automorphism of the multiplicative

%:1)([92)%:1} and b +# —b,

n+1

d1da

group of the ((n+ 1)/dids)-th roots of unity, and

— ntl ntl

Hy, = {[b,b, 1| A% = bhas = 1,03 = b2};

hence,

— n+1 n+1 2(n+1) n+1
Hp, | = ged = ged .
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Therefore, if 3 1 (n + 1)/ds then the Hurwitz formula applied to the covering
H — H/H provides the genus of H/H :
gg = 1+ ——-1 [nQ—n—Q—(n—i—l)

2 (n+1)2
dydgods

2(n+1
(25 + god (G, L) + ged (5L, 2020) — 3) .

that s,
dydads n+1 n+1 n+1 n+1 2(n+1)
_ 1 _2_ _ —
IH +2(n+1)[” ds (dldg’ d3) (dldQ’ ds )JFS}’
hence
didads n+1 n+1 n+1 n+1 2(n+1)
=1 1-— — —
9H +2(n+1)<”+ d (dldg’ d3> (dldg’ d )+
didads (n® — 2n?
+123(n2 nitn), (2.11)

(B) 3 divides (n+ 1)/ds. Let N = X3, then
i= {[Xb",b, 1] (V)56 = bty = 1}.
The same arguments yield
3didads <n 1 n+1 (n—i—l n+1> B <n+1 2(n—|—1))> N

gH = 2(n + 1) 3ds dids ’ 3ds dido ’ 3ds
d1d2d3 (n3 — 2n2 —-n—+ 2)
+ 5 .

Case 2.1.7. Suppose that d; divides dy, and (di,d3(n* —n + 1)) = 1. Then
K(u,v,w) is the function field quotient curve of X with respect to the group

H= {(X,Y,Z,T) s VX, DY, AZ,T) | b = Ay = 1}_

This follows from
)\(n+1)/d3 _ ()\(n+1)/d1d3)d1 — 1’ b(n+1)/d2 — 1’

and
(A3 D/ = (N )3dap=((r /) = (p=((r1)/da)yda/dr —

Similar computations provide the genus of X /H :

B didadsm o n+l1 _<n+1 n+1>_<n+1 2(n+1))
I =T 1) dydsm dy  didsm dy  didsm
+d1d2d3 [713 —2n? + (2 — m)n +m — 1]
2 )

where m = ged(3, (n + 1)/(d1d3)).
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2.1.4 Another family of Galois subcovers of X

In this section we consider another subgroup of the group G given in (2.1). Let
c|(n+1),d|(n*—n+1), and consider the following automorphism group K of
X of size (n® +1)/(cd):

= {(X,Y,Z,T) = (07X, DY, AZ,T) | b = LA = 1}‘

By applying the F,-rational morphism

n+1 n27n+1
u=x-c, v=xy, w=2z 4

over the function field K(z,y, z) of X', we have the following relations:
wh=v(l+u+u*+.. .+ u("_Q)C) R T T (2.12)
In the double field extension K(u,v,w) C Fiz(K) C K(z,y, z) we have

nd+1
cd

[K(z,y,2) : K(u, v, w)] < = [K(z,y,2) : Fiz(K)],
which implies Fiz(K) = K(u, v, w).

The equations (2.12) are irreducible. To show this, let P = (0,a) be an affine
point of the Hermitian curve H,, : Y"1 = X" — 1 and let P be a place of the
curve W : V"t = J2¢ — U* centered at the image ¢(P) of P under the F,-rational
map

0 H, oW, oX,Y,T)=(X"",XY,T).

The rational function 8 := xy(1 + 2"+t + 220+ 4 2(=D(+D)) € K(z,y) has
valuation vp(8) = 1 at P, hence the pull-back o = v(1 + u® + ... + u("72°) ¢
K(u,v) of 3 has valuation vp(a) = 1 at P, since vp(8) = e(P|P) - vp(a). Hence
the equations (2.12) are irreducible, i.e. the quotient curve X' /K has irreducible
equations:

Wi=V (14U +U*+... +UC2r
LSRRt ) (2.13)

From the Hurwitz formula applied to the tame covering X — X' /K, we compute
the genus of X'/ K:

9(X/K) =

g{(d—nnun—d—gcd (2”?1)} +1. (2.14)



40 CHAPTER 2. RESULTS ON MAXIMAL CURVES

2.1.5 New examples of maximal curves not (Galois) cov-
ered by the Hermitian curve

Let a curve Y be a subcover of the Hermitian curve H, by an F -rational map
p:H—=).

Then for the degree deg(y) of the covering we have the following bounds:

29(H) — 2
< deg(p) < 20)) =2

In particular, the lower bound Ly y = H(F,2)/Y(F,2) and the upper bound Uy y =
(29(H) —2)/(29(Y) — 2) satisty [Lyy] < [Uny].

Therefore, a curve Y having [Lyy] > [Uxy] cannot be a subcover of the
Hermitian curve. By applying this argument to the curves given in Theorems
2.1.2 and 2.1.3, we get many new examples of curves which are not covered by the
Hermitian curve.

To exemplify this, we list in Table 2.1 below some genera of curves not covered
by the Hermitian curve. We remark that for such curves we have both the genus
and explicit equations.

Remark 2.1.8. Let YV be an Fp2-mazimal curve of genus g which is Fg-covered
by the Hermitian curve Hy. If g > f(q), where

V2 P+ P42+ 1 -2 -1
— T 7

fq)
then the degree d of the covering Hq, — Y is uniquely determined by
Lq.[,y S d S UH,J)-

Proof. By direct computation, g > f(q) is equivalent to Uy y — Ly y < 1, which
implies IVL'H’y—I = LUH,))J' 0

Theorem 2.1.9. Let n > 7 be a power of a prime p and k | (n+ 1) with k <
vVn+1+1. Definedy = (n+1)/k, do =1, and d3 =n+ 1. Then the curve Cy in

Theorem 2.1.2 is not Galois covered by the Hermitian curve H,s.
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Table 2.1: New maximal curves not covered by the Hermitian curve

g n (dy,ds, ds) Reference
(1,18,6), (2,9.6), (2.18,3), (2,18.6),
233416 | 17 | (3,18,6), (6,9,6), (6,18,3), (6,18,6), Th. 2.1.3
(9,2,6), (9,6,6), (9,18,2), (9,18,6), | (2.9),(2.10)
(18,1,6), (18,2,3), (18,2,6), (18,3,6),
(18,6,3), (18,6,6), (18,9,2), (18,9,6)
233398 | 17 (9,18,2) Th. 2.1.3 (2.10)
(1,24,8), (8,3,8), (24,8,1), (24,1.8), Th. 2.1.3
1064701 | 23 | (2,24,8), (3.8,8), (3,24,8), (4,24.8), |  (2.9),(2.10)
(6,8.8), (6,24,8), (8,3.8), (8,6.8),
(8,12,8), (8,24,1), (8,24,2)
1064689 | 23 (2,24.8), (4,24.8), (6,8.8), Th. 2.1.3 (2.10)
(6,24,8), (8,6,8), (8,12,8)
3206257 | 23 | (2,24,24), (4,24.24), (6,24,24), | Th. 2.1.3 (2.10)
(8,6,24), (8,12,24)
3402406 | 29 | (30,10,1), (10,30,1), (10,15,2), | Th. 2.1.3 (2.9)
(30,2,5), (10,6.5), (10,3,10)
5570731 | 32| (33,11,1), (11,33,1), (11,3,11) | Th. 2.1.3 (2.9)

41



42 CHAPTER 2. RESULTS ON MAXIMAL CURVES

Proof. Let H,s be given in the Norm-Trace form (1.4) and let P, be the point at
infinity of #H,s. Suppose that C; is Galois covered by H,3, so that C; = H,,3 /N for
some subgroup N of PGU(3,n?).

The genus of C; can be computed from (2.11), whence Ly , ¢, > kn — 1 if and
only if

n® —k(k—2)n" —2n° +n® — (k—1)[2k+1— (k,2)]n* + 2k — 1 — (k, 2)]n> — k®n+2k > 0,
while Uy, , ¢, < kn+1if and only if
n® —2knt +2(k — 1)n® — [k(k,2) —k —1n® — [(k,2)(k+1) +k—1n+2k — (k,2) —1 > 0

For n > 7, both conditions are implied by the hypothesis k < v/n + 1 4+ 1. Then
IN| = kn.

Let S be a Sylow p-subgroup of N. The group S fixes an F,s-rational point
P € H,s by [67, Lemma 11.129]. Since all Sylow p-subgroups are conjugate, we
assume that S fixes P,,. Moreover, the action of S on H(IF,;s)\{ P} is semiregular,
i.e. each element of S has no fixed point but P,. Hence the orbit O of P, under
N satisfies |O| =1 (mod n).

Suppose P, is not fixed by N, then |O| > n+ 1. Hence, by the orbit-stabilizer
theorem, n divides the size of the stabilizer Ng of @) in N, for all ) € O. Then
a Sylow p-subgroup Mg of Ny has size n. Since S is semiregular on H,s \ {Px},
Mg and Mp have trivial intersection for () # R in O. Therefore N has at least
1+ (n+1)(n — 1) = n? elements, thus k > n, a contradiction.

Therefore the whole N fixes P,. If £ = 1, then C; is isomorphic to the GK
curve X and the thesis holds. Otherwise, the genus of H/N can be computed by
[47, Th. 4.4]:

3 w

s
2kn

Su _pSu—v _ (k _ 1)p3u—w + kE—1

3 v_p
(n° = (k—=1)p") = o ,

g(H/N) ="

where n = p* and v, w are non-negative integers satisfying u = v + w.
On the other side, the genus of C; as computed in (2.11) is

n =2 +n>+2k—1—h
2k

n+2 if kis even
1 if kis odd

g(Cy) = ,  where h= {

Hence the equality g(H/N) = g(C;) reads

_ 2p3u + p3u7w - p3u7v _ p2u + h

k
p3u—w + 1
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We have the following possibilities for v and w: either v = 0 and w = u, or
v <wu/2and w > u/2, or v > u/2 and w < u/2. By considering separately each
case, it is shown after some computation that

<p3ufw + 1) J( (2p3u _'_p?;ufw _ p3uf'u _ p2u + h) ,
which is impossible since k is integer. O]

Theorem 2.1.10. Let n > 3 be a power of a prime p, k a diwvisor of n + 1 such
that 34 (n+1)/k and k < v/n+1+1; if 3| (n+ 1), assume also n > 23. Define
di=m+1)/k, do =n+1, and d3 = 1. Then the curve C; in Theorem 2.1.2 is
not Galois covered by the Hermitian curve H.,s.

Proof. The genus of the curve C; can be computed as in Case 2.1.7. Separating
the cases 3 | (n+ 1) and 31 (n + 1) and arguing as in the proof of Theorem 2.1.9,
it is proved that a putative Galois covering has degree kn.

Suppose that such a covering exists and C; & H /N with N < PGU(3,n?). The
same argument used in the proof of Theorem 2.1.9 allows to apply [47, Th. 4.4]
and yields the following expression for k:

1 + ng(?), k))p?)u + p3u—w _ p3u—v _ p2u _ gcd(3, k‘)pu

k:(
p3u7w_pu_2

, (2.15)

where n = p* and v, w are non-negative integers satisfying u = v + w. A case-
analysis now shows that the fraction in (2.15) cannot be integer. O]

Theorem 2.1.11. Let n be a power of a prime p, v a divisor of n+1, § a dwisor
ofn*>—n+1,c=(n+1)/y, and d = (n> —n+ 1)/5. Suppose that one of the
following holds:

en=>5vy=2 andd=1;
en>7,v<2 andd < (vV2yn+1-1)/2;
en>7,v>2 and y(yd -0 —1) <n.

Then the curve X /| K with equations (2.13) is not Galois covered by the Hermitian
curve H,s.

Proof. By arguing as in the proof of Theorem 2.1.9, it is proved that a putative
Galois covering has degree ydn. Suppose that such a covering exists and X' /K =
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H/N with N < PGU(3,n?). The same argument used in the proof of Theorem
2.1.9 allows to apply [47, Th. 4.4] and yields the following identity:

0 [p™ = p™ T + (ged(2,9) — 1) p" — v +ged(2,9)] = —p™ 7T = pM T 4 p™,
(2.16)
where n = p" and v, w are non-negative integers with v = v + w. By a case-
analysis, it can be shown that (2.16) contradicts the hypothesis on the integers ~y
and 0. m

2.2 Maximal curves that are not quotients of the

Hermitian curve

In this section we prove the following result

Theorem 2.2.1. For any odd number m > 5, the GGS curve GGSs ,, is not Galois
covered by the Hermitian curve Haom.

Together with a result by Duursma and Mak [34, Theorem 1.1], this shows that
the GGS curve GGS,, ,,, is not Galois covered by H,~ for any prime power n and
any odd m > 5.

We also prove an analogous result for the GS curve.

Theorem 2.2.2. For any prime power q > 3, the GS curve GS, is not Galois
covered by the Hermitian curve Hgs.

By Proposition 1.2.14, this shows that GS,, is not Galois covered by H,s for
any prime power n > 3, while GS5 is Galois covered by Hs.

In this section, we exploit the properties of the automorphism group PGU(3, q)
of the Hermitian curve H,. Essentialy, we study the putative subgroups G' <
PGU(3, q) realizing the isomorphism between the GGS curve (or the GS curve)
and the quotient curve H,/G, and prove that the automorphism groups of the two
curves cannot be equivalent.

The results obtained in this section are the object of [54].

2.2.1 GGSsy,, is not Galois covered by Hom, for any m > 5

Through Section 2.2.1, m > 5 is an odd integer and ¢ = 2™. We rely on a
result by Duursma and Mak [34, Theorem 1.2].
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Lemma 2.2.3. Let m > 5 be odd. If GGSs,, = Hom /G for some G < Aut(Ham),
then G has order (2™ 4 1)/3 and acts semireqularly on Haom.

Proof. The order of G is equal to the degree of the covering ¢ : Hom — GGS2 .
Hence, by [34, Theorem 1.2], G has order (2™ + 1)/3. Also, by [34, Theorem 1.2],
¢ is unramified. Since Haym is non-singular, this means that there are exactly |G|
points of Ham lying over each point of Ham /G, that is, every orbit of G is long. [J

By Lemma 2.2.3 only subgroups G < Aut(#,) of order (¢+1)/3 acting semireg-
ularly on H, need to be considered. We will also use the fact that Aut(GGSa.,)
has a unique fixed place P, € GGS5 ., see Proposition 1.2.13.

Proposition 2.2.4. Let G < Aut(H,). If there exists G < Aut(H,) such that G
is a proper normal subgroup of G and G acts semireqularly on H,, then GGSo m %
H,/G.

Proof. The claim follows from Proposition 1.2.13 5., taking into account that

G/G < Aut(H,/G) acts semiregularly on H,/G. O

The following well-known result about finite groups will be used (see [85, Ex.
16 Page 232]).

Lemma 2.2.5. Let H be a finite group and K a subgroup of H such that the index
[H : K] is the smallest prime number dividing the order of H. Then K is normal
in H.

Proposition 2.2.6. Let G < PSU(3,q). If a mazimal subgroup of PSU(3,q)
containing G is of type (i1) in Theorem 1.2.6, then GGSa,, ¥ H,/G.

Proof. Let ¢ be the (¢ + 1)-secant to H, stabilized by G; we show that G is
isomorphic to a cyclic subgroup of PSL(2,¢?). We can assume that ¢ is the line
at infinity 7" = 0; in fact, the group PGU(3,q) is transitive on the points of
PG(2,¢*)\ H,, and hence also on the (¢+1)-secant lines. The action of an element
g € Gon/isgiven by (X,Y,0) = A, - (X,Y,0), where the matrix A, = (a”)f;lgg
satisfies ag; = azs = 0; we set azz = 1. By direct computation, the map

X an a X

is a well-defined group homomorphism. Moreover, ¢ is injective, since no non-
trivial element of G can fix the points of H,N¥¢, by the semiregularity of G. Hence
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G is isomorphic to a subgroup of PGL(2,4?). Since |G| is odd, Theorem 1.2.7
implies that G is cyclic.

Let g € G be an element of prime order d > 3; such a d exists, since it is easy
to check that 2™ + 1 is a power of 3 only when m =1 or m = 3. If we denote by
d" the highest power of d dividing (¢ + 1)/3, then d*" is the highest power of d
dividing

PGUB,q)| = (¢ + V(> = 1) = (g + 1)*(¢ — 1)(¢® — ¢+ 1).

Let H, be given in the Fermat form (1.3); then
D:{(X:Y:T)H(AX:MY:T)|/\dh:udh:1}

is a Sylow d-subgroup of PGU(3,¢). By Sylow theorems we can assume, up to
conjugation, that g € D; therefore, the fixed points of the subgroup (g) generated
by g are the fundamental points P, = (1:0:0), P, =(0:1:0),and P3 = (0:0:
1). Since G is abelian, (g) is normal in G; hence, G acts on T = { Py, P, P3}. As
|G| is odd, we have by the orbit-stabilizer theorem that the orbits of any h € G
on 7T have length 1 or 3. If h has a single orbit on 7, then h is either

0 0 A 0 X0 App 0 0
w 0 0 or 0 0 p|; inbothcases R*=| 0 Aup 0 |,
0 p O p 0 0 0 0  Aup

that is, A% is the identity element of G and clearly G cannot be generated by h.
Therefore, a generator o of G has the form

a:(X:Y:T)— (0X :nY :T),

q+1

with 0% = "5 = 1. If 6 had order m < (q+ 1)/3, then o™ would fix the points
of H,N(Y = 0), against the semiregularity of G. Then 6 is a primitive (¢+1)/3-th
root of unity, and the same holds for n; hence

a=ap: (X:Y :T)w (X :0Y:T),

with 6 a primitive (¢ 4+ 1)/3-th root of unity, and 4 coprime with (¢ + 1)/3. Let
¢ € Fs with ¢3 = 6, and let G be the group generated by a¢ : (X : Y : T)
(CX : C'Y : T). Any element of G fixes only the fundamental points, hence G is
semiregular on H,; moreover, G is normal in G of index 3. Then the thesis follows
from Proposition 2.2.4. O
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Proposition 2.2.7. Let G < PSU(3,q). If a mazimal subgroup of PSU(3,q)
containing G is of type (ii1) in Theorem 1.2.6, then GGSa,, % H,/G.

Proof. Let H, be given by the Fermat equation (1.3). Up to conjugation, the self-
polar triangle stabilized by G is the fundamental triangle 7 = { Py, P, Ps}, whose
vertices are not points of H,. The elements of G stabilizing 7 pointwise form a
normal subgroup N of G, and G/N acts faithfully on 7 hence, either G = N or
[G: N]=3.

If G = N, then G fixes a fundamental point, say Py, and its polar line P, Ps;
therefore, the thesis follows from Proposition 2.2.6.

If [G: N] = 3, then N is cyclic, by the same argument used in the proof of
Proposition 2.2.6; say N = (a¢), where £ is a primitive (¢ + 1)/9-th root of unity,
e+ (X,Y,T) — (£X,£'Y,T), and i is coprime with (¢ + 1)/9. Let h € G\ N.
By arguing as in the proof of Proposition 2.2.6, h has order 3. Moreover, G
is the semidirect product N x (h); in fact, N is normal in G, N and (h) have
trivial intersection, and |G| = |N| - [(h)]. Let N be the cyclic group generated by
ag : (X,Y,T) — (0X,0°Y,T), where 0 € F satisfies > = ¢. Let G be the group
generated by N and h. Then G is the semidirect product N x (h). We want to
double count the size of the set

I={(3,P)|geG\{id}, PeH,, g(P)=P}.

Since G and N are semiregular on H,, we consider only elements of the form
nh or nh?, with n € N\ N. Up to reordering of the fundamental points, we have

p 0 0 0 A0
n=10 p° 0 and  h=10 0 pul, (2.17)
0 0 1 1 0 0

where A9 = 97 =1, ged(i, (¢+1)/3) =1, and p = 6% with 0 < j < (¢+1)/3
and u € {1,2}. Hence

0

p
0

~

0 0 A0 0 A 0
nh = o]-1o 0 u]l=10 0 BJ, (2.18)
1 100 10 0

o O

where A9T1 = B! = 1, and det(nh) = AB is not a cube in Fy, since nh ¢
PSU(3,q). Then nh has three distinct eigenvalues in a cubic extension of [,
namely 2, zz, and z(z + 1), where 22 + 2 +1 = 0 and 2® = AB. Therefore, fih has
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exactly three fixed points, namely

2? 222 2(x+1)2
Ql = (2‘/727 1) ) QQ = (va 77 1) ) and QS = (Z(I"{‘ 1)7%7 1) ;

it is easy to check that @y, @2, and Q3 are points of H,. The same holds for nh?.
Therefore, any element 7ih or nh? with i € N\ N has exactly three fixed points
on H,; then
- g+1 qg+1
|I]:2-(\N|—|N\)-3:2-(T—T)-:a: S (2.19)
The orbit O of a point P € H, under G has size |O] > |G| = (¢ + 1)/3. Then the
stabilizer S of P under G has size |S| < 3; in particular, |S| € {1,3} since |G| is
odd. Hence, the number |S| — 1 of pairs in [ having P in the second coordinate is
either zero or 2.
Therefore |I| = 2m, where m is the number of points of H, fixed by some
non-trivial element of G. By (2.19), we get

g+l

2-|G|.
—=2-c

m =2
Hence, G/G has two fixed points Ry, Ry € H,/G and acts semiregularly on
(H,/G) \ {R1, R2}. By Proposition 1.2.13, either Ry or R, is Fe-rational. Then
the number |H,/G(F2)| of Fz-rational points of H,/G satisfies

|H,/G(Fp2)| = {P € {Ry, Ry} | P is Fp-rational}| (mod |G/G|),

that is, |H,/G(F,2)| is congruent to 1 or 2 modulo 3.
On the other side, the number [GGS, ,,(F2)| of F,2-rational points of GGS5
is a multiple of 3, by Proposition 1.2.13. Therefore, H,/G % GGSs .. O

Proposition 2.2.8. Let G < PGU(3,q), G € PSU(3, q). If a mazimal subgroup of
PSU(3, q) containing GNPSU(3, q) is of type (it) in Theorem 1.2.6, then GGS2 m P
H,/G.

Proof. Let G' = GNPSU(3,q). Since PSU(3, ¢) has index 3 in PGU(3, ¢), we have
PGU(3,q) = G - PSU(3,q) and [G : G'] = 3; hence, G’ is normal in G by Lemma
2.2.5. Arguing as in the proof of Proposition 2.2.6, G’ is cyclic; moreover, G’ is
generated by ag : (X : Y : T) — (X : €'Y : T), where € is a primitive (¢+1)/9-th
root of unity and ¢ is coprime with (¢ + 1)/9. Then G stabilizes the fundamental
triangle 7T .
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If there exists h € G\ G’ of order 3, then G = G’ x (h) by arguing as in the
proof of Proposition 2.2.7. Let § € Fyo with 6° = ¢, and define ap: (X : Y : T) —
(X : 0°Y : T). Let G’ be the cyclic group generated by ay, and let G be the group
generated by G’ and h; then G = G’ x (h). Moreover, [G : G] = [G' : G'] = 3;
hence, by Lemma 2.2.5, G’ is normal in G’ and G is normal in G. We can repeat
the same argument used in the proof of Proposition 2.2.7, after replacing N with
G’ and N with G’; then |H,/G(F,2)| = 1,2 (mod 3), while |GGS5 | = 0 (mod 3).
This yields the thesis.

If there is no h € G\ G’ of order 3, then G is made of diagonal matrices,
since G acts on 7. By Theorem 1.2.7, G is cyclic; a generator of G has the
foorm ag : (X : Y : T) — (X : ¢Y : T), with 6 a primitive (¢ + 1)/3-th
root of unity and j coprime with (¢ + 1)/3. Let G be the group generated by
ac (XY :T) ((X : 'Y : T), where ¢ € Fyo satisfies ¢* = 6. Then G is
a normal subgroup of G of index 3, and G acts semiregularly on ‘H,. Proposition
2.2.4 yields the thesis. [l

Proposition 2.2.9. Let G < PGU(3,q), G € PSU(3,q). If a mazimal subgroup of
PSU(3, q) containing GNPSU(3, q) is of type (iii) in Theorem 1.2.6, then GGSa ,, %
H,/G.

Proof. As in the proof of Proposition 2.2.8, G' = G N PSU(3, ¢) is normal in G of
index 3. Arguing as in the proof of Proposition 2.2.7, it can be shown that there
are two possible cases for G": (A) G’ is cyclic and generated by ag : (X : Y : T) —
(EX : &Y : T), with € a primitive (g + 1)/9-th root of unity and ¢ coprime with
(¢+1)/9; (B) G’ = () @ (h), where o, : (X : Y : T) > (nX : 'Y : T) with n a
primitive (¢ + 1)/27-th root of unity and i coprime with (¢ + 1)/27, and h is an
element of order 3 acting with a single orbit on the fundamental triangle 7, hence
having the form (2.17).

(A) Since G’ is normal in G, we have that G acts on 7. If G fixes T pointwise,
then the elements of G are diagonal matrices whose diagonal coefficients are
(¢ + 1)/3-th roots of unity, hence cubes in Fp; therefore G < PSU(3, ¢q),
against the hypothesis. Then G = G’ x (h), where h € G \ G’ has order 3.
Let 0 € F,2 with 6% = £, and let G be the group generated by ag : (X : Y :
T) — (X : 0°Y : T) and h; then G = (ap) x (h). By arguing as in the
proof of Proposition 2.2.7, we have that |H,/G(Fz)| = 1,2 (mod 3), while
|GGS2.m| = 0(mod 3). This yields the thesis.
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(B) Any element of G’ \ («,) has order 3; in fact, a matrix h of the form (2.17)
has the form (2.18), which has order 3. Therefore, (o) is the only cyclic
subgroup of order (¢ + 1)/27 in G’; note that (¢ + 1)/27 # 3 since ¢ is a
prime power. Thus, (a,) is characteristic in G’, and hence normal in G.
Therefore, G acts on the set of points which are fixed by (a,), i.e. the
fundamental points. Let G” be the subgroup of G fixing 7 pointwise. The
group G” is abelian, as it is made of diagonal matrices; moreover, G” is
normal in G of index 3, and G = G” x (h). By the primary decomposition
of abelian groups, either G” = (ag) with & =npand g : (X : Y : T)
(X : &Y . T), or G = () x (k), where k has order 3. In the latter case
det(k)® = 1, as k® is the identity element; hence, det(k) is a cube in F,
and k € GNPSU(3,q) = G'. Therefore G' = G”, contradicting h € G’ \ G”.
Then G" = {a¢) and G = {ag) x (h). Let G = (ag) x (h), with 6° = ¢
and g : (X : Y : T) — (0X : 0'Y : T). We can argue as in the proof of
Proposition 2.2.7, after replacing N with (a¢) and N with (ag); we get that
|H,/G(Fp)| = 1,2 (mod 3), while |§GS5,,(F2)| = 0(mod 3). This yields
the thesis.

]

Lemma 2.2.10. Let G < PSU(3,q). If a maximal subgroup M of PSU(3,q)
containing G is neither of type (ii) nor of type (iii) in Theorem 1.2.6, then M is
of type (ziv); that is, G € PSU(3,2™/3) and M contains PSU(3,2™/3) as a normal
subgroup of index 3.

Proof. With the notations of Theorem 1.2.6, we can exclude cases (ii) and (7ii) by
hypothesis, case (i) by the semiregularity of GG, and cases (iv) and (zv) since |G|
does not divide neither 3(¢> — ¢ + 1) nor 36. The thesis will follow if we exclude
case (riii). Assume by contradiction that M is of type (iii); we apply Theorem
1.2.6 to M = PSU(3,2*), where m = p's with p’ an odd prime. Note that, since
m > 5 is odd, either p’ > 5, or p’ = 3 and s > 3.

Case (i). G fixes an Fys-rational point P € Hys. Since P ¢ H, by the
semiregularity of G, M is of type (4i) in the list of maximal subgroups of PSU(3, ¢),
against the hypothesis.

Case (ii). The order (2¢* + 1)/3 of G divides 2%(2° — 1)(2° 4 1)2/3, which is
impossible.

Case (iii). The order of G divides 2(2° + 1)2, which is impossible.

Case (iv). The order of G divides 2% — 2% + 1, which is impossible.
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Case (ziii). G is contained in PSU(3,2"), where s/r is an odd prime; hence
m/r > 9. This is impossible, since the order of G is greater than the order of any
maximal subgroup of PSU(3,2").

Case (ziv). G is contained in a group K containing PSU(3,2") as a normal
subgroup of index 3, where r = s/3. If H is a maximal subgroup of K and
H # PSU(3,2"), then H N PSU(3,2") has index 3 in H; therefore, |H|/3 divides
the order of a maximal subgroup of PSU(3,2"). This yields a contradiction, since,
by direct computation, the order of G does not divide three times the order of any
maximal subgroup of PSU(3,2").

Case (zv). The order of G divides 36, which is impossible. ]

Proposition 2.2.11. Let G < PSU(3,q). If a mazimal subgroup M of PSU(3,q)
containing G is of type (ziv) in Theorem 1.2.6, then GGSa,, % H,/G.

Proof. The subgroup M contains PSU(3,2°) as a normal subgroup of order 3,
where s = m/3 > 3. As in the proof of Lemma 2.2.10, |G| divides three times the
order of a maximal subgroup of PSU(3, 2%). We apply Theorem 1.2.6 to PSU(3, 2°).

Case (i). The order (2%* +1)/3 of G divides 23¥(2%* — 1), which is impossible.

Case (). The order of G divides 2°(2° + 1)(2* — 1), which is impossible.

Case (41). The order of G divides 6(2° + 1)2, which is impossible.

Case (). The order of G divides 3(2%% — 2% + 1); this happens if and only if
s =3.

Cases (zi11) and (ziv). The order of G divides either 3 - |[PSU(3,2")| or 3 -
|PGU (3,2")|, where s/r is an odd prime. This is impossible, since |G| exceeds
three times the order of any subgroup of PGU(3,2").

Case (zv). The order of G divides 36, which is impossible.

Therefore, we have to consider only case (iv), with s = 3. In this case, G has
order 171 and G” = G N PSU(3,2°) has order |G|/3 = 57; moreover, G” coincides
with the normalizer in PSU(3, 2°) of a cyclic Singer group S. The fixed points of S
are three non-collinear points P;, P, P; whose coordinate are in a cubic extension
of Fa2s, hence in Fozm. Since G is semiregular, we have that P; ¢ H,; therefore,
T = {P, P, P} is a self-polar triangle with respect to #H,. Since G acts on T,
the thesis follows as in the proof of Proposition 2.2.9, after replacing ¢ with 2° and
G’ with G”. O

Theorem 2.2.12. GGS,,, is not a Galois subcover of the Hermitian curve H,.

Proof. Suppose GGSs,,, = H,/G. Then G € PSU(3,q), by Propositions 2.2.6,
2.2.7,2.2.11 and Lemma 2.2.10. Hence, G’ = GNPSU(3, ¢) has index 3 in G. After
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replacing G with G, we can repeat the proofs of Propositions 2.2.8 and 2.2.9, the
proof of Lemma 2.2.10, and the first part of the proof of Proposition 2.2.11. Then
m = 9, and any maximal subgroup M of PSU(3,2%) containing G’ contains also
PSU(3,23) as a normal subgroup of index 3. Moreover, G” = G’ N PSU(3,23) is
contained in the normalizer N’ of a cyclic Singer group with |N’| = 57,

If G’ < PSU(3,2?), then we argue as in the proof of Proposition 2.2.11, after
replacing G with G’. In this way we get a contradiction.

If G ¢ PSU(3,23), then G” = G'NPSU(3,23) has order |G'|/3 = 19. By Sylow
theorems, G” is the only Sylow 19-subgroup of G’; hence, G” is a cyclic Singer
group. Therefore G” fixes a triangle 7 with coordinates in the cubic extension
Fois of Fos, and T is self-polar with respect to Hae. Since G’ acts on T, the thesis
follows from Proposition 2.2.9. ]

Now Theorem 2.2.1 follows.

2.2.2 G§, is not Galois covered by H;, for any ¢ > 3

Throughout this section ¢ > 3 is a power of a prime p. We rely on the following
bound by Duursma and Mak.

Proposition 2.2.13. ([34, Theorem 1.3]) If there exists a Galois covering H,s —
GS, of degree d, then
CHq<d<g+q+2

Therefore, we have to exclude three possible values of d.

Proposition 2.2.14. There is no Galois covering ¢ : Hp — GS, of degree ¢ +
q+2.

Proof. 1f such ¢ existed, then ¢* + ¢ + 2 would divide the order ¢°(¢° +1)(¢° — 1)
of PGU(3, ¢3), hence ¢*> + ¢ + 2 would divide 2128¢ — 1568. But this is impossible
for any prime power greater than 3. [

Now we consider the case d = ¢ + ¢ + 1.
Lemma 2.2.15. Let G < PGU(3,¢%) with |G| = ¢*+q+1. Then G < PSU(3,¢?).

Proof. 1t PSU(3, ¢*) # PGU(3, ¢*), then PSU(3, ¢*) has index 3 in PGU(3, ¢*) and
3 divides ¢® + 1; hence, 3 does not divide |G|. Suppose G € PSU(3,¢?); then
PGU(3,¢*) = G - PSU(3,¢?®), and G has a subgroup G N PSU(3,¢*) of index 3,
which is impossible. O
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Proposition 2.2.16. There is no Galois covering ¢ : Hys — GS, of degree ¢* +
q+1.

Proof. Suppose by contradiction that such ¢ exists. Then GS, = H;/G with
G < PSU(3,¢*) by Lemma 2.2.15, and Theorem 1.2.6 can be applied.

Case (i). Let H,s be given by the Norm-Trace equation (1.4). Up to conju-
gation, G fixes the ideal point Py of H,s. By [47, Section 4], the stabilizer S of
P, in PGU(3,¢*) has order ¢°(¢° — 1). The group S is the semidirect product
@ % H, where @ is the unique Sylow p-subgroup of S, and H is a cyclic group
generated by o : (X : Y : T) — (a”T'X : aY : T), where a is a primitive
(¢° — 1)-th root of unity; moreover, H fixes two Fs-rational points Py, O € H,s
and is semiregular on H,s \ {Fs,O}. We have G C H, because @ is normal in
S, |Q| and |H| are coprime, and |G| divides |H|. In particular, G is generated
by ap : (X :Y : T) = (01X : bY : T), with b = a@ D@D, Let G be the
group generated by a, : (X : Y : T) — (¢ t1X : ¢Y : T), with ¢ = a?!; then
G is normal in G of index ¢* 4+ 1. The group G/G fixes two IF js-rational points
of H,;s/G and acts semiregularly on the other points of H,s/G. Therefore, the
number of F-rational points of H,s/G is congruent to 2 modulo ¢*> + 1. On the
other hand, the number of Fs-rational points of X, is ¢ — ¢° + ¢* + 1, which is
congruent to ¢*> + 1 modulo ¢ + 1.

Case (4i). Let H,s be given by the Fermat equation (1.3). Up to conjugation,
G fixes the affine point (0,0) and the line at infinity ¢ : 7' = 0. The action of G on
¢ is faithful. In fact, if g € G fixes ¢ pointwise, then ¢ is a homology of the form
g: (X:Y :T)— (X :Y :\T), whose order divides ¢* + 1; since |G| and ¢* + 1
are coprime, g is the identity element. Therefore, as in the proof of Proposition
2.2.6, G is isomorphic to a subgroup of PGL(2, ¢%); by Theorem 1.2.7, G is cyclic.
Moreover, since |G| divides ¢° — 1, G has two fixed points P, P, € £ and acts
semiregularly on £\ {P;, P»}; see Theorem 1.2.7. As [¢ N Hs| is congruent to 2
modulo |G|, we have that P, P, € H,s. Now the same argument used in case (7)
yields a contradiction.

Cases (7ii) and (iv). The order of G does not divide the order of these maximal
subgroups.

Case (v). The group G acts on the ¢°+1 F-rational points of a conic C defined
over Fis. As in case (ii), G is isomorphic to a cyclic subgroup I' of PGL(2, ¢%)
acting on a line ¢ with no short orbits apart from two fixed Fg-rational points.
The action of G on C is equivalent to the action of I" on ¢, see [118, Chapt. VIII,
Thm. 15]; hence G has no short orbits on C apart from two fixed F-rational
points P, P,. If G has a fixed F-point on H,s, then we get a contradiction
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by arguing as in case (7). Otherwise, Py, P, ¢ H,; by [90, Par. 2] and [65,
Page 141], G fixes a third F-rational point P; € H,s, and T = {P, P», P3} is
a self-polar triangle. Let now H,s be given by the Fermat equation (1.3); up to
conjugation, 7 is the fundamental triangle and a generator of GG has the form
g:(X:Y:T)— (AX : uY : T). Then the order |G| of g divides ¢* + 1, which is
impossible.

Cases (viii) to (zii), and case (zv). The order of G does not divide the order
of these maximal subgroups.

Cases (vi), (vii), (viii), and (ziv). If K is a group containing PSU(3,2™) as a
normal subgroup of index 3, then the order of any maximal subgroup of K divides
three times the order of a maximal subgroup of PSU(3,2™). Hence, applying
Theorem 1.2.6 to PSU(3,p™), it can be checked that |G| does not divide neither
the order of any maximal subgroup of PSU(3,p™), nor the order of any maximal
subgroup of K. m

Lemma 2.2.17. Let G < PGU(3,¢?) with |G| = q(¢ + 1). Then the number of
Sylow p-subgroups of G is either 1 or ¢ + 1.

