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Introduction

The aim of this Ph.D. thesis is to present new results on existence, multi-
plicity and qualitative aspects of solutions of problems governed by nonlocal
elliptic p–Laplacian operators. The whole work is based on the published
articles [77, 78, 79, 50]. Moreover, the paper [78] has been further extended
in Chapter 3.

In the whole thesis, we denote with LK a general integro–differential
nonlocal operator, defined pointwise by

(I.1) LKϕ(x) = −
∫
Rn
|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))K(x− y)dy,

along any function ϕ ∈ C∞0 (Ω), where Ω is either Rn or any open bounded
domain of Rn, with Lipschitz boundary. The weight K : Rn \ {0} → R+

satisfies some natural restrictions, listed in Chapter 1.
When K(x) = |x|−(n+ps), the operator −LK reduces to the more familiar

fractional p–Laplacian operator (−∆)sp, which up to a multiplicative constant
depending only on n, s and p, is defined by

(−∆)spϕ(x) =

∫
Rn

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|n+ps
dy,

along any function ϕ ∈ C∞0 (Ω), see also the recent monograph [70] by Molica
Bisci, Radulescu and Servadei.

Nonlocal and fractional operators arise in a quite natural way in many
different applications, such as continuum mechanics, phase transition phe-
nomena, population dynamics and game theory, as they are the typical out-
come of stochastically stabilization of Lévy processes, see for instance [4, 24].
We refer also to [3, 11, 17, 18, 19, 26, 27, 43, 44, 48, 53, 54, 56, 57, 65, 68,
71, 76, 86, 88, 89, 90, 92, 93, 94] and the references therein.

The first question, treated in Chapter 2, is the existence of two non-
trivial weak solutions of a one parameter nonlocal eigenvalue problem under
homogeneous Dirichlet boundary conditions in bounded domains.
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ii S. Saldi Nonlocal nonlinear problems

In the paper [5], Arcoya and Carmona extended to a wide class of func-
tionals the three critical point theorem of Pucci and Serrin in [81] (see
also [80]) and applied it to a one parameter family of functionals Jλ, with
λ ∈ I ⊂ R. Under suitable assumptions, they located an open subinterval of
values λ in I for which Jλ possesses at least three critical points. Recently, a
slight variant of the main abstract theorem of [5] has been proposed in [36],
where the authors considered the problem

(I.2)

{
−divA(x,∇u) = λ[a(x)|u|p−2u+ f(x, u)] in Ω,

u = 0 on ∂Ω,

where A satisfies some natural structural conditions which are satisfied by
the local p–Laplacian operator.

In both papers [5, 36] several interesting applications to quasilinear bound-
ary value problems are given. Taking inspiration from [36], in [77] we es-
tablish the existence of two nontrivial weak solutions of a one parameter
eigenvalue problem, set in a bounded open domain Ω of Rn, with Lipschitz
boundary, under homogeneous Dirichlet boundary conditions. These results
are presented in Chapter 2. More precisely, we consider the problem

(P1)

{
−LKu = λ[a(x)|u|p−2u+ f(x, u)] in Ω,

u = 0 in Rn \ Ω.

The coefficient a is a positive weight of class Lα(Ω), with α > n/ps, and
the perturbation f : Ω × R → R is a Carathéodory function, with f 6≡ 0,
satisfying some natural assumptions, listed in Section 2.2.

Indeed, we determine precisely the intervals of λ’s for which problem (P1)
admits only the trivial solution and for which (P1) has at least two nontrivial
solutions. In particular, we study (P1) via a slight variant of the Arcoya and
Carmona result in [5], as proved in Theorem 2.1 of [36].

While in [36] the main results were related to a problem driven by an op-
erator whose prototype is the p–Laplacian, in [77] we extend these results to a
problem driven by an integro–differential nonlocal operator, whose prototype
is the fractional p–Laplacian.

Another new and important result of independent interest is Proposi-
tion 2.1.1 in Section 2.1, related to the first eigenvalue of the non–perturbed
problem {

−LKu = λ a(x)|u|p−2u in Ω,

u = 0 in Rn \ Ω.

The first eigenvalue λ1 is defined in Section 2.1, by the infimum of a Rayleigh
quotient. In [53] and [65] the authors proved that the infimum is achieved and
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that λ1 > 0, when a ≡ 1. The special linear case of the fractional Laplacian
and a ∈ Lip(Ω) is treated in [51]. In [77] we extend the previous papers
and prove the result for the general weight a, using a completely different
argument.

In Chapter 3, based on the results published in [78], we establish existence
and multiplicity of nontrivial non–negative entire weak solutions of a sta-
tionary Kirchhoff eigenvalue problem, involving a general nonlocal integro–
differential operator. The model under consideration depends on a real pa-
rameter λ and involves two superlinear nonlinearities, one of which could be
critical or even supercritical.

In recent years stationary Kirchhoff problems have been widely studied.
We refer to [3, 32, 45, 46, 63] for problems involving the classical Laplace
operator, to [7, 35] for the p–Laplacian case and to [97] for Kirchhoff models
with critical nonlinearities. For evolution problems we refer to [6, 8, 15] and
the references therein. More recently, following [25] Fiscella and Valdinoci
in [52] proposed a stationary Kirchhoff variational model, in bounded regular
domains of Rn, which takes into account the nonlocal aspect of the tension
arising from nonlocal measurements of the fractional length of the string.
In [3, 45, 52] the authors use variational methods, as well as a concentration
compactness argument. In [32, 63] variational methods are still used, but the
stationary Kirchhoff problems are set in the entire Rn. In [7, 35] the so–called
degenerate case is covered (see also [8, 15, 97]), that is the main Kirchhoff
non–negative non–decreasing function M could be zero at 0, while in [52] only
the non–degenerate case is covered. Lately, several papers have been devoted
to problems involving critical nonlinearities and nonlocal elliptic operators;
see [17, 18, 71, 89, 90, 92, 97] in bounded regular domains of Rn and [11, 63]
in all Rn, and the references therein. We refer to [94] for quasilinear Kirchhoff
systems involving the fractional p–Laplacian.

In [11], Autuori and Pucci considered the problem

(I.3) (−∆)su+ a(x)u = λw(x)|u|q−2u− h(x)|u|r−2u in Rn,

which has been further extended by Pucci and Zhang in [87] and then by
Xiang, Zhang and Radulescu in [93].

Inspired by the above articles and the fact that several interesting ques-
tions arise from the search of nontrivial non–negative weak solutions, in [78]
we deal with existence and multiplicity of nontrivial non–negative entire solu-
tions of a Kirchhoff eigenvalue problem, involving critical nonlinearities and
nonlocal elliptic operators, when p = 2. In Chapter 3, we further extend the
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results of [78] and consider the problem

(P2)

M ([u]pK) (−LKu) = λw(x)|u|q−2u− h(x)|u|r−2u in Rn,

[u]pK =

∫ ∫
R2n

|u(x)− u(y)|pK(x− y) dxdy,

where λ ∈ R, 0 < s < 1, ps < n and LK is the integro–differential nonlocal
operator defined in (I.1).

More precisely, our model generalizes problem (I.3) proposed in [11],
where the fractional Laplacian operator is considered and the Kirchhoff func-
tion is M(τ) ≡ 1 for any τ ∈ R+

0 , as well as in [87, 93]. Several technical
difficulties arise from the Kirchhoff structure of problem (P2). Thus, for this
reason, we only consider the non–degenerate case.

In Chapter 4, following essentially the results established in [79], we deal
with the question of the asymptotic stability of solutions of Kirchhoff systems,
governed by the fractional p–Laplacian operator, with an external force and
nonlinear damping terms.

Recently, Cavalcanti, Domingos Cavalcanti, Jorge Silva and Webler pro-
posed in [28] the following model for the damped wave equation with a de-
generate nonlocal weak damping

(I.4)


utt −∆u+ f(u) +M

(∫
Ω
|∇u|2dx

)
ut = 0 in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0, ut(·, 0) = u1 in Ω,

where Ω is a bounded domain of Rn with smooth boundary ∂Ω, f is a nonlin-
ear source and the Kirchhoff function M corresponds to a nonlocal damping
coefficient, since it is multiplied by ut and not by the Laplacian operator.
This kind of nonlocal dissipative effect was introduced by Lange and Perla
Menzala in [62] for the beam equation. The authors considered the model

(I.5) utt + ∆2u+M(‖∇u(t, ·)‖2
2)ut = 0,

where the function M : R+
0 → [1,∞) is assumed to be of class C1 satisfying

the condition M(τ) ≥ τ + 1 for all τ ≥ 0. The nonlinear term in (I.5) has a
dissipative effect, which implies the decay of solutions. The authors remarked
that problem (I.5) is closely related to the nonlinear dissipative Schrödinger
equation

(I.6) iwt + ∆w + iM(‖∇Imw‖2
2)Rew = 0,
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where x ∈ Rn, t ≥ 0 and i =
√
−1. As a consequence, if w is a smooth

solution of (I.6), than the imaginary part u = Imw of w solves (I.5). An-
other problem involving this kind of nonlocal dissipative effect was studied
by Cavalcanti, Domingos Cavalcanti and Ma in another context, see [29].

Problems, concerning the stability of damped wave models, have been
widely studied. We refer to [13, 20, 34, 66, 72, 84, 91, 96] for nonlinear
damped equations, to [60] for a plate equation with nonlocal weak damping
and to [58, 64, 74, 75] for semilinear damped wave equations.

In [9], Autuori and Pucci dealt with the question of global and local
asymptotic stability, as time tends to infinity, of solutions of dissipative
anisotropic Kirchhoff systems, governed by the p(x)–Laplacian operator, in
the framework of the variable exponent Sobolev spaces. In mechanical engi-
neering, we often encounter structure composed of rigid and elastic compo-
nents. The flexible parts are of course sensitive of disturbances and inserting
an internal dissipation can lead to satisfactory results. Similar considerations
motivated the authors to consider the problem

(I.7)


utt −M(I u(t))(∆p(x)u+ g(t)∆p(x)ut)

+µ|u|p(x)−2u+Q(t, x, u, ut) + f(t, x, u) = 0 in R+
0 × Ω,

u(t, x) = 0 on R+
0 × ∂Ω,

where Ω ⊂ Rn is a bounded domain and u = (u1, . . . , uN) = u(t, x), with
N ≥ 1. The term µ|u|p(x)−2u represents a perturbation, I u(t) is the natural
associated p(x)–Dirichlet energy integral and M is a dissipative Kirchhoff
function. Finally, f is an external force, Q is a distribute damping and the
function g ≥ 0 is in L1

loc(R
+
0 ).