Proof. Let Q1,...,Q, be the Sylow p-subgroups of G. By [67, Theorem 12.25
(i),(i1)], for each ¢ = 1,...,n there is a unique point P, € H,s fixed by Q;. More-
over, P; is Fy-rational, and P; # P; for ¢ # j. If n > 1, then G has no fixed
points; hence, the length of the orbit Op, of P, under G is at least ¢ + 1, since
()1 is semiregular on H,s \ {P;}. On the other hand, the stabilizer of P, in G has
length at least ¢, as it contains (). Therefore |Op,| = ¢+ 1 by the orbit-stabilizer
theorem. If P € Op,, then the stabilizer of P in G has order ¢, hence P = P, for
some i € {2,...,n}. Then n=q+ 1. O

Proposition 2.2.18. Let G < PGU(3,¢*) with |G| = q(q+1). If G has a unique
Sylow p-subgroup @, then GS, is not birationally equivalent to Hs/G.

Proof. Let H,s be given by the Norm-Trace equation (1.4). Since @ is normal
in G, we have that G fixes the unique fixed point of () on H,s, which can be
assumed to be the ideal point P,,. The stabilizer of P,, in PGU(3, ¢%) is solvable;
hence, by Hall’s theorem [64, Theorems 2.1-2.4], we have that, up to conjugation,
G=0Qx{(ay), where ay : (X :Y :T)— (X :AY :T) and X is a primitive (¢+ 1)-
th root of unity. The genus g of H,s/G is computed in [47, Theorem 4.4]. In the
terminology of [47, Theorem 4.4], g = ¢g(GS,) implies ¢ = p*, that is, the elements
of @ are involutions of the form 5, : (X : Y : T) — (X +puT : Y : T), with
uq3 + 1 = 0. Then there exists a p-linearized polynomial L € F[X] of degree ¢
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dividing X% 4 X, such that the set of roots of L coincides with {u € Fs | 8, € Q}.
By (82, Theorem 3.62], there is also a p-linearized polynomial ' € [F [ X]| of degree
¢* dividing X" + X, such that F(L(X)) = X% + X. Then it is easy to see that
the quotient curve H,s/G is F s-birationally equivalent to the plane curve C with
equation V¢4t = F(U)).

Assume that there exists an [Fys-isomorphism ¢ : C — GS,. We will show that
in this case F(U) cannot be a divisor of U? + U, which is a contradiction.

By [67, Theorem 12.11], the ideal points R, € GS, and Sy, € C are the unique
fixed points of the automorphism groups Aut(X,) and Aut(C), respectively. Hence,
(Seo) = Reo- Also, the coordinate functions have pole divisors

div(2) oo = (¢*—q+1)Roo, div(y)oe = ¢*Roo, div(1)ee = (¢°—q+1)Sso, div(v)se = ¢*Soc,

and the Weierstrass semigroups at the ideal points are H(Ry) = H(Sx) =
(*—q+1,¢% (see [67, Lemmas 12.1, 12.2]). Then {1, u} is a basis of the Riemann-
Roch space L((¢> —q+1)Rs) and {1,u, v} is a basis of £(¢*Rs). Therefore, there
exist constants a,b,c,d,e € F, a,d # 0, such that ¢*(x) = au + b and ¥*(y) =
cu + dv + e, where ¥* : F;s(GS,) — Fy(C) is the pull-back of 1; equivalently,
Y (U, V,T)— (aU +b,cU +dV +¢,T).
Then the polynomial identity

(aU + b)q2 —(aU +b) — (cU + dV + €)q2_q+1 = k(F(U) - qu—q—l—l)

holds for some non-zero k € K. By comparing the coefficients we get ¢ = e = 0,
b€ Fp, and k = d° 9% this implies

FU) =k 'aU" — k~'alU.

It is easily checked that the conventional p-associate of the p-linearized polynomial
F(X) is not a divisor of the conventional p-associate of U?" + U, hence F(U) is
not a divisor of U¢" + U by [82, Theorem 3.62]. O

Lemma 2.2.19. Let G < PGU(3,¢%) with |G| = q(q+1). If G has q+ 1 distinct
Sylow p-subgroup Q1,...,Qu1, then G = (Zy)® x Q1, where p' is a prime and
Py =q+1.

Proof. By the proof of Lemma 2.2.17, the points P, ..., Py, fixed by Q1, ..., Qg41,
respectively, form a single orbit O under the action of G. By Burnside’s Lemma
[17, Chapter VIII, Par. 118], G is sharply 2-transitive on O. Then, by [63, Theo-
rem 20.7.1], G is isomorphic to the group of affine transformations of a near-field
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F; also, G has a regular normal subgroup N, and hence G = N x ). The order
f of F satisfies q(¢+ 1) = (f — 1)f, hence f = g+ 1. This implies that F' cannot
be one of the seven exceptional near-fields listed in [122] and then F' is a Dickson
near-field; see [63, Theorem 20.7.2]. In particular, N is isomorphic to the additive
group (Z,)*® of a finite field. O

Proposition 2.2.20. Let G < PGU(3,¢*) with |G| = q(q¢+1). If G has ¢+ 1
distinct Sylow p-subgroups, then GS, is not birationally equivalent to Hs/G.

Proof. Suppose that ¢ is odd. Then all involutions of PGU(3,¢?) are conjugate,
and they are homologies of PG(2, ¢°); see [75, Lemma 2.2]. The maximum number
of pairwise commuting involutions is 3; in fact, two homologies commute if and
only if the center of one homology lies on the axis of the other (see [30, Theorem.
3.1.12]). Then ¢ + 1 =4 by Lemma 2.2.19, a contradiction to ¢ > 3.

Suppose that ¢ is even, and GS, = H,3/G. Let Q1,...,Qq+1 be the Sylow p
subgroups of GG. The group () is isomorphic to the multiplicative group of F,
hence @1 is metacyclic; see e.g. [20, Ex. 1.19]. Also, (); has exponent 2 or 4
by [75, Lemma 2.1]. Therefore, ¢ € {2,4,8,16}. The case ¢ = 2 is excluded. If
q = 16, then F' has prime order 17 and F is a field; hence ); has exponent 16, a
contradiction.

For ¢ € {4,8} we apply the Riemann-Hurwitz genus formula to the covering
Hyp — GS,y, in order to get a contradiction on the degree

A = (2g(Hp) —2) - |G] (29(X,) — 2)

of the different divisor. By [107, Theorem 3.8.7],

A= > (o),

oceG\{id}
where (o) > 0 satisfies the following conditions.

e If o has order 2, then i(o) = ¢+ 2; if o has order 4, then i(c) = 2 (see [107,
Eq. (2.12)]).

e If o has odd order, then i(0) equals the number of fixed points of o on Hs,
see [107, Cor. 3.5.5]. Also, by [65, pp. 141-142], either ¢ has exactly 3
fixed points or ¢ is a homology. In the former case i(c) < 3, in the latter
i(o) = ¢+ 1.
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If g =4, then A =470 and G = Zs x Q1. If Q1 = Zy X Zo, then G has 15
involutions, whose contributions to A sum up to 990 > A. Then Q; = Z4, and
the contributions of the );’s to A sum up to 5-66 + 10 - 2 = 350. The remaining
four non-trivial elements of G' are generators of Zs; then either all of them are
homologies, or all of them fix 3 points. In both cases, their contribution cannot
be equal to 120 = A — 350.

Let ¢ =8, hence A = 7758 and G = (Z3 X Z3) x Q1. If Q)1 has more than one
involution, then the involutions of G contribute to A for at least 18 - 514 > A.
Hence, )7 is the quaternion group, and the sum of @);’s contributions to A is
9-514 4+ 54 -2 = 4734. The contribution to A of the elements of Z3z x Zs is either
513 or less than 4; hence, it cannot sum up to 3024 = A — 4734. O

The following result follows rom Lemma 2.2.17 and Propositions 2.2.18 and
2.2.20.

Proposition 2.2.21. There is no Galois covering Hps — GS, of degree ¢* + q.

From Propositions 2.2.13, 2.2.14, 2.2.16, and 2.2.21, Theorem 2.2.2 follows.

2.3 Some Ree and Suzuki curves are not quo-
tients of the Hermitian curve

The results of this section are the object of [92]. We prove that the Suzuki
and Ree curves over F, for the smallest values of ¢, are not quotients of the
corresponding maximal Hermitian curves. We use the notation and results of
Section 1.2.

Theorem 2.3.1. The Suzuki curve Sg s not a quotient curve of Hes.

Theorem 2.3.2. The Ree curve Rg3 is not a quotient curve of Haz.

We note that Theorem 2.3.2 is an unpublished result due to Rains and Zieve.
In analogy with the Suzuki curves, we can define the plane curve

Syt Y4V =X(X?+X)
over Fy. We prove the following proposition.

Proposition 2.3.3. The curve Sy is a quotient curve of Hy.
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We classify the elements of PGU(3, ¢) in terms of their order and their action
on PG(2,K) and #H,. In this way, we get the contribution of any element o €
PGU(3,q) to the degree of the different exponent of a Galois covering H, —
H,/G, where G < PGU(3,q) contains o; see Theorem 2.3.9. This is a result of
independent interest, which extends [34, Lemma 4.1].

In Section 2.3.1 we present some preliminary results on quotient curves of
the Hermitian curve and the proof of Proposition 2.3.3. Sections 2.3.2 and 2.3.3
contain the proofs of Theorems 2.3.1 and 2.3.2, respectively. Section 2.3.4 provides
the spectrum of genera of quotient curves of Ho; and three examples of quotient
curves of R3 which are not quotient curves of Hoy;.

2.3.1 Preliminary results

In our investigation it is useful to know how an element of PGU(3, ¢) of a given
order acts on PG(2,K), and in particular on #,(F,2). This can be obtained as a
corollary of Theorem 1.2.6, and is stated in Lemma 2.2 with the usual terminology
of collineations of projective planes; see [72]. In particular, a linear collineation
o of PG(2,F,) is a (P,{)-perspectivity, if o preserves each line through the point
P (the center of ¢), and fixes each point on the line ¢ (the azis of o). A (P,{)-
perspectivity is either an elation or a homology according as P € L or P ¢ (. A
(P, ¢)-perspectivity is in PGL(3, ¢?) if and only if its center and its axis are in
PG(2,Fp2).

Lemma 2.3.4. For a nontrivial element o € PGU(3, q), one of the following cases
holds.

(A) ord(o) | (¢+1). Moreover, o is a homology whose center P is a point off H,
and whose axis { is a chord of Hy(Fp2) such that (P, () is a pole-polar pair
with respect to the unitary polarity associated to Hy(Fp2).

(B) ord(o) is coprime to p. Moreover, o fixes the vertices Py, Py, P3 of a non-
degenerate triangle T

(B1) The points Py, Py, Py are IF2-rational, P, P, Py ¢ H, and the triangle
T is self-polar with respect to the unitary polarity associated to Hy(F2).
Also, ord(o) | (¢ +1).

(B2) The points Py, Py, Py are Fpe-rational, Py ¢ Hy, Po, Py € H,. Also,
ord(c) | (¢* — 1) and ord(co) t (¢ +1).

(B3) The points Py, Py, Py have coordinates in Fys \F 2, and Py, Py, Py € H,.
Also, ord(o) | (¢* —q+1).
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(C) ord(c) = p. Moreover, o is an elation whose center P is a point of H, and
whose axis ¢ is a tangent of Hy(Fz2) such that (P,{) is a pole-polar pair with
respect to the unitary polarity associated to Hy(Fz2).

(D) ord(c) = p with p # 2, or ord(c) = 4 and p = 2. Moreover, o fizes an
[F 2-rational point P € H,, and a line £ which is a tangent of Hq(F,2), such
that (P, 0) is a pole-polar pair with respect to the unitary polarity associated
to Hq(Fq2).

(E) p | ord(o), p* f ord(c), and ord(c) # p. Moreover, o fizes two F2-rational
points P,Q, with P € H,, Q ¢ H,.

Proof. Let p | ord(o), ord(c) # p, and (p,ord(c)) # (2,4). By [90, §2 p. 212]
and [65, pp. 141-142], the fixed elements of o are two points P, @, the line PQ,
and another line ¢ through P. Also, p? { ord(c). The Frobenius collineation
Do (XY :T) = (XYY : T9) commutes with 0. Hence &, acts on
{P,Q}, and P,Q are F-rational. If R € {P, @} is the pole of PQ, then R € #,,.
Since M, has no points with coordinates in Fya \ Fj2, R is Fp-rational. Thus the
line PQ is a tangent of H,(IF2) at R. Hence the pole of ¢ is Fj-rational and off /.
Therefore R = P and the assertions of Case (E) follow.

Let ord(c) = p, and let H, have Norm-Trace equation (1.4). Up to conju-
gation, o is contained in the Sylow p-subgroup S of PGU(3,q) defined by S =
{T1pe | b,c € Fps, b9 = + ¢}, where

1 v ¢
Tipe= (0 1 b]. (2.20)
0 0 1

Hence o fixes the FFpe-rational point P, = (1 : 0 : 0) € H, and its polar line
U : T = 0, which satisfies (oo NH, = {Px}. If p =2, then o is of type 7., and o
is an elation with center P, and axis /.., which is Case (C). If p # 2, then by [90,
§2 p. 212] 0 = 7, satisfies either Case (C) or Case (D). By direct computation,
Cases (C) and (D) correspond to b = 0 and b # 0, respectively.

Let p t ord(o). By [90, §2 p. 212] and [65, pp. 141-142], either o fixes a point
P and a line ¢ pointwise, or ¢ fixes exactly three non-collinear points.

Assume that the former case holds. Then P and ¢ are fixed by ®,.. Hence,
they are defined over F.. We have P ¢ H,. In fact, if P € H,, then the tangent
to H, at P intersect ¢ at an F-rational point ) ¢ H,, and the F-rational pole
R of £ lies on ¢, hence also on H,. For any F-rational point P of £\ {R}, we have
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that P ¢ H, and the polar line of P intersects ¢ at another [F j2-rational point of /.
Since the line PQ is the polar line of P, this is a contradiction. Therefore, ¢ is the
polar line of P, and ¢ is a chord of H,(F,2). Now we show that ord(c) | (¢ + 1).
Let H, have Fermat equation (1.3). Up to conjugation, P = (0 : 0 : 1) and
¢:T = 0. Hence o is a diagonal matrix of the form diag(}, 1,1), which implies
ord(o) = ord(\) with ord(\) | (¢ +1). This shows that o satisfies Case (A).

Now assume that o fixes exactly the vertices Py, P, P; of a triangle T

e Suppose that P, P, and Ps are Fp-rational. If Py, P, Py ¢ H,, then P; P,
is the polar line of P;, for {7, 7, k} = {1,2,3}. Let H, have Fermat equation
(1.3). Up to conjugation Py, P,, and P3 are the fundamental points. Thus
o is a diagonal matrix and ord(o) | (¢ + 1), which is Case (B1). Assume
P, € H,. Then the polar line ¢y of P, is either P, P, or P,Ps, say P, P,. The
polar line ¢3 of Pj is either P, P; or P, P3, whence Ps € (3 and P; € ‘H,. Then
U3 NH, = {Ps}, and hence ¢35 is P;P;. This implies that P, P; is the polar
line of P, and P, ¢ H,. Let H, have Norm-Trace equation (1.4). Up to
conjugation, P, = (1:0:0) and P3=(0:0:1). Thus P, = (0:1:0) and
o is the diagonal matrix diag(u?™, u, 1) for some u € Fro. Since o is not a
homology, ord(¢) = ord(u) does not divide ¢ 4+ 1. This is Case (B2).

e Suppose that P, has coordinates in Fy \ F2. The orbit of P, under @, is
{Py, P,, P;}. Hence, P, and P3 have coordinates in F s \ [F2 as well. Assume
P, € H,. Then the polar line ¢; of P, is tangent to H, at P, and ¢; has
exactly another point P in common with #H,, which is then fixed by o. Up to
reordering, P = P,. In the same way, P3 € H, and the polar line of P, P, P;
are P\ Py, P,Ps, P3P, respectively. Let H < PGU(3,q) be the Singer group
consisting of the elements of PGU(3, ¢q) fixing the triangle 7. Then H has
order ¢ — g+ 1 by Theorem 1.2.6. Since 0 € H, ord(c) | (¢* —q+1) and o
satisfies Case (B3).

Elements satisfying Case (B3) do exist; see for instance [27, Lemma 4.4].
The number k of triangles T" whose vertices ()1, ()2, @3 are such that @Q); €
PG(2,¢%) \ PG(2,¢?) and there exists some o € PGU(3, q) stabilizing T, is
equal to the index in PGU(3, ¢) of the normalizer N of H. By Case (iv) in
Theorem 1.2.6, |[N| = 3(¢*> — ¢ + 1). Hence k = ¢*(q + 1)?(¢ — 1)/3. By
direct computation, k is equal to the number of triangles T” whose vertices

1, Q%, Q% are such that Q) € PG(2,¢°%) \ PG(2,¢?) and Q) € H,, i = 1,2,3.
Therefore, it is not possible that Py, %, P; have coordinates in Fu \ F 2 and
P ¢ H,.
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e The case that P, has coordinates in F 4 \ F2 cannot occur. In fact, since @,
acts on {Py, P5, Ps}, if P, € PG(2,F4) \ PG(2,F,2), then up to reordering
P, € PG(2,F) \ PG(2,F2) and Ps € PG(2,¢%). Let i,j € {1,2,3}, i # J.
By [90, §2 p. 212] and [65, pp. 141-142], any power of o either fixes the
line P;P; pointwise or has no fixed points on P,P; \ {F;, P;}. Thus o has
long orbits on P,P; \ {P;, P;}. In particular, ord(c) divides the number of
[F 2-rational points of both Py P, and PP \ {Ps}, a contradiction.

]

Throughout the paper, a nontrivial element of PGU(3, ¢q) is said to be of type
(A), (B), (B1), (B2), (B3), (C), (D), or (E), as given in Lemma 2.3.4. Moreover,
G always stands for a subgroup of PGU(3, q).

Lemma 2.3.5. Let H be a normal subgroup of G. Let A be the set of points of
PG(2,K) fized by every element of H, and B = ANH,. Then G acts on B and
on A\ B.

Lemma 2.3.6. Let H be a m-subgroup of PGU(3, q), where m ¢ {2,3} is a prime
divisor of ¢+ 1. Then H is abelian. Also, the nontrivial elements of H are either
of types (A) or (B1), and in the latter case the fized triangle T is the same for
every element of H. In addiction, if H is a Sylow m-subgroup of PGU(3, q), then
the unique fized points of H are the vertices of T and H 1is the direct product of
two cyclic groups whose nontrivial elements are of type (A).

Proof. Since p ¢ {2,3}, the maximum power of m dividing |[PGU(3, q)| is a square,
say m?. Let H, have Fermat equation (1.3), and define

K = {diag(\, 1, 1) | A* = p® = 1} = {diag(\, 1,1) | A* =1} x {diag(1,p,1) | p® = 1}.
(2.21)
Then K is an abelian Sylow m-subgroup of PGU(3, ¢), whose fixed points are the
fundamental points. Also, the nontrivial elements of K are either of type (A) or
(B1). Up to conjugation, H is contained in K and the claim follows. O

Lemma 2.3.7. Let H be a m-subgroup of PGU(3,q), where m is an odd prime
divisor of qg— 1. Then H is abelian and the unique fized points of H are the vertices
of a triangle T'.

Proof. Let H, have Norm-Trace equation (1.4), and define

K = {diag(a™"',a,1) | a € F}»}. (2.22)
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Then K is an abelian Sylow m-subgroup of PGU(3, ¢), and the nontrivial elements
of K fix exactly the fundamental points. Up to conjugation, H is contained in K
and the claim follows. m

Lemma 2.3.8. Let p € {2,3}. If G has a nontrivial normal subgroup H of prime
order other than p, then p? 1 |G].

Proof. Assume by contradiction that p? | |G| and let o € H. By Lemma 2.3.4, the
type of o is either (A) or (B). Suppose that o is of type (A). Then, since H = (o),
all nontrivial elements of H are of type (A) and they have the same center P and
axis £. On the other hand, by Lemma 2.3.5, any p-element of GG fixes P and acts
on /; a contradiction to Lemma 2.3.4. Suppose that o is of type (B). Then, since
H = (o), all nontrivial elements of H are of type (B) and they fix the same triangle
T. By Lemma 2.3.5, GG preserves 1. Hence, by the orbit-stabilizer theorem, the
elements of G fixing T' pointwise form a subgroup M of index 1, 2, or 3. In all
cases, M contains a p-element of type (A) or type (B), a contradiction to Lemma
2.3.4. ]

Let G be a subgroup of PGU(3, ¢) and A be the degree of the Different divisor
of the covering H, — H,/G, that is, A = (29(H,) — 2) — |G|(29(H,/G) — 2). The
Hilbert’s Different formula can be written as

A= > i),

ceG\{id}

where
i(o) = ZPGHq(TFq) vp(o(t) —1t), (2.23)

with ¢ a local parameter at P.

By analyzing the geometric properties of the elements ¢ € PGU(3, ¢), it turns
out that there are only a few possibilities for ¢(¢). This is obtained as a corollary
of Lemma 2.3.4 and stated in the following proposition.

Theorem 2.3.9. For any nontrivial element o € PGU(3,q) the following holds.
1. Iford(o) =2 and 2 | (¢ + 1), then o is of type (A) and i(c) = q+ 1.
2. Iford(o 3| (¢+1) and o is of type (B3), then i(o) = 3.

3. Iford(o) # 2, ord(o) | (¢ + 1) and o is of type (A), then i(o0) = q+ 1.

) =
) =
) #
)

4. Iford(o) # 2, ord(o) | (¢+ 1) and o is of type (B1), then i(c) = 0.
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5. Iford(o) | (¢* —1) and ord(c) t (¢ + 1), then o is of type (B2) and i(o) = 2.
6. If ord(o) # 3 and ord(o) | (¢* — ¢+ 1), then o is of type (B3) and i(c) = 3.
7. If p=2 and ord(c) = 4, then o is of type (D) and i(o) = 2.
8. Iford(c) =p, p # 2 and o is of type (D), then i(o) = 2.
9. If ord(c) = p and o is of type (C), then i(c) = q + 2.

10. Iford(o) # p, p | ord(o) and ord(c) # 4, then o is of type (E) and i(o) = 1.

Proof. Suppose p 1 ord(c). Then by [67, Theorem 11.74] i(0) equals the number
of points of H, fixed by o. Also, for ¢ odd all involutions are conjugated and are
of type (A), by [75, Lemma 2.2 (ii)]. Therefore Cases (1) - (6) follow from Lemma
2.3.4.

Suppose ord(c) = p, or p = 2 and ord(c) = 4. As in the proof of Lemma 2.3.4,
we can assume that o has the form 74, defined in (2.20). By direct computation,
o is of type (C) or (D) if and only if b = 0 or b # 0, respectively. By [47, Eq.
(2.12)], b=0or b # 0 if and only if i(c) = ¢+ 2 or i(c) = 2, respectively. From
this, Cases (8) and (9) follow. Since (p,ord(m.)) = (2,4) implies b # 0, Case (7)
follows as well.

Suppose p | ord(o), ord(c) # p, and ord(c) # 4. By [90, §2 p. 212] and [65,
pp. 141-142], o is of type (E). Let P € H, be the unique fixed point of o on H,,.
By [67, Theorem 11.74], o is in the stabilizer of P but is not a p-element. Hence
i(c) = 1. Since Cases (A) - (E) in Lemma 2.3.4 cover all nontrivial elements of
PGU(3,¢q), Cases (1) - (10) give a complete classification. O

Theorem 2.3.9 extends [34, Lemma 4.1], where the result is for o fixing an F .-

rational point of H,. Groups fixing an IF 2-rational point of H, are investigated in
[47].

Theorem 2.3.10. [47, Theorem 3.3 and Eq. (2.12)] Let p = 2. For a positive
integer g, the following assertions are equivalent.

1. There exists a 2-subgroup G < PGU(3,q) such that g = g(H,/G).

2. g = 2"_”_1(2”_w — 1D with0<v<n—-—1and 0 < w < n-—1, and there
exist additive subgroups V. C Fp and W C Fy of order ord(V) = 2V and
ord(W) = 2%, such that Vi1 = {b9*1 | b € V'} is contained in W.
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Assume that assertions (1) and (2) hold, and let H, have Norm-Trace equation
(1.4). Up to conjugation the unique point of H, fixed by every element of G is
P, = (1:0:0), and the elements of G have the form (2.20). Then |G| = 2" and
the additive subgroups {b € F2 | 114, € G} <Fpe and {c € Fpe | 119, € G} <F,
have order 2” and 2", respectively. In particular, the number of involutions of G
equals 2 — 1.

Theorem 2.3.11. [47, Theorem 4.4 and Eq. (2.12)] Let G fiz an Fp2-rational
point P € H,, and let |G| = m - p* with m > 1, m coprime with p. Then H,/G

has genus
g(H,/G) = (¢—p") (g — (g;igz, g+ 1) —1)p°)

where v, w are non-negative integers such that v+ w = u.

Assume that G satisfies the hypotheses of Theorem 2.3.11 and let H, have
Norm-Trace equation (1.4). Up to conjugation P = (1:0:0) and the elements of
G have the form

Y

al*l b1 ¢
Tabe = 0O a b,
0 0 1
with a,b,¢c € F2, a # 0, b = ¢4 + ¢. Then the additive subgroups {b € F |
Tipe € G} and {c € Fpe | 719, € G} of Fp have order p’ and p“, respectively.
In particular, the number of nontrivial elements ¢ € G with i(0) = ¢ + 2 equals
pv —1.
As a consequence of Theorem 2.3.9, the following result is obtained.

Proposition 2.3.12. S, : Y2+ Y = X (X% + X)) is Galois covered by H,.

Proof. The curve Sy has genus 1 and is Fig-maximal. Let G < PGU(3,4) be
a cyclic group of order 4. By Theorem 2.3.9, the Fig-maximal quotient curve
H,/G is elliptic. By [73, Theorem 77], there is only one Fig-isomorphism class of
Fi6-maximal elliptic curves. Then S, is Fig-isomorphic to H4/G. O

Throughout the rest of the paper, C,. stands for a cyclic group of order r, S,,
is a Sylow m-subgroup of GG, and n,, is the number of Sylow m-subgroups of G.

2.3.2 Proof of Theorem 2.3.1

By contradiction, let G < PGU(3,64) be such that Sg = Hgs/G. The order of
PGU(3,64) is equal to 2'8-32.52.7.13%.37-109. From the Riemann-Hurwitz
formula,
| Hoa(Fs1)|

29(7‘[64) -2
vl < 155.
|Ss(Fge )|

44 < -
29(Ss) —2

< |G| <
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Since |G| divides |PGU(3,64)],
G| € {45, 48, 50,52, 56, 60, 63, 64, 65, 70, 72, 74, 75, 78, 80, 84, 90, 91, 96,

100,104, 105,109, 111, 112,117,120, 126, 128, 130, 140, 144, 148, 150}.
The different divisor has degree

A = (29(Hes) — 2) — |G|(29(Ss) — 2) = 4030 — 26 - |G]|. (2.24)

Case |G| = 45. By Sylow’s Third Theorem [100, Theorem 6.10] and Schur-
Zassenhaus Theorem [100, Theorem 9.19], G is the direct product G = S5 x Cs.
Then G has 4 elements of order 5 and 40 elements of odd order multiple of 3. By
Theorem 2.3.9, A < 4-65+ 40 -2, a contradiction (2.24).

Case |G| = 48. Any group of order 48 has a normal subgroup of order 8 or 16
(see [104, p. 154 Ex. 10]); hence G has a normal 2-subgroup N. By [67, Theorem
11.74], N has a unique fixed point P on Hg4, which is Fgs2-rational. By Lemma
2.3.5, G fixes P. From Theorem 2.3.11,

(64 — 22)(64 — (ged(3, 65) — 1)2Y)
2. 48 ’

14 =

with v +w = 4. By direct computation, this is not possible.

Case |G| = 50. By Sylow’s Third Theorem and Schur-Zassenhaus Theorem,
G is a semidirect product G = S5 x Cy. By Theorem 2.3.9, A =i - 65+ (24 — i) -
04 ng - 66+ (25 —ng) -1 with 0 <4 < 24 and ny € {1,5,25}. This contradicts
(2.24).

Case |G| = 52. By Sylow’s Third Theorem, ny3 = 1, a contradiction to Lemma
2.3.8.

Case |G| = 56. By Sylow’s Third Theorem, ny = 1 or n; = 1. Suppose that
ny = 1, so that G = Sy x (7. Then S, fixes an Fg 2-rational point P € Hgy, and
G fixes P by Lemma 2.3.5. By Theorem 2.3.11,

(64 — 2)(64 — (ged(7,65) — 1)2°)

14 = :
256

with v 4+ w = 2; this is impossible. The case n; = 1 is impossible by Lemma 2.3.8.
Case |G| = 60. By [100, Problem 6.16], either ns = 1 or G is isomorphic to
the alternating group As. The case ns = 1 is impossible by Lemma 2.3.8; hence
G = A;. By Theorem 2.3.9, A = 15-66420-2+17-65+4 (24 —1)-0, with 0 <17 < 24.
This contradicts (2.24).
Case |G| = 63. By Theorem 2.3.9, A = 62 - 2, a contradiction to (2.24).
Case |G| = 64. By Theorem 2.3.10, 14 = 267v=1(26=* — 1) with 0 < v, w < 5.
Hence, v = 4 and w = 3. Then, by Theorem 2.3.10 and Lemma 2.3.4, G has
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7 elements of type (C) and 56 elements of type (D). By Theorem 2.3.9, A =
7-66 + 56 - 2. This contradicts (2.24).

Case |G| = 65. By Lemma 2.3.4, any nontrivial element ¢ € G is either of
type (A) or of type (B1). If a generator of the cyclic group G is of type (A), then
any element is of type (A) and A = 64-65 by Theorem 2.3.9, contradicting (2.24).
If the 48 generators of G are of type (B1), then A < 16 - 65 by Theorem 2.3.9.
This contradicts (2.24).

Case |G| = 70. By Sylow’s Third Theorem, n5 = n; = 1 and ny € {1,5,7,35};
hence, G = C35 x Cy. By Theorem 2.3.9, A =ny-66 + (35 —ng) -1 4+30-2 43 -
654 (4 —14) - 0 with 0 <4 < 4. This contradicts (2.24).

Case |G| = 72. By [91, Theorem 1], G has a characteristic 3-subgroup N. By
Lemma 2.3.7, the elements of N are of type (B2) with a common fixed triangle
T. By Lemma 2.3.5, G acts on T'. By the orbit-stabilizer theorem, G contains a
2-element fixing T" pointwise, contradicting Lemma 2.3.4.

Case |G| = 74. For any prime power ¢, PSU(3,¢q) has index ged(3,q + 1)
in PGU(3,¢q). This implies that, for any maximal subgroup M # PSU(3,q) of
PGU(3,q), |M| divides three times the order of a maximal subgroup of PSU(3, q).
By Theorem 1.2.6, 74 does not divide three times the order of any maximal sub-
group of PSU(3,64), a contradiction.

Case |G| = 75. By Sylow and Schur-Zassenhaus theorems, G is a semidirect
product G = S5 x C3. By Theorem 2.3.9, A =i-65+(24—1i)-04+j-2+(50—7)-3
with 0 <47 <24 and 0 < j < 50. This contradict (2.24).

Case |G| = 78. By Sylow’s Third Theorem, ni3 = 1; by Lemma 2.3.5, G
acts on the fixed points of Si3. Every nontrivial element ¢ € S5 generates Si3
and is either of type (A) or (B1). Hence, all nontrivial elements of G either are
of type (A), or act on a common triangle 7. In the former case, G contains a
2-element of type (A), contradicting Lemma 2.3.4. In the latter case, by the orbit-
stabilizer theorem, the subgroup H of G fixing T' pointwise contains a 2-element
or a 3-element. This contradicts Lemma 2.3.4.

Case |G| = 80. By [91, Theorem 1], G has a characteristic 2-subgroup N. By
Lemma 2.3.5, GG fixes the unique fixed point of N on Hgs, which is Fgs2-rational.
By Theorem 2.3.11,

(64 — 2v)(64 — (ged(5, 65) — 1)2°)
280

14 =

with v +w = 4, which is impossible.
Case |G| = 84. By Sylow’s theorems, n; = 1, a contradiction to Lemma 2.3.8.
Case |G| = 90. Since |G| =2 (mod 4), G has a normal subgroup N of index 2
(see [96, Ex. 4.3]). By Sylow’s Third Theorem, N has a characteristic 5-subgroup
Cs, so that (5 is normal in G and n5 = 1. Also, n3 = 1. Then G is a semidirect
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product G = C5 x S3x Cy. By Theorem 2.3.9, A = 4-i+40-24n5-66+ (45 —ns)-1,
with i € {0,65} and 1 < ny | 45. This contradicts (2.24).

Case |G| = 91. By Theorem 2.3.9, A = 78 -2 + 12 -4 with ¢« € {0,65},
contradicting (2.24).

Case |G| = 96. By [91, Theorem 1], G has a characteristic 2-subgroup N. By
Lemma 2.3.5, G fixes the unique fixed point of N on Hgy, which is Fg2-rational.
By Theorem 2.3.11,

(64 — 22)(64 — (ged(3,65) — 1)2Y)
2-91

14 =

with v 4+ w = 5, which is impossible.

Case |G| = 100. By Sylow’s Third Theorem, n; = 1. By Lemma 2.3.6, the
fixed points of S5 are the vertices of a triangle T'. By Lemma 2.3.5, G acts on T.
By the orbit-stabilizer theorem, G' contains a 2-element fixing 7" pointwise. This
contradicts Lemma 2.3.4.

Case |G| = 104. By Sylow’s theorems n;3 = 1, contradicting Lemma 2.3.8.

Case |G| = 105. By Sylow’s Third Theorem, ns; € {1,21}. All elements of
a S5 are of the same type, either (A) or (B1). Then, by Theorem 2.3.9, A =
4i- 654 4(ns — i) - 0+ (104 — 4ns) - 2, with 0 <4 < ny. This contradicts (2.24).

Case |G| = 109. By Theorem 2.3.9, A = 108 - 3. This contradicts (2.24).

Case |G| = 111. By Sylow and Schur-Zassenhaus theorems, ns; = 1, ng €
{1,37}, and G is a semidirect product G = C3; x C3. By Lemma 2.3.4, G has no
elements of order 37 - 3. Hence, n3 = 37. By Theorem 2.3.9, A =36-3 + 74 - 2.
This contradicts (2.24).

Case |G| = 112. By [91, Theorem 1], G has a characteristic 2-subgroup N. By
Lemma 2.3.5, G fixes the unique fixed point of N on Hgy, which is Fg2-rational.
By Theorem 2.3.11,

(64 — 2)(64 — (ged(7, 65) — 1)2°)
2112

14 =

with v +w = 4, which is a contradiction.

Case |G| = 117. By Sylow and Schur-Zassenhaus theorems, G is a semidirect
product G = C}3 x S3. Since 13 is prime, the nontrivial elements of C3 are of the
same type (A) or (B1). By Theorem 2.3.9, A = 12 -7+ 104 - 2 with i € {0,65}.
Then i = 65 by (2.24), i.e. the nontrivial elements of Cj3 are homologies, with
a common center P ¢ Hgy and axis ¢. By Lemma 2.3.5, G fixes P and acts on
(. By Lemma 2.3.4, the nontrivial elements of S5 are of type (B2) and fix two
Fgy2-rational points @, R € ¢ N Hgy. Let Hgy have Norm-Trace equation (1.4).
Since PGU(3, q) is 2-transitive on the Fgy2-rational points of Hgs, we can assume
that Q = (1:0:0) and R=(0:0:1). Then Cy3 = {diag(1,\,1) | \!¥ = 1} and



68 CHAPTER 2. RESULTS ON MAXIMAL CURVES

Sy = {diag(a®,a,1) | a® = 1} = Cy; see [47]. Hence, G is abelian and is the direct
product G = Cy3 x Cy. Let G < PGU(3,64) be the group G = Cg5 x Cy, where
Ces is generated by diag(1, A, 1), with A a primitive 65-th root of unity. Then G is
a normal subgroup of G of index 5, so that G/G < Aut(Hes/G) has order 5. Also,
G /G has two Fg-rational fixed places on Hegs/G, namely the ones lying under Q
and R. This is inconsistent with the structure of the automorphism group of Ss.
In fact, by [67, Theorems 12.13 and A.12], any subgroup of Aut(Sg) of order 5 is
a Singer group acting semiregularly on the Fg-rational places of Sg.

Case |G| = 120. By [96, Ex. 8.19], either n5 = 1, or G has a normal 2-
subgroup, or G is isomorphic to the symmetric group S5. The case ny = 1 is
impossible by Lemma 2.3.8. Hence, n; = 6. Suppose that G has a normal 2-
subgroup N. By Lemma 2.3.5, G fixes the unique fixed point of N on Hgs. Then
any 5-element of G is of type (A) by Lemma 2.3.4. By Theorem 2.3.9, A > 24-65;
this contradicts (2.24). Suppose that G = S5. Then G contains 25 involutions.
By Theorem 2.3.9, A > 25-66. This contradicts (2.24).

Case |G| = 126. Since |G| = 2 (mod 4), G has a normal subgroup N of
index 2. Then G is a semidirect product G = N x C5. By Theorem 2.3.9, A =
62 -2+ ny - 66 + (63 — ng) - 1. This contradicts (2.24).

Case |G| = 128. By Theorem 1.2.6, G fixes an Fgs2-rational point of Hgy.
Then, by Theorem 2.3.10, 14 = 267v71(26=% — 1) with 0 < v, w < 5. Hence, v = 4,
w = 3. By theorem 2.3.10, G contains exactly 2% — 1 involutions. By Theorem
2.3.9, A =7-66+ 120 - 1. This contradicts (2.24).

Case |G| = 130. By Sylow’s Third Theorem, ni3 = 1, n; € {1,26}, and
ny € {1,5,13,65}. By (2.24), A = 650. Hence, by Theorem 2.3.9, the nontrivial
elements of Sy3 are of type (B1). We remark that if = is an element of type (C)
normalizing an element y of type (A) or (B1), then the element yz is of type (E).
If ns = 1, then G is a semidirect product G = Cgs x Cy; hence, ny = 1 by the
above remark. If ns = 26, then GG contains 12 elements of order 13, 4 - 26 elements
of order 5, and 12 elements of type (E) by the above remark. Hence, ny = 1.
Therefore GG contains a unique involution o. By Lemma 2.3.5, S;3 fixes the unique
fixed point of 0 on Hgy. This contradicts Lemma 2.3.4.

Case |G| = 140. By Sylow’s theorems n; = 1, contradicting Lemma 2.3.8.

Case |G| = 144. By Theorem 2.3.9, A =i-66+j-1+k-2 with i+ j+k = 143.
Here, i is the number of involutions in G, j is the number of elements of order 6 or
18 in GG, and k is the number of elements of order 3, 9, or 4 in G. Suppose i = 1.
Then, by Lemma 2.3.5, G fixes the unique fixed point of the involution on Hgy,
which is Fgge2-rational. By Theorem 2.3.11,

(64 — 2)(64 — (ged(9, 65) — 1)2°)
2. 144

14 =
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with v + w = 4, hence w = 0. By Theorem 2.3.11, G has no involutions, which
is impossible. Then ¢ > 2 and thus by (2.24), we have i = 2 and k = 13. This
implies that G contains 2 involutions and at most 13 elements of order 4. Hence,
G has a unique Sylow 2-subgroup S5. Then, by Lemma 2.3.5, G fixes the unique
fixed point of Sy on Hgys. As before, this yields a contradiction by Theorem 2.3.11.

Case |G| = 148. By Theorem 1.2.6, |G| does not divide three times the order
of any maximal subgroup of PSU(3,64). Hence, G is not contained in any maximal
subgroup of PGU(3,64), a contradiction.

Case |G| = 150. By Lemma 2.3.6, G contains 8 elements of type (A). Hence,
by Theorem 2.3.9, A > 8- 65. This contradicts (2.24).

This completes the proof of Theorem 2.3.1.

It may be noticed in the above proof that the hypothesis ¢ = 14 together
with the Fgs2-maximality of Sg are sufficient to get a contradiction for |G| # 117.
Instead, a group G of order 117 with the required ramification exists, and we gave
an explicit construction. Such a group G is uniquely determined up to conjugation.
Using MAGMA [16], we found a plane model of Hgy/G over Fy, as well as a non-
singular model of Hes/G in PG(13,2).

Proposition 2.3.13. Let X be an Fgy2-mazimal curve of genus 14. If X is Galois
covered by Hey then X = Hey/G where G is a cyclic group G < PGU(3,64) of
order 117, and a plane model of X over Fy is the (singular) plane curve

XY+ X+Y°=0,

while a nonsingular model in P of X over Fy is the image of X under the mor-
phism

0: X 5 PB (2,y,1) = (2,9, 2y, 2%y, v2, wy?, 2%y, 232 y3 ayd 2y, 28y3 2ty 1),

2.3.3 Proof of Theorem 2.3.2

By contradiction, let R3 = Ho7 /G for G < PGU(3,27). The order of PGU(3, 27)
is equal to 2°-3%-7%2-13-19 - 37. From the Riemann-Hurwitz formula,

|H o7 (Far2)| 2g(Har) — 2 < 95
R3(Far2)| 29(R3) —2 =

Since |G| divides [PGU(3,27)],

12 < <|G| <

|G| € {13,14,16,18,19,21,24}.
The different divisor has degree
A = (29(Har) — 2) — [GI(29(Rs) — 2) = 700 — 28 - |G| (2.25)
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Case |G| = 13. By Theorem 2.3.9, A = 12 - 2. This contradicts (2.25).

Case |G| = 14. By Sylow and Schur-Zassenhaus theorems, G is a semidirect
product G = C; x Cs. All nontrivial elements of C'; are of the same type, which is
either (A) or (B1) by Lemma 2.3.4. Therefore, by Theorem 2.3.9, A = 614728,
with ¢ € {0,28}. This contradicts (2.25).

Case |G| = 16. PGU(3,27) has just three conjugacy classes of subgroups of
order 16, which are isomorphic either to the Iwasawa group Mg = (z,y | 2® =
y? = 1,yzy~' = 2°), or to the direct product Cy x Cy, or to the central product
DgoCy={a,B,7|a*=p5>=1,BaB""=0a"' a®>=~%ay=va,B8y =8).

Suppose G = Mjs. By MAGMA computation, the normalizer N of G in
PGU(3,27) has order 224, and the quotient group N/G < Aut(Ho7/G) is a cyclic
group of order 14. On the other hand, the subgroups of R(3) = PI'L(2,8) of order
14 are not abelian, a contradiction.

Suppose G = Cy x Cy. By MAGMA computation, the normalizer N of G in
PGU(3,27) has order 4704. Hence, the group N/G < Aut(Hz7/G) has order 294,
which does not divide the order of R(3). This contradicts Har/G = Rs.

Suppose G = Dg o Cy. By MAGMA computation, the normalizer N of G in
PGU(3,27) has order 672, and the group N/G < Aut(Hs;/G) is isomorphic to
C91 X Cy. On the other hand, the subgroups of R(3) of order 42 have no cyclic
subgroups of order 21, a contradiction.

Case |G| = 18. By Sylow’s Third Theorem, ng = 1. By [67, Theorem 11.74],
S3 has a unique fixed point P on Hs7, which is Fyze-rational. By Lemma 2.3.5, G
fixes P. Then, by Theorem 2.3.11,

(27 — 3v)(27 — (ged(2, 28) — 1)3V)

15 =
> 2-18

with v +w = 2, which is impossible.

Case |G| = 19. By Theorem 2.3.9, A = 18 - 3. This contradicts (2.25).

Case |G| = 21. By Sylow and Schur-Zassenhaus theorems, G is a semidirect
product G = C7 x (3. All nontrivial elements of C7 are of the same type, which
is either (A) or (B1) by Lemma 2.3.4. Thus, by Theorem 2.3.9, A =6 -4 + 2n; -
29 + (14 — 2n3) - 1, with ¢ € {0,28}. This contradicts (2.25).

Case |G| = 24. Since 3 divides |G|, we have A > 29 by Theorem 2.3.9. This
contradicts (2.25).

This completes the proof of Theorem 2.3.2.

It may be noticed in the above proof that the hypothesis g = 15 together with
the Forz-maximality of R3 rule out all cases but |G| = 16. For this exception,
three cases are treated separately.

e G = M. Then GG has 3 involutions, 4 elements of order 4, and 8 elements
of order 8. By Theorem 2.3.9, the quotient curve Hy7/G has genus 18.
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o G = (), x Cy. By the Riemann-Hurwitz formula, Hs7/G has genus 15. Also,
G has 9 elements of type (A) and 6 elements of type (B1). Hence, G fixes the
vertices of a triangle T'. Let Hy; have equation (1.3). Up to conjugation, T’
is the fundamental triangle and G = {diag(\, i, 1) | A* = p* = 1}. Therefore
a (singular) plane model of Ho7 /G is X7+ Y7 +1 = 0.

e G = Dgo (. By the Riemann-Hurwitz formula, Hs7/G has genus 15. Also,
G contains 9 elements of type (A) and 6 elements of type (B1). In particular,
the non-central involutions of Dg are non-commuting elements of type (A).
Thus, the generator y of the center Cy is not of type (Bl). Hence, y is
of type (A). Let Haor have Fermat equation (1.3). Up to conjugation, the
generators of G are o : (X,Y,T) — (Y,—-X,T), B = diag(1,—1,1), and
v = diag()\, A, 1), where A> = —1. A plane model of Hy;/G is obtained by
MAGMA computation, as follows.

Proposition 2.3.14. Let X be an For2-mazimal curve of genus 15. If X s Galois
covered by Haor then X = Hoy /G where G < PGU(3,27) has order 16, and one of
the following cases occurs.

o G =y xCy and a plane model for X s given by the affine equation

X"4Y"+1=0.

e G = DgoCy and a plane model for X is given by the affine equation

X28+X27+X26+2X23+2X22+X21+2X12Y14+X10Y14+2X7Y14+Y28 = 0.

2.3.4 Galois subcovers of Ho;

Theorem 2.3.15 shows the complete spectrum of genera of Galois subcovers of
Ho7, consisting of integers g which are the genera of a quotient curve Hyr/G with
G ranging on the set of all subgroups of PGU (3, 27).

Theorem 2.3.15. The spectrum of genera of Galois subcovers of Hor is
Yo7 =10,1,3,4,5,6,7,9,10,12,13,15,16, 17,18, 19, 24, 25,

26,27,36,39,43,51,52,78,85,108,117, 169, 351}.

The proof relies on the results of Section 2.3.1. A case-by-case analysis of all
integers g with 1 < g < g(H27) is combined with

19684 [Hyr(Fope)| 2(Hy) =2 700
7304549 |Har/G(Far2)| 9H/G) =2 29—27

<161 < 5 (2.26)
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which bounds the order of a putative group G < PGU(3,27) such that Har/G
has genus g. This leads us to look inside the structure of the groups G satisfying
(2.26) and compute the genus of Hy7 /G, for g > 1. These results are summarized in
Theorem 2.3.15. For each g > 1 in X7, Tables 2.2 and 2.3 provide a classification
of the groups G for which Ho7/G has genus g.

Table 2.2: Quotient curves Hoy/G of genus g > 17

’ g ‘ |G| ‘ structure of G
351 | 1 trivial group.
169 | 2 G = Cy = (0), o of type (A)
117 3 G = Cs = (0), o of type (D)
108 | 3 G = C5 = (0), o of type (C)
85 | 4 G =Cy = (0), o of type (B1).
78 | 4 G =Cy = (0), o of type (A).
52 | 6 G = Cg = (0), o of type (E).
G = Sym(3) = (a) x (B), a of type (C), B of type (A).
51 | 7 G = C7 = (0), o of type (B1).
43 8 | G = Qg quaternion group, 1 element of type (A), 6 elements of type (B1).
39 | 7 G = C7 = (o), o of type (A).
8 G = Cgs = (0), o of type (B2).
9 G =C5 x C3={(a) x (), a and § of type (D).
36 | 8 G = Cy x Cy = (a) x (B), a of type (B1), B of type (A).
8 | G = Dg dihedral group, involutions of type (A), 2 elements of type (B1).
9 G = C3 x C3 = (a) x (B), a of type (C), 5 of type (D).
27 |1 9 G =C3x C5={(a) x (f), a and S of type (C).
13 G = Cy3 = (0), o of type (B2).
26 | 12 G = Alt(4), involutions of type (A), other elements of type (D).
25 | 14 G = C14 = (0), o of type (B1).
24 | 12 G = Ci2 = (0), o of type (E).
19 | 14 G = C14 = (o), o of type (B1), o2 of type (A).
18 | 16 G = Mjg, 5 elements of type (A),
2 elements of type (B1), 8 elements of type (B2).
18 | 19 G = C19 = (0), o of type (B3).
17 | 21 G =C7 x Cs = (o) x (B), a of type (B1), 5 of type (B2).
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Table 2.3: Quotient curves Hay7/G of genus 3 < g < 16

’ g ‘ |G| ‘ structure of G
16 | 18 G = C3 x (O3 xCa) = (a) x ((B) x (7)),
a of type (C), 8 of type (D), v of type (A).
15| 16 G =Cy x Cy= () x (f), o and 8 of type (A).
16 G =DgoCy = ({a) x (B)) o (7), a of type (B1), 8 and 7 of type (A).
13| 14 G = C14 = (0), o of type (A).
18 G =C3 x (C3 x Cy) = (a) x ({B) x (7)), a and S of type (D), v of type (A).
18 G =C3 x (C3 x Cy) = {a) x ({B) x (7)), a and S of type (C), v of type (A).
26 G = Cy = (0), o of type (E).
27 G = (O3 x C3) x C3 = ({a) x (B)) @ (7), o, B, v of type (D).
28 G = Cag = (0), o of type (B1), 1 element of type (A).
12 | 21 G = C9 = (0), o of type (E).
24 G =C3 xCs = (a) x (B), a of type (C), B of type (B2).
27 G =C3x (C3x C3) = {(a) x ({B) x (7)), a of type (C), B and v of type (D).
28 G = Cag = (0), o of type (B1), 3 elements of type (A).
28 G = C1y x Cy = (a) x (B), a of type (B1), 5 of type (A), 3 elements of type (A).
10 | 24 G = SL(2,3), 1 element of type (A), 6 elements of type (B1),
8 elements of type (C), 8 elements of type (E).
9 | 37 G = Cs7 = (0), o of type (B3).
7] 26 G = Ci13 x Cy = () x (B), a of type (B2), 5 of type (A).
28 G = Cag = (0), o of type (B1), 14 elements of type (A).
52 G = Ci13 x Cy = () x (), a of type (B2), 5 of type (B1).
6 | 28 G =1y x Cg = (a) x (B), a and S of type (A), 15 elements of type (A).
32 G = C4 1 Cy = () 1 {B) wreath product,
13 elements of type (A), 10 elements of type (B1), 8 elements of type (B2).
52 G = C59 = (0), o of type (B2), 3 elements of type (A).
57 G = C19 x C3 = () x (), a of type (B3), 5 of type (D).
5 | 48 G = (Cy x Cy) xC3 = ({a) x (B)) x (7), a and S of type (A), v of type (D).
4 | 42 G = Cy2 = (0), o of type (E).
48 G = (Dg o Cy) % (o), o of type (C).
54 G = (03 X 03 b Cg) < > o of type (A)
56 G = Qs x (o), o of type (A).
72 G =Cy x Cy x ({a) x (B)), a and S of type (D).
81 G =0C3xC5xC3xC5={a)yx(B)x(y) x(0), aof type (C), 8,7, 9 of type (D).
3] 49 G = C7 x C7y = () x (B), o and S of type (A).
56 G = (o) X Dg, o of type (A).
63 G =C7 x C3 x C3 = {a) x (B) x (), a of type (A), 8 and ~ of type (C).
72 G =C35 x C3xCs = (a) x () x(v), a and j of type (C), v of type (B2).
81 | G=C5xC5xCyxCq={(a)x(f)x(y)x(d), a,B of type (C), v, 9 of type (D).
91 G = Co1 = (0), o of type (B2).
104 | G = C13 x Cs = (a) x (B), a and S of type (B2), or G = C1p4 = {0), o of type (B2).
111 G = C37 x C3 = (a) x (B), a of type (B3), B of type (D).
112 G =07 x Cy x Cy = {a) x (B) x (), a of type (B1), § and ~ of type (A).
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Theorem 2.3.15 shows that some quotient curves of R3 happen not be Galois
subcovers of Hor. A partial list of them is given in the following proposition.

Corollary 2.3.16. The quotient curves R3/G1, R3/Gs, and R3/G3 are not Galois
subcovers of Har for the groups Gy, Go, G defined as follows.

e The mazimal subgroups G1 < R(3) of order 24 centralizing an involution
o € R(3), which are isomorphic to (o) X Ay.

e The groups Gy < R(3) of order 6 which are isomorphic to Ss.
e The cyclic groups Gz < R(3) of order 6.

Proof. From previous work of Cakcak and Ozbudak, each of the quotient curves
R3/G1, R3/Gs, and R3/G3 has genus 2; see [18, Sec. 4.1.1, p. 150] for R3/G1,
[18, Sec. 4.2, pp. 163-164] for R3/G>, and [18, Sec. 4.4, pp. 171] for R3/G3. On
the other hand, Theorem 2.3.15 shows that no Fy72-maximal curve of genus 2 is a
Galois subcover of Hoy. O

2.4 On certain Galois covers of the Suzuki and
Ree curves

The results of this section are the object of [55]. Notation and results of Section
1.2 are used. We consider two families of maximal curves Sq and 7~€q which are
cyclic covers of the Suzuki curve S, and the Ree curve R, respectively. The curves
Sq and ﬁq are analogous to the GK cover GK, of the Hermitian curve H,, and
have been constructed by Skabelund in [105], as follows.

Let o = 2° with s > 1 and ¢ = 2¢2 = 2**1. The curve

g [ Wr=X1iX
Y YI4Y = X0 (X9+X)

where m = ¢—2¢p+1, is Fa-maximal ([105, Theorem 3.1]). Clearly, Sq is a Galois
cover of the Suzuki curve S, with equation (1.6).
Now let go = 3% with s > 1 and ¢ = 3¢ = 3**"!. The curve

] Wm=X7- X
Ry 29— 7 =X (X7-X) |
YI—Y = X% (X9— X)
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where m = ¢ — 3¢y + 1, is Fe-maximal ([105, Theorem 4.1]). Clearly, 7i’,q is a
Galois cover of the Ree curve R, with equation (1.7).

In [105, Lemmas 3.3 and 4.2] the automorphism groups S(¢) and R(q) of the
curves S, and R, were lifted to subgroups of the full automorphism groups Aut(.S,)
and Aut(R,) of the covers S, and R, respectively. We show that the lifted groups
actually coincide with the full automorphism groups of the curves Sq and 7~€q. More
specifically, we prove the following theorems.

Theorem 2.4.1. The automorphism group of S’q 15 a direct product S(q) X Chn,
where S(q) is isomorphic to S(q) = Aut(S,) and C,, is a cyclic group of order
m=q— 2qy+ 1.

Theorem 2.4.2. The automorphism group of 7~Zq 1S a direct product R(q) X Ch,
where R(q) is isomorphic to R(q) = Aut(R,) and C,, is a cyclic group of order
m=q—3q + 1.

In the proofs of Theorems 2.4.1 and 2.4.2 we will use results on curves having
automorphism groups for which the classical Hurwitz bound does not hold.

We also prove the following results, which provide new families of maximal
curves which are Galois covered by the Hermitian curve.

Theorem 2.4.3. For any q, b;q is not Galois covered by H,.

Theorem 2.4.4. For any q, 7~2q is not Galois covered by Hys.

Sections 2.4.1 and 2.4.2 prove Theorems 2.4.1 and 2.4.2, respectively, while
Section 2.4.3 proves Theorems 2.4.3 and 2.4.4.

2.4.1 The automorphism group of Sq

Let S(¢)co = {Yape | a,0,¢c € Fy,a # 0} and ¢ be the generators of S(q), as
described in Proposition 1.2.8. By [105, Section 3], the automorphism group of S,
admits the following subgroups:

e A cyclic group C,, generated by the automorphism v, : (z,y, w) — (z,y, Aw),
where A\ € 4 is a primitive m-th root of unity.

e A group LS(q) lifted by S(q) and generated by the automorphisms @/;a,b,c
(a,b,c € F,, a # 0) together with an involution ¢. Here, @/Nzajb,c(x,y) =
Yape(r,y) and zﬂa,bﬁ(w) := 0w, where 0™ = a. Similarly, 45(:1;, y) == o(z,y),
and ¢(w) := w/p.

Lemma 2.4.5. The group LS(q) contains a subgroup S(q) isomorphic to S(q).
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Proof. Let A := {(Yhape)™ | a,b,c € Fy,a # 0} < LS(g). By direct checking, the
map Vg pe — (Qﬂa@c)m is an isomorphism between S(¢)s and A. Moreover, the
action of A on the set O of F,-rational places of Sq is equivalent to the action of
S(q)se on the non-tame short orbit of S(q). Let S(q) be the subgroup of LS(q)
generated by A and ¢. The action of S (¢)s and ¢ on the non-tame short orbit of
S(q) is equivalent to the action of A and ¢ on O, respectively. Hence, A coincides
with the stabilizer in S(¢) of a point in @. This implies that S(q) acts 2-transitively
on O and the stabilizer in S(g) of two distinct places of O is cyclic. Since |O] is

not a power of 2, S(¢q) has no regular normal subgroups by [15, Theorem 1.7.6].
Therefore we apply [75, Theorem 1.1] to conclude that S(q) = Aut(S,). O

Lemma 2.4.6. The normalizer of C,, in Aut(S,) is the direct product S(q) x Chy,.

Proof. 1t is easily checked that v, commutes with (@a@c)m and with ¢ on the
rational functions z, y and w. Therefore, S (q) x Cy, is a subgroup of the normalizer
N of C,, in Aut(gq); in particular, N/C,, has a subgroup isomorphic to S(q).
Also, the quotient curve Sq /C,y, is birationally equivalent to S,. Then N/C,, is

isomorphic to a subgroup of S(q). Therefore N/C,, = S(q), whence the thesis. [
Corollary 2.4.7. The group LS(q) coincides with the normalizer of Cy, in Aut(S,).

Proof. The group C,, is contained in LS(q) as it is generated by 1;1,070. Also, C,,
commutes with LS(q). Hence, the claim follows from Lemma 2.4.6. O]

Being Sq an [F4-maximal curve, we can apply the results in [51] on zero 2-rank
curves. By direct computations |Aut(S,)| > |LS(q)| > 72(g(S,) — 1), thus by [51,

Theorem 5.1] we conclude that Aut(S,) is non-solvable. By [51, Theorem 6.1], the

commutator Aut(S,)" of Aut(S,) is one of the following groups:
PSL(2,n), PSU(3,n), SU(3,n), S(n) with n=2">4.

Also, Aut(S,)" contains G’ = S(q).

Lemma 2.4.8. Aut(S,) = S(q).

Proof. Since S(q) < Aut(S,)’, we discard the cases PSL(2, 2"), PSU(3,2"), SU(3, 2"):

i) S(q) has elements of order 4, while PSL(2,2") has not by Theorem 1.2.7.

Hence, Aut(R,)" # PSL(2,2").
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ii) By Theorem 1.2.9, g(q) has subgroups of type X x Cy, where ¥ is generated
by a tame element of order ¢ + 2¢p + 1. On the contrary, in PSU(3,2") no
non-tame element o of order 4 can normalize a tame element 7; otherwise,
o acts on the fixed points of 7 and in particular o fixes a point P and a line
¢ not through P, a contradiction to Lemma 2.3.4. Hence, G’ # PSU(3,2").

iit) If G’ = SU(3,2"), then SU(3,2") has a subgroup of type ¥ x Cy, where ¥ is
cyclic of order ¢ + 2gp + 1. This implies that PSU(3,2") has a subgroup of
type ¥ x Cy, where ¥ is cyclic of order (q + 2qo + 1)/ ged(3,2" + 1). This is
impossible as shown at point ii). Hence, G # SU(3,2").

) = S(2"). If 2" > g, then 2" > ¢* and by direct computation

Therefore Aut(

q
|Aut(S,)'| > 8¢(S,)?, a contradiction to [67, Theorem 11.116]. Hence, Aut(S,) =
S(q). O

Finally we prove Theorem 2.4.1. By Lemma 2.4.8 and [51, Theorem 6.2], we

have that Aut(S,) = S(q) x C, where C' is a cyclic group of odd order. More
specifically, C' is the subgroup of Aut(S,) fixing pointwise the set O of F,-rational
places of S;. Then (), C C, and hence C' = (), by Corollary 2.4.7. Therefore,

Theorem 2.4.1 is proved.

Remark 2.4.9. Theorem 2.4.1 shows that Aut(S,) is exactly the lifting LS(q)
obtained as a cyclic extension of the automorphism group of the Suzuki curve S,.

2.4.2 The automorphism group of 7~€q

Let R(q)oo = {¥aped | a,b,c,d € Fy,a # 0} and ¢ be the generators of R(q),
as described in Proposition 1.2.10. By [105, Section 4], the automorphism group
of R, admits the following subgroups:

e A cyclic group C,, generated by the automorphism 7, : (z,y, w) — (x,y, Aw),
where A € g6 is a primitive m-th root of unity.

e A group LR(q) lifted by R(q) and generated by the automorphisms T;a,b,c,d
(a,b,c,d € F,, a # 0) together with an involution 6. Here, 'l;a,b,c,d(«f; Y, z) =
Vaped(T,y,2) and I;a,b,c,d(w> := dw, where ™ = a. Similarly, gz;(x,y,z) =
o(z,y, z), and ¢(w) := w/ws.

We recall some results on large automorphism groups of curves that will be
used in the proof of Theorem 2.4.2.
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Theorem 2.4.10. ([67, Theorems 11.56 and 11.116]) Let X' be an irreducible curve
of genus g > 2 such that |Aut(X')| > 84(g — 1). Then Aut(X) has at most three
short orbits, as follows:

i) exactly three short orbits, two tame and one non-tame, and |Aut(X)| < 24¢%;
i) ezactly two short orbits, both non-tame, and |Aut(X)| < 16g%;

iii) only one short orbit which is non-tame, and |Aut(X)| < g(2g—2)(4g+2) (see
[67, page 515]);

i) exactly two short orbits, one tame and one non-tame. In this case |[Aut(X)| <
8g3, with the following exceptions (see [67, Theorem 11.126]):

e p =2 and X is isomorphic to the hyperelliptic curve Y2 +Y = X2+
with genus 2F1 ;

p > 2 and X is isomorphic to the Roquette curve Y? = X9 — X with
genus (g —1)/2 ;

p > 2 and X is isomorphic to the Hermitian curve Y97 = X9+ X with
genus (q° —q)/2 ;

p =2 and X is isomorphic to the Suzuki curve Y9 +Y = X9(X?+4 X)
with genus qo(q — 1) .

Remark 2.4.11. If X is the curve R, and Case i) of Theorem 2.4.10 occurs,
then |Aut(R,)| < 8¢3. In fact, since p = 3 and g = 3qo(q — 1)(¢ + g0 + 1), Ry
cannot satisfy any of the four exceptions.

Theorem 2.4.12 provides a deeper analysis of Case iv) in Theorem 2.4.10; the
bounds are taken from the proof of [67, Theorem 11.116].

Theorem 2.4.12. ([67, Theorem 11.116 and page 516]) Suppose that Case iv) in
Theorem 2.4.10 occurs. Then one of the following cases holds:

1. |Aut(X)| <8g(g —1)(g + 1) (see [67, Eq. (11.169)]).
2. Aut(X') contains p-elements stabilizing two distinct places.
3. |[Aut(X)] < 8(g+1)(g —1) (see [67, pages 524-525] ).

4. The non-tame short orbit of Aut(X) has length p* + 1 for some k (see [67,
Lemma 11.123]).
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Cases 1., 3., and 4. in Theorem 2.4.12 correspond to Case (ivl), (iv4), and
(ivh) in [67, page 516], respectively; Case 2. in Theorem 2.4.12 corresponds to
Cases (iv2) and (iv3) in [67, page 516].

In analogy with Section 2.4.1, the following results hold. The proofs of Lemma
2.4.13, Lemma 2.4.14, and Corollary 2.4.15 are analogous to the proofs of Lemma
2.4.5, Lemma 2.4.6, and Corollary 2.4.7 in Section 2.4.1.

Lemma 2.4.13. The group LR(q) contains a subgroup R(q) isomorphic to R(q).
Lemma 2.4.14. The normalizer of Cy, in Aut(R,) is the direct product R(q)x Ch,.

Corollary 2.4.15. The group LR(q) coincides with the normalizer of C,, in

Aut(R,).

Proposition 2.4.16. The group LR(q) has exactly two short orbits Or and Oyt
in its action on R,. The orbit Op is tame of size (¢* + 1)¢*(q — 1), consisting of
the places of ﬁq of degree 6; the orbit Oyt is non-tame, consisting of the ¢ + 1
F,-rational places of R,.

Proof. The set O of the F,-rational places of ﬁq is the non-tame short orbit Onr
under LR(q), since C,, acts trivially on O.

Let Or C ﬁq be the set of places of degree 6; we prove that Oy is a tame short
orbit under LR(q). Let P € Op. Since C,, is defined over F, the place Q € R,
lying under P has degree 1, 2, 3, or 6. The places of R, of degree 1 lie under a
place in Onr, and R, has no places of degree 2 or 3; therefore, () has degree 6.
By the Fundamental Equality 1.1.1, we conclude that there are exactly m places
of 7@,] of degree 6 lying over a place of R, of degree 6. By the F -maximality of
R,, we have that |Or| = mq?(q — 1)(q+ 1)(q + 3qo + 1); hence, Op coincides with
the set of places of 7~€q lying over a place of R, of degree 6.

To show that LR(q) is transitive on Op, let P, P, € Op with P, # Py, If Py
and P, are in the same C,,-orbit, the claim is proved. Otherwise, let ()7 and )
be the distinct places of R, lying under P, and P, respectively. Since ¢); and
()2 are in the tame short orbit of R, under R(q), there exists ¢ € R(q) such that
o(Q1) = Qy. Let & be the induced automorphism of R, and let P := (P;). Then
P is in the C),-orbit of P», because S, is Sq/Cm. Let 7 € Cy, with 7(P3) = Ps;
then 76(P)) = Ps.

Since R(q) acts semiregularly on the places of R, of degree greater than 6,
LR(q) acts semiregularly on R, \ (Op U Oy7), and the thesis is proved. O

Let Oyp be the non-tame short orbit of R, under Aut(R,) containing Opr.
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Lemma 2.4.17. The orbit @NT coincides with Onr.

Proof. Suppose by contradiction that Onz # Onr.
Firstly, suppose that Oyr \ Onr contains a long orbit under LR(g). Then, for
any [F -rational place P € R, we have

[Aut(R,)| = |Onr| - [Aut(Ry)p| > |LR(q)| - |LR(q)p|
> (¢*+ 1)’ (q—)m-¢*(g — 1)m > 8¢°,
where g is the genus of R, and LR(g)p denotes the stabilizer of P in LR(q). Thisis
a contradiction to Theorem 2.4.10 and Remark 2.4.11, since \Aut( 2| > 84(g—1).
Then Oyt \ Onr contains a short orbit under LR(q) and Ont = Onr U O

by Proposition 2.4.16.
If Aut(R,)p # LR(q)p, then |Aut(R,)p| > 2|LR(q)p|, and hence

[Aut(Ry)| = [Onr| - [Aut(Ry)p| > [Onr| - 2|LR(q)p| > [Or| - 24°(q — 1)ym > 8¢°,
a contradiction to Theorem 2.4.10. Therefore, Aut(7~2q) p = LR(q)p. This implies
[Aut(Ry)| = Onr| - [LR(q)p| = (¢° + 1)¢*(a = 1)(g = 300 + 1)(¢* = ¢* + 1).

Note that the order of |Aut(R,)| is very close to 8¢°.

Since |[Aut(R,)| > (29 — 2)(4g + 2), Cases i), i), and iii) in Theorem 2.4.10
cannot occur, hence Case v) holds and one of Cases 1. - 4. in Theorem 2.4.12
occurs.

e Since |[Aut(R,)| > 8g(g — 1)(g + 1), Cases 1. and 3. cannot occur.

e (Case 2. cannot occur; in fact, 7~2q has zero p-rank, and hence any p-element
in Aut(R,) has exactly one fixed place ([67, Lemma 11.129]).

e Case 4. cannot occur, since |Onr| = (¢ +1)(¢* — ¢® + 1) # 3* + 1 for any k.
The claim follows. O

Finally we prove Theorem 2.4.2. Let o € Aut(R,), and define T := {0 €
Aut(R,) | o(P) =P forall P € Oyr} and C’, := aCp,a~". Clearly, T contains
C,, and C! . By [67, Lemma 11.129], T is a tame subgroup of Aut(R,), which
implies that T is cyclic (see [67, Lemma 11.44]). Therefore C! = C,,, that is, C,
is normal in Aut(R,). By Corollary 2.4.15, Theorem 2.4.2 follows.

Remark 2.4.18. Theorem 2.4.2 shows that Aut(?éq) is exactly the cyclic extension
LR(q) of the automorphism group R(q) of the cyclic subcover R,.
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2.4.3 Non-existence of certain Galois coverings

Firstly, we prove that S, is not Galois covered by H,. for any ¢, as stated in
Theorem 2.4.3.

Proof. Suppose by contradiction that Sq is a Galois subcover of H,2, that is, Sq =
H,2/G with G < PGU(3,¢?). The different divisor has degree

A= (29(He) —2) = |GI(29(S,) —2) = ¢" —¢* =2 |C|(¢> = 2¢° +q—2) . (2.27)

By the Riemann-Hurwitz formula,

_ 4 _ 42
Hcje < IR L2
) (&) -2 T2

¢°+1 _ ’7'{q2 (Fq
P +E A+ |S,(Fp

hence ¢+ 1 < |G| < g+ 2.

Assume |G| = ¢+ 1. By Theorem 2.3.9, we have A = ¢ -2. This contradicts
Equation (2.27), which reads A = ¢* + q.

For ¢ > 8, |G| # q + 2 because |G| divides |PGU(3,¢?)| = (¢° + 1)¢%(¢* — 1).
For ¢ = 8, assume |G| = ¢ + 2 = 10. By Lemma 2.3.4, the generator « of the
unique Sylow 5-subgroup Cj is either of type (A) or (B1); hence, « fixes a point P
and a line ¢ not through P. Since (5 is normal in GG, the generator 8 of any Sylow
2-subgroup Cy of G fixes P and ¢. Therefore, § cannot be of type (D); thus, [ is
of type (C). This implies that « is not of type (B1), and hence « is of type (A).
Then A > 4-65 by Theorem 2.3.9, a contradiction to Equation (2.27). O

Now consider the curve R,. Suppose that R, = H,s /G for some G < PGU(3, ¢%).
The different divisor has degree

A= (29(Hp)—2)—|Gl(20(Ry) =2) = ¢° —¢* =2~ |Gl(¢" —2¢° +q—2). (2.28)

By the Riemann-Hurwitz formula,

¢ +1 _ |7'fq3(Fq6)| <16 < 2g(7—F[vq3) -9 _ ¢ — ¢ —2
"=+ +1 R, (Fpe) — T 29(R)—2 d -2 +q-2’

hence
CHq+1<|G| <@ +2¢+4

Lemma 2.4.19. If R, = H,s/G, then

G| | [IPGU3,¢%)|, ¢®+q+1< |G| <@ +2q+4, |G| ¢{*+q+1,¢*+2q+1}.
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Proof. Case |G| = ¢*> + q + 1. Since |G| divides ¢* — 1 and is coprime to ¢* + 1,
we have by Theorem 2.3.9 that A = 2(¢* + ¢), a contradiction to Equation (2.28).

Case |G| = ¢* +2¢+ 1 = (¢ + 1)?. By Theorem 1.2.6 it can be shown that
PGU(3, ¢*) contains only two conjugacy classes of maximal subgroups whose order

is divisible by |G|:
e The stabilizer M; of a self-conjugate triangle T', of order |M;| = 6(¢® + 1)2.

e The stabilizer M, of a non-tangent line ¢, of order | M| = ¢3(¢° — 1)(q + 1).

The center Z of M, has order ¢® + 1 and is a cyclic group of homologies
acting trivially on ¢. The group M,/Z acts faithfully on ¢ as a linear group,
hence it is isomorphic to a subgroup of PGL(2,¢%). My/Z acts on the ¢® + 1
points of £ NH,s. From the structure of M, we have that M, = PGL(2, ¢*),
and the action of M, on ¢ N H,s is equivalent to the action of PGL(2, ¢*) in
its natural 2-transitive permutation representation.

Suppose that G C M,. The group G/(ZNG) acts faithfully on ¢ and is isomorphic
to a subgroup of PGL(2,¢*). Since |G N Z| is a divisor of ¢ + 1, we have that
|G/(GNZ)| = (q+ 1)d, where d divides ¢ + 1. We conclude that |G/(G N Z)]| is
equal to ¢+ 1 or 2(q+ 1), since [PGL(2, ¢*)| = q(¢*> —1). Moreover, from Theorem
1.2.7, one of the following cases occurs:

e G/(ZNQG) is a cyclic Singer group fixing two points Py, P, on £\ H,s. The
pole P of 7 is also fixed by GG. Hence, G fixes a self-conjugate triangle 7T'.

e G/(ZNG@G) is a dihedral group normalizing a cyclic Singer group S of index
2, such that S fixes two points Py, P, on £\ H,. Also, G/S interchanges
P, and P, and G fixes the pole P3 of PiP,. Then G fixes a self-conjugate
triangle 7.

Therefore, G € M;. Up to conjugation, H,s has the Fermat equation (1.3) and T
is the fundamental triangle, so that

M, = {diag(\, u, 1) | A7F = p7 1 =1} % S,

where the symmetric group Ss is given by the 3 x 3 permutation matrices. The
only subgroup of order (¢ + 1)? in M is

G = {dlag()\ﬁﬁ? 1) ‘ )\q+1 = NqH = 1} = Cq+1 X Cq+1-
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With the notation of Lemma 2.3.4, G contains exactly 3¢ elements of type (A)
and ¢*> — ¢ elements of type (B1). Then A = 3¢(¢®> + 1) by Theorem 2.3.9. The
same value for A is obtained by Equation (2.28), that is, the curves H,s/G and
7~€q actually have the same genus.

The group G is normal in M, thus M; /G is an automorphism group of Hs /G

of order |M;/G| = 6(¢> — g + 1)®. Since |M;/G| is not a divisor of [Aut(R,)| =
(@ +1)¢*(g—1)(¢ — 3go + 1), we have H;3/G % R,,. O

By the proof of Lemma 2.4.19 the following remark is obtained.

Remark 2.4.20. For any odd power q > 27 of 3, let G < PGU(3, ¢®) with |G| =
(¢+1)* (G is unique up to conjugation). Then the curves Hy /G and R, have the
same genus but are not isomorphic, as they have different automorphism groups.

Finally, we prove that R, is not Galois covered by Hgs for any ¢, as stated in
Theorem 2.4.4.

Proof. Suppose by contradiction that R, is Galois covered by H,s, that is, 7€q =
H,/G with G < PGU(3,q). By Lemma 2.4.19, the order of G satisfies ¢*+¢+2 <
|G| < ¢®> +2q+ 4 and |G| # ¢*> + 2q + 1. By Equation (2.28) A is a multiple of
¢® + 1. This fact, together with 3|G| < ¢* + 1 and Theorem 2.3.9, implies that
i(o) € {0,¢* + 1} for any nontrivial 0 € G, that is, o is of type (A) or (B1) and
the order of o divides ¢® + 1.

From Theorem 1.2.6 it can be deduced that G is contained in the stabilizer
N < PGU(3,¢%) of a self-conjugate triangle, hence G acts on three non-collinear
points {P1, Py, P3} of PG(2,¢°%) \ H,s. In fact, because of its order, G can be only
be contained in the following maximal subgroups of PGU(3, ¢*) other than N:

1. The stabilizer of one point P € H(Fy). In this case, G cannot contain
any element of type (B1) by Lemma 2.3.4. Hence A = (¢* + 1)(|G] — 1),
exceeding the value of A in Equation (2.28).