In [79], taking inspiration of [9, 84, 85], we generalize the model proposed
in [28], considering the following system

(P3)


utt + (−∆)spu+ µ|u|p−2u+ %(t)M([u]ps,Ω)|ut|p−2ut

+Q(t, x, u, ut) + f(t, x, u) = 0 in R+
0 ×Ω,

u(t, x) = 0 on R+
0 ×(Rn\Ω),

where n > ps and u = (u1, . . . , uN) = u(t, x) represents the vectorial dis-
placement, with N ≥ 1. The term µ|u|p−2u, where µ ≥ 0, plays the role of a
perturbation, M is a dissipative Kirchhoff function and % ≥ 0 is in L1

loc(R
+
0 ).

Problem (P3), presented in Chapter 4, is related to (I.7), since the per-
turbation, the damping term and the external force are structurally similar,
but there is a great difference concerning the Kirchhoff function. Indeed,
as in [28], in our model the function M corresponds to a nonlocal damping
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coefficient and it is not multiplied by the fractional p–Laplacian operator.
Furthermore, while in [28] the authors considered an equation in the special
case p = 2, our system involves more general source and damping terms
and it is driven by the fractional p–Laplacian. For this reason, we are not
able to establish a local exponential stability as in [28], but we obtain local
and global stability results in different regions of the potential valley, using
completely different arguments than in [28].

Moreover, we also treat the degenerate case of (P3), that is, from a
physical point of view, when the base tension of the string modeled by the
equation is zero. Indeed, in Sections 4.3 and 4.4 we prove the main results of
global and local asymptotic stability without assuming the non–degeneracy
of the problem (P3). This fact represents a generalization of [9], where the
non–degeneracy of the problem was assumed in the whole section concerning
the local asymptotic stability. However, in some applications, where speci-
fied, we have to require non–degeneracy in order to overcome some technical
difficulties, due to the Kirchhoff structure of (P3).

Finally, as regarding the structural assumptions on M , while in [28] the
authors considered the case M(τ) = τ for τ ≥ 0, here we do not need to
assume that M is linear and we do not impose even that M is non–decreasing,
as assumed in several other papers in the subject.

Particular attention is devoted to the asymptotic behavior of the solutions
in the linear case of (P3). In order to simplify the notation we restrict the
interval of the time variable to I = [1,∞) instead of R+

0 .
In Section 4.5, following [84, Section 5], we consider an important special

case of (P3), that is p = 2, Q(t, x, u, v) = a(t)tαv, with a satisfying

1/C ≤ a(t) ≤ C in I

for some C > 0 and α ∈ R, and f(t, x, u) = V (t, x)u, where V is a bounded
continuous function in I × Ω. In other words, we study the asymptotic
behavior of the solutions of

(P3,lin)


utt + (−∆)su+ µu+ %(t)M([u]2s,Ω)ut

+a(t)tαut + V (t, x)u = 0 in I × Ω,

u(t, x) = 0 on I × (Rn \ Ω),

where for simplicity we treat only the scalar displacement, that is the case
when N = 1.

If |α| ≤ 1 and % is sublinear for t sufficiently large, we get the stability of
the solutions of (P3,lin). A more delicate argument is necessary when either
α < −1 or α > 1. For this reason, we suppose that M is a constant positive
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function and that V (t, x) = V (x) > −µ a.e. in Ω when |α| > 1. Here the
proof techniques rely on an important result of independent interest related
to properties of the eigenvalues and the eigenfunctions of the underlying
perturbed problem of (P3,lin), that is of

(Pλ)

{
(−∆)su+ a0(x)u = λu in Ω,

u = 0 in Rn \ Ω,

where a0(x) is a bounded non–negative continuous function, with a0 > 0
a.e. in Ω. Indeed, in the main application for (P3,lin) the function a0(x) is
exactly V (x) + µ.

To this aim in the Appendix of Chapter 4, following the proof of Proposi-
tion 3.1 of the monograph [70] by Molica Bisci, Radulescu and Servadei, see
also Proposition 9 of [88] by Servadei and Valdinoci, for a related but dif-
ferent problem, we prove Theorem 4.7.3. In particular, Theorem 4.7.3 gives
that the first eigenvalue of (Pλ) is positive and that the eigenfunctions are a
basis of the natural solutions space of (Pλ), which is defined in (4.7.1) and
in Section 1.2.

Finally, in Chapter 5 we deal with the existence of nontrivial nonnega-
tive solutions of Schrödinger–Hardy systems driven by two possibly different
fractional ℘–Laplacian operators, via various variational methods, as recently
treated in [50]. The main features of the paper [50] are the presence of the
Hardy terms and the fact that the nonlinearities do not necessarily satisfy
the Ambrosetti–Rabinowitz condition.

The starting point in [50], and so in Chapter 5, is the fractional Schrödinger–
Hardy system in Rn

(P4)


(−∆)smu+ a(x)|u|m−2u− µ |u|

m−2u

|x|ms
= Hu(x, u, v),

(−∆)spv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
= Hv(x, u, v),

where µ and σ are real parameters, n > ps, with s ∈ (0, 1) and

1 < m ≤ p < m∗ =
mn

n−ms
.

The nonlinearities Hu and Hv denote the partial derivatives of H with respect
to the second variable and the third variable, respectively, and H satisfies
assumptions (H1)–(H4), given in Section 5.1.

A similar problem was recently studied in [95], without the Hardy terms,
that is in the case µ = σ = 0. In particular, the authors establish the
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existence of nontrivial nonnegative solutions of the system{
(−∆)smu+ a(x)|u|m−2u = Hu(x, u, v) in Rn,

(−∆)spv + b(x)|v|p−2v = Hv(x, u, v) in Rn,

for which compactness arguments are easier to get than for (P4). We recall
that a non–negative solution (u, v) is a vector function with all the compo-
nents non–negative in Rn. Problems, less general but somehow related to
(P4), can be found in [1, 33, 41, 47, 49, 95].

In [47], the authors study a fractional problem involving a Hardy po-
tential, subcritical and critical nonlinearities, by variational methods, that
is  (−∆)su− γ u

|x|2s
= λu+ θf(x, u) + g(x, u) in Ω,

u = 0 in Rn \ Ω,

where Ω ⊂ Rn is a bounded domain, γ, λ and θ are real parameters, the
function f is a subcritical nonlinearity, while g could be either a critical term
or a perturbation. The existence and regularity of a solution is provided in [1]
for fractional elliptic problems with a Hardy term and different nonlinearities,
even singular. By combining a variational approach and the moving plane
method, in [41] the authors prove the existence and qualitative properties
of a solution for a fractional problem with a critical nonlinearity and still a
Hardy potential. In [54], the authors study a fractional equation in Rn, with
three critical Hardy–Sobolev nonlinearities. We refer to [27, 48, 49, 76] for
existence results concerning different Kirchhoff–Hardy problems and Hardy–
Schrödinger–Kirchhoff equations driven by the fractional Laplacian.

Regarding fractional elliptic systems, besides [95], we mention also the
recent paper [33], in which the elliptic system presents only a single fractional
Laplace operator and critical concave–convex nonlinearities.

Motivated by the above works, we are interested in the study of nontriv-
ial non–negative solutions of system (P4) involving two fractional Laplace
operators, but without the Ambrosetti–Rabinowitz condition. Actually, the
Ambrosetti–Rabinowitz condition is quite natural and crucial not only to en-
sure that the Euler–Lagrange functional associated to variational problems
has a mountain pass geometry, but also to guarantee that the Palais–Smale
sequence constructed in the mountain pass lemma is bounded. Several au-
thors tried to drop the Ambrosetti–Rabinowitz condition since the pioneering
work of Jeanjean [59]; see, e.g., [30, 31, 69] and the references therein.

The proof of Theorem 5.1.1 is mainly variational. Inspired by [95], we
apply the version of the mountain pass theorem given in [42]. For this, we
have to show that the Euler–Lagrange functional related to (P4) satisfies
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the Cerami compactness condition. Because of the lack of compactness, due
to the presence of the Hardy terms, this is more delicate to prove than in [95]
and a tricky step in the proof is necessary to overcome this new difficulty.

Moreover, we consider systems including critical nonlinear terms as treated
very recently in bounded domains in [33, 39, 43, 44, 56, 57, 68] for fractional
systems and in [61] for systems driven by the p–Laplacian operator. That is,
we study the system in Rn

(P5)



(−∆)smu+ a(x)|u|m−2u− µ |u|
m−2u

|x|ms
= Hu(x, u, v) + |u|m∗−2u+

+
θ

m∗
(u+)θ−1(v+)ϑ + ϕ(x),

(−∆)spv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
= Hv(x, u, v) + |v|p∗s−2v+

+
ϑ

m∗
(u+)θ(v+)ϑ−1+ψ(x),

where θ > 1, ϑ > 1 with θ + ϑ = m∗, ϕ is a non–negative perturbation of
class Lm(Rn), with m the Hölder conjugate of m∗, while ψ is a non–negative
perturbation of class Lp(Rn), with p the Hölder conjugate of p∗, that is

m =
m′n

n+m′s
, p =

p′n

n+ p′s
.

Problem (P5) is a generalization of (1.1) of [61], since we replace the p–
Laplacian operator with two different fractional ℘–Laplacian operators. Fur-
thermore, (P5) extends problem (1.1) of [56], for which the authors prove
the existence of a ground state solution. System (1.1) of [56], treated in
the special case when m = p = 2, is related to (P5), but different, since
in it there is a term with the critical exponent, but no Hardy terms and no
perturbations are present.

The study of (P5) in Rn becomes more difficult than in [33, 39, 43, 44,
56, 57, 61, 68] and has been treated here by a different alternative method,
which is however very simple and direct. Indeed, the existence is obtained
by local minimization thanks to the perturbation terms.