2. The stabilizer of a point P; € PG(2,¢%) \ H,s and its non-tangent polar line
¢. In this case, by Theorem 1.2.7, either G acts trivially on ¢, or G fixes two
points P, P; € £\ Hgs. In the former case, A exceeds the value in Equation
(2.28). In the latter case, G acts on the self-conjugate triangle { P, P», P3}.

3. A group isomorphic to PGL(2, ¢*). In this case, by Theorem 1.2.7, G contains
a cyclic normal subgroup G’ of index 1 or 2 such that G’ exactly three points
{P1, P, P3}, which are the vertices of a self-conjugate triangle 7". Therefore
G acts on { Py, P, Ps}.
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4. A group isomorphic to PGU(3, ¢). This is impossible since G cannot divide
three times the order of any maximal subgroup of PSU(3, ¢), and hence the
order of any maximal subgroup of PGU(3, ).

Note that, since |G| is not divisible by 3, G fixes at least one point in {P;, P», P3},
say Py, and acts on {P,, P3}. Let Z < N be the subgroup of homologies (that is,
elements of type (A)) with center Py and axis P,P3; Z is cyclic of order ¢ + 1 and
is the center of N. By direct computation, there exists a divisor d > 2 of ¢ + 1
which is coprime to |G|. Then the normalizer of G in PGU(3,¢*) contains the
subgroup D of Z of order d. Therefore D induces a cyclic automorphism group D
of Hys /G = R, of order d which fixes at least one point of R,. The automorphism
group of R, has exactly two short orbits O and Oy of size (¢*> 4+ 1)¢*(¢ — 1) and

¢ +1; see Proposition 2.4.16. Then d divides |[Aut(R,)|/|Or| or [Aut(R,)|/|On7|.
By direct checking, this is impossible. O]



Chapter 3

Results on AG codes

In this chapter we investigate certain multi-point Algebraic-Geometric codes
associated to Kummer curves and GK curves.

In Section 3.1 we consider Kummer extensions of the rational function field
F,(z), defined by y™ = f(x), where the polynomial f(T) € F,[T] is separable
and has degree coprime to m. We compute the number of Weierstrass gaps at
two totally ramified places. Also, we give a criterion to find pure gaps at many
totally ramified places and present families of pure gaps. We then apply our results
to construct AG codes with good parameters and provide examples of Hermitian
codes. The results of Section 3.1 are the object of [9].

In Section 3.2 we investigate multi-point AG codes associated to the GK curves
GK,, starting from a divisor which is invariant under a large automorphism group
of GK;. In this way, we construct families of AG codes with large automorphism
groups. Using the Weierstrass semigroup at one Fj.-rational-point of Gy, the
dimension of the codes is determined. The results of Section 3.2 are the object of
8].

3.1 Algebraic Geometric Codes on Many Points
from Kummer Extensions

Throughout this section, F' is a function field over F, defined as a Kummer
extension of the rational function field F,(z) by y™ = f(z), where f(z) € F,[z] is
a separable polynomial of degree r coprime to m.

We investigate the Weierstrass semigroup at many totally ramified places, ex-
tending results by Castellanos, Masuda, and Quoos ([24]) and by Matthews ([41,
Theorem 3.6]). In particular, we compute in Section 3.1.1 the number of gaps
at two totally ramified places, and we give in Section 3.1.2 an arithmetic char-
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acterization of pure gaps at many points which provides families of pure gaps.
We apply these results to improve the Singleton defect of certain differential AG
codes Cq(D, G). In Example 3.1.12 we illustrate our achievements with AG codes
on many points from the the Hermitian function field, and observe that the best
improvements on the minimum distance with respect to the corresponding ones in
the MinT’s Tables [89] are obtained by two- or three-point codes.

3.1.1 The Weierstrass semigroup at two points

Let Py, P, be places of F' which are totally ramified in F|F,(x). As pointed
out in Equation (1.2), the Weierstrass semigroup H(Py, P;) is related to the set
(P, P,), and [24, Theorem 4.3] yields

F(POO,PI):{(mr—mj—m‘,i+m(j—1))\1gigm—l—[mJ ,1§j§r—1—{mJ},
T m

where P, # P; is the unique pole of z.

Proposition 3.1.1. Let Py, P, be two distinct places of F totally ramified in
F|F,(x) and different from Ps. Then

F(PI,PQ):{<mi—j,m<mﬂ —i) —j> ‘1+ L%J <j<m-11<i< Hﬂ —1}.

Proof. For v € {1,2} let o, € F, be such that P, is the unique zero of z — q,
in F. Let 4,7 be positive integers and k = [%w — 4, so that (i + k)m > jr.
By [24, Prop. 3.1], the pole divisor of (zfal)?(j%ag)k is (mi — j)P + (mk — j)Ps.
Also, for j € {l—l— L%J ,...,m—l} and h € {1,..., ’—%-‘ —1}, we have that
(mh —j) € G(P1) NG(F2) by [24, Th. 3.2]. Hence, the set

F’:{<mz’—j,mdﬂ —i) —j> ‘ 1+ L@J <j<m-11<i< Fﬂ —1}
m T m
is a subset of G(P,) x G(Py) N H(Py, P,). The cardinality of I is

SN (RO N RCRERD

=1+ 2 | =1+ 2 |
g RERCREEDES o E5 Ry
=—(m-1)(—r—-1)/2-m+1=m-1)(r—1)/2=g,
using [59, Page 94]. Therefore I'' = I'(Py, P») by Lemma 1.1.43. O
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From Proposition 3.1.1 we are able to compute the number of gaps at two
totally ramified places in the case m =1 (mod r).

Theorem 3.1.2. Let P, be the pole of x in F' and Py, Py be distinct places of F
totally ramified in F/F,(z) and different from P. If m = ur+1 for some integer
u, then

ur(r — 1)(3ur? — bur + 4r + 4u — 2)
12
ur(r — 1)(3ur? — 3ur + 2r + 2)

G(Pw, P1)| = = .

|G(P1, Py)| =

, and

Proof. By Proposition 3.1.1,

F(PI,PQ):Kmi—j,mqm —i)—j) ’1+u§j§m—1,1§i§ mﬂ —1}.

Setting (ig, jo) € N> with 1+u < jo <m—1and 1 < iy < (%’W — 1; by Theorem
1.1.42, we need to count the number r;, ;, of pairs (i1, j1) € N? such that

T+u<j<ru, 1<ip <[22 =1, m(ip—i1) < jo— Ji, (3.1)

For h € {0,1} write j, = kpu + t;, with k, € {1,...,r—1} and ¢, € {1,...,u}.
Then (%ﬂ =k, + 1. We split r;, j, in a number of cases:
e j; = jo. Then (3.1) implies ip + 1 < iy < k.

e j1 > jo and k; = ko. Then (3.1) implies 1 <ty < u—1,t; > to + 1, and
1o+ 1<y <k

® j1 > Jo and ki1 > kg. Then (31) 1mphes 10+ k1 — ko <iqp < k.

e 71 < Jo and k; < kg. Then (31) 1rnphes 1< to, t1 < w, 1 <4y < kl, and
io < i1 < k.

e j; < joand k; = ko. Then (3.1) implies 2 < ¢ty < u, t; < t9 — 1, and
io+1 < < ky.
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By direct computation, this yields

r—1 u—1 u

T(Pl,Pg): Z Tio,]o ZZZ k‘o—lo +ZZ Z Zk’o—lo

(iojo)EF(Pl PQ) ko=1to=11=1 ko=1to=1t1=to+1 19=1

r—1 wu ko—1 wu

Y S S -t DS S S S i)

ko=1to=1 k1=ko+1t1=140=1 ko=21t0=1k1=1t1=14ip9=1

r—1 wu to—1 ko UQ(T’ . 2)(7" o 1)7.(74 + 3)

FY D NN (ko —ido) = T

ko=1to=2t1=1140=1

Also, by [24, Theorem 3.2], we have

m—1 [EJ r—1 u k-1
SRR SE) SRITENIS o) 35 SRR IO}
nEG P1) TLEG P2) j=14+u =1 k=1 t=1 =1
(3.2)
_ur(r— 1)(2r2u — 2ru + 2r — u — 1)‘ (3.3)
12
Therefore we obtain
— 1)(3r%u — 5ru + 4r + 4u — 2
GR )= Y nk Y ner(py = DO 3
neG(Pr) neG(P2)
By [24, Theorem 4.3],
r(Poo,Po:{(mr—mj—mm<j—1>+z'>\1SiSm—l—u,l <j<r—1- M}

For (ig,jo) € N> with 1 <ig<m—-1—-wand1<jo<r—1- [—J as above we
need to count the number s;, ;, of pairs (i1, j1) € N? such that

1<ip<m-—-1-u, 1<j<r—1-—[=],

m

o o o e (3.4)
m (j1 — jo) <71 (io—i1), m(j1 —jo) < (o —1)-

For h € {0,1} write i, = kpu + tp, with &k, € {0,...,7 — 2} and ¢, € {1,...,u}.
Then | ™ | = k. We split s, j, in a number of cases:
e i3 =ig. Then (3.4) implies 1 < j; < jo — 1.

® i > 1, ki > ko, and t; < ty. Then (34) 1mphes ki—ko+1< Jo <r— 1— kg
andlgjlgko—k1+j0.
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® 7 > ig, k?l > k(), and t1 > 1. Then (34) 1mp11es kl—ko—f—Q S]O < ’I“—]_—ko
and 1 < j; < ko —Fki — 1+ jo.

e 1 <19 and ky < ky. Then (34) implies 1 < 71 < jo.
® i < 1, ki1 = ko and t; < tg. Then (34) 1mphes 1< 71 < Jo.

By direct computation, this yields

— u r—1—ko
PeP)= Y an= XY oD
(iO jO)eF(Poo Pl) ko=0to=1 jo=1

r—1—kg

Y S Y Y b

ko=0to=1 k1=ko+1 t1=1 jo=k1—ko+1
r—1—kg

5530 3D SHD ST R e

ko=0to=1 k1=ko t1=to+1 jo=k1—ko+2

r—2 wu ko—1 uw r—1—ko r—2 wu to—1lr—1—kg
IO JO+ZZZ > do
ko=0to=1k;=0t1=1 jo=1 —0to=1t1=1 jo=1
u(r — Dr(ur? +r —u —5)
= 5 )

Also, by [24, Theorem 3.2], we have

RS

n€G(Px) =1 Jj=

m—1—u 1= L%J
(mr —myj — ri)

1

r—2 u r—1-k

(mr —mj —r(ku+t)) = ur(r —1)(2ur? — ur +r — 2)

: 12 ’
k=0 t=1 j=1
and ZneG( pyy 0 was computed in 3.3. Therefore we obtain
ur(r — 1)(3r?u — 5ru + 4r + 4du — 2)
’ Pl,PQ Z n — Z n—+r Pl,Pg .

12
neG(Pr) neG(Pz)

]

Remark 3.1.3. If F = F,(H,) is the function field of the Hermitian curve, then
Theorem 3.1.2 was already obtained in [41, Theorem 3.6]. In fact, the places of
F,(H,) which are totally ramified in F,(H,)/Fp2(x) are Weierstrass places.
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3.1.2 Pure gaps at many points and codes

Let Py, Py, ..., Ps (s > 1) be distinct places of F' which are totally ramified in
F|F,(x); here, Py is the pole of x. In this section we give arithmetic conditions
which characterize the pure gaps at P, ..., P, and at Py, Py, ..., P;. We use this
characterization to determine explicit families of pure gaps at many points and
apply it to construct AG codes with good parameters.

We start from a result by Maharaj. For any divisor D of F' and a function field
ECF, write D=} ppp) 2ocrr),or "o @ We define the restriction of D to

% l,= 3 min{| i @) 2

REP(E)

Theorem 3.1.4 ([86, Theorem 2.2]). For any divisor D of F that is invariant
under the action of Gal(F/F,(x)), we have that

m—1
co)=@e (oo )
=0 Fy(z)
where [D + (y')] denotes the restriction of the divisor D + (y') to F,(x).

Fq(z)
Proposition 3.1.5. Under the above notation, let s < r. The s-tuple (ay,...,as) €
N® is a pure gap at Py, ..., P if and only if, for every t € {0,...,m — 1}, exactly
one of the following two conditions is satisfied:

i) 3 [t 5 <o
i) Soiy |2+ 2] >0 and [ ] = |9 foralli=1,.. ., s.

m m

Proof. Let Py,..., P, be all the places of F' which are totally ramified in F|F,(x)
except P., that is, P; is the zero of x — «a;, where f(z) = [[;_;(z — «;) is the
separable polynomial defining F' by y™ = f(z). Then the divisor of y in F is
(y) =>"i_, P, — P, and hence, for any ¢t € {0,...,m — 1},

s

iaiPi + (v") = Z(ai +t) P+ Z tP; — rtPy .
=1

=1 i=s+1

Let @1, ..., Qr, Qo be the places of F (x) lying under Py, ..., P,, Py, respectively.

Then
S S l+t - t
Sens )-S5 o 5 -

=1
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Since

((Bemvn) BB o 5 o)

i=1

By Lemma 1.1.45, (ay,...,a,) is a pure gap at P, ..., P, if and only if

(I o) (1o (o)

i=1 i=1

for all t € {0,...,m —1}. Since F,(z) has genus 0, this happens if and only if, for
all t € {0,...,m — 1}, either

s[5 S

=1

“ag+t —rt | a;+t >
>0 d =
o ol A CEE ] R

= i=1 i

or

m .
1

Proposition 3.1.6. Let s < r, then an (s + 1)-tuple (ag, ai,...,a,) € N is a
pure gap at Py, Py, ..., Py if and only if, for every t € {0,...,m — 1}, exactly one
of the following two conditions is satisfied:

) Sl |52 + 222 <o,

i) Yo [t + [950] 2 0[] =[5 ] and [fF] = [95] for
1=1,...,s.

]

Proof. The proof is omitted being analogous to the proof of Proposition 3.1.5. [

We now present three families of pure gaps at two points for m =1 (mod r).

Proposition 3.1.7. Suppose that m = ur + 1 for some integer u. Then
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i) ((r—1)m —2r,1) is a pure gap at Py, Py;
it) ((r—2)m —r,b), with b € {1,...,u+ 1} are pure gaps at Px, P;;

i) (r—3m+1+a,1+p), with o € {0,...,2u— 1} and 5 € {0,...,u— 1}
are pure gaps at Py, Ps.

Proof. Let a =rm —m —2r and t € {0,...,m — 1}. We have L‘%”J + LMJ

if and only if m divides a — rt = (r — 1)m — r(t + 2), that is t = m — 2. Also,
t = m — 2 implies ij” = —1. For any ¢t € {0,...,m — 2} we have || =

| £] = 0. We conclude that for any ¢ € {0,...,m—2} either ||+ || <0 or
[ | B52] — [t [ ] Fort — 1, [ 52+ 1] 22417 1 <0,
By Proposition 3.1.6, (a, 1) is a pure gap at P, P;.

Now let a = rm —2m —r, b € {1,...,u+ 1}, and t € {0,...,m — 1}. We
have that L%J € {0,1}, and [%J = 1if and only if t + b > m, that is ¢t €

{m —b,...,m —1}. In this case,

a—rt rm—2m—r —rt rm—1r—r1rt
[ Jz[ J=—2+{—J=—2,
m m m

since 0 <rm—r—rt <r(b—1) <ru < m. Hence, forallt € {m —0b,...,m—1},

—rt| b+t
a7 +LLJ=—2+1<0.
m m

Fort € {0,...,m — b — 1}, we have that

a—rt n b+t| |a—rt| Ja—1—-rt| |a—1—1t n b—1+t¢
m m | | 0 m | m B m m '
By Proposition 3.1.6, (a,b) is a pure gap at Py, P;.
Finally let ¢t € {0,...,m — 1} and (aa,bs) = ((r —3)m + 1+ a,1 + ) with
a€{0,...,2u—1} and 8 € {0,...,u — 1}. Note that |2ett| £ |sa=lt] if and

only ift =m—1—a, and LMJ + L%J if and only if t = m —1— . Therefore,

m

Qo +1 by +1 Qo — 1+t bo — 1+t
e e [
m m m m

ifandonlyift=m—-—1—aort=m—1-0.

Suppose t = m — 1 — . Then

—rt r(l+a) —r, a<u-—1
_— :—T+ _— = s
m m —r+1, a>u

ap +1 Y bg +1 o B -« _ 1, forﬁza.
m m m 0, forfB<a
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If > u, then
—rt o+ b t
{ rJJFV i JjﬂiJ —(—r 4 1)+ (r—2)+0<0;
m m m

if « <wu—1, then

T—ﬁJ + VO‘HJ + V)BHJ <—r+(r-2)+1<0.
m m m

Suppose t = m — 1 — 3. Then

2] |22

Qo +1 a—f r—3, fora<p bg+1
L m J " +{ m J {r—2, fora>p "’ L m

Hence,
—7rt a1+ b t
{_TJ i V + J+ L st J <—r+(r-2+1<0.
m m m
The thesis follows from Proposition 3.1.5. O]

We provide two families of pure gaps at many points for m =1 (mod r).

Proposition 3.1.8. Suppose that m = ur + 1 for some integer u, s < r, and
a; €{0,...,(s+1—d)u—1} fori=1,...,s. Then (ay,...,as) = ((r—s—1)m+
1+a1,1+as,...,14+ay) is a pure gap at Py, ..., P;.

Proof. Suppose there exist t € {0,...,m—1}and j € {1,..., s} such that LaJTHJ +

%M . Thust =m —1—a;. Let h € {0,...,r — 2} be such that hu < o; <

(h + 1)u. We have

{_ﬁ B {—r(m—l—%’)J s V(L%)J = —r+h,

m m m

{al—i—tJ_{(r—s—l)mjtl—i—al—i—m—l—ajJ_{r—s, ar >

m m r—s—1 o <q;

and, for ¢ > 1,

\‘U,Z—f-tJ - Ll—l—al—km—l—a]J _{ 0, Q; < @y

m m 1, OéiZOéj
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Since

Hie{2,....,s}ra; > a5} <s—1—-|{ie{2,...,s}:(s+1—19)h—1<uh}
=s—1—h,

this implies that

{—”J n V{ﬂjtJ +ivi+tJ < (=r+h)+(r—s)+(s—1-h)<0.

m - m
1=2

Hence, the thesis follows by Proposition 3.1.5. O

Proposition 3.1.9. Suppose that m = ur + 1 for some integer u, s < r — 1,
a€{0,...,s}, and B; € {0, ..., iu—1} fori e {1,...,s}. Then (ag,a1,...,as) =
(r—=s—=1m—-—r+a,1+pb,...,14+ ;) is a pure gap at Py, P, ..., Ps.

Proof. Let t € {0,...,m — 2}, so that t = ku + z with & € {0,...,r — 1} and
z€{0,...,u—1}.

Suppose |9t | o4 |90=lr | Then m | (ag —rt) = (r—s—k—1)m+a+
k—r(z+1). Since |a + k —r(z+ 1)| < m, this implies o + k = r(z + 1), whence
r|(a+k). AsO<a,k <r—1,and r(z+ 1) > 0, we have that a + k = r and
z =10. Hence, t =m — 1 — au. Then

—1rt
Lao TJ:T—S—kJ—lza—S—l.
m

Also, 1+ 8+t <m—1—(a—j)uforalli. Thusa;+t < m—1forall j € {1,...,a},

SO
ZV Jgs—a.
m

i=1

“a;+t —rt
s R ETeIEt
i1 m m

Now suppose | 2 | o L%_THJ for some j € {1,...,s}. Since 1 < a;+t < 2m,
this implies t = m —a; = m — 1 — §;. Let h € {0,r — 3} be such that hu < ; <
(h 4+ 1)u. We have

VO_“&J :—s—1+{wJ ——s—1+h

m m

Therefore,
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and, for ¢ > 0,

VmLtJ _1+L5i—ﬁjJ :{ 0, Bi<p;

Since
Hie{l,...,s}: 8 >B;H <s—|{ie{l,...,s}:ith—1<uh}|=s—h,

this implies that

Vo_ﬁJJréviHJ <(—s—1+h)+(s—h) <0.

m m

Finally, let ¢ = m — 1. Then || = —s — 1 and |2 | =1 for all i > 0.

m

VO;NJ +§: V’;FtJ —(—s—1)+s5<0.

=1

Hence,

The thesis follows by Proposition 3.1.6. O]

By means of Theorem 1.1.46, the results on pure gaps of this section can be
used in order to obtain AG codes with good parameters.

Remark 3.1.10. For a Kummer extension y™ = f(x), where m = ur + 1 and
s < r — 1, consider the pure gaps (ai, ..., ) (r—s—1m+1,1,...,1)
and (by,...,bs) = ((r—s—1)m + su, (s — Du,...,u). Define the divisors G =

>r (ai +b; — 1)P; and D as the sum of n ratwnal places of F different from
Py, ..., P;. Consider the [n,k,d]-code Cqo(D,G).

Suppose 2g —2 < degG < n, then k=n+g—1—degG. Since F' has genus
g = ur(r—1)/2 we have by Proposition 3.1.8 and Theorem 1.1.46 that the Singleton
defect 6 =n+ 1 —k — d satisfies

5 < ur(r —1) —u5(3+1)'
- 2
Remark 3.1.11. For a Kummer extension y™ = f(x), where m = ur + 1 and
s < r — 2 consider the pure gaps (ag,a,...,as) = ((r—s—1)m —r,1,...,1)
and (bo,b1,...,bs) = (r—s—1)m —1r+ s,u,...,su). Define the divisors G =
(ag+bo—1)Po+>.;_ (a; +b; — 1)P; and D as the sum of n rational places of F
different from Py, Pi, ..., Ps and consider the [n,k,d]-code Cqo(D,G).
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Table 3.1: Results from Example 3.1.12

¢?|ls| n k | d > | improvement on d compared with [89]
16 | 1] 64 | 48 12 1
16 | 2] 63 | 55 6 0
25 | 11125 | 97 | 20 1
2512124106 | 12 1
49 | 21342 1295 | 30 3
49 | 3 | 341 | 307 | 20 1
64 | 1| 512|430 | 56 1
64 | 2| 511 | 445 | 42 3
64 | 3| 510 | 459 | 30 2
64 | 4| 509|472 | 20 0
81| 3| 727 | 656 | 42 3
81 |4 |726 | 671 | 30 0

Suppose 2g — 2 < degG < n, then k=n+g—1—degG. Since F has genus

g = ur(r—1)/2 we have by Proposition 3.1.9 and Theorem 1.1.46 that the Singleton
defect 0 satisfies

5 < ur(r —1) ; us(s + 1)

—s—1.

We illustrate the results obtained with Hermitian codeson many points.

Example 3.1.12. We apply Remark 3.1.10 to construct [n, k,d]-codes Cq(D, Q)
from the Hermitian function field F,(H,). In this case we have r = g,u = 1,1 <
s <q—1anddegG =2(q—s—1)(g+ 1)+ s(s+1)/2. We choose s such that
29 —2<degG <n withn=¢>+1—5s. Then

3 1 s —s
:n+g—1—degG:q3—§q2+(2s—§)q— 5 + 2,

dzdegG—(Qg—2)+s+Z(bi—ai):q2—(2s—1)q+32—s.

=1

Table 3.1 lists some AG codes from Example 3.1.12 with the same or better
parameters with respect to the corresponding ones in the MinT’s Tables [89].
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Table 3.2: Parameters of the constructed codes

Code n d m k
C P —1L¢ ¢ —1]| m@+1)+1-g
S -+ — |
(Sect. 3.2.1) 2,¢* — 1] ko
_ 5_9,.3 2__

m(s+ 1)@ +m+1—g

(Sect. 3.2.2)] —(s+ 1), [>d* qg*q6+q5*(5+1>q3*1]

(s+1)g3+1
. 8__ 6+ 5—(S+1) 3 -
with s > 0 |2, Crtrne | Fo
A 8 6 5 °—2¢3+¢°—1
¢ ¢ —q" +q [%

s+1

®—’+¢*—(s+1) I
[27 (s+1)(g3+1) ] ko

(Sect. 3.2.2)] —(s+1)g* +1 | d C-P+q® 1}

3.2 Multi-Point AG Codes on the GK Maximal

Curves

Curves with many [ -rational places with respect to their genus may give to
AG codes with good parameters. For instance, AG codes with good parameters
have been constructed from the Hermitian curve or the Suzuki curve; see [77, 87].
One- and two-point AG codes from the GK curve have been recently investigated
by Fanali and Giulietti [37], and by Castellanos and Tizziotti [22].

In this Section we construct AG codes Cr(D, G) associated to the GK curve
GK, from divisors GG supported at many points. Choosing G to be invariant under
a large automorphism group of the curve, we obtain large automorphism groups
for the code. The results are summarized in Tables 3.2 and 3.3, which lists the
parameters of the [n, k,d]s -codes constructed in the section. They depend on

?—q+1 )

non-negative integers m, s, and r := ged (s, dG.aiD

We make use of the results presented in Section 1.1.3 about the AG codes and
in Section 1.2.1 about the GK curves.
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Table 3.3: Automorphism groups of the constructed codes

Code m Automorphism group
C
2,¢% — 1] (Aut(GKCy) x Aut(Fys)) x Frg

(Sect. 3.2.1)

0 8 _ bt _(s 3

[27 q (Sq+;r)t;3(;3111))q } ((SU(3,q) x C) x Aut(Fy)) Fs
(Sect. 3.2.2)
(((Qq3 X qu_l) X CqZ—q—l—l) X Aut(Ian)) X FZG’
¢ [2 q57q3+q2*(8+1)} fs=0
(@) ;
(Sect. 3.2.2) (((Qge X Hep_1) X Cgr_qi1) » Aut(Fgs)) > Frs,
if s >0and pfm

3.2.1 AG codes on the GK curves

Let m € N and consider the sets
G =G (Fpe), D:=GK,Fs)\G.

Note that G is the intersection of GK, with the plane Z = 0. Define the F¢-divisors

G:=) mP and D:=) P

Peg PeD

which have degree m(¢® + 1) and ¢® — ¢® + ¢° — ¢, respectively. Denote by
C = C(D, Q) the associated functional AG code over F s having length n =
¢ — ¢° + ¢® — ¢3, dimension k, and minimum distance d. The designed minimum
distance of C' is

d*:n—degG:qS—q6+q5—q3—m(q3+1)-

Lemma 3.2.1. There exist exactly ¢° — ¢* planes m, : X = a, a € Fs, containing
¢*+1 distinct F s -rational points of GKy. Their affine points give rise to a partition
0of GRq(Fygo) \ Gy (Fg2).

Proof. Let a € Fy \ Fp2 be such that G, contains an Fs-rational point (a, b, c).
Then b,c # 0, and 7, N GK, has exactly ¢ + 1 affine distinct points, namely
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TaNGK, = {(a,&b,mc) | €911 = n@=9+1 = 1}. Now let a € F,2. Then (a,b,¢) € GK,
if and only if b, ¢ € F 2 satisfy b9™' = a?+a and ¢ = 0. In particular, 7, NGK, has
either 1 or ¢ + 1 affine points, according to a? + a = 0 or a? + a # 0, respectively.
Therefore the number of planes 7, intersecting GK, in exactly ¢* + 1 Fs-rational
points is [supp(D)|/|m. N GK,| = qgf‘f;+qffq3 =q¢° — ¢ O

Now we show that the designed minimum distance is attained by C.
Proposition 3.2.2. When d* > 0, C' attains the designed minimum distance d*.

Proof. Take m distinct elements a; ..., a,, € Fy\F,2 such that |1,NGK,| = ¢*+1,

and let n
f::H (x_za) (3.5)

Then the pole divisor of f is (f)w = G, thus f € L(G). The weight of ep(f) is

wlep(f)) =n—m(¢*+1) =d".

The dimension of C' can be explicitly computed.

Proposition 3.2.3. If¢> -1 <m < ¢° — ¢ — 1, then

1
k=m(g’+1)— 5(@15 —2¢° +¢* - 2).

Proof. Since n > deg G > 2¢g — 2, then by the Riemann-Roch Theorem we obtain
k=degG+1—g. ]

Proposition 3.2.4. The code C' is monomially equivalent to the one-point code
Ce(D,G), where G' = m(q® + 1) Ps.

Proof. By direct checking, G = G'+(z™), and hence L(G') = {f - 2™ | f € L(G)}.
The codeword of C,(D,G’) associated to f - z™ is

((F2")(Pr), .o, (f2")(B)) = (F(PL), -, f(Pa)) - M,

where M is the diagonal matrix with diagonal entries z(P;)™, ..., 2(P,)™ € Fy.
This means that M defines a monomial equivalence between C and Cr(D,G’). O
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Corollary 3.2.5. If 1 <m < ¢* — 2, then the dimension k of C is equal to

s(m+1)(m +2)(m + 3) 1<m<qg—1,
i t(g+1)(3m* — 3mq + 9Im + ¢* — 4q + 6) g<m<q®—q,
0:

(= m® +3m?¢* — 3mg* + 6mg® + Tm

+¢° = 3¢° + 6¢° — 4¢° +-6) F—q+l<m< -2
Proof. By the assumptions on m, deg(G) < n; hence, k = ¢(G) by Proposition
1.1.38. From Proposition 3.2.4, k = ¢(G’) with G' = m(¢* + 1)P. This means

that k is equal to the number kg of non-gaps h € H(Py,) at P, satisfying h < mg>.
From [50, Proposition 2], kg is the number of triples (ji, jo, j3) € N3 such that

o< —q, j3<q—1, (¢ —+q) +72d*+j3(®+1) <m(d® +1).

Then

min{m,q—1} min{m—js,q>—q} 3 . 3 .
+1)(m — j3) —
= 3 S Q(q )(m — js) quJ +1>

3 _ 42
J3=0 Jj2=0 4 ¢ +a

m—jJ3— J2 J2
q @ —¢+q

= > X

J3=0 Jo=0

min{m,q—1} min{m—js,¢®>—q}
({ J+m—h—h+Q.

; . . . . m—jz—j J =
We have 5o < oo Hence, if ¢ [ (m — j3 — j2), then { ot q3—q22+qJ N
m—js—jo. ; . m—js—j j mefazlz 4 L modsd

; 2’1qu((m—]3—]2),then ; 2+q3_q22+q< ; 2—|—a§ ’7 ; 2—‘,111
any case

{m—jz’)—jz J2 J_{m—]ﬁa—hJ
+ 3 _ 2 o
q q q +q q

min{m,q—1} min{m—js3,¢>—q} ( \‘

and therefore

m—j3—J2

ko= Y

J+m—j3—j2+1>~

Ja=0 j2=0 q
1. Case 1 <m < q—1. Then
m Mm—=J3
. m+1)(m-+2)(m+3
T S S RS LD UELLES)

6
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2. Case ¢ <m < ¢*> —q. Let m — j3 = uj,q+ vj, with 0 < uj, < ¢—1 and
0 <wvj, <qg—1. Then

m—js3

. . Ujz—1
m-—733—J Uj, — 1
Z \‘#J (vja + 1)“]3 +q Z i = vja + 1)“]3 + Q%
Jj2=0 q
and
qg—1 Us (U . 1) m—j3
kU = Z (Uj:s + 1)uj3 +q%+ Z(m_j?) _j2+1)
Jz=0 Jj2=0

1
U, (wj, — 1 m—js+1)(m —j35+2
Z( i gl =D (e o o+ 2))

Let m=2q+ywithl <z <g—1and 0 <y <qg—1. Then

Y

k’o:Z <(?J—j3+1):17+qx(x_1) + (m—j3+1)(m—j3+2)>

; 2 2
j3=0

) 2 2
Ja=y+1

Y

q—1 . .
+ > ((q+yj3+1)($1)+q(.1‘—1)(1‘—2)+(m—]3+1)(m—]3+2)>

where the second summation is substituted by zero when y = ¢ — 1. Then

ho— WD +2) | 2@ —1)

(y+1) + (m+1)(m+2)(m+3)

2 T~ 6
+(x_1)(q+y+2)2(q—y—1) +q(x—1)2($—2)(q_1_y)
_(m—g+1)(m—q+2)(m—q+3)

; .

From y = m — xq we obtain

ko — (g +1)(3m? — 3mq + 9m + ¢* — 4q + 6)
c .

3. Case > —q+1<m<¢@—2thatism=(¢g—1)g+awithl <a<qg-—2.
Then

m—q?+qq*>—q

(s

J3=0  j2=0
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DD (E S F

ja=m—q?+q+1 j2=0
As above, let m — j3 = uj,q + vj, with 0 <wj, <g—1and 0 <v;, <g—-1.
Then

we BB (o)

Ja=m—q%+q+1 j2=0

q—1

Uy (uzy — 1) s o

= Z ((Uj3+1)uj3+q J3 323—4— Z(m—jg—j2+1) .
Jja=m—q?+q+1 jo=0

We have j3 € [m —¢* +q+ 1,¢ — 1] if and only if uj, = ¢ — 2 and v, €

[+ 1,q — 1]. Therefore,

q—1

m—j3
kr= ) <(vj3+1)(q—2)+q<q_2)2(q_3)>+ Z > (m—js—ja+1)

vjg=a+1 ja=m—q?+q+1 j2=0

_latatlg—a-1g=2)  (¢-1-a)ele—2)(g—3)

2 2
+(quQ)(q27q+1)(q27q+2)_(m*q+1)(m*q+2)(m*q+3)
6 6
(@ =m—=1)(m*+mg® —m+q" =3¢ +4¢° + 3¢ — )
_ - .
o 1Y m—j3 — J2
e 5 ([P )
43=0 j2=0 4
a ¢?—qta—js a ¢*—q
2P ND SN D Sp SICEFE AR
J3=0 i=a—j3 Jj3=0j2=0
:f: <(q_1)(a_j3+1)+q(q—l)(q—2)+(q2—q+1)(m—2j3+a+2))
j3=0 2 2
_@=D(a+1)(a+2)  (a+1)gl¢g=1)(¢g—=2)  (F—g+1D(m+2)(a+1)
= + +
2 2 2
_alm—¢*+q+1)(mg+q+1)
5 .

Finally
b — kr 4k —m? 4+ 3m?¢* — 3mg* + 6mq® + Tm + ¢% — 3¢° + 6¢° — 4¢> + 6

0 — R1 2 = .

6
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Let H be the Fp-divisor defined by H =}, ; P, that is, G = mH.

Proposition 3.2.6. If m < ¢® — ¢ + ¢* — 2, then the codes Cqo(D,G) and
Cr(D,(¢° — ¢ +q* —m — 2)H) are monomially equivalent.

Proof. From [98, Chapter 12.17], Co(D,G) = Cr(D, K+ D —G) for any canonical
divisor K. The function z has valuation 1 at each affine Fs-rational point of GIC,,
hence z is a separating element for K(GK,)/K by [107, Prop. 3.10.2]. Then dz
is non-zero by [107, Prop. 4.1.8 (¢)]. It is easily checked that (dz) is a one-point
divisor at P,,. Therefore, we may choose K = (dz) = (¢* + 1)(¢* — 2) Ps.

It suffices to prove that K + D — G = (¢° — ¢* + ¢*> — m — 2)H, that is,

K+D=(¢"—-¢+q¢ —2)H.

Let m,,, i =1,...,¢°—¢3, be the ¢° — ¢> planes described in Lemma 3.2.1. Consider
the function

fe(Tle-a)( I ),
i=1 Pesupp(@),P#Ps

where 7p(z,y) € F 2z, y] has principal divisor (7p) = (¢* +1)P — (¢* 4+ 1) P, that
is, 7p(X,Y) is the tangent plane to GK, at P. Then

: f
K+D—(q5—q3+q2—2)H=dw<m :

Hence the claim follows. O]

We determine the automorphism group of C. To this aim, we prove a prelimi-
nary Lemma.

Lemma 3.2.7. Let m > 2. For any P,Q € GK,, {(G — P) = {(G) — 1 and
UG —P—Q)=(G) - 2.

Proof. When P and @) are affine points, we denote their coordinates by (a, b, c)
and (@, b, ), respectively. We consider separately a number of cases and provide
fi€ LIG)\ L(G—P) and fy, € L(G—P)\ L(G — P — Q). The function z — ¢, for
D@1 4 (@HD(@*-0) 4 1 = (), has exactly ¢® + 1 zeros, which are simple and

[Fs-rational, and Py is its unique pole; see the proof of Lemma 3.2.12.

o Case P,Q ¢ supp(G), P # Q. If c # ¢, choose fi = =% and f, = *=¢ with

a # c. If ¢ = ¢, then a # a; choose f; = “5* and f, = “5* with a # a.
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e Case P,Q ¢ supp(G), P = Q. Choose f; = =2 and f, = *¢ with o # c.

e Case P € supp(G), Q ¢ supp(G), P # P,. Choose f; = (j—:i)m and fo = 1.

e Case P = P,, Q ¢ supp(G). Choose f; = (f)m and fy = 1.

o Case P,Q € supp(G) \{Px}, P # Q. Choose fi = (£=2)" and f, = (2=2)"
with a0 # a.

e Case P = Py, Q € supp(G) \ {Px}. Choose f; = (£)" and fo = (=2)"
with o # ¢.

e Case P =@ € supp(G) \ {Px}. Choose f; = (ZZ__S‘,,L and fy = ﬁ with
a # c.

e Case P =(Q = P,. Choose f; = (f)m and fo = (E)m_l.

z

]

Proposition 3.2.8. The automorphism group of C' has a subgroup isomorphic to
(Aut(GK,) x Aut(Fye)) x Frs.

Proof. The supports of the divisors D and G are orbits of the F-rational group
Aut(GK,); hence, Auty 4,p,c(GK,) is isomorphic to Aut(GK,).

By [50, Section 5], the number N of points of GIC, fixed by a non-trivial element
of Aut(GKC,) is at most ¢* + 1. In fact, let o € Aut(GK,) be given as an element
of PGL(4,4%). If 0 ¢ SU(3,q), then o fixes the plane Z = 0 and no other plane
with equation Z = ¢; thus, N < |[GK,N(Z =0)| = ¢* + 1. If 0 € SU(3,q) and &
fixes no points of GIC, out of the plane Z = 0, then N < ¢+ 1 by Lemma 2.3.4.
If o € SU(3,¢q) and o fixes a point P € GK, out of the plane Z = 0, then the
induced automorphism o of the Hermitian curve H,, : Y4 = X%+ X in the plane
Z =0 fixes a point P € H, which is F-rational but not F-rational. By Lemma
2.3.4, o fixes exactly 3 such points P,Q,R € H,, which correspond to at most
N = 3(¢* — ¢+ 1) points of GIC,.

Now the claim follows from Proposition 1.1.47, since deg(D) =n > N. O

Proposition 3.2.9. If2 < m < ¢* — 1, then the automorphism group of C is
Aut(C) = (Aut(GK,) x Aut(Fys)) x Frs .

In particular, Aut(C) has order 6¢°(q+1)*(q —1)*(¢* — ¢+ 1)*(¢* + ¢+ 1) log,(q).
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Proof. The following properties hold.
e The divisor G is effective.

e By Lemma 3.2.7, {((G— P) ={(G) — 1 and /(G — P — Q) = {(G) — 2 for any
P,Q € GK,.

e Let II(GK,) be the plane model of GIC; given in [50, Theorem 4], which has
degree ¢* + 1. The function field K(II(GK,)) is generated by the coordinate

functions x and z, hence also by z’ := z/2% and 2’ := 1/z. The pole divisors
of 2" and 2’ are

(Noo= D>, P, ()= > 2P,
PEG,P#Ps P€G,P#Poo, PO
where O = (0,0,0). Thus 2/, 2" € L(G).
e The curve GK, is defined over I,

e The Frobenius morphism ¢, : (z, 2) — (2P, 2P) on II[(GKC,) preserves GICy(IF o)
and GK,(F,2), hence also the support GICy(Fys) \ GICy(Fy2) of D.

e The condition n > deg G - deg(I1(GK,)) holds if and only if m < ¢* — 1.

Then by Theorem 1.1.49 we have
Aut(C) = (Autgﬁ,DG(gqu) X Aut(Fye)) x Frs .

By Remark 1.1.48, Auty =, 4(GK,) = Autr ;.p,c(GK,), and both coincide with
Autr ;(GK,). Since Aut(GK,) is defined over Fys, the claim follows. O

We construct a lengthening of C' by extending D to the support of G.

Define the F s-divisors G’ := G and D’ := ZPequ(FQG) P having degree m/(q> +
1) and ¢® — ¢° + ¢° + 1, respectively. Denote by C" := C,+(D’, G') the associated
extended AG code over F s having length n’ = ¢® — ¢° 4+ ¢° + 1, dimension ¥/, and
designed minimum distance d* = n' — deg(G’) = ¢® — ¢®* + ¢® — mq® — m + 1.

Lemma 3.2.10. Whenever d* > 0, C' attains the designed minimum distance
d*.

Proof. Let f € L(G') be defined as in (3.5). The codewords ¢/}, € C" and ep € C
have the same number m(q® + 1) of zero coordinates, hence the weight of €/, is
n' —deg(G’) = d™. O



106 CHAPTER 3. RESULTS ON AG CODES
In particular, n’ — d’ = n — d. The proof of the following result is analogous to

the one of Proposition 3.2.3.

Proposition 3.2.11. If¢* =1 <m < ¢° — ¢*, then ¥ = m(¢* +1) — 3(¢° — 2¢* +
2
q* —2).

Therefore, if ¢? —1 < m < ¢® — ¢® — 1, then C and C’ have the same Singleton
defect 0 =n+1—k —d.

3.2.2 Some other constructions

For ¢ € s, let (. be the plane with affine equation Z = ¢, and
I':= {c € Fy | A+~ + AP+ ~9) +1= 0} , Tp:=TU{0}.

Lemma 3.2.12. The plane (. contains ¢* + 1 Fyo-rational points of GK, if and
only if c € Ty. The number of such planes is ¢° — ¢° + ¢*, and their affine points
form a partition of GKy(Fus) \ {Ps}-

Proof. For any ¢, Py, € (.. We prove that the equations
yq2 —y—cq2_‘1+1 =0, a294z—y™ =0
have ¢* solutions (z,y) € FZ if and only if ¢ € T'g. By [66, Theorem 1.22], the

equation
2

Yt — oy — et = (3.6)
has ¢* distinct solutions y € Fye if and only if
(T mat)T (o atya gt — (3.7)
and the equation 27 + z — y9*! = 0 has ¢ distinct solutions = € Fys if and only if
—y™ 4 () = () T = )+ () =0, (3.8)
Using (3.6), Equation (3.8) reads

AN (PNt D) @ () (3.9)

By direct computation, every solution ¢ of Equation (3.9) is also a solution of
Equation (3.7); also, ¢ € Fus. Since the polynomial ¢(@’+1D(@=1) 4 c(@*+D@*~0) 4 1
is separable, the solutions are all distinct. By the Hasse-Weil bound, we have
IGK;(Fs) \ {Poo}| = ¢®|T0|, and the claim follows. O
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First construction

Let m,5 > 0 and take § + 1 distinct elements ¢y = 0,¢q,...,c5 € I'y. Define
the sets

G = U (g’Cq N 4-02) ) D:= glcanqG) \ g,

=0

and the [ e-divisors

Gi=m(Px+ Y. P), D=>_P

PeG,P#Py PeD

which have degree m + m(5 + 1)¢® and ¢® — ¢% + ¢® — (5 + 1)¢3, respectively.
Denote by C' := C(D,G) the associated functional AG code over F, having
length 7 = deg D, dimension %, and minimum distance d. The designed minimum
distance of C' is

d=n—degG=¢-¢"+¢ - (m+1)(E+1)¢—m

Proposition 3.2.13. [f £=204C-1 < < 4 P+ (HVC L e

(3+1)g3+1 — (5+1)g3+1
_ 1
k=m(1+(5+1)¢) —§(q5—2q3+q2—2).
Proof. The proof is analogous to the proof of Proposition 3.2.3. [

Proposition 3.2.14. The code C is monomially equivalent to the one-point code
Cr(D,G"), where G' = m[(5 + 1)¢® + 1] Pw.

Proof. The proof is analogous to the proof of Proposition 3.2.4, after replacing the
function 2™ with [[}_,(z — ¢;)™. O

Corollary 3.2.15. If 1 < m < q(ﬁql)—tﬂrl_l, then k is equal to the number kqy of
triples (j1, jo, j3) € N3 such that

Jo<@®—q, js<q—1, ji(¢®* =@ +q)+ 72’ +7s( +1) <m[(5+1)¢® +1].

Proof. The proof is analogous to the proof of Corollary 3.2.5, using that k = £(G")
where G’ = m[(5+ 1)¢® + 1] Px. O

Lemma 3.2.16. Let m > 2. For any P,Q € GK,, (G — P) = {(G) — 1 and
UG -P—-Q)=UG) -
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Proof. We argue as in the proof of Lemma 3.2.7. When P, Q) # P, let P =
(a,b,c), Q@ = (a,b,¢). It is enough to prove the condition on two points, by

providing two [F ¢-linearly independent functions fi, fo € £L(G) such that fi, f> ¢
LG—P—Q)and fi+ Afa & L(G— P —Q) for any \ € F.

e Case P ¢ supp(G) or @ ¢ supp(G). Argue as in the proof of Lemma 3.2.7.

e Case P,Q € supp(G) \ {Px}, P # Q. If ¢ # ¢ assume without loss of
generality that ¢ # 0 and choose f; = (%)m, fo = (Z;"‘)m with a ¢
{c,0}. If ¢ = ¢, then a # a and choose f; = ﬁ, fo = ﬁ with

i€{0.1,....5}, c £ e

e Case P = P,,. Argue as in the proof of Lemma 3.2.7.

e Case P =Q €supp(G) \ {Px}. Choose f; =52, f, = ZZ;B with a #  and
aaﬁ ¢ {607017 s 705}-

]

Proposition 3.2.17. Let 2 <m < qszgqji)zzzq(fﬁ))q:a and r = ged (5, q2’6q+1), where
0 = ged(3,q + 1). Suppose that {cy,...,cs} is closed under the Frobenius map
©p : ¢+ & and under the scalar map A : ¢; — Ac;, where X' = 1. Then the

automorphism group of C is

Aut(C) = ((SU(3,q) x Cy) x Aut(Fg)) 3 Fls
of order rq*(q+1)*(q — 1)*(¢* — ¢ + 1)*(¢* + ¢ + 1) log,(¢°).
Proof. We argue as in the proof of Proposition 3.2.9.

e The divisor G is effective.

e By Lemma 3.2.16, /(G — P) = {(G) — 1 and {(G — P — Q) = ¢(G) — 2 for
any P,Q € GK,.

o Let II(GKC,) be the plane model of GIC, given in [50, Theorem 4], which has
degree ¢* + 1. The function field K(II(GK,)) is generated by the functions
2’ :=x2/2% and 2’ :=1/2z. We have 2/, 2’ € L(G).

e The curve GK, is defined over F,,.

e The Frobenius morphism ¢, : (z,2) — (2P,2P) on II(GK,) preserves the
support of G' by our assumptions; hence, ¢, preserves also the support of D.
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e The condition 7 > deg G-deg(I1(GK,)) holds if and only if m < < zgqu)qqzzq(fill))qg :

Then by Theorem 1.1.49 we have
Aut(C) = (Auty 5 5(GKC)) X Aut(Fys)) x Frs .

By Remark 1.1.48, Aut 5 ~(GK,) = Autg ; pa(GK,). Since Aut(GK,) is defined
over Fys, we have that Aut, ..0.c(GK,) coincides with the subgroup S of Aut(GK,)
stabilizing the support of G. By the discussion after Lemma 8 in [50], S is contained
in the group M =2 SU(3, ¢) x C(p2_q41y/s defined in [50, Lemma 8]. In particular, S
contains a subgroup SU(3, q) x C,.. Since s/r is coprime to (¢*> —q¢+1)/§, S cannot
contain any subgroup SU(3, q) x C,» with r | ¥ and r’ > r. The claim follows. [

If we drop off the restriction on m, we still have a (possibly proper) subgroup

of Aut(C).

Proposition 3.2.18. Letr = ged (5, ‘12%5‘”1) where § = ged (3, q+1). Suppose that
{c1,...,¢cs} is closed under the Frobenius map ¢, : ¢; — ¢} and under the scalar
map A : ¢; = Ae;, where X' = 1. If 5 < ¢® — ¢ + ¢* — 3, then the automorphism
group of C contains a subgroup isomorphic to

((SU(3,q) x C;) x Aut(Fge)) x Fre .
Proof. As in the proof of Proposition 3.2.17, we have
Auth&D,@(QICq) =~ SU(3,q) x C,.

Any non-trivial element of Aut(GK,) has at most N = ¢* + 1 fixed points on G,
(see the proof of Proposition 3.2.8). By the assumption on §, this implies that
n > N. Therefore the claim follows from Proposition 1.1.47. O]

Second construction

Let m, s € N and take § + 1 distinct elements ¢y = 0,¢q,...,c; € I'g. Define
the sets

5

G:= (UK, NG )\ {Px}, D= GK,(Fee) \ G,

i=0
and the [ e-divisors

G = Z mP, b::ZP,

PeG,P#Px PeD
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which have degree m(s + g® and ¢® — ¢° + ¢ — (5 + 1)¢® + 1, respectively.
Denote by C' := Cz(D,G) the associated functional AG code over F, having

length n = deg D dimension k and minimum distance d. The designed minimum
distance of C' is

& =n—degG=¢"—"+¢ —(m+1)E+1)g+1
Proposition 3.2.19. When d* > 0, C attains the designed minimum distance d*.

Proof. Since d* > 0, there exist m(3 + 1) distinct elements i, . .. Y+ € Lo\

{co,c1,...,c5}. Consider the function
5o y
Fo — lim+j
PeTII(22)
1=0 j=1

O
Proposition 3.2.20. If % <m< %# — 1, then
- 1
k:m(8+1)q3—§(q5—2q3—|—q2—4).
Proof. The proof is analogous to the proof of Proposition 3.2.3. O]

Proposition 3.2.21. The code C is monomially equivalent to the extended one-
point code Comy(D, G"), where G' = (5 + 1)¢° Ps.

Proof. By direct checking, G' = G’ + (w) where w = [[}_,(z — ¢;)™. Hence,
L@ ={s-wlfer@}

The codeword of C’ext([), G ) associated to f - w is

(W™ fw)(Puo), (fw)(P2), - (fw)(Pn)) = (f(Peo), f(P2), -, f(P)) - M,

where M is the diagonal matrix with diagonal entries 1, w(P),...,w(P,) € Fy.
This means that M defines a monomial equivalence between C' and C’m([), G’ ). O

Corollary 3.2.22. If1 < m < % then k is equal to the number ko of
triples (41, J2, j3) € N® such that

Jo<q®—q, j3<q—1 §i1(¢®— ¢ +q)+jaq’ +js(¢® +1) <m(3+ 1)¢".
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Proof. The proof is analogous to the proof of Corollary 3.2.5, where G’ is replaced
by the one-point divisor G/ = m(s + 1)¢® Py, which is equivalent to G since G =

G + div (Hizo(z —c)™ ) O

Lemma 3.2.23. Ifm > 2 and p { m, then for any P,Q € GK, we have K(G—P) =
UG) =1 and (G — P — Q) =((G) —

Proof. As in the proof of Lemma 3.2.7, it suffices to provide two IF s-linearly inde-
pendent functions fi, fo € £L(G) such that fi, fo ¢ L(G — P — Q) and f; + \f, ¢
L(G—P—Q) for any \ € F.

e Case P, () # P,. Argue as in the proof of Lemma 3.2.16.

=B witha, 8 # 0, o # .

e Case P = (@ = P,. Choose f; = (Z;a)m and fo = (Z;ﬁ) , with a, 8 # 0,
o # 5. Since pfm, we have fi + Afo ¢ L(G — 2Py.).

e Case P= P, P# Q. Choose f; =

[]

Proposition 3.2.24. Let 2 < 1 < %' — iy with p {1, and r =

gcd( —QH) where § = ged(3,q + 1). Suppose that {ci,...,c5} is closed un-
der the Frobenius map ¢, : ¢; — ¢ and under the scalar map A : ¢; — A¢;, where
A" = 1. Then the automorphism group Aut(C ) of C' is isomorphic to

(Auth&D,é(QICq) X Aut(]qus)) X FZG . (3.10)
If =0, then Auty 5 5(GKC,) has a normal subgroup N of index 0 with

N = (Qgp x Hga1) X Claz—q+1)/5 -

If s > 0, then
Autg ;5 c(GK,) = (Qgp 3 Hez1) X .

Here, Qs has order ¢* and is the unique Sylow p-subgroup of Aut(é’). The groups
H; and C; are cyclic of order i and j, respectively.

Proof. As in the proof of Proposition 3.2.9, the following facts hold.
e The divisor G is effective.

e By Lemma 3.2.23, we have /(G — P) = ((G)—1 and /(G- P—-Q) = ((G) —
for any P,@Q € GK,.
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e The functions =’ := x /22, 2/ := 1/2 € L(G) generate the function field of the
plane model II(GIC,) of GIC; given in [50, Theorem 4].

e The curve GK, is defined over F,,.

e The Frobenius morphism ¢, : (z,2) — (2P,y?) on II(GK,) preserves the
support of D.

e Since m < q;r_ll - (§+1)‘(§q3+1), we have 71 > deg(G) - deg(IT(GK,)).

Then by Theorem 1.1.49 we have

Aut(C) = (Aut;

By Remark 1.1.48, Au’c];f6 5a(GKy) = Auty 5 &(GK,). Since Aut(GK,) is defined

over Fgs, we have that Aut b &(GK,) coincides with the subgroup S of Aut(G/C,)

pa(GK) X Aut(Fye)) % Fls

stabilizing the support of G.

The claim follows by the properties of Aut(GK,) which have been proved in
[50]. In particular, suppose 5 = 0. Then supp(G) U {Px} is a unique orbit of
Aut(GK,) by [50, Theorem 7]. Hence, S is the stabilizer of P, in Aut(GK,), and
the claim follows. Now suppose § > 0. Then S is contained in the subgroup
(Qgs ¥ Hypz_1) X Cg2_q41y/s 0of the group M = SU(3, q) X C(2_g+1)s defined in [50,
Lemma 8]. By the assumptions on A, S contains a subgroup (Q X Hp_1) X C.
Since h is coprime to (¢ — g+ 1)/d, S does not contain any cyclic group C,» with
C, C C, and 7" > r. The claim follows. O

Proposition 3.2.25. Let r = ged (§, q2+1+1) where 6 = ged(3,g+1). Suppose that
{c1,...,¢cs} is closed under the Frobenius map @, : ¢; — ¢ and under the scalar
map A : ¢; — A¢;, where \" = 1. If 5 < ¢ — ¢ + ¢*> — 3, then the automorphism

group Aut(C) of C' contains the subgroup
(AuthG,D’é(QICq) X Aut(Iqu)) X FZG
described in (3.10) and in the statement of Proposition 3.2.24.

Proof. The proof is analogous to the proof of Proposition 3.2.18 and is then omit-
ted. O



Chapter 4

New applications of the
Hasse-Weil Bound in Finite
Geometry and Permutation
Polynomials

In this Chapter, the Hasse-Weil Bound and tools from the theory of algebraic
curves over finite fields are used to investigate interesting objects which arise in
other areas of discrete mathematics, namely in Finite Geometry and in Permuta-
tion Polynomials.

In the area of Finite Geometry, we construct in Section 4.1 complete (k, 3)-arcs
in PG(2, q) starting from subsets of the quartic curve with affine equation Y = X4,
for ¢ a power of an odd prime p = 2 (mod 3). The order of magnitude of k is
smaller than ¢. This property significantly distinguishes the complete (k, 3)-arcs
of Section 4.1 from the previously known infinite families, whose size differs from
q by at most 2,/g. The results of Section 4.1 are the object of [6]. Analogously,
we construct in Section 4.2 complete (k,4)-arcs in PG(2, q) starting from subsets
of the quintic curve Y = X°, whose size k has order smaller than g. The results
of Section 4.2 are the object of [10].

In the area of Permutation Polynomials, we investigate in Section 4.3 a partic-
ular class of complete permutation polynomials (shortly, CPPs) over finite fields,
namely the monomial CPPs az? of F . with degree d = (¢" —1)/(¢ — 1) + 1. The
CPPs are studied in connection with exceptional polynomials. We characterize
the CPPs az? of Fyn in the case n + 1 prime and n* < ¢, proving in this way a
conjecture by Wu, Li, Helleseth, and Zhang. When n 4+ 1 is a power of the char-
acteristic we provide some new examples of CPPs. The results of Section 4.2 are
the object of [5].

113
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4.1 Complete (k,3)-arcs from quartic curves

A (k,r)-arc in PG(2,q) is a set of k points no (r 4+ 1) of which are collinear
and such that there exist r collinear points; see [66, Chapter 12| for a general
introduction. A (k,3)-arc is said to be complete if it maximal with respect to
set-theoretical inclusion.

From a Coding Theory point of view, complete (k, )-arcs corresond to [k, 3, k—
3],-codes which cannot be extended to a code with the same minimum distance. In
particular, (k, 3)-arc correspond to AMDS (Almost Maximum Distance Separable)
codes, i.e. codes having Singleton defect equal to 1, and to NMDS (Near Maximum
Distance Separable) codes, i.e. AMDS codes such that the dual is also AMDS; see
(32, 33].

In the case r = 2, the theory is well developed and quite rich of constructions;
see e.g. [66, Chapters 8-10]. On the other hand, for most » > 2, the only known
families consist of the set of F,-rational points of some irreducible curve of degree
r, or arise from the theory of 2-character sets in PG(2, ¢). In particular, the unique
infinite families of complete (k, 3)-arcs known in literature come from cubic curves
and have roughly ¢ points; see [68].

In this section we construct infinite families of complete (k, 3)-arcs in PG(2, q),
whose order of magnitude is asymptotically smaller than ¢. Our main result is the
following.

Theorem 4.1.1. Let o be a non-square power of a prime p > 2, with p =
2 (mod 3). Define

i%‘r’ if o=p,
(o) = 2(%%—19—1—3) if o>p.

Then, for all power q of o with ¢ > 360005, there exists a complete (k,3)-arc in
PG(2,q) of size
7(0)
o

k< q+6.

Almost all the points of the (k, 3)-arcs constructed in this section belong to the
set of F-rational points of the curve @ : Y = X*. The proof of their completeness
is based on a classical idea going back to Segre [103] and Lombardo Radice [83].
We construct a curve Hp over F, describing the collinearity condition of three
points of Q and a point P € PG(2,q) \ Q; we prove that Hp has an absolutely
irreducible component defined over F,, and deduce that P is collinear with three
points in the arc.

Throughout the section, p is an odd prime with p = 2 (mod 3), o = p with
k' odd, ¢ = p" with W’ < h, b’ | h, and K is the algebraic closure of F,.



4.1. COMPLETE (K, 3)-ARCS FROM QUARTIC CURVES 115

4.1.1 (k,3)-arcs from quartic curves

Let Q be the plane quartic curve over F, with affine equation Y = X*. The
following propositions show the collinearity condition of three and four points of
the quartic Q.

Proposition 4.1.2. Let A = (u,u*), B = (v,0v?), C = (w,w*) three distinct
points of Q. They are collinear if and only if u® + v* + w? + wv + uw + vw = 0.

Proof. A, B, C are collinear if, and only if,

u u? 1

det [ v—u v*=u* 0 | = (v—u)(w—u)(w—o)u*+v*+w?+uv+uw+vw] = 0.
w—u wt—ut 0

As A, B, C are distinct, the assertion follows. n

Proposition 4.1.3. Let A = (u,u?), B = (v,v%), C = (w,w'), D = (t,t*) four
distinct points of Q. They are collinear if, and only if,
{ u? + v 4+ w? + uv + uw + vw = 0
utv+w+t=0
Proof. By Proposition 4.1.2, the points A, B, C, D are collinear if and only if
{ u? + v+ w? + uv + uw + vw =0
W+ 0P+ +uw+ut + ot =0
Since w # t, this is equivalent to
{ u? + v+ w? + uv + uw + vw =0
u+v+w+t=0 '
O
Next we construct a (k,3)-arc contained in Q from a coset of an additive
subgroup of F,. Let M be the following additive subgroup of F, of order ¢/o :
M :={(a" —a) : a€F,}, (4.1)
and consider
K= {(v,v*) | v e M +t}, (4.2)
where t ¢ M.
Proposition 4.1.4. The set K; is a (k, 3)-arc.

Proof. By Proposition 4.1.3, if four distinct points (a; + ¢, (a; + t)*), a; € M,
¢t = 1,...,4, are collinear then a; +t 4+ ay +t+as +t+ ay +t = 0, hence
—4t = ay +as +az+ag € M. Since p # 2 and M is closed under multiplication
by elements of F,, we have t € M, a contradiction. O
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4.1.2 Points off Q are covered by K;

Proposition 4.1.5. Three distinct points A = (u,u*), B = (v,v?), C = (w,w?*)
of Q@ and P = (a,b) € AG(2,q) \ Q are collinear if and only if

u? + 2 + w? + uv + vw + vw = 0
a(u* +v*)(u+v) —wW +uv+0v*) —b=0 '

Proof. The former equation is the collinearity condition for A, B, C, the latter is
the collinearity condition for A, B, P, since

41
Y1 ] = (u—v) [a(w® + v*)(u+v) — uw(u® + w4 v*) = b].
b 1

U
det v

Q<

In particular, if the points of Q have the form A = (u + ¢, (u + t)*), B =
(v+t, (v+t)Y), C = (w+t, (w+t)*), the conditions in Proposition 4.1.5 read

w? 4+ w(u+ v+ 4t) + 4t(u +v)+
+6t* + uv +u? +0v* =0

a(u® + v + 2t + 2tu + 2tv) (u + v + 2t)
—(u+t)(v+t)(u* + 0> +uv+ 32+ 3t(u+v)) —b=0

Then the following result holds.

Corollary 4.1.6. A point P = (a,b) € AG(2,q)\ Q is collinear with three distinct
points of K¢ if and only if there exists a F,-rational affine point (z,y, z), with
27—z, Y’ —y, 2% — z pairwise distinct, lying on the space curve Hp with equation

(27— 2?4+ (27— Z)(XT = X)+ (Y7 —Y)+4t) + 4(X° - X +Y7 —Y)+
+6t2 4+ (X7 - X)(Y? - Y)+ (X - X)2+ (Y -Y)? =0

a((X7 =X+ (Y7 -Y)2+2t2 +2¢(X7 — X) + 2t(Y7 = Y))
(X=X 4+Y7 Y +2t)— (X=X +8)(Y7—Y +1)- (X7 — X)2+
[+ 7Y+ (X7 = X)(Y7—Y)+ 32 +3(X° - X +Y7-Y))—b=0
(4.3)
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Consider the following sequence of function field extensions:

Fs=Fy(2):2° —z=w

g

Fy = F3(w) : { v —12_ w((x: ~ ) —};(y" -y t4t> +24t(x"g— v +sz ~)
) +6t° + (27 —2)(y” —y) + (27 —2)* + (y” —y)* =0
=Ky :y —y=v

g

Fo,=F(z):2° —z=u

g

Fi = F,(u,0) a(u® + v* + 2% + 2tu + 2tv)(u + v + 2t)+

—(u+t)(v+t)(u? +v2 +uv + 3>+ 3t(u+v)) —b=0

We are going to show that each extension F; : F;_; is well defined and that the
field of constants of each function field F; is F,. We will also estimate the genus
g; of F;. Finally, by using the Hasse-Weil bound, we will show that if ¢ is large
enough with respect to o, then F; has a large number of F,-rational places. By
the equations defining Fj, this implies that the curve Hp possesses a large number
of F,-rational points.

We will first show that £ is a function field with genus 3 whose field of constants
is IFy; see Proposition 4.1.8 below. Equivalently, the plane quartic curve with
equation

a(U? + V2 4262 4 2tU + 2tV (U + V + 2t)

Hq
VUV DU+ VI UV 432 43U+ V) —b=0

(4.4)

is non-singular. We start by investigating an auxiliary cubic curve.
Lemma 4.1.7. Let a,b € F, with b # 0, b # a*. The plane curve with equation
a(C? 421> +2tC — 2D)(C +2t) — (D +tC +1*)(C? = D+ 31>+ 3tC) —b =0 (4.5)
15 absolutely irreducible and has genus gy = 1

Proof. After the affine transformation & = D + tC + t*,{ = C + 2t Eq. (4.5)
becomes hy(&, () = 0 with

ho(€,¢) = al® — €¢% — 2a€¢ + €2 — b

Since dehg (€, ¢) = —¢*—2a¢+2€ and O:hy (€, ¢) = 3al*—2£¢—2a&, we have that the
only three possibilities for an affine singular point are (a*(v/—2F 1), £v/—2a) and
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(0,0), which satisfy h{(&,¢) = 0 if and only if b = a® or b = 0. It is straightforward
to check that the ideal points (1 : 0 : 0),(a : 1 : 0) are non-singular. Then the
assertion follows. O

Proposition 4.1.8. Let a,b € F, with b # 0, b # a*. Let F,(c,d) be the function
field of the non-singular cubic curve with Eq. (4.5). Then the equations u+v = c,
wv = d define a function field Fy(u,v) of genus 3, with equation

a(u?® + v + 2% + 2tu + 2tv)(u + v + 2t)+
—(u+t)(v+t)(u+ v +uv+ 32+ 3t(u+v) —b=0

whose constant field is .

Proof. Let u = % —d € Fy(c,d). We are going to show that p is a non-square in
K(c,d). By substituting D = C?/4 in (4.5) we obtain

—3/16C*+(1/2a—3/2t)C*+(3at—9/2t*)C*+(6at*—6t°) C+4at>—b—3t* = 0 (4.6)

Derivation with respect to C' gives —%(C’ +2t)?(C'—2a+2t). Then, the only possible
multiple solutions of (4.6) are C' = —2t and C' = 2a — 2t. By straightforward
computation, this actually happens only if b = 0 or b = a*, which is impossible.
Therefore, there exist four distinct simple zeros of p in K(c,d). Let Py, and Qs
be the placed centered at the ideal points (0:1:0) and (1 : a—t : 0), respectively.
It is easily seen that vp_(c? — 4d) = —2 and vg_(¢* — 4d) = —2.

Then the extension K(c,d, n)|K(c,d) with n* = p is a Kummer extension of
degree 2 with genus

1 1
p=1+2(g—1)+3 > (2—ged(2,vp(p))) deg(P) =1+ 54=3
PeP(K(c,d))

Also, by Lemma 1.1.36, F, is the constant field of F,(u,v). To complete the
proof, we only need to show that actually K(c, d)(n) coincides with K(u,v). This
immediately follows from u =n+ ¢/2 and v = —n + ¢/2. O]

Proposition 4.1.9. Let a,b € F, with b # 0, b # a* and a # t. The equation
x? —x = u defines an extension Fy = Fy(x) with genus go = bo — 2 whose field of
constants is .

Proof. Let H; be as in (4.4). By Proposition 4.1.8, H; is a non-singular curve
such that Fy = F,(H;). Then places of K(u,v) can be identified with points of
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H1. The ideal points of H; are P, =(1:0:0), Q1 =(0:1:0), Ry =(1:a:0)
and S; = (a:1:0), with a® + a + 1 = 0. The tangent lines at such points are

lp : V =(a—1t), lg, : U=(a—1),

€Rl U+ (Oé—i— 1)V+ w =0 65’1 U —aV — (a71)§a+3t) —0.

Here, the assumption a # t assures that U = 0 and V' = 0 are not tangent lines at
the ideal points of H;i; hence,

Upy (U’) = Ur (u) = Vg (u) =-1, V@, (u) =0,
VQu (U) = Up, (U) = Us; (U) = _L Upy (U) =0.

Consider the function field K(u,v)(z) = K(v, z) defined by v = 2% — z. For each
place centered at an affine point and for () there exists p € K(u,v) such that the
valuation of u — (p” — p) at that place is non-negative; in fact, it is sufficient to
consider p = 0. Hence K(z,v)|K(u,v) is a generalized Artin-Schreier extension
and [K(z,v) : K(u,v)] = 0. Moreover P;, Ry, S; are the only totally ramified
places;all other places are unramified. By Lemma 1.1.36, F, is the full constant
field of F;, = F,(x,v). The genus is given by

(4.7)

oc—1 oc—1
go = ag1+T <—2+ Z (mp+1) deg(P)) =30+ 5
PeP(K(H1))

(=2+3(1+1)) =50-2.

O

From now on, denote by P, Rs, Sy the places of K(z,y) lying over Py, Ry, S,
respectively. Also, let Q3,..., Q9 be the places lying over Q.

Proposition 4.1.10. Let a,b € F, with b # 0, b # a* and a # t. The equation
Y’ —y = v defines an extension Fy = Fy(y) with genus g3 = 602 — 20 — 1 whose
field of constants is IF,.

Proof. In K(z,v) we have
vp,(v) =0, v%(v) =—1, wg,(v) =uvs,(v)=—0.

The element v — au € K(u,v) satisfies vg,(v — au) = 0. Let A € K be such that
A% = « and consider p = Ax; then

v—(p7—p)=v—az’+Ar=v—az’ +axr — ar + Az = v — au — ax + Az.

Since o +a+1 = 0, we have that A = « if and only if 3 | (¢ —1). Then A # a by
the assumptions on o; in fact, 0 = p* with A’ odd and p = 2 (mod ) imply that
3 does not divide o — 1. Thus, vg,((A — a)x) = —1 and hence

vry (v = ((Az)” = Az)) = vp, (z) = — L.
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By taking p = A~'z, the same argument yields vg,(v — (p° — p)) = —1. For the
places centered at affine points and at @3, it is sufficient to choose p = 0. Then
K(z,y)|K(z,v) is a generalized Artin-Schreier extension with [K(z,y) : K(z,v)] =

o and ]
O' j—
s = 0gs + T(_“ 3 (mp—i—l)deg(P))
PeP(K(z,v))
o—1 9
=o(bo —2) + (—2(c —2)(1+1)) =60 —20 — 1.
By Lemma 1.1.36, IF, is the constant field of F3 =F,(z,y). O

In the extension K(x,y)|K(z, v) the only totally ramified places are Q3, . .., Q9,
Ry and So; let Q3,...,QF, R3 and S3 be the places lying over them. All other
places are unramified; denote by Pi the places lying over Py, i = 1,...,0.

Proposition 4.1.11. Let a,b € F, with b # 0, b # a* and a # t. The equation

w? +w((2” —x) + (y7 —y) +4t) + 427 — 2 +y7 —y)

F682 + (22— 2)(4° — y) + (27 — 2 + (7 — ) = 0 48)

defines an extension Fy = F3(w) with genus g4 < 160% — 40 — 3 whose field of
constants is IF,,.

Proof. By the substitution 0 = w + (27 — x4+ y° — y + 4t)/2 we have F, = F3(6).
By straightforward computations,

62 = —2(u+v)2+uv—2t(u+v)—2t2 = —Z(u—ﬁlv—k(l—ﬂl)t) (u—Bov+(1=PBo)t),
(4.9)
where 31, 3, are the two distinct solutions of 372 + 2T + 3 = 0. Let hy (U, V) =0
be the affine equation defining H;.
By straightforward computations, hi(6,V + (81 — 1)t, V) = 0 if and only if

r(V) =B +28)(V+t)*+2a(3—-5)(V+1)°*—-b=0.

The coefficients of (V') are non-zero by the assumptions on a, b and the charac-
teristic p; as
r'(V) =2V +1)*[23+26:1)V + 3a(3 - 41)],

(u—B1v+(1—31)t) provides at most one double zero of % in K(u,v), so at least two
simple zeros; the same holds for the second factor. The two factors have at most
one common zero; then, there exists a zero P of §% in K(u,v) with multiplicity 1,
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and hence 62 is not a square in K(u,v). Let P’ be a place of K(x,y) lying over
P; then vp:(0?) € {1,0,0%} is odd, hence 6? is not a square in K(x,y). Therefore
K(z,y,0)|K(z,y) is a Kummer extension. By (4.9), % has valuation —2 at P, Q1,
Ry and S7; hence

vpé-(@z) = vQé(Gz) =20, vp,(0?) = vs,(0%) = —207 (i=1,...,0). (4.10)

The number of zeros of 6 in K(z,y,0) is 0 times the number of its zeros in
K(u,v), so at most 8¢2. Then

1
94=1+2(93—1)+§ Z (2 —rp)deg(P)
PeP(K(z,y))

1
< 1+2(602—20—2)+§802: 160% — 40 — 3.
Finally, by Lemma 1.1.36, IF, is the full constant field of K(z,y,0) = F. O

Let Pj7, QY, R, and S} (j = 1,2) be the places of K(z,y,0) lying over the
unramified places Pi, Q%, R3 and Ss, respectively.

Proposition 4.1.12. Let a,b € F, with b # 0, b # a* and a # t. The equation
2% — 2z = w defines an extension Fy = Fy(z) with genus g5 < 300> —120% — 40 + 1
whose field of constants is F,.

Proof. Arguing as in the proof of Proposition 4.1.11, we have that K(u,v,0) :
K(u,v) is a Kummer extension of degree 2. The unique ramified places are the
zeros of 62 with odd multiplicity, and

9(K(u,v,0)) <1+ 2(9(K(u,v)) — 1)+ % -8=09.

Let P/, @], R} and R} (j = 1,2) be the places of K(u,v,#) lying over P, Q1,
Ry and S;. Since vy (6?) = —2, we have ’Uplj<0) = —1=up (u) and we can write
0 = ku + @, for some k € K and ¢ € K(u,v,0) with vplj((b) > 0. Thus,

Vpg (0% — k*u?) = vpi (2ku® + %) > —1.
On the other hand, from (4.9) we have

3 3 1
Upi (0 — k*u?) = Upg ((_Z - k‘z) u? — ZU2 — U= 2t (u+wv) — 2t2)
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and vp (u?) = —2, whereas, by (4.7), the other terms have valuation greater than

or equal to —1 at P/. Therefore the coefficient (—3/4 — k?) must vanish. By our
assumptions on o, —3 is not a square in [, (see Lemma 4.5 in [48]). Then k ¢ F,,
and there exists a o-th root e, € K of k with e, # k. Let p = e,x; then

O0—(p°—p) = k(27 —2)+P—ela4e,x = (k—e2)a’ +(e;—k)z+P = (e, —k)x+D.

K(z,y,0) is the compositum of K(u,v,0) and K(z,y); hence, at the places P
over P; we have

Vpis (@) = (P | P)) - vps (@) 20, wpis(@) = e(Py7 | Py) - vpi(w) = —1.
Therefore
vpii (0 = (p7 = p)) = —1. (4.11)

Now we prove that
pwl #£& —¢  forall ¢ eK(x,y,0),pcF,.
On the contrary, assume 6 = &P — ¢ with £ € K(z,y,0), u € F,. From (4.11),

—1L=wpii (b — (up” — pp)) = vpis (b — (W7 — w)),

with w = up € K(zx,y,0). Since

p

w’ —w = (w“/p+w"/p2+...+w> — <w"/p—|—w”/p2+...+w>,

we have

Dps (€ — €~ (W = N) = -1,

where A = w?/P +w/P’ + .. 4w e K(u,v,0). But this is clearly impossible, since
the valuation of (£ — & — (AP — \)) must be either non-negative or a multiple of p.
Then we can apply Lemma 1.3 in [46] to conclude that 7% — T — 6 is irreducible
over K(z,y,0), and K(z,y, z)|K(z,y, 0) is a Galois extension of degree . Also, by
Lemma 1.1.36, F, is the full constant field of F,(x,y, 2).