Finally, we present radial versions of the main theorems and extend the
results of Sections 5.3 and 5.4 when the fractional ℘–Laplacian operator is
replaced by a more general elliptic nonlocal integro–differential operator of
the type (I.1), that is generated by a singular kernel K and satisfying the
natural assumptions described by Caffarelli, e.g., in [24]. See also [48] and
the references therein.
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The thesis is organized as follows. In Chapter 1 we present some prelimi-
nary definitions and results which will be used in the following. In particular,
we list the assumptions for the weight K, we present the construction of the
functional spaces and we introduce the Kirchhoff function M . In Chapter 2
we report some results already appeared in [77], concerning the existence
of two nontrivial weak solutions of (P1). Chapter 3 is based on the pa-
per [78], in which only the linear case p = 2 is considered. Here we extend
the results of [78] and deal with the existence and the multiplicity of non-
trivial non–negative entire solutions of (P2), when p = 2 is replaced by a
general exponent p ∈ (1,∞). Chapter 4 contains some new results on the
asymptotic stability of solutions of the Kirchhoff system (P3), given in the
paper [79]. Section 4.5 of this chapter is devoted to problem (P3,lin). In the
Appendix of Chapter 4 we deal with the eigenvalue problem (Pλ). Chap-
ter 5 is based on the paper [50], which deals with the existence of nontrivial
non–negative solutions of the Schrödinger–Hardy system (P4) driven by two
possibly different fractional ℘–Laplacian operators, via various variational
methods. Moreover, in Section 5.4 we consider system (P5), including crit-
ical nonlinear terms. Finally, in Chapter 6 we present some open problems
arising from the papers listed above, which can be useful for future research.
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Chapter 1

Preliminaries

In this chapter, we present some preliminary definitions and results which

will be used in the following. Let us remark that papers [77, 79] deal with

problems in Ω, that is an open bounded subset of Rn with Lipschitz boundary,

while papers [78, 50] deal with problems in the whole space Rn.

As stated in the Introduction, in this thesis we consider some problems

driven by the fractional p–Laplacian operator, which up to a multiplicative

constant depending only on n, s and p is defined by

(−∆)spϕ(x) =

∫
Rn

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|n+ps
dy,

along any function ϕ ∈ C∞0 (Ω), where s ∈ (0, 1) and n > ps. Denote by p∗

the critical Sobolev exponent, that is p∗ = np/(n− ps).
Our results can also be generalized, considering the case when the frac-

tional p–Laplacian is replaced by a more general nonlocal integro–differential

operator −LK , which up to a multiplicative constant depending only on n, s

and p is defined by

−LKϕ(x) =

∫
Rn
|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))K(x− y)dy,

along any function ϕ ∈ C∞0 (Ω).

Unless otherwise specified, the weight K : Rn \ {0} → R+ satisfies the

natural restrictions

(K1) there exists K0 > 0 such that K(x)|x|n+ps ≥ K0 for all x ∈ Rn \ {0};

(K2) mK ∈ L1(Rn), where m(x) = min {1, |x|p}, x ∈ Rn.

1
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Without loss of generality, we can suppose that K is even, since the odd

part of K does not give any contribution in the integral above. Clearly,

when K(x) = |x|−(n+ps), the operator −LK reduces to the more familiar

fractional p–Laplacian operator (−∆)sp.

1.1 Functional spaces in the whole Rn

When we study problems in Rn, we consider the space Ds,p(Rn), which

denotes the completion of C∞0 (Rn) with respect to the Gagliardo norm

[u]s,p =

(∫ ∫
R2n

|u(x)− u(y)|p

|x− y|n+ps
dxdy

)1/p

.

The embedding Ds,p(Rn) ↪→ Lp
∗
(Rn) is continuous, that is

(1.1.1) ‖u‖Lp∗ (Rn) ≤ Cp∗ [u]s,

for all u ∈ Ds,p(Rn), where Cp
p∗ = c(n)

s(1− s)
n− ps

by Theorem 1 of [67], see

also Theorem 1 of [22].

By (K2) for all ϕ ∈ C∞0 (Rn) the function

(x, y) 7→ (ϕ(x)− ϕ(y)) ·K(x− y)1/p ∈ Lp(R2n).

Let Ds,p
K (Rn) be the completion of C∞0 (Rn) with respect to the norm [ · ]s,p,K ,

defined by

[u]s,p,K =

(∫ ∫
R2n

|u(x)− u(y)|pK(x− y) dxdy,

)1/p

.

Denote with 〈·, ·〉s,p,K the duality product

(1.1.2)
〈u, v〉s,p,K =

∫ ∫
R2n

|u(x)− u(y)|p−2(u(x)− u(y))·

× (v(x)− v(y))K(x− y)dxdy.

Clearly by (K1) the embedding Ds,p
K (Rn) ↪→ Ds,p(Rn) is continuous, being

(1.1.3) [u]s,p ≤ K
−1/p
0 [u]s,p,K for all u ∈ Ds,p

K (Rn).

Hence, by (1.1.1) we obtain

(1.1.4) ‖u‖p∗ ≤ Cp∗K
−1/p
0 [u]s,p,K for all u ∈ Ds,p

K (Rn).
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1.2 Functional spaces in bounded domains Ω

When the problems are set in a bounded open domain Ω of Rn, the

construction of the solutions space is more delicate.

We recall that Ds,p
0 (Ω) = C∞0 (Ω)

‖·‖Ω
, where ‖·‖Ω is the standard fractional

Gagliardo norm, given by

‖u‖Ω =

(∫ ∫
Ω×Ω

|u(x)− u(y)|p|x− y|−(n+ps)dxdy

)1/p

for all u ∈ W s,p
0 (Ω). Furthermore, Ds,p(Rn) denotes the fractional Beppo–

Levi space, that is the completion of C∞0 (Rn), with respect to the norm

[u]s,p =

(∫ ∫
R2n

|u(x)− u(y)|p|x− y|−(n+ps)dxdy

)1/p

.

Moreover, we recall that by Theorems 1 and 2 of [67] we get

(1.2.1)

‖u‖p
Lp∗ (Rn)

≤ cn,p
s(1− s)

(n− ps)p−1
[u]ps,p,∫

Rn
|u(x)|p dx

|x|ps
≤ cn,p

s(1− s)
(n− ps)p

[u]ps,p

for all u ∈ Ds,p(Rn), where cn,p is a positive constant depending only on n

and p. Hence

Ds,p(Rn) = {u ∈ Lp∗(Rn) : |u(x)− u(y)| · |x− y|−(s+n/p) ∈ Lp(R2n)}.

Following [55], we put

D̃s,p(Ω) = {u ∈ Lp∗(Ω) : ũ ∈ Ds,p(Rn)},

with the norm [u]s,Ω = [ũ]s,p, where ũ is the natural extension of u in the

entire Rn, with value 0 in Rn \ Ω. Clearly,

[u]s,Ω =

(
‖u‖pΩ + 2

∫
Ω

|u(x)|pdx
∫
Rn\Ω
|x− y|−(n+ps)dy

)1/p

≥ ‖u‖Ω.

Since here Ω is regular, an application of Theorem 1.4.2.2 of [55] shows that

D̃s,p(Ω) = C∞0 (Ω)
[ · ]s,Ω

. Finally, since Ω is bounded and regular, by (1.2.1)

there exists a constant cΩ > 0 such that

cΩ‖ũ‖W s,p(Rn) ≤ [ũ]s,p = [u]s,Ω ≤ ‖ũ‖W s,p(Rn)
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for all u ∈ D̃s,p(Ω), and so, using also Corollary 1.4.4.10 of [55], we have the

main property

D̃s,p(Ω) = {u ∈ W s,p
0 (Ω) : u d(·, ∂Ω)−s ∈ Lp(Ω)}

= {u ∈ Ds,p(Rn) : u = 0 a.e. in Rn \ Ω}
= {u ∈ W s,p(Ω) : ũ ∈ W s,p(Rn)},

where d(x, ∂Ω) is the distance from x to the boundary ∂Ω of Ω.

It is not hard to see that D̃s,p(Ω) is a closed subspace of Ds,p(Rn). Hence

also D̃s,p(Ω) =
(
D̃s,p(Ω), [ · ]s,Ω

)
is a reflexive Banach space. For simplicity

and abuse of notation, in the following we still denote by u the extension of

every function u ∈ D̃s,p(Ω), by setting u = 0 in Rn \ Ω.

This construction can be adopted to the vectorial case when we deal with

systems, as in Chapter 4, Section 4.2.

1.3 The Kirchhoff function

In both Chapters 3 and 4 we deal with problems where a Kirchhoff func-

tion M : R+
0 → R+

0 is involved. A typical prototype of Kirchhoff function,

due to Kirchhoff in 1883, is given by

(1.3.1) M(τ) = a+bγτ γ−1 with a = M(0) ≥ 0, b ≥ 0, γ > 1 and a+b > 0.

Problems involving Kirchhoff functions are said degenerate whether the func-

tion M can be zero at some point, that is infτ∈R+
0
M(τ) = 0, and non–

degenerate when M(τ) > 0 for any τ ∈ R+
0 .

From a physical point of view, as noted in [27], in the large literature

on Kirchhoff problems the transverse oscillations of a stretched string, with

nonlocal flexural rigidity, depends continuously on the Sobolev deflection

norm of u via M([u]ps,Ω). In any case, M measures the change of the tension

on the string caused by the change of its length during the vibration. The

presence of the nonlinear coefficient M is crucial to be considered when the

changes in tension during the motion cannot be neglected. In the case of

linear string vibrations, the tension is constant that is M(τ) = M(0), but

nonlinear vibrations are more realistic.

In this thesis, we assume that M is non–degenerate in problem (P2),

while in problem (P3) we cover in some cases also the degenerate setting.

Furthermore, we remark that in (P2) the Kirchhoff function multiplies the
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nonlocal integro–differential operator, while in (P3) it represents a nonlocal

damping coefficient.
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Chapter 2

Problem (P1)

In this chapter we establish the existence of two nontrivial weak solu-

tions of the following one parameter eigenvalue problem under homogeneous

Dirichlet boundary conditions in an open bounded subset Ω of Rn, with

Lipschitz boundary

(P1)

{
−LKu = λ[a(x)|u|p−2u+ f(x, u)] in Ω,

u = 0 in Rn \ Ω,

where −LK is an integro–differential nonlocal operator, defined as in the In-

troduction.

Here we assume K : Rn \ {0} → R+ satisfying the following assumption:

(K) there exists s ∈ (0, 1), with n > ps, and some suitable numbers ε, δ, with

0 < ε ≤ δ, such that

ε ≤ K(x)|x|n+ps ≤ δ for all x ∈ Rn \ {0}

We endow D̃s,p(Ω) with the weighted Gagliardo norm

[u]K,Ω =

(∫ ∫
R2n

|u(x)− u(y)|pK(x− y)dxdy

)1/p

,

equivalent to the norm [ · ]s,Ω by virtue of (K). Indeed, (K) implies at once

that the function mK ∈ L1(Rn), where m(x) = min {1, |x|p}, so that in

particular [ϕ]K,Ω <∞ for all ϕ ∈ C2
0(Ω).

Hence, also the natural solution space D̃s,p(Ω) =
(
D̃s,p(Ω), [ · ]K,Ω

)
of (P1)

is a reflexive Banach space.

7
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Finally, in (P1) we assume that the coefficient a is a positive weight of

class Lα(Ω), with α > n/ps, and that the perturbation f : Ω × R → R is a

Carathéodory function, with f 6≡ 0, satisfying the main assumption (F ) of

Section 2.1.

In Section 2.4 we determine precisely the intervals of λ’s for which prob-

lem (P1) admits only the trivial solution and for which (P1) has at least

two nontrivial solutions. More precisely, we study problem (P1) by a slight

variant of the Arcoya and Carmona result in [5], as proved in Theorem 2.1

of [36].

2.1 The weight a and the first eigenvalue

We assume a to be a positive weight of class Lα(Ω), with α > n/ps,

and K satisfying (K) in Rn \ {0}.
Note that by Corollary 7.2 of [40] the embedding D̃s,p(Ω) ↪→ Lα

′p(Ω) is

compact, being α′p < p∗ by the assumption that α > n/ps. Moreover, the

embedding Lα
′p(Ω) ↪→ Lp(Ω, a) is continuous, since ‖u‖pp,a ≤ ‖a‖α‖u‖

p
α′p for

all u ∈ Lα′p(Ω) by Hölder’s inequality. Hence,

(2.1.1) the embedding D̃s,p(Ω) ↪→ Lp(Ω, a) is compact.

Let λ1 be the first eigenvalue of the problem

(2.1.2)

{
−LKu = λ a(x)|u|p−2u in Ω,

u = 0 in Rn \ Ω,

in D̃s,p(Ω), that is λ1 is defined by the Rayleigh quotient

(2.1.3) λ1 = inf
u∈D̃s,p(Ω), u 6=0

∫∫
R2n |u(x)− u(y)|pK(x− y)dxdy∫

Ω
a(x)|u|pdx

.

By Lemma 2.1 of [53] (see also Theorem 5 of [65] for the fractional p–

Laplacian first eigenvalue) the infimum in (2.1.3) is achieved and λ1 > 0,

when a ≡ 1. We refer also to [51] for the special linear case of the fractional

Laplacian and a ∈ Lip(Ω). For sake of completeness we prove the result for

the general weight a, using a completely different argument.

Proposition 2.1.1. The infimum λ1 in (2.1.3) is positive and attained at

a certain function u1 ∈ D̃s,p(Ω), with ‖u1‖p,a = 1 and [u1]pK,Ω = λ1 > 0.

Moreover, u1 is a solution of (2.1.2) when λ = λ1.
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Proof. Define the functionals I(u) = [u]pK,Ω and J (u) = ‖u‖pp,a, for any

u ∈ D̃s,p(Ω). Let λ0 = inf{I(u)/J (u) : u ∈ D̃s,p(Ω) \ {0}, ‖u‖p,a ≤ 1}.
Observe that I and J are continuously Fréchet differentiable and convex

in D̃s,p(Ω). Clearly I ′(0) = J ′(0) = 0. Moreover, J ′(u) = 0 implies u =

0. In particular, I and J are weakly lower semi–continuous on D̃s,p(Ω).

Actually, J is weakly sequentially continuous on D̃s,p(Ω). Indeed, if (uk)k
and u are in D̃s,p(Ω) and uk ⇀ u in D̃s,p(Ω), then uk → u in Lp(Ω, a) by

(2.1.1). This implies at once that J (uk) = ‖uk‖pp,a → ‖u‖pp,a = J (u), as

claimed.

Now, either W = {u ∈ D̃s,p(Ω) : J (u) ≤ 1} is bounded in D̃s,p(Ω), or

not. In the first case we are done, while in the latter I is coercive in W , being

coercive in D̃s,p(Ω). Therefore, all the assumptions of Theorem 6.3.2 of [21]

are fulfilled, being D̃s,p(Ω) a reflexive Banach space, so that λ0 is attained at

a point u1 ∈ D̃s,p(Ω), with ‖u1‖p,a = 1. We claim now that λ0 = λ1. Indeed,

λ1 = inf
u∈D̃s,p(Ω)\{0}

[
u

‖u‖p,a

]p
K,Ω

= inf
u∈D̃s,p(Ω)
‖u‖p,a=1

[u]pK,Ω ≥ inf
u∈D̃s,p(Ω)

0<‖u‖p,a≤1

[u]pK,Ω
‖u‖pp,a

= λ0 ≥ λ1.

In particular, λ1 = [u1]pK,Ω > 0 and I ′(u1) = λ1J ′(u1) again by Theorem 6.3.2

of [21]. Hence u1 is a solution of (2.1.2) when λ = λ1.

From the proof of Proposition 2.1.1 it is also evident that

λ1 = inf
u∈D̃s,p(Ω)
‖u‖p,a=1

[u]pK,Ω.

Moreover Proposition 2.1.1 gives at once that

(2.1.4) λ1‖u‖pp,a ≤ [u]pK,Ω for every u ∈ D̃s,p(Ω).

In the following we put cpp,a = 1/λ1.

2.2 The perturbation f

On the perturbation f we assume condition

(F ) Let f : Ω × R → R be a Carathéodory function, f 6≡ 0, satisfying the

following properties.
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(a) There exist an exponent m ∈ (1, p), two measurable functions f0, f1

on Ω and an appropriate constant Cf > 0 such that 0 ≤ f0(x) ≤
Cfa(x), 0 ≤ f1(x) ≤ Cfa(x) a.e. in Ω and

|f(x, u)| ≤ f0(x) + f1(x)|u|m−1 for a.a. x ∈ Ω and all u ∈ R.

(b) There exists γ ∈ (p, p∗/α′) such that lim sup
u→0

|f(x, u)|
a(x)|u|γ−1

< ∞,

uniformly a.e. in Ω.

(c)

∫
Ω

F (x, u1(x))dx > 0, where F (x, u) =

∫ u

0

f(x, v)dv and u1 is the

first normalized eigenfunction given in Proposition 2.1.1.

Note that, in the more familiar and standard setting in the literature, as e.g.

in [51, 53, 65], in which a ∈ L∞(Ω), the exponent γ in (F)–(b) belongs to

the open interval (p, p∗). In any case p < p∗/α′, since α > n/ps.

As shown in [36], it is clear from (F )–(a) and (b) that problem (P1)

admits always the trivial solution since f(x, 0) = 0 a.e. in Ω, and that the

quantity

(2.2.1) Sf = ess sup
u6=0,x∈Ω

|f(x, u)|
a(x)|u|p−1

is a finite positive number. In particular,

(2.2.2) ess sup
u6=0,x∈Ω

|F (x, u)|
a(x)|u|p

≤ Sf
p

and the positive number

(2.2.3) λ? =
λ1

1 + Sf

is well defined and positive.

2.3 The energy functional

The main result of the section is proved by using the energy functional Jλ
associated to (P1), which is given by Jλ(u) = Φ(u) + λΨ(u), where

(2.3.1)

Φ(u) =
1

p
[u]pK,Ω, Ψ(u) = −H(u), H(u) = H1(u) +H2(u),

H1(u) =
1

p
‖u‖pp,a, H2(u) =

∫
Ω

F (x, u(x))dx.
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It is easy to see that the functional Jλ is well defined in D̃s,p(Ω) and of

class C1 in D̃s,p(Ω). Furthermore, for all u, ϕ ∈ D̃s,p(Ω),

〈J ′λ(u), ϕ〉 =

∫ ∫
R2n

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dxdy

− λ
∫

Ω

{
a(x)|u(x)|p−2u(x) + f(x, u(x))

}
ϕ(x)dx,

where 〈·, ·〉 denotes the duality pairing between D̃s,p(Ω) and its dual space

D̃−s,p
′
(Ω). Therefore, the critical points u ∈ D̃s,p(Ω) of the functional Jλ are

exactly the weak solutions of problem (P1).

Lemma 2.3.1. The functional Φ : D̃s,p(Ω) → R is convex, weakly lower

semicontinuous and of class C1 in D̃s,p(Ω).

Moreover, Φ′ : D̃s,p(Ω)→ D̃−s,p
′
(Ω) verifies the (S+) condition, i.e., for

every sequence (uk)k ⊂ D̃s,p(Ω) such that uk ⇀ u weakly in D̃s,p(Ω) and

(2.3.2) lim sup
k→∞

〈Φ′(uk), uk − u〉 ≤ 0,

then uk → u strongly in D̃s,p(Ω).

Proof. A simple calculation shows that the functional Φ is convex and of

class C1 in D̃s,p(Ω). Hence, in particular Φ is weakly lower semicontinuous

in D̃s,p(Ω), see Corollary 3.9 of [23].

Let (uk)k be a sequence in D̃s,p(Ω) as in the statement. Therefore, we

have Φ(u) ≤ lim inf Φ(uk), being Φ weakly lower semicontinuous in D̃s,p(Ω).

Furthermore, the linear functional 〈Φ′(u), ·〉 : D̃s,p(Ω) → R is in D̃−s,p
′
(Ω),

since (x, y) 7→ |u(x) − u(y)|p−1|x − y|−(n+ps)/p′ ∈ Lp
′
(R2n), so that also

(x, y) 7→ |u(x)−u(y)|p−1K(x−y)1/p′ ∈ Lp′(R2n) by (K). Hence, since uk ⇀ u

in D̃s,p(Ω) as k →∞,

(2.3.3) 〈Φ′(u), uk − u〉 = o(1) as k →∞.