Finally we give a bound on g5. By Castelnuovo’s Inequality (see Theorem 3.11.3
in [107]),

95 < [K(z,y,2) : K(z,9)] - 9(K(z,y)) + [K(z,y, 2) : K(u, v, 2)] - g(K(u, v, 2))+

+([K(z,y,2) : K(z,9)] = 1) - (K29, 2) : K(w,0,2)] = 1) .
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We have
[K(z,y,2) : K(z,9)] = [K(z,y,2) : K(z,y,0)] - [K(,y,0) : K(z,y)] = 20,

9(K(z,y)) = 60° —20 — 1.

Since {z,z?%,...,2°} is a basis of K(x,v,2) over K(u,v,2) and {y,4?, ...,y } is a
basis of K(x,y, 2) over K(z,v, z), then {x'y’ | i, =1,...,0} is a basis of K(z, y, 2)
over K(u,v,2) and [K(z,y, 2) : K(u,v, 2)] = 0. Since P, Q1, Ry, and S; do not
ramify in K(u, v, 0)|K(u,v), then 62 has valuation —2 at the places lying over them;
hence,

vplj(G):ngl-(H) :UR{(G) :U§{<9) =—-1, for j=1,2,

whereas 6 has non-negative valuation at any other place of K(u,v,6). Hence
K(u, v, 2)|K(u,v,0), with § = 27 — z, is a generalized Artin-Schreier extension of
degree o and

—1
9(K(u,v,2)) = 0 g(K(u, v,0)) + 2 2+ Y (mpt1)deg(P) | <
PeP(K(u,v,0))

1
§90+UT(—2+8(1+1)):160—7.

Therefore
g5 < 20(60° —20 — 1) +0*(160 — 7) + (20 — 1)(0® — 1) = 300° — 120% — 40 + 1.
O

Theorem 4.1.13. Let K; as in (4.2). If ¢ > 360006° then K; is a 3-arc which
covers all points of AG(2,q) \ Q except possibly those lying on the line Y = 0.

Proof. Let P = (a,b) € AG(2,q) \ Q and assume that a # ¢t and b # 0. We start
by counting the number Z; of poles of x” — x, y* — y, and 2% — z in F5. The poles
of 7 — z are the places lying over Py, Ry, and S; in Fs|F}, and hence over P4i’j ,
R}, and S} in F5|F, (i = 1,...,0, j = 1,2). The extension Fs|F; has degree o;
then, by the Fundamental Equality 1.1.1, 7 — x has at most (20 + 4) poles in
F5. By similar arguments it can be shown that the number of poles in Fj is at
most o(20 + 4) for y — y and at most (40 + 4) for 27 — z. Summing up,

71 <020 +4)+0(20 +4) + o(4o + 4) = 80° + 120.
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Now count the number Z, of zeros of (7 —x) — (y” —y) in F5. Clearly a place P;

o

is a zero of (z7 —x) — (y7 —y) = (x —y)° — (z — y) if and only if it is a zero of

x —y — A for some A\ € F,; then,
Zy < ) deg(z—y—No= Y _ deg(z —y — Nu.
AeF, A€F,
The poles of x — y — X are the places lying over P;, ()1, R, and S;. Then, by the
Fundamental Equality 1.1.1,
deg(x —y — Moo =4 - [F5: F1] =80 forall Ae€F,;

hence, Z, < 80*. Therefore, if the number N, of F,-rational places of Fj is greater
than
80t + 802 + 120,

then there exists an F,-rational place P of F5 such that (z(P),y(P),z(P)) is a
well-defined affine point of Hp with z(P)? — z(P), y(P)? — y(P), z2(P)? — z(P)
pairwise distinct. By Hasse-Weil bound we have

N, > g+ 1-2g5/q > q+1—2(300° — 120* — 40 + 1),/4.
From ¢ > 3600 0° it follows that

q+1—2(300° —120° — 40 + 1)\ /g > 80" + 80* + 120 + 1,

and hence, by Corollary 4.1.6, the point P is collinear with three distinct points
of IC;.

Assume now that P = (¢,b) with b # 0. Let ¢’ € M +t, with ¢ # t, and
consider the curve H', obtained by replacing ¢ with ¢’ in Eq. (4.3). Arguing as
above, Ky covers the point P. But clearly K; = Ky, and the assertion follows. [

4.1.3 Constructions of 4-independent subsets

We now want to construct complete (k, 3)-arcs from union of cosets ICy; to this
end, we will use the notion of a 4-independent subset of an elementary abelian

p-group.

Definition 4.1.14. Let G be a finite abelian group and let T be a subset of G. If
ity tys+ya#0 forall  yiy,ys,ys €T,

then T is said to be a 4-independent subset of G. An element g € G\T is covered

by T if either g € T or

there exist y1,ys,y3 € T such that y1 +ys +ys + g = 0.
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In the remaining part of the section we construct 4-independent subsets of the
abelian group ZZ’, for A’ an odd integer and p > 5. We distinguish the cases b’ = 1
and A’ > 3. For a subset A of a group G, let s"A denote the s-fold sumset of A,
that is,

sS“={y1+-+ys |y, ys € A}

In the following, let [a,b] denote the set of elements in Z, represented by integers
z with a <z <b.

Proposition 4.1.15. Let p > 29 be a prime, with p =1 mod 4. Then

T={-1,2}U {4, ]%1}

is a 4-independent subset covering Z, \ {1}.

Proof. The sum of four elements of 7* = {2}U[4, 2] is contained in [8, p—1] and

therefore is different from 0. An easy check shows that if one or more of the four
elements is —1, then it is not possible to obtain 0. Note that p > 29 guarantees
that the element 4 is in (—2 + 7). Then

T ={-3JU(=2+THU(=14+2"THUI'T*

={-3ju{oju [2, Jig] u{3}u [5, p;?’} u{6}U [8,3]9;1] ={-3,0}U [2,31911} .

Hence, the set of covered elements contains
A p—1
—-3"T ={0,3} U T—I—l,p—Q .

The non-covered element 1 cannot be added to 7 since 1 4+1—-1—1=0. O

Proposition 4.1.16. Let p > 29 be a prime with p = 3 mod 4. Then

-3
T =1{-1,2} U {4, pT}
is a 4-independent subset of Z, covering Z, \ {1, 7%1, ’%5

Proof. The sum of four elements of 7* = {2} U [4, 1%3] is contained in [8,p — 3],

and therefore is different from 0. An easy check shows that if one or more of the
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four elements is —1, then it is not possible to obtain 0. From p > 29 it follows
that the element 4 is in (—2 + 7). Arguing as Proposition 4.1.15,

T ={-3U(2+THU(-1+2"THUI'T* =

— ot 22 v [ v st

_ {=3,0}U [2,37%3] |

Then the the set of covered elements contains

+9
—yv‘:{a3}u{gz—3p—2}.
Also, note that the non-covered elements 1, 1%1, ’%5 cannot be added to T since
p+1 p+1 p+1 p—3 p+5 p+5 p—3 p—7
1+1-1-1= = = p.
* O Tt 4 s Py 4 ;g P

O
We now consider the case G = Zgl for ¥ > 3. Clearly, G can be written as
G:AXBXC,WithA:Zp,B:C:ZI%. Let
T=T,UT,UTs, (4.12)
where 71 = {(a,1,1) |a € A}, Ta ={(1,b,1) | be B\ {-3}}, T3 ={(1,1,¢) | c€ C\ {-3}}.

Here, 1 and —3 are viewed as elements of the additive group of the finite field
F ot which is isomorphic to B and C.
P

Proposition 4.1.17. Let b’ > 3 and let T be as in (4.12). Then T is a 4-
independent subset of Zgl of size Qp% +p—4 not covering at most 2(p% —p%)

elements of ZI!".

Proof. Consider four elements ti,t9,t3,t4 € T. If t1,t5,t3,t4 belong either to the
same 7; or to exactly two distinct 7;’s, then they all share 1 in one of the coordi-
nates, and therefore ¢; +ts +t3+t4 # (0,0,0) holds. Assume then that ¢, to, 3,4
belong to all the three 7;’s. If three of them belong to 7;U75, then the remaining el-
ement has the third coordinate different from —3; therefore, ¢, +to+t3+t4 # (0,0,0)
holds. Otherwise, three of them belong to 7; U T3, the remaining element has the
second coordinate different from —3, and their sum cannot be equal to (0,0, 0).
This proves that 7 is a 4-independent subset of Zg’. Now, let t = (x,y,2) € ZZ' \T
with y # 1 and z # 1, Then

(,y,2) + (-2 —x,1,1)+(1,-2—9y,1)+ (1,1,—2 — 2) = (0,0,0),
and hence t is covered by T. O]
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4.1.4 Construction of (k,3)-arcs from union of cosets of M

We first fix two (not necessarely distinct) subsets Iy, and Ky,, defined as in
(4.2), and a point P = (w,w*) in Q\ (K¢, UK,,). Clearly P belongs to some subset
K, for some tp € IF,.

Let P, = (27 —x+ty, (27 —z+t)*) € Ky, and Py = (y7 —y+ta, (7 —y+1ta)*) €
KCi,. By Proposition 4.1.2, the three points P, P;, and P, are collinear if and only
if

(27 =+t 2 (Y7 —ytte) (27—t (Y —y+ta) Fw (2 —z+t +y —y+to)+w? = 0.
(4.13)

Proposition 4.1.18. Equation 4.13 defines a function field L = Fy(x,y) with
genus g = o> — 1 whose field of constants is F,.

Proof. Consider first the plane curve I'y with equation
Fo(UV)= U+t 4+ V +to)> + (U+t)(V +ty) +w(U +t, +V +t5) +w? =0

The ideal points of I'y are the simple points Ry = (1: @ :0) and S; = (o : 1:0),
where o + o+ 1 = 0; all affine points are non-singular since w # 0. Then I'y is an
irreducible conic. Let Ly = Fy(u,v) be the function field of I'y, where fy(u,v) = 0.
The rational function u € K(u, v) has valuation —1 at Ry and S;, and non-negative
valuation at the placed centered at affine points of I'g. Then K(z, v)|K(u,v), with
u = x% — x, is a generalized Artin-Schreier extension, and

g(K(z,v)) =0 g(K(u,v)) + OT< -2+ Z (mp +1) deg(P))

PeP(K(u,v))

The places Ry and S; are the unique totally ramified places; let R; and S; be the
places lying over them. The other places are unramified. By Lemma 1.1.36, I, is
the constant field of F,(u,v).

Now consider the element v € K(z,v); we have vz (v —au) = 0. For A € K
such that A% = «, let p = Ax; then

v—(p7—p)=v—ax’ +Ar=v—ax’ +ar —ar+ Ar =v — au — ar + Az.

Since a? +a+1 = 0, we have that A = « if and only if 3 | (¢ —1). Then A # a by
our assumptions on o, so vy, ((A —a)x) = —1, and hence vg (v — (p” — p)) = —1.
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By taking p = A™'z, the same argument yields vg (v— (p” —p)) = —1. For the
places centered at affine points it is sufficient to choose p = 0. Then K(z, y)|K(z, v)
is a generalized Artin-Schreier extension with [K(z,y) : K(z,v)] = o; in this ex-
tension the unique totally ramified places are Ry, and S; while the others are
unramified. Then,

g=o0-gK(z,v))+ OT_1< -2+ Z (mp+1) deg(P))
PeP(z,v)

oc—1

=o(oc—1)+ (—2+4)=0"—1.

By Lemma 1.1.36, IF, is the constant field of L. m

Proposition 4.1.19. Assume that ¢ > 50*. Then P is collinear with two distinct
points Py € Ky, and Py € IKCy,.

Proof. We are going to show that there exist xg,yo € F, such that (4.13) holds for
xr =x9 and y = vy, and x{ — xo # yJ — yo. We start by counting the number of
poles of x7 —x = w and y” —y = v in L. They are the places lying over the totally
ramified places Ry and S in L;|Lg; hence, the number of such poles is 2. Next we
count the number Z of zeros of (z7 —x) — (y” —y) in L. A place P is a zero of
(x7—2)— (y* —y) = (x —y)? — (r —y) if and only if it is a zero of x — y — A for
some A\ € F,; then
Z < Zdeg(x—y—)\)gz Zdeg(az—y—/\)oo.

A€F, A€F,

The poles of x — y — A are the places lying over R; and S; in Li|Lg; then, by the
Fundamental Equation 1.1.1,

deg(x —y — Moo = 2+ [L : Lo = 207

for all o € F,; hence, Z < 203.

Therefore, if the number N, of F,-rational places of T is greater than 20* +
o, then there exists an F -rational place P of L such that the point (xg,yo) =
(x(P),y(P)) is well-defined and x§ — z¢ # y§ — yo. By the Hasse-Weil bound,

N,>q+1-29/g=q+1-2(c"—1)\/q.
Our hypothesis ¢ > 50* implies
q+1—2g9/q>20%+2+1.

This completes the proof. n
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Proposition 4.1.20. Assume that ¢ > 11o*. Then P is collinear with three
distinct points Py € Ky, P € Ky, and P3 € Q.

Proof. By Proposition 4.1.19, P is collinear with two distinct points P, € Ky,
P, € K. The line through P, P», and P can be a tangent line to the curve
Q. Note that there are at most four tangent lines through P to the curve Q;
in fact, imposing that P lies on the tangent to Q at the point (X, X?) gives an
equation in X of degree 4. Since each tangent line can be obtained from two
pairs, we need at least nine distinct pairs of points P{, Ps such that P and Pj are
collinear with P (i = 1,...,9). Arguing as in the proof of Proposition 4.1.19, it
is sufficient to require that the number of F -rational places of L is greater than
9.20% 4+ 2 = 1802 4+ 2. This is implied by the Hasse-Weil bound, together with
q> 110 [

Henceforth, 7" denotes a 4-independent subset of F,/M, for M as in (4.1). Let

Kr= |J K. (4.14)

M+teT

Proposition 4.1.21. The set K1 is a (k,3)-arc.

Proof. By Proposition 4.1.3, the sum of the first coordinate of 4 collinear points
on Q is equal to 0. This is clearly impossible if the points belong to K7, since T
is a 4-independent subset of F /M. O

Proposition 4.1.22. Assume that ¢ > 110*. Let Cov(T) be the set of all the
elements of F,/M covered by T as 4-independent subset. Then the points in

U x

M+t e Cou(T)

are covered by Kr.

Proof. Let P € Ky, with M +tp € Cov(T). Then there exist M +ty, M +to, M +
tz3 € T such that tp + ¢ + to + t3 € M. Also, by Proposition 4.1.20, there exist
three distinct points P, € Ky, P» € Ky,, and P; € Q which are collinear with P.
Let t3 be such that P € Ky,. By Proposition 4.1.3, tp +t; +t5 + t3 € M. Then
M +1t3 = M +t3, that is, Ky; = Kyy; hence, Pi, P, Py all belong to T and the
assertion follows. |
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Theorem 4.1.23. Let T be a 4-independent subset of F,/M of size n, not covering
at most m elements of F,/M. Let K1 be as in (4.14). Assume that ¢ > 3600 o°.
Then there ezists a complete (k,3)-arc K with K+ C K C Q of size at most

(n—l—m)g—l—ﬁ
o

Proof. Fix a coset M + ¢ in 7. By Theorem 4.1.13 all the points of PG(2,q) \ Q
are covered by a K; plus at most six points covering the lines Y = 0 and T" = 0.
By Proposition 4.1.22, there are at most m affine points of Q not covered by Kr.
This shows that there exists a complete (k, 3)-arc K containing ICr of size at most

Krl+mL+6=mn+m)L+6
g g

]

We are finally in a position to prove Theorem 4.1.1. Identify the additive
groups Z;}/ and F,/M. From Propositions 4.1.15, 4.1.16, and 4.1.17 the following
values of n and m occur in Theorem 4.1.23:

e foroc=p p=1 (mod4),p229,wehaven—p5andm—1

e foroc=p, p=3 (m0d4),p>29,wehaven:p%7andm:3;

n'—1

2 pt.

e for o > p3, Wehaven—2p2 +p— 4andm—2(

4.2 Complete (k,4)-arcs from quintic curves

In this section we provide a new class of infinite families of complete (k,4)-arcs
in PG(2, ¢). Our main result is the following.

Theorem 4.2.1. Let o be a non-square power of a prime p > 3, with p = 3
(mod 4). Define

p+4z 10 if o=p>29 o=i€{l,2,3,4} (mod5),

2\f+p—2 if o> ph.

Then, for each power q of o with ¢ > 5806440, there exists a complete (k,4)-arc
in PG(2,q) of size
( )

k<——=
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The order of magnitude of the (k,4)-arcs constructed in Theorem 4.2.1 is sig-
nificantly smaller than that of the previously known families. In fact, complete
(k, 4)-arcs arising from quartic curves have at least ¢4 1 —6,/q points. The size of
the arcs of Theorem 4.2.1 is asymptotically smaller than ¢q. For example, if o = p3
with p > 83, then ¢ = ¢” can be chosen and the bound on k is roughly ¢?*/?".

This section is organized as follows. Section 4.2.1 shows how to construct
complete (k, 4)-arcs from quartic curves, with £ > ¢—6,/g+1. In Section 4.2.2 we
construct a (q/o,4)-arc I, lying on Q; it is associated to an additive subgroup M
with index o in [F,. We show in Section 4.2.3 that under the conditions of Theorem
4.2.1, the 4-secants of IC, covers almost all points of PG(2,¢q) \ Q. To this end,
we thoroughly investigate the curve Hp and its function field. A 5-independent
subset in the factor group F,/M is constructed in Section 4.2.4. This allows us to
show in Section 4.2.5 how to cover the points of Q, for ¢ large enough, by joining
more copies of IC,.

4.2.1 (k,4)-arcs from quartic curves

An absolutely irreducible quartic curve is always a (k,4)-arc. By the Hasse-
Weil bound its size is lower bounded by ¢ — 6,/¢ + 1. In the following we show
how to construct a complete (k, 4)-arc starting from a particular quartic curve.

Let ¢ be a power of a prime p > 3 and C = {(z,2*) | € F,} be the set of the
[F,-rational affine points of the plane curve with equation Y = X*. As usual, K
denotes the algebraic closure of F,.

Proposition 4.2.2. Four distinct points A = (u,u*), B = (v,v?), C = (w,w?),
D = (t,t*) of C and P = (a,b) € AG(2,q) \ C are collinear if and only if

utv+w+t=0
w? + (u+v)w+u+uv+0v*=0 : (4.15)
a(u? +v*)(u+v) —uv(u® +uv +0?) —b=0

Proof. The claim follows from Propositions 4.1.3 and 4.1.5. O]
Proposition 4.2.3. Let a,b € F, with b # a*. The equation {1(u,v) = 0, where
01 (u,v) = a(u? +v*)(u +v) — wo(u? + uv +v?) — b, (4.16)

defines a function field By = F,(u,v) with genus at most 3 whose field of constants
is Fy.

Proof. Let & be the plane quartic curve with affine equation ¢,(U, V') = 0, with
¢y as in (4.16). If b = 0 then the affine point O = (0,0) is an ordinary triple point
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and no lines through O are contained in £;. Therefore & is absolutely irreducible.
If b # 0 then it is easily seen that & is nonsingular, and hence irreducible with
genus 3. Since E) is the function field F,(&;) of &, the claim follows. O

Proposition 4.2.4. Let a,b € F, with b # a*. The equation
w? + (u+v)w + v +uv + 02 =0 (4.17)
defines an extension Ey = Ey(w) with genus at most 9 whose constant field is F,.

Proof. By the substitution ¢ = w + (u + v)/2, we have Ey = F;(1)). By straight-
forward computation,

P? = —i (3u® + 2uv + 30%) = —Z (u —aqv) (u — agv),
where aq,ay are the two distinct solutions of 37% + 27 + 3 = 0. From the
assumptions on a, b, and the characteristic p, it is easily seen that the poly-
nomial ¢1(c;V,V) is not a square in K[V]. Then 1 has at least one zero in
K(u,v) with odd multiplicity, and hence 1? is not a square in K(u,v). Therefore
K(u, v, w)|K(u,v) is a Kummer extension of degree 2. By Lemma 1.1.36, F, is the
field of constants of Ey = F,(u, v, w). Since ¥ has at most 8 zeros in K(u, v) with
odd multiplicity, the genus of Es is at most 1 +2(3 —1) +8/2 =09. O

Let B3 = F(u,v,w,t) with u + v+ w + ¢t = 0. Since E5 = Ej,, we have shown
that E is a function field with genus at most 9 and field of constants IF,.

Theorem 4.2.5. Assume that ¢ > 431. Then there exists a complete (q+2,4)-arc
A in PG(2,q) containing C.

Proof. Let a,b € F, with b # a*. We count the number of poles and zeros of u — v,
u—w,u—t, v—w,v—t and w—t in K(u,v,w,t) = K(u,v,w). The poles lie
over the four unramified places of K(u, v) centered at the ideal points of £;. Since
[K(u,v,w,t) : K(u,v)] = 2, the number of poles of u —v, u —w, u—t, v—w, v—t,
and w—t in K(u, v, w,t) is 8. By [107, Th. 1.4.11], the number of zeros of u — v in
K(u,v,w,t) is at most 8; the same holds for u —w, u —t, v —w, v — ¢, and w — t.

Therefore, if the number N, of F,-rational places of Ej is greater than 8+6-8 =
56, then there exists an IF-rational place @) of E5 such that P = (a,b) € AG(2,¢)\C
is collinear with four distinct points (u(Q),u(Q)%), (v(Q),v(Q)*), (w(Q), w(Q)*),
(t(Q),t(Q)?) of C. By Hasse-Weil bound,

Ny >q+1—-29(E3)\/qg>q+1—18/q;
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thus, N, > 56 by the hypothesis ¢ > 431. We have shown that C is a (g, 4)-arc
which covers all the points of PG(2, q), except possibly the ideal line. Consider
an ideal point Py, = (1 : a : 0), with a # 0. The point P, is collinear with four
distinct points of C if and only if there exist w,v,w,t € [F, pairwise distinct such
that

u+v+w+t=0

w4+ (u+v)w+u +uv+0*=0 . (4.18)

u? + utv +w? + 0P =a

Arguing as above and using the Hasse-Weil bound, it can be proved that conditions
(4.18) are satisfied for some distinct u, v, w,t € Fy, for each a € F;. On the other
side, the ideal points (0 : 1:0) and (1 : 0 : 0) are not collinear with four distinct
points of C. Therefore the claim is proved. O

4.2.2 (k,4)-arcs from quintic curves

Throughout the rest of Section 4.2, p is an odd prime with p > 5 and p = 3
(mod 4), o = p" with k' odd, and ¢ = p" with h > ' and h' | h. Moreover,

Q= {(%xs) |z € Fy}
is the set of the F-rational affine points of the plane curve with equation Y = X°.

Proposition 4.2.6. Let A = (u,u’), B = (v,v°), C = (w,w®), D = (t,t°) be four
distinct points of Q. They are collinear if and only if

w? + w(u+v) + wu? + uwv + v?) + (u +v)(v? +v*) =0
2+ tu+v+w) +u?+ 02+ w4 uw +uw +ovw =0 '

Proof. A, B,C, D are collinear if and only if

U u® 1 U u® 1
det | v—u °—=v> 0 | =det| v—u °—u®> 0 | =0,
w—u w®—u® 0 t—u tP—u® 0

that is

{ (v —u)(w —u)(w —v)[w* + w(u+v) + wu? + uww +v?) + (u+v)(u? +0?)] =0
(v —w)(t —u)(t —v)[t* + t?(u+v) + t(u? + uv + v?) + (u+ v)(u* + v?)] =0 ‘

As A, B,C, D are distinct, the assertion follows. n
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Proposition 4.2.7. Let A = (u,v’), B = (v,v°), C = (w,w®), D = (t,t°),
E = (r,7°) be five distinct points of Q. They are collinear if and only if

w? + w?(u +v) + wu? + wo + v?) + (u+v)(u® + 0 =0
24+ tu+v+w)+u?+ 02+ w+uw+ uw+ovw =0
utv+tw+t+r=>0

Proof. By Proposition 4.2.6, the points A, B, C, D, E are collinear if and only if

w? + w(u+v) + wu? + uv +v?) + (u+v) (v +0v*) =0
24+ tu+v+w)+u?+ 02+ w+uw+uw+ovw =0
r? +r(u+v+w)+u®+ 02+ w4+ uww +vw +ovw =0

Since r # t, the assertion follows. O

Now we construct a (k,4)-arc contained in @ from a coset of an additive sub-
group of F,. Let
M :={(a” —a) | a € F}, (4.19)

and
Ke:={(v,v°) |veE M +e}, (4.20)

with e ¢ M.
Proposition 4.2.8. No five points of K. are collinear.

Proof. By Proposition 4.2.7, if five distinct points (a; + e, (a; + €)?), a; € M,
¢t =1,...,5, are collinear then a; +e+as+e+as+e+as+e+as+e =0,
and hence —be = a; + as + az + a4 + a5 € M. Since p # 5 and M is closed under
addition by elements of ., we have e € M, a contradiction. O

4.2.3 Points off Q are covered by K.

Consider a point P = (a,b) € AG(2,q)\ Q. Arguing as in Proposition 4.2.7 we
can prove the following.

Proposition 4.2.9. Four distinct points A = (u,u'), B = (v,v%), C = (w,w?),
C = (t,t*) of Q and P = (a,b) € AG(2,q) \ Q are collinear if and only if

w? + w(u+v) + wu? + uv + v?) + (u+v) (v +0v*) =0
2+ tu+v+w) +u+ 02+ w+uw +uw +vw =0
b+ uv(u? + v?)(u+v) — a(u* + vdv + v + w® + v*) =0
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Proof. The first two equations are the collinearity conditions for A, B, C, D, whereas
the third is the collinearity condition for A, B, P, since

> 1
51 | == [b+w®+ ) (utv) —alu’ +uPv + v + u® +0h)].
b 1

U
det )

2@ < 2

]

In particular, if the points of Q have the form A = (u + e, (u + €)?), B =
(v+e (w+e)t), C=(w+e (w+e)?), D= (t+e (t+e)t), then the conditions
in Proposition 4.2.9 read

( w4+ w?(u+ v+ 5e) + w[u? + uv + v + Se(u + v) + 10€?]
+(u + v)(u? + v?) + be(u? + uv + v?) + 9e2(u +v) + 7e3 =0

4+ t(u+v+w+de) + u? + v+ w? + uv + uw + vw
+e[3(u+ v+ w) + 2(uv + uw + vw)] + 10e* = 0

b—l—(u+e)(v+e)(u+v—|—26)[u2+02+26(u—1—v)+6]—a[u + udv + u?v?

L +uv® + ot + Se(u + v) (u? + v?) + 10e? (u? 4 uv + v?) + 9¢ (u + v) + 4e*] =0

Therefore, the following result holds.

Corollary 4.2.10. A point P = (a,b) € AG(2,q)\ Q is collinear with four distinct
points of K. if and only if there exists an Fy-rational affine point (z,y, z, ), with
7 —x, Yy’ —vy, 27—z, r7 —r pairwise distinct, lying on the curve Hp with equations

(z° ) +(2° -2 (X=X +Y?—Y +5e) + (Z° — Z)[(X? — X)?
+( X)(Y7-Y)+ (Y7 —Y)?+5e(X7— X +Y7 —Y) + 10€?]
X=X +Y7 YY) [(X7 = X)?+ (Y7 —Y)?] +5e[(X7 — X)?

+(X° — X)(Yff —Y)+ (Y7 -Y)? ] +9e*(X7 - X +Y7-Y)+7¢*=0

(RO —R?>+ (R —R)(X°—X+Y° Y +2Z° —Z+5e)+ (X — X)?
+(Y7-Y)+ (27 -2+ (X - X)(Y? - Y) +(X° - X)(Z° - Z)

+(YT Y27 - Z)+e[3(X° - X+Y° -Y +2° - Z)

F2((X = X) (Y7 —-Y)+ (X = X)(Z° - Z)+ (Y7 = Y)(Z° — Z))] +10e® =0

b+ (X7 =X +e)(Y7 =Y +e)(X7 - X +Y7—Y +2¢)[(X7 — X)?

HYT V)24 2(X7 — X + Y7 —Y) + €] —a[( X)4 4 (X7 — X)3

(Yo =Y)+ (X7 = X)2 (Y7 - Y2+ (X = X)(Y -V + (Y7 -Y)?

+5e(X7 =X +Y7 —Y) [(X7 = X)?+ (Y7 = Y)?] +10e?((X7 — X)?

H(XT = X)(Y7 = V) + (Y7 =Y )2) + 963 (X7 — X + Y7 —Y) +de*| =0
(4.21)
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Consider the following sequence of function fields:
F7:F6(’I“) r? —r =t

o 24 t(x® —x+y° —y+2° —2+5e) + (27 — )% + (v —y)?
_ S HET =2+ (@7 - @)y )+ (27 - 2)(27 = 2) + (17 - y)(z7 - 2)
Fo = F5(1) —1-6[3(90" -4y —y+2°—2)+ 2((96" —z)(y? —vy)
(@7 —x)(27 = 2) + (47 —y) (27 — 2))] +10e* =0
Fs=Fyz): 27 —z=w

2

o w? + w?(27 —z +y° —y+5e) + w[(z7 — x)?
+(@” —2)(y" —y) + (¥ —y)* +5e(z” —x +y7 —y) + 10¢?]
Fy = F: :
PR ey ) ) (7)) + e a)?
3 +@7 = 2) (17 —y) + (17 —y)?) + 92 (@7 —w 4y  —y) + 73 =0
Fy=Fy): y¥—-y=v

o
Fob=F(x): 22—z =u

g

b+ (u+e)(v+e)(u+v+2e) [u? +v? + 2e(u+v) + €]

Fi =Fy(u,v) : —afu* + udv + u?v? + uwo® + vt + Se(u + v) (u? + v?)

+10e?(u? 4+ uv 4 v?) + 9e3(u + v) + 4] =0

We are going to show that each extension F; : F;_; is well-defined and that the
field of constants of each function field F; is F,. We will also estimate the genus
g; of F;. Finally, by using the Hasse-Weil bound, we will show that if ¢ is large
enough with respect to o, then F7 has a large number of F -rational places. This
implies that the curve Hp possesses a large number of Fy-rational points.

First we show that F} is a function field with genus 6 whose constant field is
F,. Equivalently, the quintic curve H; with affine equation G1(U, V') = 0, where

G1(U, V) =b+(U+e)(V+e)(U+V+2e) [U> + V? +2e(U + V) + *] —a[U'+U?V
+U V24UV 4V 45e(U+V)(UP+ V) +10e* (U + UV +V?)+9e* (U +V) +4e'],
is absolutely irreducible and has genus 6.

Proposition 4.2.11. Let a,b € F, with b # 0 and b # a®. Then H, is absolutely
irreducible and has genus 6.

Proof. The ideal points of H; are P, = (1:0:0), @1 = (0:1:0), and R} = (1
£:0), 1 € {1,2,3}, where ¢ is a primitive 4-th root of unity; being distinct, they
are simple points. We have

dGLUV)=(V —(a—e))(4U +e)* +3(U +e)*(V+e)+2(U +e)(V+e) +(V+e)),
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HWGIUV)=U —(a—e))(U+e)+2U+e)*(V+e)+3(U+e)(V+e)+4(V +e)’).

Since b # a®, no point (U,V) € H; has either U = a —e or V = a — e.
Also, the resultant of dyG1(U,V)/(V — (a —e)) and 0y G1(U,V)/ (U — (a —e))
with respect to U is 2000(V + €)? and 2000(U + e)?, respectively. Since p > 5,
OuG1(U, V) = 0yG1(U,V) = 0 if and only if (U, V) = (—e, —¢) ¢ H;. Therefore,

H1 is non-singular, and hence absolutely irreducible with genus 6. [

Proposition 4.2.12. Let a,b € F, with b # 0, b # a°, and a # e. The equation
x7 —x = u defines an extension Fy = Fy(x) with genus go = 90 — 3 whose field of
constants is IF,.

Proof. By Proposition 4.2.11 #; is non-singular with function field Fy = F,(#;).
Thus, places of K(u,v) can be identified with points of H;. The tangent lines at
the ideal points of H; are

lp : V =a—e, lg, : U=a—e, ERzi:V—fiU:(fi—l)(a+4e)/4.

Here, the assumption a # e assures that U = 0 and V' = 0 are not tangent lines
at the ideal points of H;; hence,

vp () = vpi(u) = =1, vg,(u) =0,
=0.

g, (V) = v (v) = =1, vp,(v) (4.22)

For each place centered at an affine point and for @; there exists p € K(u,v)
such that the valuation of u — (p” — p) at that place is non-negative; in fact, it
is sufficient to consider p = 0. Hence, u = 2% — x defines a Kummer extension
K(u,v)(z) = K(v,z) of K(u,v) of degree o. Moreover, P; and R} (i = 1,2,3) are
the only totally ramified places; all other places are unramified. By Lemma 1.1.36,
[F, is the constant field of Fy = F,(x,v). The genus is given by

c—1 oc—1
g2 = 0g1+—5— (—2+PEP(% ))(mp-i—l) degP) =60+—— (-2+4(1+1)) = 90-3.

]

Denote by Py, R} the places of K(x,v) lying over P, R}, respectively, and by
Q3. ..., Q3 the places lying over Q;.

Proposition 4.2.13. Let a,b € F, with b # 0, b # a®, a # ¢, and a # —4e. The
equation y° —y = v defines an extension F3 = Fy(y) with genus g3 < 1002 — 30 — 1
whose field of constants is F,.
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Proof. In K(x,v) we have vp, (v) = 0, vg; (v) = —1, and vy (v) = —o. The element
v —&'u € K(u, v) satisfies vg; (v — 'u) = 0. Let k; € K be such that &7 = &', and
consider p; = k;x; then,

v—(p] —pi)=v—E2" +kix=v—E27 + & —r+kir=v—Eu+ (k — &),

Fori =2, & = —1 and ky = —1; hence, vgz(v — (p§ — p2)) = 0. For i € {1,3}, we
have that k; # ¢ by the assumption 4 { (o — 1); hence, vg (ki — &')x) = —1 and
URj (v—(p? — p;)) = —1. For the places centered at affine points, at P, and at Q5,
it is sufficient to choose p = 0. Then K(z, y)|K(z, v) is a generalized Artin-Schreier
extension with [K(z,y) : K(x,v)] = o and

o—1
93:(792+T(—2+ Z (mp + 1) deg P)
PeP(K(z,v))
—1
g0(90—3)+UT(—2+(0+2)(1+1)) — 1002 — 30 — 1.
Finally, by Lemma 1.1.36, F, is the constant field of F3 = F (x,y). O

In the extension K(z,y) : K(z,v) the only totally ramified places are Q3, ..., Q3,
R}, and R3; let QL,...,QF, R}, and R3 be the places lying over them. All other
places are unramified; denote by Pj and Rg’i (1 =1,...,0) the places lying over
P, and R2, respectively. Now we investigate an auxiliary function field.

Lemma 4.2.14. Let a,b € F,, with b # 0 and b # a°. The equations

2 4pP+5u+5
=TT

640505 — 64ap’At + 80p*N® — 80au* t + 762\
+180au? At — 256bu? — 25\° + 25a\* = 0

define a function field F,(u, A, n) with genus at most 53 and constant field F,,.
Proof. We divide the proof in three steps.
1. We show that the equation C'(p, \) = 0, with

Clp, ) = 64p°N° — 64ap>\* + 80p*\° — 80ap*\* + T6p\°
+180apA* — 256bp — 25)° + 25a\?,
defines a function field F,(p, A\) with genus at most 8 and constant field FF,,.

Let P, = (1 : 0:0) and Qo = (0 : 1 : 0) be the ideal points of the
curve C : C(R,L) = 0. The point P, is singular with multiplicity 5; the
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tangent lines at P, are L = 0 with multiplicity 4 and L = a. The point
(D is singular with multiplicity 3; the tangent lines at (), have equation
R=1/4, R=-3/44+—1, and R = —3/4 — /—1. The affine points of C

are non-singular.

The curve C has no linear components. In fact, assume by contradiction that
a line £ is a component of C. If P, € ¢, then ¢ has equation L = k; hence,
either k¥ = 0 or k = a, which implies either 256b = 0 or 256(a® — b) = 0,
a contradiction to the hypothesis. If Q). € ¢, then ¢ has equation R = k;
hence, either 2566 = 0, or k = 0 and 25 = 0, impossible.

The curve C has no proper components of degree higher than one. In fact,
assume by contradiction that C splits into two proper components C; and
Cs_i, where C;, Cg; have degree 7, 8 — i; the product of the leading terms of
C; and Cs_; equals 64p>\>. By comparing the coefficients of C; - Cs_; and C
for each i € {2,3,4} we obtain b = 0, a contradiction.

Therefore, C is absolutely irreducible. As C has two singular points of multi-
plicity 5 and 3, C has genus at most 8. Since F,(p, A) is the function field of
C and F, is the constant field of F,(p, A) by Lemma 1.1.36, the claim follows.

2. We show that the equation p? = p defines a Kummer extension F,(u, \) =
F,(p, A\)(p) with genus at most 18, whose constant field is F,.

The function p has two zeros in K(p, \), namely the simple zero A, centered
at (0,a) and the zero Ay with multiplicity 4 centered at (0,0). Hence, p
is a non-square in K(p, A). Also, there are at least two places and at most
six places of K(p, A\) at which p has odd multiplicity; namely, the place A,
and between one and five places lying over the pole P, of p in K(p). Then
F,(uN)|Fy(p, A) is a Kummer extension with genus at most 14+2(8—1)+6/2 =
18. By Lemma 1.1.36, F, is the field of constants of F (u, \).

3. We show that the equation n? = —QSLE@ defines a Kummer extension
F,(p, A\, n) =F,(p, A)(n) with genus at most 53 and constant field F,,.

Let A, be the place of K(p.A) lying over A,; then vy (%) = —1. Therefore
K(p, A\, n)|K(u, A) is a Kummer extension, and A, is ramified. There are
exactly five places of K(u, \) lying over P, ; they ramify in K(u, A, 7)|K(u, A).
Let ji1, pto, i3 be the distinct solutions in y of the equation 43 +5u+5 = 0.
For i = 1,2, 3, there are at most 10 places of K(u, A,n) which are ramified in
K(u, A\, n) : K(u, A) and lie over the zero of p — u? in K(p). All other places
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are unramified in K(u, A, 7)|K(x, A). Then the genus of F, (i, A, ) is at most
1+2(18 — 1) +36/2 = 53. By Lemma 1.1.36, IF, is the field of constants of

Folp, A m).
O
Proposition 4.2.15. Let a,b € F,, with b # 0 and b # a°. The equations

b+ (u+e)(v+e)(utv+2e) [u?+v* + 2e(u+v) + %] — afu* + udv + u?v?
+uv® + vt + 5e(u + v) (u? + v?) + 10e*(u? + uv + v?) 4+ 9e®(u + v) + 4e] =0
w? + w?(u+ v+ 5e) + w [u? + uv + v* + Se(u + v) + 10€?]
+(u + v)(u? + v?) + 5e(u? + uv + v?) + 9e?(u+v) + 7e3 =0

(4.23)

define a function field Fy(u,v,w) with genus at most 53 and constant field F,.

Proof. Let X be the space curve with affine equations Cy(U,V,W) = 0 and
Co(U,V,W) = 0, where

CL(U,V,W)=b+UV(U>+ UV +UV2+ V3) —a(U* + U3V + U?V2 + UV3 + V4),
Co(U,V,W) = W34+ W2U +V)+ WU+ UV + V) + (U3 + UV + UV +V3).

Denote by u, v, w the coordinate functions of X'. Consider the morphism
o: (U, V,W,T)— (M,L,E,T)=U/W+V/W+1/2W,U/W —V/W,T).
Then X is F,-birationally equivalent to the curve Y = (X') with affine equations

AMB34+5M+5\ _

3 <E2 + %) —0

Vi q 64MOLP — 64aMOL* + SOMAL5 — 80aM*L* + 76 M2L° -
+180aM?2L* — 256bM?2 — 2515 + 25aL* =0

Since Y has no points (M, L, E,T) with L = 0, equivalent equations for ) are
_ 4AMB345M+5

B = s

Vi q 64MSL5 — 64aMOL4 + 8OMALS — 80aMAL* + 76 M2L5 -
+180aM?2L* — 256bM?2 — 2515 + 25aL* =0

By Lemma 4.2.14, X is absolutely irreducible and has genus at most 53. Also,
the function field F (@, v,w) of X has constant field F,. Let u =u+e, 7 =v +e,
and w = w + e. Then F,(u,v,w) = F,(%,7,w) and u,v,w satisfy the equations
(4.23). This yields the thesis. O
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The function field Fy is the compositum of Fy(u, v, w) and F;. The extension
Fy|Fy has degree [F,(u,v,w) : Fy] - [F3 : Fi] = 302, since 3 and o? are coprime.
Also, [F, is the field of constants of Fj.

Fori=1,...,0, we have by Equations (4.23) that in the extension Fy|Fj there
are three distinct places Py’ (j = 1,2,3) lying over Pj. Also, there are three
distinct places RZQ and Ri’j (¢,7 =1,2,3) lying over Rg’i and R, respectively; let
RZ’}Q be the place centered at the point (X : Y :0:0) with W = 0.

Proposition 4.2.16. Let a,b € F, with b # 0, b # a®, a # e, and a # —4e. The
equation z° — z = w defines an extension F5 = Fy(z) with genus g5 < 1000% —
240% — 60 + 1 whose field of constants is F,.

Proof. Let Py be the place of K(u,v) centered at (1 : 0 : 0). In the extension
K(u, v, w)|K(u,v) there are three distinct places lying over P, namely the places

Pi centered at (1,0,£%,0), i = 1,2,3. Consider the place P}. Then vﬁg(u) =
vp(w) = —1, and w = {u + @ for some ¢ € K(u,v,w) with vs () > 0. Since
=3 (mod 4), we have £ ¢ F,; hence, there exists k € K with ko = Eand k # &,
Let p = kz; then

w—(p”—p) =&’ —x)+P—k2"+kx = (k") +(k—&)z+P = (k—&)z+ D.
Choose i and j such that P;” lies over ]321 Then
UPZ,]‘((I)) — (P} | P})- U (®) >0, Upii (z) = e(P}7 | Pl ~vpi(z) = —1.

Therefore,
vpii(w —(p7 — p)) = —L. (4.24)

Now we prove that
yw#P—¢ foral (eK(z,y,w),yeF,.
On the contrary, assume yw = ¢ — ¢ with ( € K(z,y,w),y € F,. From (4.24),
1 =wpii(yw = (797 = p)) = vpis(yw = (7 — ),
with a = yp € K(z, y,w). Since
o —a = (aa/p—l—a"/pz—i—...—i—a)p— <a"/p+a"/p2+...+a),
we have

0ppr((C = B = (€= B)) = vy (P = C = (8" = ) = —1.
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where 8 = a?/? + /P 4. tac K(u, v, w). But this is clearly impossible, since
the valuation of ((¢ — ) — (¢ — )) must be either non-negative or a multiple of p.
Then we can apply Lemma 1.3 in [46] to conclude that 77 — 7' — w is irreducible
over K(z,y,w), and K(z,y, 2)|K(x,y,w) is an Artin-Schreier extension of degree
0. Also, by Lemma 1.1.36, F, is the constant field of F,(z,y, z). Finally, we give
a bound on g5. By Castelnuovo’s Inequality ([107, Theorem 3.11.3]),

g5 < [F5: F3|-g3+[F5 : Fo(u, v, 2)]-g(Fg(u, v, 2))+([F5 : F3] —1)-([F5 : Fg(u,v,2)] — 1) .

We have [Fs: F3] = [F5: Fy] - [Fy: F3] = 30, and g3 < 100% — 30 — 1. Since
{z, 2% ... 27} is a basis of F (z,v, 2) over F,(u,v,2) and {y,y? ...,y°} is a ba-
sis of Fs over Fy(z,v,2), we have that {z'y’ |i,j=1,...,0} is a basis of Fj
over F,(u,v,2) and [F5:F,(u,v,2)] = o* By direct computations with Equa-
tions (4.23), the places Pi, Qi, R (i = 1,2,3) of K(u,v) are not ramified in
K(u, v, w)|K(u,v). Hence, ’Uﬁgj(ﬂ)) = v@é(w) = UE;,j(U]) = —1 for j = 1,2,3,
where ﬁg , ~§, é;y are the places of K(u,v,w) lying over P, Qi, R}, respec-
tively. The valuation of w at any other place of K(u,v,w) is non-negative. Then
K(u, v, z)|K(u,v,w) is a generalized Artin-Schreier extension of degree o, and

9(K(u,v,2)) <530 + UT_l(—Q +15(1+1)) =670 — 14.
Therefore g(F,(u,v,z)) < 670 — 14, and
g5 < 30(100% — 30 — 1)+ 0(670 — 14) + (30 — 1)(0* — 1) = 1000° — 2402 — 60 + 1.
[

The places Ri’j and RZ”E are zeros of w, hence they are not ramified in the
Artin-Schreier extension Fj|F), whereas Pj’j is totally ramified. Denote by Pg’j ,
Ré”}g, e ,Rg’;, and Ré’}z’l, e ,Ré’}z’a the places of Fy lying over Pj’j , Rﬁ’j , and Ri’}z,
respectively.

Proposition 4.2.17. Let a,b € F, with b # 0 and b # a®. The equation

2+ t(u+v+w+5e) + u? + v? + w? + uwv + vw + vw

4.25
+e[3(u+v+w)+ 2(uv + uw + vw)] + 10e* = 0 (4.25)

defines an extension F,(u,v,w,t) = F,(u,v,w)(t) with genus at most 150 whose
field of constants is IF,.
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Proof. Let K(u, v, w) be the function field defined by the equations C(u, v, w) = 0
) , where

and Cy(u,v,w) =

)
)

As shown in the proof of Proposition 4.2.15, K(@, v, w) has genus at most 53 and
constant field F,. Let

Ch(
Co(

b+ wo(u? + w0 + wv? + %) — a(u? + w0 + w0 + uww® + vt),
W+ W (u+v) + w(u? + uv 4 0?) + (W + v + v’ + ).

g gl
I

u,v,
u,v,

22 _ 3u® + 30° + 3w° + 2uv + 2uw + 20w
1 :

(4.26)

The zeros of T° are centered at common roots of the polynomials Cy(U,V, W),
Co(U, V., W), and C5(T,V, W) = 30" + 3V +3W" + 20V + 20W + 2VW. The
resultant of Cy and C5 with respect to W is

Co(T, V) = 160" + 24UV + 350 V> + 500 V" + 350 V' + 24UV + 16V",

which is homogeneous in U and V; hence, C5 = C,4 /VG is an univariate polynomial
of degree 6 in the indeterminate U = U/V. The discriminant of C5 with respect
to U is —2'9510 =£ 0, then C4(U,V) splits into six distinct linear components
Ly, ..., Lg passing through O = (0,0). For each i = 1,...,6, C; and L; have
at least one common zero Z; with odd multiplicity, and Z; # O. Let D be the
discriminant of C5 with respect to W. The resultant of D and Cy with respect
to V is 22547 ; hence, Z; is a simple zero of Cy. Therefore, Equation (4.26)
defines a Kummer extension K(u,v,w,t) = K(u,7,w)(), and there are at most
6-5-3 =090 zeros of £ with odd multiplicity. The genus of K(u,v,w,t) satisfies

_ 1
9(K(u,2,w,1)) < 1+2(53 — 1) + 5 - 90 = 150.

By Lemma 1.1.36, F, is the constant field of F, (@, 7,w, ). By the substitutions

S
+

_ 1
Uu=u+te, V=v+te, W= e, t:t+e+§((u+e)+(v+e)+(w+e)),
we have F,(u,v,w,t) = F,(u,v,w,t); also, u,v,w,t satisfy Equations (4.23) and
(4.25). The thesis follows. O

The function field Fg is the compositum of F,(u,v,w,t) and Fs. Since 6 and

o3 are coprime, we have [Fg : Fi] = 603. Also, F, is the constant field of Fj.
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Proposition 4.2.18. Suppose that \/2e —1 ¢ F,, and let a,b € F, with b # 0,
b # a° a # e, and a # —4e. The equation r° —r = t defines an extension
Fr = Fy(r) with genus g7 < 3810* — 780% — 1202 + 1 whose constant field is F,.

Proof. Let R2* be the place of K(u, v, w) centered at (1: —1:0: 0). By Equation
(4.25), R¥' is not ramified in K(u,v,w, t)|K(u, v, w); denote by éé; the place of
K(u, v, w,t) lying over R>" and centered at (1: —1:0: 7 :0), where 72 = 2¢ — 1.
Similarly, Rgéj is not ramified in K(z,y, z,t)|K(z, y, z); denote by RZGIQJ1 the place
of K(x,y, z,t) lying over Rfr)le and centered at the ideal point (X : Y : Z : 7 :0)
with 7' = 7. Note that the assumption ¢ > ¢ allows to choose e such that e ¢ M
and n ¢ F,, where M is as in (4.19).

Consider the place }N%é; Then vééé(u) = Uéév;(t) = —1, and t = nu + P for
some ¢ € K(u, v, w,t) with Uf%éjé(q)) > 0. Let k € K with k% =5 and k # 7, and
choose p = kx; then

t—(p"—p)=nx"—2)+P—k2°+kx = (n—k")z’ +(k—n)z+P = (k—n)x+ .
The place RZGIQJ1 lies over ﬁé% and R;lj , and

i1 | pll i1,
Vgins (P) = e(Rg 37 | R3,2)‘U§;’:§(Cb) >0, URQIQ’,J'I(QC) = e(Rg 5

6,2,1

"
R53")vgins () = —1.

Therefore, Ugita (t—(p” —p)) = —1. Arguing as in the proof of Proposition 4.2.16,
it is easily proved that vt # (P — ( for all ¢ € K(z,y,t) and v € F,. Then we can
apply Lemma 1.3 in [46] to conclude that 77 — T" —t is irreducible over K(z,y, t),
and K(z,y, z,7)|K(x,y, z,t) is an Artin-Schreier extension of degree . Also, by
Lemma 1.1.36, F, is the constant field of F,(z,y, z). Finally, we give a bound on
g7. By Castelnuovo’s Inequality,

gr < [Fr i F5) g5+ [Fr o Fo(u,v,w, )] - g(Fy(u, v, w, 7))
+([Fr: F5) = 1) - ([F7 : Fy(u,v,w,7)] — 1) .

We have [F;: F5] = [Fy: Fg| - [Fs: F5] = 20 and g5 < 1000% — 240% — 60 + 1.

Since {z,2?% ...,27} is a basis of F,(x,v,w,r) over F,(u,v,w,r), {y,y? ...,y }
is a basis of F,(x,y,w,r) over F,(z,v,w,r), and {z,22%,...,27} is a basis of F;
over Fy(z,y,w,r), we have that {z'y’2‘|i,j,=1,...,0} a basis of Fy over

]FQ(ua U,U},T); hence, [F'? : Fq(u7v7 w, 7")] =0’

Consider a place Pe {Pg, ~%, ]?ZZQJ |i,7 =1,2,3} of K(u,v,w), and a place P
of K(u,v,w,t) lying over P. Then vp(t) € {—1, —2}; hence, vp(t) is negative and

coprime to o. The valuation of ¢ at any other place of K(u, v, w,t) is non-negative.
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Then K(u,v,w, r)|K(u,v,w,t) is a generalized Artin-Schreier extension of degree
o with at most 2 - 15 ramified places, and

—1
g(K(u,v,w,7)) < 1500 + UT(—z +30(1+1)) = 1790 — 29.
Therefore g(Fy(u,v,2)) < 1790 — 29, and
g7 < 20(1000° —2402 —60+1)+0>(1795—29)+ (20 —1)(6® —1) = 3810 — 7803 — 1202 +1.
O

Theorem 4.2.19. Let K. be as in (4.20), with e such that \/2e — 1 ¢ F,. If
q > 5806440%, then K, is a 4-arc covering all points of AG(2,q)\ Q except possibly
those lying on the line Y =0.

Proof. Let P = (a,b) € AG(2,q) \ Q and assume that a # t, a # —4e, and b # 0.
We start by counting the number Z; of poles of 27 —x, y” —vy, 2 — 2z, and r” —r in
K(z,y,z,7). Clearly, Z; is the number of places lying over P, Q1, R}, R?, or R}
in K(z,y, z,7)|K(u, v), hence over Pg’j, é’j, Rf,;’fz, or R;ék in K(z,y, z,7)|K(z,y, 2)
(t,k=1,...,0,0=1,3,j=1,2,3). Since [K(z,y, z,7r) : K(z,y, 2)] = 20, we have
by the Fundamental Equality 1.1.1 that Z; < 20(30 +30 +60 +30?) = 603 + 2402

Now we count the number Z of zeros of (z7 — z) — (y* — y) in K(z,vy, 2, 7).

g

Clearly a place is a zero of (7 —x) — (y° —y) = (v —y)? — (x — y) if and only if

it is a zero of x — y — A for some A € F,, then

Zy < Zdeg(m—y—k)ozZdeg(a:—y—)\)oo.

AeF, AeF,
The poles of x — y — X are the places lying over Pg’j , gJ , Rg’fg, and Rgg’“ Then
deg(e —y — Moo = (120 + 30%) - [K(z,y, 2,7) : K(,1, 2)] = 60 + 240

for all A € F,; hence, Zy < 60* + 2403. Also, Z5 equals the number of zeros of

(27 —x) = (27— 2), (27 =) = (r" =7), (v —y) = (27 —2), (W7 —y) — (" —7),
and (27 —2) — (r7 —r) in K(z,y, z,7).
Therefore, if the number N, of [F -rational places of F7 is greater than

60° + 240% + 6(60* + 240°) = 360" + 1500° + 2407,

then there exists an F,-rational place P of Fr such that (z(P),y(P), z(P),r(P)) is
a well-defined affine point of H with x(P)? — x(P), y(P)? — y(P), 2(P)? — z(P),
r(P)? — r(P) pairwise distinct. By Hasse-Weil bound we have

N, > q+1—-2g7/q > q+1—-2(3816" — 780% — 120 + 1),/q.
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From ¢ > 5806440% it follows that
g+ 1—2(3810" — 780° — 120” + 1),/q > 360" + 1500° + 240% + 1,

and hence, by Corollary 4.2.10, P is collinear with four distinct points in &C,.
Assume now that P = (e,b) or P = (—4e,b) with b # 0. Let ¢/ € M + e with
e’ # e, and consider the curve H’, obtained by replacing e with €’ in Equation
(4.21). Arguing as above K. covers the point P. Clearly K., = K., and the
assertion follows. m

4.2.4 Constructions of 5-independent subsets

We want to construct complete (k, 4)-arcs from union of cosets IC;; to this end,
we will use the notion of a 5-independent subset of an elementary abelian p-group,
which is analogous to the notion of 4-independent subsets used in Section 4.1.

Definition 4.2.20. Let G be a finite abelian group and let £ be a subset of G. If

Y1ty t+ys+ystys #0  forall  yi,ye,y3, 04,5 €E,

then & is said to be a 5-independent subset of G. An element g € G is covered by
E if either g € € or

there exist y1,v2,ys3,ys € € such that y; +ys +y3 +ys+ g =0.

In the remaining part of the section we construct 5-independent subsets of the
abelian group ZZ', for A’ an odd integer and p > 7. We distinguish the cases
h =1 and I/ > 3. For a subset S of a group G, sS denotes the s-fold sumset
{yit+.. - +ys | v1,...,ys € S} and [a, b] denotes the set of elements in Z, represented
by integers x with a < x <b.

Proposition 4.2.21. Let p > 25+ be an integer, with p =i mod 5, i = 1,2, 3, 4.
Then

5:{_L13}u{apgl]

is a S-independent subset of Z, covering

%A{E%l+j‘1§j§i—1}.
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Proof. The sum of five elements of £* = {1,3} U [5, ] is contained in {5,7} U
[9, p — 7] and therefore is different from 0. An easy check shows that if one or more

of the five elements is —1, then it is not possible to obtain 0. Then

ANE

AU (=34 &)U (242" U (-1 + 3 E*)udhes

4} u{-2,0} U [2, 28] U {0,2} U [4, 22210

U{2,4} U [6, 222221 U {4,6} U [8, 224

= {—4,-2,0} U [2, %]

{_
{_

for p > 25+, and 4"T = {—4,-2,0,2}U [4, 47’;“} for p = 25+1i. Hence, the set of

covered elements not in & is —4"E = {0,2,4} U [pJg4i, p— 2}, and the non-covered

elementsare{p%i—i-j‘1§j§i—1}. O

We now consider the caseG:ZZ/ for B’ > 3. We write G as G = Ax B x C,
JAESY
with A=7Z,, B=C=7Z,> . Let

E=EUEUE,, (4.27)

where & = {(a,1,1) |a € A\ {—4}}, & = {(1,b,1) |be B\ {—4}}, and & =
{(1,1,¢) | c € C'\ {—4}}. Here, 1 and —4 are viewed as elements of the additive
group of the finite field F ,,_,, which is isomorphic to A, B, and C.

p 2

Proposition 4.2.22. Let k' > 3, p > 5, and £ be as in (4.27). Then & is a
5-independent subset of ZZ' of size Qp% + p — 5 not covering 3 elements of ZZ'.

Proof. Consider five elements ey, eq, e3,¢e4,65 € E. If €1, €9, €3, €4, €5 belong either
to the same &; or to exactly two distinct &;’s, then they all share 1 in one of the
coordinates, and therefore e; + e3 + e3 + e4 + €5 # (0,0, 0) holds.

Assume then that eq, eq, e3, €4, e5 belong to all the three &’s. This means that
there exists a &; containing exactly one element e;. Since a,b, ¢ are different from
—4, their sum cannot be equal to (0,0,0). This proves that £ is a 5-independent
subset of ZZ/. Now, let e = (z,y,2) € ZZ/ \ & with y,z # 1. Then there exist
a, € A both different from —4 such that o + 3 + 2 + x = 0. Therefore

(x,y,2) + (o, 1, 1)+ (8,1, 1)+ (1,—y — 3,1) + (1,1, —2 — 3) = (0,0, 0),

and hence e is covered by £. The same holds for e = (z,y, z) € ZZ/ \E withz,y # 1
or z,z # 1. The only noncovered elements are (—4,1,1),(1,—4,1),(1,1,—-4). O
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4.2.5 Construction of (k,4)-arcs from union of cosets of M

We fix three (not necessarily distinct) subsets KC.,, K.,, and K.,, defined as in
(4.20), and a point P = (¢,¢°) in Q\ (K, U K., UK,,). Clearly P belongs to some
subset K, for some ep € F,.

Let Ay = (27 —z+ey, (27—x+€1)%) € K¢, Ay = (y7—y+ez, (Y7 —y+e2)?) € Ko,
and Az = (29 — z +e3, (27 — 2+ ¢e3)°) € K,,. By Proposition 4.2.6, the four points
P, Ay, Ay, and Az are collinear if and only if

t3+t2(m"—x+61—i—y"—y—i—@)—i—t((m"—m+el)2—|—(x"—x—i—el)(y"—y+62)
+(y7 —y+e)?) +(a” —x+er+y” —y+e) (27 —xz+e1)? + (¥ —y+e2)?) =0,

(27 —z+e3)’+ (27 —2+e3) (27 —x+er+y" —y+es+t)+ (27 —x+er)?
Hy” —y+e2)” +7+(27 =z +er)(y” —y+e2)+ (27 —a +e)t+(y” —y+e2)t = 0.

(4.28)
Consider the following sequence of function fields:
Ls=1Lyz): 20 —z=w
o
(w+es)?+(wtes)(z® —z+e +y° —y+ex+t)
Ly=L3(w): +(27 —z+e1)+ (y7 —y+ez)? + ¢
9 +@?—x+e)y —y+e)+ (@ —x+e)t+ (Y —y+e)t =0

Ly=Ly(y): y” —y=v
o
Ly=1Li(x): 2° —x=u

o

B+t (uter+v+e)+t((ute)?+ (uter)(v+er)
+w+te)?)+(uter+v+er) ((ute)?+(v+e)?)=0

We now show that each extension L;|L;_; is well-defined and that the constant
field of each L; is ;. We also estimate the genus of L;. Finally, by using the
Hasse-Weil bound, we show that if ¢ is large enough, then L5 has a large number
of F -rational places, so that Equations (4.28) have a suitable solution.

Ly =Fy(u,v) :

Proposition 4.2.23. The equation fi(u,v) =0, where

filu,0) =B+t (uter +v+e) +t((ute)?+ (u+e)(v+er)+ (v+e)?)

+(u+e+v+ey)((ute)?+ (v+e)?),
(4.29)

defines a function field Ly = F,(u,v) with genus 1 whose field of constants is F,,.
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Proof. Let I'y be the plane curve with equation fi(U, V') = 0, whose function field
over [F, is L;. The curve I'; has three distinct ideal points; hence, they are simple
points. Since

LU, V) =3U+e1)? +2(U +e1)(V +e2) + (V +e2)? +2t(U + e1) + t(V + e2) + 12,
WfUV)=U+e)?+2U+e)(V+es)+3(V+en)?+t(U+e) +2t(V +e) + 12,

we have by direct computation that I'; has no singular affine points; here we use
that t # 0, p > 5, and ¢ = 3 (mod 4). Therefore, I'; is non-singular. Then I'; is
absolutely irreducible with genus 1 and constant field F, by Lemma 1.1.36. O

Let & be a primitive 4-th root of unity. For i = 1,2, 3, denote by P} the point
of K(u,v) centered at the ideal point (1:¢": 0) of I'y.

Proposition 4.2.24. The equation x° — x = u defines an extension Ly = Lq(z)
with genus ga = 30 — 2 whose field of constants is F,.

Proof. The rational function u has valuation —1 at P{ (: = 1,2,3), and non-
negative valuation at the places centered at the affine points of I';. Then K(z, v)|K(u, v)
is a generalized Artin-Schreier extension with [K(z,v) : K(u,v)] = 0. Moreover,
P}, P2, and P} are the only totally ramified places, and

—1
gQ:a-1+UT(—2+3(1+1)):30—2.
By Lemma 1.1.36, F,, is the constant field of Ly = F,(z,v). O
For ¢ = 1,2,3, denote by Pi the unique place of K(z,v) lying over P;.

Proposition 4.2.25. The equation y° —y = u defines an extension Ly = Lo(y)
with genus g3 = 30 — 2 whose field of constants is F,.

Proof. Fori € {1,2,3}, we have vp;i(v—&'u) > 0. Let k; € K be such that k7 = &',
and consider p; = k;x; then,
v—(p7 —p))=v—E2° +hix=v— &7 + &z — v+ kix=v—Eut (b — ).

For i = 2, we have £? = —1 = ky; hence, vpz (v — (pf — p;)) > 0. For i € {1,3}, we
have k; # £ since 4 { (0—1); hence, vp (ki—§')z) = —1 and vpi (v—(p7 —pi)) = —1.
For the places centered at affine points, it is sufficient to choose p = 0. Then
K(z,y)|K(z,v) is a generalized Artin-Schreier extension with [K(z,y) : K(z,v)] =
0. Moreover, P} and Pj are the only totally ramified places, and

—1
93:0(30—2)+UT(—2+2(1+1)):302—0—1.

Finally, by Lemma 1.1.36, IF, is the constant field of L3 = F,(x,y). O
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For i € {1,3}, denote by P the unique place of K(z,y) lying over Pj. Also,
denote by P32 S 7P32 “ the places lying over PZ.

Proposition 4.2.26. The equation

(wHe3)? +(w+es)(u+e +v+es+t)+ (u+e)?

+wte)? +t2+(uter)(vt+e)+ (ute)t+v+e)t=0 (4.30)

defines an extension Fy(u,v,w) of F,(u,v) with genus at most 4 whose field of
constants is .

Proof. After the substitution § = w + e3 + (u + e; + v + e2 +t)/2, we have

6? = O(u,v) =
—2[3(u+e)? +3(v+e2)? 4 3t + 2(u+ e1) (v + €2) + 2(u + et + 2(v + e2)t].

The poles of w and 6 in K(u,v) are P}, P?, and P}; 6? has valuation 2 at each
of them. Hence, the number of zeros of 6? in K(u,v) is at most 6. Let Dy(U,V)
be the discriminant of ©(U, V') with respect to U, and let R € K be the resultant
of D1(U,V) and f1(U,V) with respect to V, where f;(u,v) is defined in (4.29).
By direct computation, R # 0. Since f1(U, V) has odd degree, this implies that
has a zero in K(u,v) with odd multiplicity. Then K(u,v,0)|K(u,v) is a Kummer
extension with [K(u,v,0) : K(u,v)] = 2. Moreover, the unique totally ramified
places are the zeros of #% in K(u,v) with odd multiplicity, and

9(F,(u,v,w)) = g(Fy(u,v,0)) <1+2(1—-1)+ % -6 =4.

Finally, by Lemma 1.1.36, F, is the constant field of F,(u, v, w). O

The function field L, is the compositum of Fy(u, v, w) and L. The extension
L4\ Ly has degree [F,(u,v,w) : Ly]| - [Ls : L] = 202, since 2 and ¢? are coprime.
Also, F, is the field of constants of Lj.

For i =1,2,3 and j = 1,2, denote by @f the place of K(u,v,w) lying over P;,
and by Qf the place of Ly lying over éi The places @%, @% are centered at the
ideal points (1: —=1:£:0), (1: —=1:—=£:0).

Proposition 4.2.27. The equation z° — z = w defines an extension Ls = L4(2)
with genus gs < 210® — 902 — 60 + 1 whose field of constants is F,.

Proof. We have vz (u) = vgy (w) = =1, and w = &u + P for some ¢ € K(u,v,w)
with v@%(CD) > 0. Since 0 = 3 (mod 4), we have £ ¢ F,; hence, there exists k € K
with k7 = £ and k # £ Let p = kx; then w — (p” — p) = (k — &)z + ®. Since
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voL(P) = e(Q3]Q5) - v@%(@) > 0 and vg(z) = e(Qy|Ps) - vp,(v) = —1, we have
voi(w — (p7 — p)) = —1. Arguing as in the proof of Proposition 4.2.16, it is easily
proved that vt # (P — ¢ for all ¢ € K(z,y,t) and v € F,. Then we can apply
Lemma 1.3 in [46] to conclude that 77 — T' — w is irreducible over K(z,y,t), and
K(z,y, 2)|K(z,y,w) is an Artin-Schreier extension of degree o. Also, by Lemma
1.1.36, F, is the constant field of F,(z,y, z). Finally, we give a bound on g;. By
Castelnuovo’s Inequality,

95 < [Ls : Ls]-g3+[Ls : Fy(u, v, 2)]-9(Fg(u, v, 2)) +([Ls = L] = 1)-([Ls : Fy(u, v, 2)] = 1)

We have [Ls: Ls] = [Ls: Ly| - [Ly: L3] = 30 and g3 = 302 — o — 1. Since
{z,2?,...,2°} is a basis of F (z,v, z) over F,(u,v,z) and {y,y?, ...,y } is a basis
of Ly over F,(z,v,z), we have that {z'y’ | 4,7 =1,...,0} is a basis of Ls over
F,(u,v, 2); hence, [Ls : F,(u,v, 2)] = o2

For i = 1,2, 3, the place P; does not ramify in K(u,v,w)|K(u,v); hence, by
(4.30), w has valuation —1 at the places @f over P;, whereas w has non-negative
valuation at any other place of K(u,v,w). Then K(u, v, 2)|K(u,v,w) is a general-
ized Artin-Schreier extension with [K(u, v, 2) : K(u,v,w)] = ¢ and

-1
9(K(u,v,2))=0-4+ d

(=2 +6(1+1)) =90 — 5.
Therefore,

g5 < 30(30* — 0 — 1)+ 0*(90 — 5) + (30 — 1)(0* — 1) = 210® — 90* — 60 + 1.
O

Proposition 4.2.28. Assume that ¢ > 17640%. Then P is collinear with three
distinct points Ay € Ke,, Az € K.,, and Az € K,.

Proof. We are going to show that there exist xo, ¥o, 20 € F, such that (4.28) holds
for x = xy, y = Yo, 2 = 20, and x§ — o, Y5 — Yo, 2§ — 2o are pairwise distinct. We
start by counting the number Z; of poles of 27 —x, y” —y, and 27 — z in K(z, y, 2).
This is the number of places of K(z,y, z) lying over P}, Py, P32’1, cee P32’0; hence,
Zy < [K(z,y,2) : K(z,y)] - (0 +2) = 20% + 40. Next we estimate the number Z,
of zeros of (27 —x) — (v —y) = (r — y)” — (x — y) in Ls, hence the number of
zeros of x — y — A for some )\ € F,. We have

Zy < Yoer, deg( —y — No = Xer, deg(@ — y — Moo = { P, PP, PPY|[Ls : L1] = 6o®.

By the same argument, also (z7 —x) — (27 — z) and (y° —y) — (27 — 2) have at
most 66° zeros in Ls. Therefore, if the number N, of F,-rational places of Ls is
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greater than 180 + 202 + 40, then there exists an F-rational place A of Lj such
that the point (2o, yo, 20) = (2(A), y(A), 2(A)) is well defined and z§ — o, Y5 — vo,
2§ — % are pairwise distinct. By Hasse-Weil bound,

N, >q+1-2g5/q>q+1—2(210° — 90% — 60 + 1),/q.
The hypothesis ¢ > 17640° implies N, > 180 + 202 + 40 + 1. O

Proposition 4.2.29. Assume that ¢ > 17640%. Then P is collinear with four
distinct points Ay € Koy, Ag € Ke,, As € Koy, and Ay € K,

Proof. By Proposition 4.2.28, P is collinear with three distinct points A; € K., ,
As € Ke,, and A3 € K.,. The line through A;, Ay, A3, and P can be a tangent line
to the curve Q. Note that there are at most five tangent lines through P to Q; in
fact, imposing that P lies on the tangent to Q at (X, X°) gives an equation in X
of degree 5. Therefore, we need at least six distinct triples {A;, Ay, A3} such that
Ay, Ay, As are collinear with P. Arguing as in the proof of Proposition 4.2.28 it
is sufficient to require that the number of F,-rational places of L; is greater than
5-1803+20%+40 = 900+ 202 +40. This is implied by the Hasse-Weil bound. [

Henceforth, £ denotes a 5-independent subset of F, /M, for M as in (4.19). Let
Ke= | K.. (4.31)
M+ec&

Proposition 4.2.30. The set K¢ is a (k,4)-arc.

Proof. By Proposition 4.2.7, the sum of the first coordinate of 5 collinear points
on @ is equal to 0. This is impossible if the points belong to K¢, since £ is a
5-independent subset of F, /M. O

Proposition 4.2.31. Assume that ¢ > 17640°. Let Cov(E) be the set of all the
elements of F,/M covered by € as 5-independent subset. Then the points in

J

M+ecCov(€)
are covered by Kg.

Proof. Let P € K., with M + ep € Cov(E). Then there exist M + e;, M +
es, M +e3, M + ey in € such that ep +e; + e +e3+e4 € M. Also, by Proposition
4.2.29, there exists four distinct points P, € K., P, € K.,, Ps € K¢, and P, € Q
which are collinear with P. Let e} be such that P, € K. By Proposition 4.2.7,
ep+er+ex+e3+ey € M. Then M + ey = M + ey, that is, K., = K,,. Hence,
Py, Py, P, P, € K¢ and the assertion is proved. O]
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Theorem 4.2.32. Let £ be a 5-independent subset of F,/M of size n, not covering
at most m elements of F,/M, and let Kg be as in (4.31). Assume q > 5806440°.
Then there ezists a complete (k,4)-arc K with Kg C K C Q of size at most

(n+m)g+8.
o

Proof. Fix a coset M + e in £. By Theorem 4.2.19, all the points of PG(2,¢q) \ Q
are covered by a IC, plus at most eight points covering the lines Y = 0 and 7" = 0.
By Proposition 4.2.31, there are at most m? affine points of Q not covered by K¢.
This shows that there exists a complete (k,4)-arc I containing K¢ of size at most

Kel+mL+8=m+m)l+s.
g g

O

We are finally in a position to prove Theorem 4.2.1. Identify the additive
groups ZZ' and F,/M. From Propositions 4.2.21 and 4.2.22 the following values of
n and m occur in Theorem 4.2.32:

e Foro=p,p>29 p=iec{l,23,4} (mod 5),

n:]% and m=1—1;

o for o > p3,
n:2p%—|—p—5 and m = 3.

4.3 Complete permutation polynomials from ex-
ceptional polynomials

Let ¢ be a prime power. A permutation polynomial (or PP) of IF, is a polyno-
mial f(z) € F,[x] which is a bijection of F, onto itself. A polynomial f(x) € F,[z]
is a complete permutation polynomial (or CPP), if both f(x) and f(x)+x are per-
mutation polynomials of F,. A polynomial f(z) € F,[z] is said to be an exceptional
polynomial over I, if f(x) is a permutation polynomial of Fim for infinitely many
m. Both permutation polynomials and complete permutation polynomials have
been extensively studied also because of their applications to cryptography and
combinatorics; see for instance [23, 71, 95, 93, 102, 120] and the references therein.
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In particular, CPPs over fields of characteristic 2 give rise to bent-negabent boolean
functions, which are a useful tool in cryptography; see [106].

Some families of CPPs are obtained in [23, 71, 93, 97, 114, 120]. Nevertheless,
CPPs seem to be very rare objects, even if we restrict to the monomial case. It is
easily seen that a monomial az? is a CPP of F, if and only if (d,q — 1) = 1 and
zd + 2 is a PP of F,. This motivates the investigation of permutation binomials
of type 2¢ + bx for d = (¢ — 1)/m + 1 with m a divisor of ¢ — 1.

1

In [12, 11, 13, 120, 121] PPs of type fy(z) = 2’ by over [F,» are thoroughly
investigated for n = 2, n = 3, and n = 4. For n = 6, sufficient conditions for f;,
to be a PP of Fs are provided in [120, 121] in the special cases of characteristic
p € {2,3,5}. The case p=n + 1 is dealt with in [84].

In this section we discuss monomial CPPs of F» of degree d = qq"__—l1 for general
n, in connection with exceptional polynomials. The starting point of our inves-
tigation is the observation that b~'z? € Fyu[z] is a CPP of F,. if and only if

b,be, ..., b7 " are the roots of

for some permutation polynomial g(x) of F, of degree n + 1 such that the first-
degree term is not zero. If for a root b of v,(x) the monomial b~'z? is a CPP of
Fyn, then g(z) will be called a good PP of Fy; in this case, all roots of v,(x) have
the same property. Clearly, a PP g(z) of F, is good if and only if the roots of
vy(z) in the algebraic closure K of F, form a unique orbit under the action of the
Frobenius map = — z9.

Our aim is to classify good permutation polynomials over IF,. Here we achieve
this goal for all n, n* < ¢, with the exception of the cases n +1 = p”, with r > 1,
and n+ 1 = p"(p" —1)/2, with p € {2,3}. For n+ 1 = p” we provide several
examples. Proposition 4.3.8 shows that, if ¢ = p* and n + 1 is a prime different
from p satisfying ged(n, k) = ged(n + 1,p? — 1) = 1, then there exists a CPP od
degree d = q;%ll + 1 over Fyn. This solves a conjecture by Wu, Li, Helleseth, and
Zhang, see [121, Conjecture 4.18 and Proposition 4.19].

Note that since every permutation polynomial with degree less than ¢'/* is
exceptional (see [94, Theorem 8.4.19]), condition n* < ¢ allows us to consider
only exceptional polynomials. A key tool is the classification of indecomposable
exceptional polynomials of degree different from p”, r > 1; see [94, Section 8.4].