Therefore, 0 ≤ lim supk→∞ 〈Φ′(uk)−Φ′(u), uk−u〉 ≤ 0 by convexity and (2.3.2).

In other words,

(2.3.4) lim
n→∞

〈Φ′(uk)− Φ′(u), uk − u〉 = 0.

Combining (2.3.3) with (2.3.4), we get

(2.3.5) lim
k→∞
〈Φ′(uk), uk − u〉 = 0.
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By the convexity of Φ we have Φ(u) + 〈Φ′(uk), uk − u〉 ≥ Φ(uk) for all k, so

that Φ(u) ≥ lim supk→∞Φ(uk) by (2.3.5). In conclusion,

(2.3.6) Φ(u) = lim
k→∞

Φ(uk).

Furthermore (2.3.4) implies that the sequence

k 7→ Uk(x, y) =
{
|uk(x)− uk(y)|p−2(uk(x)− uk(y))

−|u(x)− u(y)|p−2(u(x)− u(y))
}
·

× (uk(x)− u(x)− uk(y) + u(y))K(x− y)

converges to 0 in L1(R2n).

Fix now a subsequence (ukj)j of (uk)k. Hence, up to a further subsequence

if necessary, Ukj(x, y)→ 0 a.e. in R2n, and so ukj(x)− ukj(y)→ u(x)− u(y)

for a.a. (x, y) ∈ R2n. Indeed, fixing x, y ∈ Rn, with x 6= y and Ukj(x, y)→ 0,

and putting ukj(x)− ukj(y) = ξj and u(x)− u(y) = ξ, we get

(2.3.7)
(
|ξj|p−2ξj − |ξ|p−2ξ

)
· (ξj − ξ)→ 0,

since K > 0 by (K). Hence (ξj)j is bounded in R. Otherwise, up to a

subsequence, (
|ξj|p−2ξj − |ξ|p−2ξ

)
· (ξj − ξ) ∼ |ξj|p →∞,

which is obviously impossible. Therefore, (ξj)j is bounded and possesses a

subsequence (ξji)i, which converges to some η ∈ R. Thus (2.3.7) implies at

once that
(
|η|p−2ηj−|ξ|p−2ξ

)
· (η− ξ) = 0 and the strict convexity of t 7→ |t|p

yields η = ξ. This also shows that actually the entire sequence (ξj)j converges

to ξ.

Consider the sequence (gkj)j in L1(R2n) defined pointwise by

gkj(x, y) =

{
1

2

(
|ukj(x)− ukj(y)|p + |u(x)− u(y)|p

)
−
∣∣∣∣ukj(x)− ukj(y)− u(x) + u(y)

2

∣∣∣∣p}K(x− y).

By convexity gkj ≥ 0 and we have gkj(x, y) → |u(x) − u(y)|pK(x − y) for

a.a. (x, y) ∈ R2n as k → ∞. Therefore, by the Fatou lemma and (2.3.6) we

get that

pΦ(u) ≤ lim inf
j→∞

∫ ∫
R2n

gkj(x, y)dxdy = pΦ(u)

− 1

2p
lim sup
j→∞

∫ ∫
R2n

∣∣ukj(x)− ukj(y)− u(x) + u(y)
∣∣pK(x− y)dxdy.
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Hence, lim supj→∞[ukj−u]K,Ω ≤ 0, that is limj→∞[ukj−u]K,Ω = 0. Since (ukj)j
is an arbitrary subsequence of (uk)k, this shows that actually the entire se-

quence (uk)k converges strongly to u in D̃s,p(Ω), as required.

If Ψ(v) < 0 at some v ∈ D̃s,p(Ω), that is Ψ−1(I0) is non–empty, where I0 =

(−∞, 0) = R−, then the crucial positive number

(2.3.8) λ? = inf
u∈Ψ−1(I0)

− Φ(u)

Ψ(u)

is well defined.

Lemma 2.3.2. If (F)–(a), (b) and (c) hold, then Ψ−1(I0) is non–empty and

moreover λ? ≤ λ? < λ1.

Proof. By (F)–(c) it follows that

H(u1) >
1

p
, i.e. u1 ∈ Ψ−1(I0).

Hence, λ? is well defined. Again by (F)–(c) and Proposition 2.1.1

λ? = inf
u∈Ψ−1(I0)

− Φ(u)

Ψ(u)
≤ Φ(u1)

H(u1)
=

[u1]pK,Ω
pH(u1)

< [u1]pK,Ω = λ1,

as required. Finally, by (F)–(a), (b), (2.1.4), (2.2.2) and (2.3.1) we have

Φ(u)

|Ψ(u)|
≥

[u]pK,Ω
(1 + Sf )‖u‖pp,a

≥ λ1

1 + Sf
= λ?

for all u ∈ D̃s,p(Ω), with u 6= 0. Hence, in particular λ? ≥ λ?.

Lemma 2.3.3. If (F)–(a) holds, then H′1, H′2, Ψ′ : D̃s,p(Ω)→ D̃−s,p
′
(Ω) are

compact and H1, H2, Ψ are sequentially weakly continuous in D̃s,p(Ω).

Proof. Since Ψ = −H, it is enough to prove the lemma for H. Of course, we

have H′ = H′1 +H′2, where

〈H′1(u), v〉 =

∫
Ω

a(x)|u|p−2uv dx and 〈H′2(u), v〉 =

∫
Ω

f(x, u)v dx,
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for all u, v ∈ D̃s,p(Ω). Since H′1 and H′2 are continuous, thanks to the re-

flexivity of D̃s,p(Ω) it is sufficient to show that H′1 and H′2 are weak–to–

strong sequentially continuous, i.e. if (uk)k, u are in D̃s,p(Ω) and uk ⇀ u

in D̃s,p(Ω) as k → ∞, then we get that ‖H′1(uk) −H′1(u)‖D̃−s,p′ (Ω) → 0 and

‖H′2(uk)−H′2(u)‖D̃−s,p′ (Ω) → 0 as k →∞. To this aim, fix (uk)k ⊂ D̃s,p(Ω),

with uk ⇀ u in D̃s,p(Ω).

From the fact that uk → u in Lp(Ω, a) by (2.1.1), then ‖uk‖p,a → ‖u‖p,a,
or equivalently, ‖vk‖p′,a → ‖v‖p′,a, where vk = |uk|p−2uk and similarly v =

|u|p−2u. We claim that vk → v in Lp
′
(Ω, a). Indeed, fix any subsequence (vkj)j

of (vk)k. The related subsequence (ukj)j of (uk)k converges in Lp(Ω, a) and

admits a subsequence, say (ukji )i, converging to u a.e. in Ω. Hence, the

corresponding subsequence (vkji )i of (vkj)j converges to v a.e. in Ω. There-

fore, being 1 < p′ < ∞, by the Clarkson and Mil’man theorems it follows

that vkji ⇀ v in Lp
′
(Ω, a), since the sequence (‖vk‖p′,a)k is bounded, and so by

Radon’s theorem we get that vkji → v in Lp
′
(Ω, a), since ‖vk‖p′,a → ‖v‖p′,a.

This shows the claim, since the subsequence (vkj)j of (vk)k is arbitrary.

Now, for all ϕ ∈ D̃s,p(Ω), with [ϕ]K,Ω = 1, by Hölder’s inequality,

|〈H′1(uk)−H′1(u), ϕ〉| ≤
∫

Ω

a1/p′ |vk − v| · a1/p|ϕ|dx ≤ ‖vk − v‖p′,a‖ϕ‖p,a

≤ cp,a‖vk − v‖p′,a,

where cpp,a = 1/λ1 is the Sobolev constant for the embedding D̃s,p(Ω) ↪→
Lp(Ω, a) by (2.1.3) and (2.1.4). Therefore, ‖H′1(un) − H′1(u)‖D̃−s,p′ (Ω) → 0

as k →∞ and H′1 is compact.

Similarly, uk → u in Lm(Ω, a), since the embedding D̃s,p(Ω) ↪→ Lm(Ω, a)

is compact, being Lp(Ω, a) ↪→ Lm(Ω, a) continuous, since 1 < m < p by

assumption (F)–(a). Indeed ‖v‖m,a ≤ ‖a‖1/m−1/p
1 ‖v‖p,a for all v ∈ Lp(Ω, a)

by Hölder’s inequality and the fact that a ∈ Lα(Ω) ⊂ L1(Ω), Ω is bounded

and α > n/ps > 1. Clearly, the Nemytskii operator Nf : Lm(Ω, a) →
Lm

′
(Ω, a1/(1−m)) given by Nf (u) = f(·, u(·)) for all u ∈ Lm(Ω, a) is well de-

fined thanks to (F)–(a). We assert that Nf (uk)→ Nf (u) in Lm
′
(Ω, a1/(1−m))

as k → ∞. Indeed, fix a subsequence (ukj)j of (uk)k. Hence, there ex-

ists a subsequence, still denoted by (ukj)j, such that ukj → u a.e. in Ω

and |ukj | ≤ h a.e. in Ω for all j ∈ N and some h ∈ Lm(Ω, a). In particu-

lar, |Nf (ukj) − Nf (u)|m′a1/(1−m) → 0 a.e. in Ω, being f(x, ·) continuous for

a.a. x ∈ Ω. Furthermore, |Nf (ukj)−Nf (u)|m′a1/(1−m) ≤ κa(1+hm) ∈ L1(Ω),

κ = (2Cf )
m′2m

′−1, by (F)–(a), being a ∈ Lα(Ω) ⊂ L1(Ω), since Ω is
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bounded and α > n/ps > 1. This shows the assertion, since 1 < m < p

by assumption (F)–(a). Hence, by the dominated convergence theorem,

we have Nf (ukj) → Nf (u) in Lm
′
(Ω, a1/(1−m)). Therefore the entire se-

quence Nf (uk)→ Nf (u) in Lm
′
(Ω, a1/(1−m)) as k →∞.