If g(z) is a good PP over F, then it is easily seen that c¢- g(c'z) + e is a good
PP over F, for each ¢,c,e € F, with ¢/ # 0. In this paper two PPs g(x) and
h(x) over F, will be called CPP-equivalent if there exist ¢, ¢, e € F, with e’ # 0
such that h(z) = c¢- g(dx) + e. Note that for g(z) a PP over F, and k € F,, the
permutation polynomials g(x + k) and g(z) are equivalent in the usual sense but
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not CPP-equivalent; in fact, it’s possible that one of them is good but the other is
not. When ¢'(x) ranges over the CPP-equivalence class of g(z), the roots of vy ()
range over the roots of v,(x) and their multiples by non-zero elements in F,. We
will consider only one polynomial in a CPP-equivalence class. In particular, we
assume that g(z) is monic and that g(0) = 0. Since exceptional polynomials only
exist for degrees coprime with ¢ — 1, when n is odd we assume that p = 2.

Our first result is that if g is decomposable, that is ¢ is a composition of two
exceptional polynomials with degree grater than one, then ¢ is not good.

If g(z) € F,[z] is a monic indecomposable exceptional polynomial of degree
n + 1 with ¢g(0) = 0, then, up to CPP-equivalence, one of the following holds [94,
Section 8.4].

A) n+1is a prime different from p not dividing ¢ — 1, and

Al) g(z) = (x4 )" — el with e € F,, or
A2) g(z) = Dyii(z+e,a)— Dyyi(e,a), where a,e € Fyya # 0, n+11¢*—1,
and D,,.1(x,a) denotes a Dickson polynomial of degree n + 1.

p—1 p—1

B) n+l=pandg(z)=(z+e)((z+e)+* —a) —eler —a), withr|p—1,
a,e € Fy, and ara=N/(p=1) £ 1,

C)n+1=s(s—1)/2, where p € {2,3}, g =p™, r > 1, s =p" > 3, and
(r,2m) = 1.

D) n+1=p" withr > 1.

For the case n+ 1 = p”", r > 1, Guralnick and Zieve conjectured in [62] that
there are no examples of indecomposable exceptional polynomials other than those
described in [94, Propositions 8.4.15, 8.4.16, 8.4.17].

The section is organized as follows. We classify good exceptional polynomials
of type A) and B) in Sections 4.3.2 and 4.3.5; see Theorems 4.3.5 and 4.3.9. We
describe some good exceptional polynomials of type C) and D) in Sections 4.3.6
and 4.3.7; see Propositions 4.3.10, 4.3.11, 4.3.12 and 4.3.13. Finally, we determine
all the exceptional polynomials of degree 8 and 9 (see Propositions 4.3.14 and
4.3.18); in this way we provide a proof of the above mentioned Guralnick-Zieve
conjecture for the special cases n = 8,9. As a byproduct, we obtain all the CPPs
with n 4+ 1 =8 and n + 1 = 9; see Corollaries 4.3.17 and 4.3.22 in Section 4.3.8.

4.3.1 Preliminaries

Throughout Section 4.3, (s denotes a s-th primitive root of unity, s > 1, and
¢ denotes the Frobenius map z +— 2% For b € Fyn, let A;(b) € F, denote the
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evaluation of the i-th elementary symmetric polynomial in b, b9, . .. ,bqnfl, that is,

Ai(b) = Z Pt a2+ Al

0<1<j2<...<ji<n—1

Let Ag(b) = 1. Recall that b,07,. .. b7 are the roots of the polynomial
(=)™ A, (b)) + (=) A, (DT + ...+ (=) A, (BT + ...+ T

By [119, Lemma 5] we have the following result.

Proposition 4.3.1. Assume that n* < q. The monomial blz' Tt s o OPP of
Fyn if and only if ged(n + 1,¢ — 1) = 1 and Y. A,—i(b)x™ is an exceptional
polynomial over IF,.

Let g(z) = Z?jol Ant1-ix’ be an exceptional polynomial over F,, and assume
that A\, # 0 and Ay = 1. Consider the polynomial

) = 8000 T D an -

Then vy(z) := hy(—x) = Yo o(=1)'\,at. If nis even, hy(—x) can be written as
Yo o(=1)" "N,z If n is odd, then p = 2 and the same relation holds.

This means that, for any root b of vy(x), the monomial b1z ! is a CPP
over Fy» if and only if the roots of v,(x), or equivalently h,(—z), form a unique
orbit under the ¢,. This motivates the following definition.

Definition 4.3.2. An exceptional polynomz'al g(z) € Fylz] with g(0) = 0 and
g'(0) # 0 is said to be good if the roots of == G ) form a unique orbit under p,.

Therefore, the following has been proved.

Proposition 4.3.3. Assume that n* < q. Then the elements b € Fn\F, such that

b1z Tt s o CPP over Fyn are the roots ofpolynommls forg ranging over
good exceptional polynomials of degree n+ 1 over F,, with g(()) =0 and ¢'(0) # 0.

Note that hy(x) can be viewed as the bivariate polynomial ng(y) evalu-

ated at y = 0. So, assume that we know the factorization of g—g(y) into abso-
g(@)—g(y) _

lutely irreducible factors defined over the algebraic closure of I, say s

HZ:1 lk(z,y). Then
= H l(z,0).
k=1
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Obviously, this can be extremely useful to establish whether an exceptional poly-
nomial g is good or not. Recall that an exceptional polynomial g() is decomposable
if there exist exceptional polynomials g1, go with degree greater than 1 such that

g(z) = g1(g2(x)).

Proposition 4.3.4. If g(x) is a good exceptional polynomial, then g(x) is not
decomposable.

Proof. Suppose that g(x) is decomposable and write g(z) = g1(g2(x)), with poly-
nomials g1, go such that deg(g;),deg(g2) > 1. Then
91(g2(=7)) — 91(92(0)) _ ga(—2) — 92(0))\<

vg(w) = . = .

g2(—x)),

with denon) -1
AMga(—2)) = H (92(=x) = Bi)

for some 3; € K. Since %;92(0)
the only possibility for the roots of v,(z) to form a unique orbit under ¢, is that

Ug(x) is a power of %;92(0)

is a factor of positive degree defined over FF,

. Note that 0 cannot be a root of v,(z), since for

b = 0 the monomial bz = ™' is not a CPP. On the other hand, any root of a factor

go(—x) — B; must be a root of go(—z) — ¢2(0), that is 8; = g2(0). Therefore,

vy(z) = (92(_x) — 92(0))deg(gl) (—gp)deston—1

—X

which is impossible since deg(g;) > 1. ]

4.3.2 CPPs from exceptional polynomials of type A)

Throughout this section we assume that n+ 1 > 3 is a prime different from p.
We denote by Tn/2 the absolute trace map F /2 — Fo, x — x + 224t

2(@*)/2 We are going to prove the following result.

Theorem 4.3.5. Assume that n* < q. Fori e {1,...,n/2} let
a; = (o 4 Gty and B = Gy — Gl

Then the monomial b~'z'™1 ' is a CPP of Fgn precisely in the following cases:

o Ifp#2:
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i) the order of ¢ modulo n+ 1 is n and, up to multiplication by a non-zero
element in ¥y, b is as follows:

(a) b=C(. =1, for some i€ {1,...,n};
(b) forn/2 even, b = e(a;—2)++/[%(e? — 4a) for somei € {1,...n/2},

a €, ande € Fy;

(¢c) forn/2 odd, b = e(a; —2)++/B%(e? — 4a) for somei € {1,...n/2},

a€F,, ande € F, s.t. e? — 4a is a square in F,.

i) the order of ¢ modulo n + 1 is n/2, n is not divisible by 4, and, up to
multiplication by a non-zero element in F,, b = e(c; —2) £ +/B2(e? — 4a)
for some i € {1,...n/2}, a € F, and e € Fy s.t. €* —4a is 0 or a non-
square in .

o [fp=2:

i) the order of ¢ modulo n+ 1 is n and, up to multiplication by a non-zero
element in Fy, b= (., for somei € {1,...,n};

ii) the order of ¢ modulo n+ 1 isn orn/2, and
b=z =82+ (e+)0 4 A (e+ 44N or b= z+1,

where € € Fgn satisfies Tynj2(e) = 1 and, for somei € {1,...,n}, §; =
a%_ + % and T2 (0;) = 1.

By Propositions 4.3.1 and 4.3.4, the determination of CPPs of type plg Tt
over Fy» relies on the classification of indecomposable exceptional polynomials,
which is given in [94, Section 8.4]. In particular, by [94, Theorem 8.4.11], Theorem
4.3.5 is implied by the results of Sections 4.3.3 and 4.3.4.

4.3.3 CPPs from exceptional polynomials of type A1)

Throughout this subsection we also assume that n 4+ 1 does not divide ¢ — 1.

Note that for each e # 0 the polynomial g(z) = (z + €)"*! — €"*! has a non-zero
(—z4e)tl_entl

term of degree one. Also, the n distinct roots of h,(—x) = are

—e(Cl— 1), i=1,...,n.

Proposition 4.3.6. Assume that e € F}. The polynomial (x + )" — "' is a
good exceptional polynomial over ¥, if and only if ¢ has order n modulo n + 1.
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Proof. The roots of h,(—x) form a unique orbit under ¢, if and only if ¢, does
not belong to any proper subfield of Fg.. This is equivalent to the order of ¢
modulo n + 1 being equal to n. O

Corollary 4.3.7. Assume that q has order n modulo n+1. Then forb = e((,,,—1)

the monomial bilm%ﬂ is a CPP of Fyn, for each e € F; and i€ {1,...,n}.
4.3.4 CPPs from exceptional polynomials of type A2)

Throughout this subsection we further assume that n+1 does not divide ¢* —1.
We begin by considering Dickson polynomials D,,;1(z,a) € F,[z]. Recall that

Zon1l ntl—k
Dypyi(z,a) = Z m( B )(_a)kxnﬂ—% '
k=0

Note that D, ;1(x,a) has a non-zero term of degree 1, for each a # 0. In [14,
Th. 7 and 8] Bhargava and Zieve provide the factorization of D”+1(x+e’a;:5"“(y+e’a) ,
e €I,

Proposition 4.3.8. The polynomial g(z) = Dyi1(x + e,a) — Dyiq(e,a), with
a,e € Fy, a # 0 and D) (e,a) # 0, is a good exceptional polynomial over F, if
and only if one of the following cases occurs:

i) p#2,n/2 is even and q has order n modulo n + 1;

i) p # 2, n/2 is odd and either e* —4a is a non-square in ¥, and q has order n/2
modulo n+ 1, or € — 4a is a square in ¥, and q has order n modulo n + 1;

i) p = 2, the order of ¢ modulo n +1 is n or n/2, and T 2(61) = 1, where
i=++%.

33

In Cases i) and ii), the roots of hy(—x) are b= —1- (e(ai —2) 4 /B2 (e? — 4@)).

In Case iii), let € € Fyn with T,n/2(c) = 1. Then the roots of hy(—x) are
b=c624 (c+ )0+ + 4+ 4+ and b+ 1.

Proof. By [14, Theorem 7] we have

n/2

Dysi(ate,a)=Dnsi(yte a) = (z=y) [ [ ((z +¢)* — il + e)(y + ) + (y +¢)* + Bfa),
i=1



160  CHAPTER 4. NEW APPLICATIONS OF THE HASSE-WEIL BOUND

where a; = ¢} + (1 and 8; = ¢,y — (1. Then

n/2
— H ((—x + 6)2 —aje(—z+e)+ e+ ﬁ?a) ,
i=1

Dn+1(—x +e, (I) — Dn+1(e,a)
—X

hy(—z) =

that is, since o? = 52 + 4,

n/2
hy(—z) = H (2® + ze(oy — 2) + (i — 2)((ai + 2)a — €%)) .

=1

Note that the values e(q; — 2) are pairwise distinct for i = 1,...,n; hence, the
sets of roots of two distinct quadratic factors of hy(—x) are disjoint.
Assume p # 2. Since o = 7 + 4, the roots of hy(—z) are

_%. (e(ai—z)i\/M)

Since (82(€® — 4a))” = (Bigi (mod n+1))2 (e* — 4a), if the roots of hy(—z) form a
unique orbit under ¢, then the order ord,;1(q) of ¢ in Z; ,, must be either n or
n/2. Thus, we check when f37(e* —4a) is a non-square in IF /2, so that the (n/2)-th
power of ¢, permutes the roots of hy(—z). Note that if ord,41(q) = n/2, then
B

n/ : . L
then (] - —f; and (32 is a non-square in F ns2. Also, n/2 even implies that

= f3; and therefore 3? is a square in I n/2; if on the contrary ord,1(q) = n,

(e* —4a) is always a square in F .2, whereas if n/2 is odd then (e* —4a) is a
square in F .2 if and only if it is a square in F,.

If €2 —4a = 0, then hy(—x) is a square and its roots form a unique orbit under
Frobenius. This completes the proof for p # 2.

For p = 2, similar computations using the solutions of quadratic equations in
characteristic 2 provide the claim. O

4.3.5 CPPs from exceptional polynomials of type B)

Throughout this section we assume that n + 1 = p. For p = 2, it is straight-
forward that there exist no exceptional polynomials of type B); hence, we assume
that p # 2. We denote by Ny, /r, the norm map F, — F,, v — giPrpta/p,

Theorem 4.3.9. Assume that n* < q. The monomial bz’ ! s o OPP of Fyn
iof and only if, for some divisor r of n, one of the following cases occurs:

i) bis an element of {—Cla | i €{0,...,r =1}, a" = 571, ged(r, j) =1}, or



4.3. CPPS FROM EXCEPTIONAL POLYNOMIALS 161

ii) b is an element of

g—1
T

{(Uo — )" —e| AT, e, ub™! e, uy” #1,
vy =e, ord (NFq/Fp (efjﬂ—l)/>> =p— 1}.

Proof. Up to CCP-equivalence, the only indecomposable exceptional polynomials
of degree p over F, are the polynomials g(z) = (z + ) ((x 4 €)" — a)*, where 7 is
a divisor of n and k = n/r, with a,e € F,, o’ # 1; see [94, Theorem 8.4.14].
Hence, hy(—z) = L ((—Jz +e)((—z+e) —a) —e(er —a) > We distinguish a

number of cases.
e a = 0. In this case the polynomial g(z) = (x + €)? is not good.

e ¢ =0 and a # 0. We have that h,(—z) = ((—z)" — a)* has r distinct roots
with multiplicity k, namely —(’«, where o” = a and i = 0,...,k — 1. They
form a single orbit under ¢, if and only if 2" —a is irreducible over F,. By [82,
Theorem 3.75], this is equivalent to require that a = 371 with ged(r, j) = 1.

eec # 0and a # 0. Fix ug, vy such that ' = a and v = e. It is
straightforward to check that the set of roots of hy,(—z) contains R =
{(vo = Aug)" —e | A€ F;}. Note that e¥ # a, since a'v #£1 = (ek)%.
We show that R actually consists of the p — 1 distinct roots of hy(—z).
Assume on the contrary that (vg — Aug)” — e = (vg — Nug)" — e for some
A # XN. Then vy — Aug = p(vg — Nug) for some p with p” = 1, and hence
vo(1 — p) = ug(A — pX’). Since r divides p — 1, both p and g — 1 lies in
F,. As A # X we have p # 1 and hence 1 = (vy/up)P~! = e$/a =ck/a, a
contradiction.

In the following we prove that the elements of R are in the same orbit under
¢q if and only if

a
ord (N]Fq/]pp <—e(p—1)/7“)> =p—1

Let i € {1,...,p—1} be the smallest positive integer such that ((vg— Aug)” —
e)? = (vy — \ug)” — e, so that the elements of R are in the same orbit under
@, if and only if i = p — 1. Since ul = uoa@~D/®=D and vl = voeld D/,
the condition (vy — Aug)™® = (vg — Aug)” holds if and only if

(er(qifl)/r _ Auoa(qifl)/(pfl))r = (vo — Aup)",
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which is equivalent to
al@=0/-1\" )
Vo — /\UQW = (UO — )\Uo) s

(@' —1)/(p-1)
To@-Dir &(vo — Au)

with £ = 1. Suppose £ # 1; then

ald*=1)/(p-1)
e(qi—l)/"” 5

1-¢

and hence (vg/ug)?~' = 1; this implies a = e®~ /" = ¢

that is,

Vo — /\UQ

Uo/U():)\ E]F;,

k impossible. This

means £ = 1, that is
qld'—1)/(p-1)

canr L (4.32)

Since
i1 i(g—1 i1 (g1

a = g =1) (mod ¢ —1) and a = g =1) (mod ¢ — 1),
p—1 p—1 r r
Equation (4.32) is equivalent to

i(g=1)/(p=1)

a _1

cila—D)/r

that is,

a %
(N]Fq/]Fp (6(]3—1)/7‘)) - ]_ .

Thus, ¢ = p — 1 if and only if ord (NFq/Fp (e@fl)/v-)) =p—1.

4.3.6 CPPs from exceptional polynomials of type C)

In this section we deal with one of the three classes of exceptional polynomials
of type C), namely the third class in [94, Theorem 8.4.12], with e = 1.

Proposition 4.3.10. Let p = 3, s = p" > 3, ged(r,2m) = 1. The exceptional
polynomial

T+ 6)2 — a)(sfl)/2 + a(sl)/Q) (s+1)/2

i) = (o oo ot = ayerns (LEEZ

where a 1s a non-square in [, is not good over .
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Proof. Following [123, Prop. 2|, consider 7(y) = (Ey + F)/(Fy + E), with

E,F,E,F € Fz and EE — FF = 1. The points (z,y) of the curve with equation
fo(z)—fo(y)
a—y
unique up to replacing (E, F') by (—E, —F') and one of the following cases occurs:

are exactly the points such that © = 7(y), where the choice of (E, F') is

o FFF = —1/2;
o (EFEF) " = 1 and FF #-1/2
o (EFEF)“ 2 =1,

For e € IF,, a zero of hy,(—z) = M
fo(w) fo(y)

corresponds to the point (—x +e, )

of the curve defined by =0, that is x = y — 7(y) for some T as described

above. Since E, F,E,F € IFq2, we have (T(y))q2 = 7(y) and 27" = z. Therefore,
the roots of hy, (—x) are not in a unique orbit under ¢,,. 0

4.3.7 CPPs from exceptional polynomials of type D)

Throughout this section we assume that n + 1 = p” with » > 1. No complete
classification of indecomposable exceptional polynomials of type D) is known. The
following propositions deal with the cases related to linearized polynomials.

Proposition 4.3.11. Let j,k > 1 and H(x) € F [z] such that L(z) = 27 H(z")
is a linearized polynomial of degree n + 1. For e € F, we have that S.(x) =
(x + e) H*(x + €) — e? H*(e) is a good exceptional polynomial over F, if and only
if the elements e — (eg — £)* belong to a unique orbit under ¢,, where ey is a fived
k-th root of e and ¢ ranges over the roots of L(z) \ {0}.

Proof. Following [25, Theorem 2.1] we give the factorization of the curve defined
by So(x*) — So(y*) = 0. Let N := deg(H) = % and write

N
H (t =),
h=1

where 7;, € K. Then the roots of H(t) and L(z) = 2/H(z*) ate H = {7, : h =
L,...,Nyand L={Civ:i=0,....k—1, hzl N}U{O} respectively.
Since Sy(x*) = (L(x))*, we have

k—1 k—1

So(a*) = So(y¥) = (L(2))" = (L))" =[] (L(z) = G.L(y)) = [] L(z - ¢w)

=0 =0
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d-1d-1 N

= (" =) TITITI (v - Geo = GPm)

a=0 =0 h=1

Consider the curve Cg defined by Sy(z) — Sp(y) = 0. Clearly, the points (z,y)
of Cg satisty 57 = C,?f+§£7h, where h € {1,...,N}, o, € {0,...,k—1},7* =z,
7* = y. Now consider the polynomial hg, (—z) = %;SS(O). The zeros of hg, (—)

correspond to the points (—z + e, e) of Cg, x # 0. Fix e such that e} = e; then
the zeros of h(—z) are {e — (eg — 0)* | £ € £\ {0}}. O

In general, it is not easy to establish when the elements e — (eq — ¢)* belong to
the same orbit under ¢,. The following propositions provide two families of good
exceptional polynomials arising from linearized polynomials.

Proposition 4.3.12. Let ¢ = p™ and L(z) = a¥" — (,_1x € F [z]. If r divides m,
then L(x) is good exceptional over F,.

Proof. Let N = p" — 1, and let n € F v be a root of hy(—z) = 2 — (,1. Then
the roots of hp(—x) are {An | A € F;,}. The hypothesis r | m is equivalent to
require that N divides (¢ — 1), and this implies that N(q¢ — 1) | ¢ — 1. Hence

—1
we can choose 1 = wN@D U, where w is a primitive element of F ~. The thesis is

proved by showing that 7 is not an element of any proper subﬁeld of F,~. Suppose

V-1 _
that n € Fpe with & | N. Then WG D@ =1, that is N [ £ 11; since ¢ = 1

(mod N), this is equivalent to N | k, and hence to N = k. O

Proposition 4.3.13. If d = ged(m,p" — 1) is a divisor of r, then there ezists a
linearized polynomial L(x) € F,[z] of degree p™ which is good exceptional over F,.

Proof. Let d = ged(m,p” — 1) and £(z) € F,lz] be a primitive polynomial of
degree r/d over F,i, so that {(x) is irreducible over F,« and has order p" — 1.
Let L(x) € F,[z] be the linearized pZ-associate of ¢(z). Then, by [82, Theorem
3.63], the polynomial L(x)/x is irreducible over F,q. Let o be a non-zero root of
L(x). Then the field extension Fi(c)|F,« has degree p" — 1, while the extension
Fy|F,a has degree m/d. The field Fy(«) is the compositum of F, and F,4(c); since
ged(m/d,p" — 1) = 1, we have that [Fy(a) : F,] = p" — 1. Then L(x)/z = hr(—x)
is irreducible over [, and the thesis follows. O
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4.3.8 Thecasesn+1=8andn+1=9

The aim of this section is to study the cases n + 1 = 8 (with p = 2) and
n+1=9 (with p = 3), via the algebraic curve

)

fFo
r—y

of degree n over [F, associated to a PP f(z) of F, of degree n+ 1. If f(z) is a PP

of IF, and ¢ is large enough with respect to n, then Cy splits into components not

defined over F, (see [7]). Conversely, if C; has no absolutely irreducible component
defined over F,, then f(z) is exceptional over F; see [26] and [94, Chapter 8.4].

=0 (4.33)

n+1=8 p=2

Proposition 4.3.14. Let ¢ = 2™, n+ 1 = 8. The polynomial f(xr) = x® +
Zzzl A" € F[x] is exceptional over F, if and only if Ay = Ay = A3 = A5 =0
and the polynomial g(x) = 7 + Ayx® + Agx + A7 has no roots in F;. Also f(x) is
good exceptional if and only if g(z) is irreducible over F,.

Proof. The equation of the curve Cy reads

(x4 )"+ Ar(a® + 2Py + 2'y? + 23y + 229" + 2 + ¢°)
+Ay (25 + 2ty + 23y? + 2%y + 2yt + y°) + Az(zt + 23y + 2%y + 2y + yt)
+A4(x +y)? + As(2® + zy + y%) + As(z +y) + A7 = 0.

Applying ¢, to the factors of C; we conclude that, if the curve C; does not have
absolutely irreducible components defined over I, then the curve contains either
two conics and three lines or seven lines. The unique ideal point of Cyis (1:1:0).
A line ¢ that is a component of the curve Cy has equation ¢ : y =  + a and

(A, =0
Asar + A3 =0
Asa® + A5 =0
Aza? + A5 =0
o’ + Aya® + Aza* + Aga® + Asa? + Aga + A7 = 0.

\

If the line ¢ is not defined over [, then o € Fq \ Fy; this yields Ay = A3 = A5 =0,
and the last equality becomes o + Aj0® + Aga + A7 = 0. It is easily seen that
if Ay = A3 = As = 0 then the curve C; contains the seven lines y + = + a; = 0,
i=1,...,7, where of + Asa} + Aga; + A7 = 0, and therefore C; cannot split in
two conics and three lines.
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Thus, the only open case occurs when C; splits in seven lines either not defined
over F, or equal to x —y = 0. Thus f(x) is exceptional if and only if 77 +
A3 + AgT + A7 has no roots in F, and it is good exceptional if and only if
T+ AJT? + AgT + A7 is irreducible over F,. O

Corollary 4.3.15. Let g = 2™, n+1 = 8 and suppose 3 divides m. The polynomial
2% + A7z is the only good exceptional polynomial over F,,.

Proof. Since 3 divides m we have that (; € F,. From Cyclic extensions theory,
TT+ AyT3 + AT + Ay is irreducible over F, if and only if Ay = Ag = 0. The thesis
follows from Proposition 4.3.14. O

Remark 4.3.16. The exceptional polynomials of Proposition 4.3.14 are linearized,
and hence described in [94, Prop. 8.4.15]. Also, Proposition 4.3.14 confirms the
conjecture [94, Remark 8.4.18] for the special case n +1 = 8.

q87
Corollary 4.3.17. Assume that ¢ = 2" > T*. The monomial bz T T s g
CPP of Fgs if and only if b is, up to a scalar multiple in F;, a root of some
F(z) = 2" + az® 4+ Bz + v € F [z], irreducible over F,.

n+1=9,p=3
Proposition 4.3.18. Let ¢ = 3". The polynomial
F(z) = 2 + A1a® + Agx™ + Aza® + Aux® + Asz® + Agx® + Aya® + Agz
is exceptional over F, if and only if one of the following cases occurs.
i)
F(z) = 2 + As2® + Ag2® (4.34)
and T° + AsT? 4 Ag € Fy[T] has no roots in F};
ii)
F(z) = 2° + Agx® + Agw (4.35)
and T® + AgT? 4+ Ag € F,[T] has no roots in F};
iii)
A3 A2
F(x) = 2% + Az2® + Ay2® + Asz* + (A% + A2 + —5> 7’
A} Al
+ (2A3A4 + 2A—g) z® + (2A3A5 + A+ 2A_g) z, (4.36)
1 1
where Ay # 0 and T* + 2A3T + 2A, € F[T] has no roots in Fy;



4.3. CPPS FROM EXCEPTIONAL POLYNOMIALS 167

i)

A3 A
F(z) = 2° + Ao + Asa® + Asz* + (Ag + jl 5) 4
2

A3 A2 Al
(2A2A5 + 2A—3) z? + (A;l + AzAs + A—5 + A—;’) x, (4.37)
2 2 2

where 2Ay is not a square in F,.

Proof. e Suppose that the curve Cr defined in (4.33) contains a line ¢ with
equation ¢ : y = x4, where @ = 0 or a ¢ F,. Then, by direct computation,

A=A, =A,=0

20(2143 + A5 =0

a?As +2A; =0

oAy + aPAs + A5 + a?Ag + ad; + Ag =0

— Assume o« = 0. Then A5 = A; = Ag = 0. The curve becomes
(z = y)*((x — 9)° + As(z — y)° + A) = 0,

We require that the polynomial 7% + A3T3 + Ag has no roots in .

— Assume a # 0. If A5 = 0 then A3 = A; = 0 and o® + Aga® + Ag = 0;
hence, Cp splits in 8 lines. They are not defined over F, or equal to
z —y = 0 if and only if T® + A¢T? + As = 0 has no roots in FF;.
If A3 =0 then A; = A; = 0 and a® + Aga® + Ag = 0, as above.
Suppose now As, A5 # 0. Then A5 = Aza?, A; = A2/As, and Ag =
2A5A6/As + 2A3 /AL, Since a? = A5/Asz, we have that As/Asz is not a
square in F,, otherwise the lines y = 2 + & and y = x + &, where & =
A5 /As, are F-rational lines and the polynomial F'(z) is not exceptional.
Let az, a5 € F 2 be such that a = A3 and a2 = A;. In this case,

Cr: (asr —asy + as)(asx — azy — as) (ag(m —y)° + a%a%(z — y)4
+ai(z +y)® + aja(x — y)* — aad(z +y) + a§As + af) = 0.

Since the sextic is defined over F,, it must split either in three conics
or in two cubics. In the first case it is easily seen that all of them must
be fixed by .

If a conic of equation (z—y)*+a(z+y)+ S = 0 is contained in the sextic

then in particular A2 = o3 from which we get a3%al? = 0, impossible.
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Suppose now that the sextic splits in two cubics. If they are fixed by
then they have equations

(z —y)* + arz? + awzy + vy + Bix + By + 71 =0,
(z —y)® + azz? + auzy + azy® + Bax + Boy + 72 = 0.

Then ay = a3 = —ay, as = ay. If @y = 0 then a§ = 7 + 72 and
a3 = —7v1 — 72, which imply a3 = 0, impossible. If a; # 0 then 8; = 3,
and again a? = 7, + 7 and a3 = —7y; — 72, which imply a3 = 0,
impossible. If they are switched by 1 then they have equations

(x —y)® + n2® + avay + azy® + iz + Bay + 11 = 0,
My — )% + azz® + aory + oaqy® + fox + Sry + 1) = 0.

Then A = —a$, a3 = a;. If ag = —ay, then a3a? + a3f8; — aify — a2 =
0 and a; = 0, which implies a3 = 0, impossible. If as = ay, then
a1(f1 + B2) = 0. In both cases ag = 0, impossible.

e Suppose that Cy splits in four absolutely irreducible conics. There are three
distinct possibilities, depending on the number of components fixed by .

1. All the conics are fixed by ¢. In this case the four conics are defined by
Ci:(x—y)P?+ai(r+y)+3 =0, (4.38)

for 1 = 1,2,3,4. This gives immediately A; = Ay = 0. The condition
A4 = 0 implies A5 = A; = 0 and A3Ag = 0, that is, the polynomial is
either of type (4.34) or (4.35). Now assume Ay # 0. Then, by direct
computation, Ag = A2 + A3A3/AS + AZ/A4, A; = 2A3A, + 2A3 /A3,
Ag = 2A3A5 + A2 + 2A%/A3; also, the a;’s are roots of £1(z) = x* +
2A3x + 24, and 3; = a? + As/As;. On the other hand, if all these
conditions are satisfied, then the curve splits in the four conics defined
in (4.38). Finally, the four conics are not defined over I, if and only if
the polynomial 7% + 2A3T + 2A, has no roots in F,.

2. Two conics are fixed by ¥ and two are switched. We can assume
Cr:(x—y)P+al@e+y)+5 =0, C:(x—y)P’+a(z+y)+5 =0,

Cs:(x—y)Y +asr+aw+Bs=0, Cyi:(x—y)®+ax+asy+pBs=0.

By direct computation, A1 = Ay = Ay = A5 = A; = 0 and A3Ag = 0,
and hence F'(x) is of type (4.34) or (4.35).
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3. No conic is fixed by ¥. We can assume
Ci:(r—y) +az+ay+p =0, Co:(z—y)P’+ar+ay+ps =0,

Cs:(x—y)Y +asr+oaw+Pa=0, Ci:(x—y)*+ar+asy+ By =0.
Also in this case we get A = Ay = Ay = A5 = A; =0 and A3Ag3 = 0,
and hence F'(x) is of type (4.34) or (4.35).
e Suppose that C; splits in two absolutely irreducible quartics Q; and Q,. The
automorphism 1 either switches or fixes the two components.

In the former case, @; and O, have the form

Q1 : (z—y) +arz’ +onr’y+aszy’ +ouy’ + fra’+ foy+ B3y + 17 +72y+6 = 0,
Qs : (x—y) Faur’+asz®y+anry’+ony’+ 51’ + Baxy+bry* +v22+71y+6 = 0.
We obtain A; = Ay = A3 = Ay = A5 = A7 = 0; hence, we have case (4.35).
In the latter case, Q; and Q5 have the form

Q; : (z—y) '+’ +anr®y+anry’+ary’+ i+ By + By +v1 (v+y)+01 = 0,

Qs ¢ (z—y) +asr® +aur’y+oury® +asy’+ 8327+ Bawy+ Bsy+2 (v+y) +62 = 0.
Since A; = 0, we obtain AyA4 = 0.

— Assume Ay = 0 and A; # 0. Then Ag = A3 + A3A3/A3 + A2Z/A,,
A7y = 2A3A4 + 243 /A% Ag = 2A3A5 + A + A2/A3) and case (4.36)
holds.

— Assume Ay # 0 and A; = 0. Then Ag = A3 + A3As5/Ay, A7 = 24545 +
2A3/ Ay, Ag = A+ A3As+ A2/ Ay + A3 /A3, Also, of = 24,5, ay = a3 =
—ay = —aq, by = —0F3= 2As/Oéh P = —A3/041 - Oé%, By = A3/041 - Oé%;
y1=Az+ad y9 = A3 —al, 6 = Azaq + A3/As + 2450, /Ay + 208 /A,
0y = —Azaq + A2/Ay + Asay /Ay + 2a8/A,. Note that g, i, 7, 0; are
not defined over F, if and only if 24, is not a square in F,. The quartics
0, and 9, read

(z—y)* +ayz® + 20, 2%y + 2002y + gy + 243 /an 2 +2( Az aq +ad)xy
+2A3 /a1y + (As+a3) (z+y) + Asay + A3 /Ay +2A501 /A +2a8 /Ay = 0,
(z —y)* + 200 2° + 2%y + qvy® + 200y° + Az /anz® + (Az/aq + 203 )xy
+As/any? + (As+203) (w+y) + 24501 + A2/ Ay + Asay Ay +2a8 /Ay = 0;
hence, Q; and Q, are switched by ¢,.
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— Finally, Ay = Ay = 0 implies A5 = A7 = 0 and A3Ag = 0. As above,
this yields types (4.34) or (4.35).

]

Remark 4.3.19. By direct computation, the exceptional polynomaials of Proposi-
tion 4.3.18 are equivalent to exceptional polynomials described in [94, Prop. 8.4.15].

In fact, if F(x) satisfies Case i) orii), then F(x) is a linearized polynomial.

If F(x) satisfies Case iii), then F(x) = Ly oS o Ly(x), where Li(z) and La(x)
are linear, and S(x) € F,[x] has the form z(asz* + a1 + ag)?.

If F(x) satisfies Case iv), then F(x) = Ly o S o Ly(x), where Li(x) and Ly(x)
are linear, and S(z) € F,[z] has the form S(z) = wz(asz* + a1x + ag)* when
A2A5 + A3 #£0, or S(z) = z(ax? + ag)? when A3A5 + A3 = 0.

This confirms the conjecture [94, Remark 8.4.18] for the special case n+1 = 9.

Proposition 4.3.20. Let ¢ = 3". The polynomial
F(z) = 2 + Aja® + Agx™ 4 Aga® + Aur® + Az + Agx® + Arx® + Agz
is good exceptional over I, if and only if one of the following cases occurs.
i)
F(x) = 2" + Agx® + Agz
and 28 + Agx? + Ag is irreducible over F;
A3 A2
F(.’L‘) = 339 + A3.§U6 + A4SE5 + A5I‘4 + <A§ + A3_§ + —5> SU3
a2\ )AL
+ 2A3A4 + 2@ X —f- 2A3A5 —I— A4 —f- QF Z,
1 4
where Ay # 0 and 2® + 2A32% + 2A, € F,[x] has no roots in Fu;

iii)

AsA
F(z) = 2° + Agx” + Asa® + Asz* + (Ag + Z 5) 234
2

AN oy (4 A5 A3
(2A2A5 + 2A_2) x° + (A2 + A3A5 + A_2 + A—%> xZ,

where

(a) 2A5 is not a square in F,,
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(b) h(—z) = (z* + 202 + 243/ax? + 2(A3 + 20ds)x + Az + A3/As +
2A50/Ag + AZ) (2t + ax® + Az/ax? + 2(Az + aAy)z + 2430 + A2 /Ay +
Asa /Ay + A3), where o = 2A,, is irreducible over F,,.

Proof. We use the classification obtained in Proposition 4.3.18.

e Let F(x) be as in Case i) of Proposition 4.3.18. Then Ag = 0; hence, F(x)
is not good.

e Let F(z) be as in Case i4) of Proposition 4.3.18. Then hp(—z) = 2+ Agx? +
Ag; since hp(—x) cannot be a square in F [z], we have that F(x) is good if
and only if hp(—2) is irreducible over F,.

e Let F'(x) be as in Case iii) of Proposition 4.3.18. The factors of hp(—x) are
r?—o;z+B;,1=1,...,4, where the o;’s are roots of {1 (z) = 2 +2A31x+2A,
and 3; = o? + As/Asq;; hence, ¢1(x) must be irreducible over F, in order for
F(z) to be good. Also, the roots of h(—z) are —a; + \/—A5/Asq;. Since
—As/Ay is an element of F, and hence a square in 4, the roots of h(—z)
are in the same orbit under ¢, if and only if a; is not a square in Fg4, that
is the polynomial ® + 24322 + 24, € F [z] has no roots in F .

e Let F(x) be as in Case iv) of Proposition 4.3.18. Then hp(—x) reads

(2h 4 2023 + 2A3/ax® + 2(Az + 20 As)x + Aza + A2/ Ay + 2450/ Ay + A3)-
(2 + ax® + As/ax? + 2(Az + ady)x + 2A30 + A3 /Ay + Asa /Ay + A2),

where o = 24,. Hence, the roots of hp(—z) are in a unique orbit under ¢,
if and only if hp(—=) is irreducible over F,.

]

Remark 4.3.21. We give two families of good exceptional polynomials arising
from Proposition 4.3.20. Let ¢ = 3" with h even, and d be an odd number; by [82,
Theorem 3.75], the polynomial x® + 2(¢ | € Fglz] is irreducible over Fy. There-
fore, by Case 1) in Proposition 4.3.20, the polynomial F(z) = x° + 2{’3_11‘ is good
exceptional over IF,. Also, by Case ii) in Proposition 4.3.20, the polynomial

F(z) =2° 4+ ¢ | 2° + az* + < :c3—|—2a3 e W —|—2a—4 T
o q—1 d ) 2d1 q—1 3d1
q— q— q—

is good exceptional over IF,, for any a € F,.
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Corollary 4.3.22. Assume that ¢ = 3" > 8*. The monomial b‘lx%+1 is a
CPP of Fes of and only if b is, up to a scalar multiple in F;, a root of some
(F(—z+e)— Fle))/(—x) € F,[z], where e € F, and F(x) € F,[z] satisfies Case
i), i), oriii) in Proposition 4.3.20.
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