Finally, for all ϕ ∈ D̃s,p(Ω), with [ϕ]K,Ω = 1, we have by Hölder’s inequal-

ity,

|〈H′2(uk)−H′2(u), ϕ〉| ≤
∫

Ω

a−1/m|Nf (uk)−Nf (u)| · a1/m|ϕ|dx

≤ ‖Nf (uk)−Nf (u)‖m′,a1/(1−m)‖ϕ‖m,a
≤ cp,a‖a‖1/m−1/p

1 ‖Nf (uk)−Nf (u)‖m′,a1/(1−m) ,

where cp,a is given in (2.1.4). Thus, ‖H′2(uk)−H′2(u)‖D̃−s,p′ (Ω) → 0 as k →∞,

that is H′2 is compact.

Since by the above steps H′ = H′1 +H′2 is compact, then H is sequentially

weakly continuous by [98, Corollary 41.9], being D̃s,p(Ω) reflexive.

Lemma 2.3.4. Under the assumption (F)–(a) the energy functional Jλ(u) =

Φ(u) + λΨ(u) is coercive for every λ ∈ (−∞, λ1).

Proof. Fix λ ∈ (−∞, λ1). Then by (2.1.4) and (F)–(a)

(2.3.9)

Jλ(u) ≥ 1

p

(
1− λ

λ1

)
[u]pK,Ω − |λ|

∫
Ω

|F (x, u)|dx

≥ 1

p

(
1− λ

λ1

)
[u]pK,Ω − |λ|

∫
Ω

f0(x)dx

− |λ|
∫

Ω

[
f0(x) +

f1(x)

m

]
|u|mdx

≥ 1

p

(
1− λ

λ1

)
[u]pK,Ω − |λ|C1 − |λ|C2[u]mK,Ω,

where C1 = ‖f0‖1, C2 = cmα′m‖f0 + f1/m‖α and cα′m denotes the Sobolev

constant of the compact embedding D̃s,p(Ω) ↪→ Lα
′q(Ω), being α′m < p∗.

Note that C1 <∞, since f0 ∈ Lα(Ω) ⊂ L1(Ω), by (F)–(a), being Ω bounded

and α > n/ps > 1. This shows the assertion, since 1 < m < p by the

assumption (F)–(a).

2.4 The main result

In this section we prove an existence theorem for (P1) as an application

of the principal abstract Theorem 2.1–(ii), Part (a) in [36], which represents
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the differential version of the Arcoya and Carmona Theorem 3.4 in [5]. In

order to simplify the notation let us introduce the main auxiliary functions

(2.4.1)

ϕ1(r) = inf
u∈Ψ−1(Ir)

inf
v∈Ψ−1(r)

Φ(v)− Φ(u)

Ψ(u)− r
, Ir = (−∞, r),

ϕ2(r) = sup
u∈Ψ−1(Ir)

inf
v∈Ψ−1(r)

Φ(v)− Φ(u)

Ψ(u)− r
, Ir = (r,∞),

which are well–defined for all r ∈
(

inf
u∈D̃s,p(Ω)

Ψ(u), sup
u∈D̃s,p(Ω)

Ψ(u)
)
, see [5, 36].

Theorem 2.4.1. Assume (F)–(a) and (b).

(i) If λ ∈ [0, λ?), where λ? is defined in (2.2.3), then (P1) has only the

trivial solution.

(ii) If f satisfies also (F)–(c), then problem (P1) admits at least two non-

trivial solutions for every λ ∈ (λ?, λ1), where λ? < λ1 is given in (2.3.8).

Proof. (i) Let u ∈ D̃s,p(Ω) be a nontrivial weak solution of the problem (P1),

then∫ ∫
R2n

|u(x)− u(y)|p−2(u(x)− u(y)) · (ϕ(x)− ϕ(y)) ·K(x− y)dxdy

= λ

∫
Ω

{a(x)|u|p−2u+ f(x, u)}ϕdx

for all ϕ ∈ D̃s,p(Ω). Take ϕ = u and put Ω0 = {x ∈ Ω : u(x) 6= 0}, so that

λ1[u]pK,Ω = λ1λ

(
‖u‖pp,a +

∫
Ω0

f(x, u)

a(x)|u|p−1
a(x)|u|pdx

)
≤ λ1λ (1 + Sf ) ‖u‖pp,a

≤ λ (1 + Sf ) [u]pK,Ω

by (2.1.4) and (2.2.1). Therefore λ ≥ λ? by (2.2.3), as required.

(ii) The functional Φ is clearly convex, Φ is also weakly lower semi-

continuous in D̃s,p(Ω) and Φ′ verifies condition (S+), as already proved in

Lemma 2.3.1. Furthermore, Ψ′ : D̃s,p(Ω)→ D̃−s,p
′
(Ω) is compact and Ψ is se-

quentially weakly continuous in D̃s,p(Ω) by Lemma 2.3.3. The functional Jλ
is coercive for every λ ∈ I, where I = (−∞, λ1), thanks to Lemma 2.3.4.
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We claim that Ψ(D̃s,p(Ω)) ⊃ R−0 . Indeed, Ψ(0) = 0 and by (F)–(a)

Ψ(u) ≤ −1

p
‖u‖pp,a +

∫
Ω

|F (x, u)|dx ≤ −1

p
‖u‖pp,a + ‖f0‖1 + 2Cf

∫
Ω

a(x)|u|mdx

≤ −1

p
‖u‖pp,a + ‖f0‖1 + 2Cf‖a‖(p−m)/p

1 ‖u‖mp,a,

since a ∈ Lα(Ω) ⊂ L1(Ω), being α > n/ps > 1 and Ω bounded. Therefore,

lim
u∈D̃s,p(Ω), ‖u‖p,a→∞

Ψ(u) = −∞,

being m < p. Hence, the claim follows by the continuity of Ψ.

Thus, (inf Ψ, sup Ψ) ⊃ R−0 . For every u ∈ Ψ−1(I0) we have

ϕ1(r) ≤ Φ(u)

r −Ψ(u)
for all r ∈ (Ψ(u), 0),

so that

lim sup
r→0−

ϕ1(r) ≤ − Φ(u)

Ψ(u)
for all u ∈ Ψ−1(I0).

In other words, by (2.3.8) and (2.4.1)

(2.4.2) lim sup
r→0−

ϕ1(r) ≤ ϕ1(0) = λ?.

From (F)–(b) and L’Hôpital rule

lim sup
u→0

|F (x, u)|
a(x)|u|γ

<∞ uniformly a.e. in Ω,

so that using also (F)–(a) and again (b), that is (2.2.1), it follows the exis-

tence of a positive real number L > 0 such that

(2.4.3) |F (x, u)| ≤ La(x)|u|γ for a.a. x ∈ Ω and all u ∈ R.

The embedding D̃s,p(Ω) ↪→ Lγ(Ω, a) is continuous, since γ ∈ (p, p∗/α′)

by (F)–(b). Indeed, by Hölder’s inequality

‖u‖γγ,a ≤ |Ω|1/℘‖a‖α‖u‖
γ
p∗ ≤ c[u]γK,Ω

for all u ∈ D̃s,p(Ω), where c = cγp∗|Ω|1/℘‖a‖α and cp∗ is the Sobolev constant

of the continuous embedding D̃s,p(Ω) ↪→ Lp
∗
(Ω) and ℘ is the crucial exponent

℘ =
α′p∗

p∗ − γα′
> 1,
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being γ ∈ (p, p∗/α′) by (F)–(b). Hence, by (2.4.3)

(2.4.4) |Ψ(u)| ≤ 1

pλ1

[u]pK,Ω + C[u]γK,Ω,

for every u ∈ D̃s,p(Ω), where C = c L. Therefore, given r < 0 and v ∈ Ψ−1(r),

we get

(2.4.5) r = Ψ(v) ≥ − 1

pλ1

[v]pK,Ω − C[v]γK,Ω = − 1

λ1

Φ(v)− κΦ(v)γ/p,

where κ = Cpγ/p. Since the functional Φ is bounded below, coercive and lower

semicontinuous on the reflexive Banach space D̃s,p(Ω), it is easy to see that Φ

is also coercive on the sequentially weakly closed non–empty set Ψ−1(r), see

Lemma 2.3.3. Therefore, by Theorem 6.1.1 of [21], there exists ur ∈ Ψ−1(r)

such that Φ(ur) = inf
v∈Ψ−1(r)

Φ(v). Taking u ≡ 0 ∈ Ψ−1(Ir) in (2.4.1), we have

ϕ2(r) ≥ −1

r
inf

v∈Ψ−1(r)
Φ(v) =

Φ(ur)

|r|
.

Hence (2.4.5), evaluated at v = ur and divided by r < 0, gives

1 ≤ 1

λ1

· Φ(ur)

|r|
+ κ|r|γ/p−1

(
Φ(ur)

|r|

)γ/p
≤ ϕ2(r)

λ1

+ κ|r|γ/p−1ϕ2(r)γ/p.

There are now two possibilities to be considered: either ϕ2 is locally bounded

at 0−, so that the above inequality shows at once that

lim inf
r→0−

ϕ2(r) ≥ λ1,

being γ > p by (F)–(b), or lim supr→0− ϕ2(r) =∞. In both cases (2.4.2) and

Lemma 2.3.2 yield

lim sup
r→0−

ϕ1(r) ≤ λ? < λ1 ≤ lim sup
r→0−

ϕ2(r).

Hence for all integers k ≥ k? = 1+[2/(λ1−λ?)] there exists a number rk < 0

so close to zero that ϕ1(rk) < λ? + 1/k < λ1 − 1/k < ϕ2(rk). In particular,

(2.4.6) [λ? + 1/k, λ1 − 1/k] ⊂ (ϕ1(rk), ϕ2(rk)) ∩ I = (ϕ1(rk), ϕ2(rk))

for all k ≥ k?. Therefore, since all the assumptions of Theorem 2.1–(ii),

Part (a), in [36] are satisfied and u ≡ 0 is a critical point of Jλ, problem (P1)
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admits at least two nontrivial solutions for all λ ∈ (ϕ1(rk), ϕ2(rk)) and for

all k ≥ k?. In conclusion, problem (P1) admits at least two nontrivial

solutions for all λ ∈ (λ?, λ1) as required, being

(λ?, λ1) =
∞⋃

k=k?

[λ? + 1/k, λ1 − 1/k] ⊂
∞⋃

k=k?

(ϕ1(rk), ϕ2(rk))

by (2.4.6).

Taking inspiration from [36], also in this new setting we can derive an

interesting consequence from the main Theorem 2.4.1 for a simpler problem.

Let us therefore replace (F)–(c) by the next condition much easier to verify.

(F)–(c′) Assume there exist x0 ∈ Ω, t0 ∈ R and r0 > 0 so small that the

closed ball B0 = {x ∈ Rn : |x− x0| ≤ r0} is contained in Ω and

ess inf
B0

F (x, |t0|) = µ0 > 0, ess sup
B0

max
|t|≤|t0|

|F (x, t)| = M0 <∞.

Clearly, when f does not depend on x, condition (F)–(c′) simply reduces to

the request that F (t0) > 0 at a point t0 ∈ R.

Corollary 2.4.2. Assume that f : Ω × R → R satisfies (F)–(a), (b). Con-

sider the problem

(2.4.7)

{
−LKu = λf(x, u) in Ω,

u = 0 in Rn \ Ω.

(i) If λ ∈ [0, `?), where `? = λ1/Sf , then (2.4.7) has only the trivial solu-

tion.

(ii) If furthermore f satisfies (F)–(c′), then there exists `? ≥ `? such

that (2.4.7) admits at least two nontrivial solutions for all λ ∈ (`?,∞).

Proof. The energy functional Jλ associated to problem (2.4.7) is simply given

by Jλ(u) = Φ(u) + λΨ2(u), where as before Ψ2(u) = −
∫

Ω

F (x, u(x))dx,

see (2.3.1). First, note that Jλ is coercive for every λ ∈ R. Indeed, by (2.3.9)

Jλ(u) ≥ 1

p
[u]pK,Ω − |λ|

∫
Ω

|F (x, u)|dx ≥ 1

p
[u]pK,Ω − |λ|C1 − |λ|C2[u]mK,Ω,
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where C1 and C2 are as in (2.3.9). Hence Jλ(u) → ∞ as [u]K,Ω → ∞,

since 1 < m < p by (F)–(a). In conclusion, here I = R, as claimed.

The part (i) of the statement is proved using the same argument produced

for the proof of Theorem 2.4.1–(i), being

λ1[u]pK,Ω = λ1λ

∫
Ω

f(x, u)udx ≤ λ1λSf‖u‖pp,a ≤ λSf [u]pK,Ω

by (2.1.4) and (2.2.1). Thus, if u is a nontrivial weak solution of (2.4.7), then

necessarily λ ≥ `? = λ1/Sf , as required.

In order to prove (ii), we first show that there exists u0 ∈ D̃s,p(Ω) such

that Ψ2(u0) < 0, so that the crucial number

`? = ϕ1(0) = inf
u∈Ψ−1

2 (I0)
− Φ(u)

Ψ2(u)
, I0 = (−∞, 0) = R−,

is well defined. Indeed, in this special subcase (2.4.1) simply reduces to

(2.4.8)

ϕ1(r) = inf
u∈Ψ−1

2 (Ir)

inf
v∈Ψ−1

2 (r)
Φ(v)− Φ(u)

Ψ2(u)− r
, Ir = (−∞, r),

ϕ2(r) = sup
u∈Ψ−1

2 (Ir)

inf
v∈Ψ−1

2 (r)
Φ(v)− Φ(u)

Ψ2(u)− r
, Ir = (r,∞),

Clearly t0 6= 0 in (F)–(c′). Now take σ ∈ (0, 1) and put

B = {x ∈ Rn : |x− x0| ≤ σr0}, B1 = {x ∈ Rn : |x− x0| ≤ r1} ,

where r1 = (1 + σ)r0/2. Hence B ⊂ B1 ⊂ B0. Set v0(x) = |t0|χB1(x) and

denote by ρε the convolution kernel of fixed radius ε, with 0 < ε < (1−σ)r0/2.

Define

u0(x) = ρε ∗ v0(x),

so that u0(x) = |t0| for all x ∈ B, 0 ≤ u0(x) ≤ |t0| for all x ∈ Ω, u0 ∈ C∞0 (Ω)

and suppu0 ⊂ B0. Therefore, u0 ∈ D̃s,p(Ω) by (K). From (F)–(c′) we also

have

Ψ2(u0) = −
∫
B

F (x, |t0|)dx−
∫
B0\B

F (x, u0(x)) dx ≤M0

∫
B0\B

dx− µ0

∫
B

dx

≤ ωNr
n
0 [M0(1− σn)− µ0σ

n] .
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Hence, for σ ∈ (0, 1) so large that σn > M0/(µ0 +M0), we have Ψ2(u0) < 0,

as claimed.

Furthermore, by (2.1.4), (2.2.2) and (2.3.1), we have for all u ∈ D̃s,p(Ω),

with u 6≡ 0,
Φ(u)

|Ψ2(u)|
≥

[u]pK,Ω
Sf‖u‖pp,a

≥ λ1

Sf
= `?.

Thus, `? ≥ `?.

In particular, for ϕ1 given now by (2.4.8) and for all u ∈ Ψ−1
2 (I0), we get

ϕ1(r) ≤ Φ(u)

r −Ψ2(u)
for all r ∈ (Ψ2(u), 0).

Therefore,

lim sup
r→0−

ϕ1(r) ≤ ϕ1(0) = `?,

which is the analog of (2.4.2).

Also in this setting (2.4.3) holds and (2.4.4) simply reduces to

|Ψ2(u)| ≤ C[u]γK,Ω.

Taken r < 0 and v ∈ Ψ−1
2 (r), we obtain

r = Ψ2(v) ≥ −C[v]γK,Ω ≥ −C (pΦ(v))γ/p .

Therefore, by (2.4.8), since u ≡ 0 ∈ Ψ−1
2 (Ir),

ϕ2(r) ≥ 1

|r|
inf

v∈Ψ−1
2 (r)

Φ(v) ≥ κ|r|p/γ−1,

where κ = C−p/γ/p. This implies that lim
r→0−

ϕ2(r) = ∞, being γ > p by

assumption (F)–(b).

In conclusion, we have proved that

lim sup
r→0−

ϕ1(r) ≤ ϕ1(0) = `? < lim
r→0−

ϕ2(r) =∞.

This shows that for all integers k ≥ k? = 2 + [`?] there exists rk < 0 so close

to zero that ϕ1(rk) < `? + 1/k < k < ϕ2(rk). Hence, all the assumptions

of Theorem 2.1–(ii), Part (a) are satisfied and, being u ≡ 0 a critical point

of Jλ and I = R, problem (2.4.7) admits at least two nontrivial solutions for

all

λ ∈
∞⋃

k=k?

(ϕ1(rk), ϕ2(rk)) ⊃
∞⋃

k=k?

[`? + 1/k, k] = (`?,∞),

as stated.
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Chapter 3

Problem (P2)

In this chapter, inspired by [11] and the fact that several interesting ques-

tions arise from the search of nontrivial non–negative (weak) solutions, we

deal with existence and multiplicity of nontrivial non–negative entire solu-

tions of a Kirchhoff eigenvalue problem, involving critical nonlinearities and

nonlocal elliptic operators. More precisely, we consider the problem

(P2)

M ([u]pK) (−LKu) = λw(x)|u|q−2u− h(x)|u|r−2u in Rn,

[u]pK =

∫ ∫
R2n

|u(x)− u(y)|pK(x− y) dxdy,

where λ ∈ R, 0 < s < 1, ps < n and LK is an integro–differential nonlocal

operator, defined as in the Introduction.

3.1 Notations and main results

The nonlinear terms in (P2) are related to the main elliptic part by the

request that

(3.1.1) p < q < min{r, p∗},

where p∗ = np/(n − ps) is the critical Sobolev exponent for W s,p(Rn). The

weight w verifies

(3.1.2) w ∈ L℘(Rn) ∩ Lσloc(Rn), with ℘ = p∗/(p∗ − q), σ > ℘,

while h is a positive weight of class L1
loc(Rn). Finally, h and w are related by

the condition

(3.1.3)

∫
Rn

[
w(x)r

h(x)q

]1/(r−q)

dx = H ∈ R+.

23
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The Kirchhoff function M : R+
0 → R+

0 verifies the following condition.

(M) M is an increasing and continuous function, with M(τ) > 0 for τ ≥ 0

and M (τ) =
∫ τ

0
M(s)ds.

In this chapter we cover only the non–degenerate case, as in [52]. From now

on we put M(0) = m0 and recall that m0 > 0 by (M). We refer to [35, 6, 7]

for further details and references.

In (P2) the Kirchhoff function M , which represents the elastic tension

term, depends on the Gagliardo fractional norm [ · ]K arising from general

kernel K and generating nonlocal operators LK . It is clear from symmetry

properties that if u is a solution of (P2) also −u is a solution of (P2). The

main result of the chapter is

Theorem 3.1.1. Under the above assumptions there exists λ > 0 such that

problem (P2) admits at least two nontrivial non–negative entire solutions for

all λ > λ, one of which is a global minimizer of the underlying functional Jλ
of (P2) and the latter independent solution uλ is a Mountain Pass critical

point of Jλ. In particular, ‖uλ‖ → 0 as λ → ∞, where ‖ · ‖ is the natural

solution space norm of (P2). Moreover, there exist λ∗ and λ∗∗, satisfying

0 < λ∗ ≤ λ∗∗ ≤ λ and such that

(i) problem (P2) possesses only the trivial solution if λ < λ∗;

(ii) problem (P2) admits a nontrivial non–negative entire solution if and

only if λ ≥ λ∗∗.

In Section 3.2 we define the main solution space Y and give some prelim-

inary results, from which we derive (i) of Theorem 3.1.1. In Section 3.4 we

prove the existence of λ > 0 such that for all λ > λ problem (P2) admits a

first nontrivial non–negative entire solution and then, thanks to a modified

version of the Mountain Pass Theorem established in [12], we construct a

second independent nontrivial non–negative entire solution uλ of (P2). We

end Section 3.4 by proving the asymptotic property for uλ stated in Theo-

rem 3.1.1. Finally in Section 3.5 we prove part (ii) of Theorem 3.1.1.

3.2 Solution space and preliminaries

Denote with Y the completion of C∞0 (Rn) with respect to the norm

‖u‖ =
(
[u]pK + ‖u‖pr,h

)1/p
, where ‖u‖rr,h =

∫
Rn
h(x)|u|rdx.
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The embedding

(3.2.1) Y ↪→ Ds,p
K (Rn) is continuous,

with [u]K ≤ ‖u‖ for all u ∈ Y . In particular, by (1.1.1) and (1.1.3),

Y ↪→ Ds
K(Rn) ↪→ Lp

∗
(Rn).

Moreover, for all R > 0 and ν ∈ [1, p∗) the embedding

(3.2.2) Ds,p
K (Rn) ↪→↪→ Lν(BR)

is compact. Indeed, Ds,p
K (Rn) ↪→ Ds,p(Rn) ↪→ W s,p(BR) by (1.1.3) and the

embedding W s,p(BR) ↪→↪→ Lν(BR) is compact for all ν ∈ [1, p∗) by Corol-

lary 7.2 of [40].

Proposition 3.2.1. The Banach space (Y, ‖ · ‖) is reflexive.

Proof. We proceed as in the proof of Proposition A.11 in [12]. The product

space Z = Ds,p
K (Rn)×Lr(Rn, h), endowed with the norm ‖u‖Z = [u]K+‖u‖r,h,

is a reflexive Banach space by Theorem 1.22–(ii) of [2], since both Ds,p
K (Rn)

and Lr(Rn, h) are uniformly convex Banach spaces (see also Proposition A.6

in [12]).

The operator T : (Y, ‖ · ‖Z) → (Z, ‖ · ‖Z), T (u) = (u, u), is well defined,

linear and isometric. Therefore, T (Y ) is a closed subspace of the reflexive

space Z, and so T (Y ) is reflexive by Theorem 1.21–(ii) of [2]. Consequently,

(Y, ‖ · ‖Z) is reflexive, being isomorphic to a reflexive Banach space. Finally,

we conclude that also (Y, ‖ · ‖) is reflexive, because reflexivity is preserved

under equivalent norms, being ‖u‖ ≤ ‖u‖Z ≤ 2‖u‖ for all u ∈ Y .

The next proposition is given for functions in Y , but of course continues

to be valid also in the main fractional weighted Sobolev space Ds,p
K (Rn).

Proposition 3.2.2. If (uk)k, u ∈ Y and uk ⇀ u in Y , then, up to a subse-

quence, uk → u a.e. in Rn.

Proof. Let (uk)k and u be as in the statement. Then, uk → u as k → ∞
in Lν(BR) for all R > 0 and ν ∈ [1, p∗) by (3.2.1) and (3.2.2). In particular,

in correspondence to R = 1 there exists a subsequence (u1,k)k of (uk)k such

that u1,k → u a.e. in B1. Clearly u1,k ⇀ u in Y and so, in correspondence to

R = 2, there exists a subsequence (u2,k)k of (u1,k)k such that u2,k → u a.e.

in B2, and so on. The diagonal subsequence (uk,k)k of (uk)k, constructed by

induction, converges to u a.e. in Rn as k →∞.
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We also have the following main embedding result.

Lemma 3.2.3. The embedding Ds,p
K (Rn) ↪→↪→ Lq(Rn, w) is compact, with

(3.2.3) ‖u‖q,w ≤ Cw[u]K for all u ∈ Ds,p
K (Rn),

and Cw = Cp∗‖w‖1/q
℘ K

−1/p
0 > 0. Furthermore, also the embedding

Y ↪→↪→ Lq(Rn, w)

is compact.

Proof. By (3.1.2), (1.1.1), (1.1.3) and Hölder’s inequality, for all u ∈ Ds,p
K (Rn),

‖u‖q,w ≤
(∫

Rn
w(x)℘dx

)1/℘q

·
(∫

Rn
|u|p∗dx

)1/p∗

≤ Cp∗‖w‖1/q
℘ [u]s,p

≤ Cp∗‖w‖1/q
℘ K

−1/p
0 [u]K ,

that is (3.2.3) holds.

Let us now show that ‖uk − u‖q,w → 0 as k → ∞ whenever uk ⇀ u

in Ds,p
K (Rn). By Hölder’s inequality,∫

Rn\BR
w(x)|uk − u|qdx ≤M

(∫
Rn\BR

w(x)℘dx

)1/℘

= o(1)

as R→∞, being w ∈ L℘(Rn) by (3.1.2) and M = supk ‖uk−u‖
q
p∗ <∞. For

all ε > 0 there exists Rε > 0 so large that sup
k

∫
Rn\BRε

w(x)|uk − u|qdx < ε/2.

Moreover, by (3.1.2), Hölder’s inequality and (3.2.2) we have∫
BRε

w(x)|uk − u|q dx ≤ ‖w‖Lσ(BRε )‖uk − u‖qLσ′q(BRε )
= o(1)

as k →∞, since σ′q < p∗. Hence, there exists kε > 0 such that∫
BRε

w(x)|uk − u|q dx < ε/2

for all k ≥ kε. In conclusion, for all k ≥ kε

‖uk − u‖qq,w =

∫
Rn\BRε

w(x)|uk − u|q dx+

∫
BRε

w(x)|uk − u|q dx < ε,

as required.

The last part of the lemma follows at once by (3.2.1).
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An entire (weak) solution u of (P2) is a function in Y such that

(3.2.4) M([u]pK)〈u, ϕ〉K = λ

∫
Rn
w(x)|u|q−2uϕdx−

∫
Rn
h(x)|u|r−2uϕdx,

for all ϕ ∈ Y , where 〈·, ·〉K is given in (1.1.2).

Lemma 3.2.4. If λ ∈ R and u = uλ ∈ Y \ {0} satisfies

(3.2.5) M([u]pK)[u]pK + ‖u‖rr,h = λ‖u‖qq,w,

then λ > 0 and

(3.2.6) κ1λ
1/(p−q) ≤ ‖uλ‖q,w ≤ κ2λ

r/p(r−q),

where κ1 and κ2 are positive constants independent of λ and uλ.

Proof. Let u ∈ Y \{0} and λ ∈ R satisfy (3.2.5). By (3.2.3), (M) and (3.2.5)

(3.2.7) ‖u‖pq,w ≤ Cpw[u]pK ≤
Cpw
m0

M([u]pK)[u]pK ≤ λ
Cpw
m0

‖u‖qq,w.

Hence, λ > 0, being u 6= 0. Moreover, λ‖u‖q−pq,w ≥ m0/C
p
w, that is

‖u‖q,w ≥ κ1λ
1/(p−q), with κ1 =

(
m0/C

p
w

)1/(q−p)
.

In other words, the first part of (3.2.6) holds true. By Young’s inequality,

ab ≤ aα

α
+
bβ

β
,

with a = h(x)q/r|u|q ≥ 0, b = λw(x)h(x)−q/r ≥ 0, α = r/q > 1 and β =

r/(r − q) > 1, we find

λw(x)|u|q ≤ q

r
h(x)|u|r +

r − q
r

(
λw(x)

h(x)q/r

)r/(r−q)
.

Integration over Rn, (M) and (3.2.5) give

m0[u]pK ≤M([u]pK)[u]pK ≤
q − r
r
‖u‖rr,h +

r − q
r

H λr/(r−q) ≤ r − q
r

H λr/(r−q),

being q < r. Since u 6≡ 0 by assumption, the last inequality and (3.2.7) yield

the second part of (3.2.6), with κ2 = [(r − q)CpwH/m0r]
1/p. This completes

the proof.
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If (P2) admits a nontrivial entire solution u ∈ Y , then λ > 0 by

Lemma 3.2.4, and actually λ ≥ λ0 by (3.2.6), where

λ0 = (κ1/κ2)p(r−q)(q−p)/q(r−p) > 0.

In the following we denote problem (P2) with the notation (Pλ
2 ), when an

explicit reference to the specific value λ is necessary.

Define

λ∗ = sup{λ > 0 : (Pµ
2 ) admits only the trivial entire solution

for all µ < λ}.

Clearly λ∗ ≥ λ0 > 0. Theorem 3.1.1–(i) follows directly from the definition

of λ∗.

3.3 The energy functional

For the proof of Theorem 3.1.1 we use variational arguments since the en-

tire solutions of (P2) are exactly the critical points of the natural underlying

energy functional Jλ associated to (Pλ
2 ), that is

(3.3.1) Jλ(u) =
1

p
M ([u]pK)− λ

q
‖u‖qq,w +

1

r
‖u‖rr,h, u ∈ Y,

where M is defined in (M). Clearly, Jλ is Gâteaux–differentiable in Y and

for all u, ϕ ∈ Y

(3.3.2)

〈J ′λ(u), ϕ〉 = M([u]pK)〈u, ϕ〉K − λ
∫
Rn
w(x)|u|q−2uϕdx

+

∫
Rn
h(x)|u|r−2uϕdx,

where 〈·, ·〉 denotes the duality pairing between Y and its dual space Y ′.

Thanks to the results of Section 3.2 from now on we assume that λ > 0,

without loss of generality.

Lemma 3.3.1. The functional Jλ : Y → R is bounded below and coercive

in Y . In particular, any sequence (uk)k in Y such that (Jλ(uk))k is bounded

admits a weakly convergent subsequence in Y .
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Proof. Let us consider the following elementary inequality: for every k1,

k2 > 0 and 0 < α < β

(3.3.3) k1|t|α − k2|t|β ≤ Cαβk1

(
k1

k2

)α/(β−α)

for all t ∈ R,

where Cαβ > 0 is a constant depending only on α and β. Taking k1 =

λw(x)/q, k2 = h(x)/pr, α = q, β = r and t = u(x) in (3.3.3), for all x ∈ Rn

we have

λ

q
w(x)|u(x)|q − h(x)

pr
|u(x)|r ≤ C λr/(r−q)

[
w(x)r

h(x)q

]1/(r−q)

,

where C = Cqr [pr/q]q/(r−q) /q. Integrating the above inequality over Rn, we

get by (3.1.3)
λ

q
‖u‖qq,w −

1

pr
‖u‖rr,h ≤ Cλ,

where Cλ = CHλr/(r−q) > 0 by Lemma 3.2.4.

Therefore, by (M) for all u ∈ Y

(3.3.4)

Jλ(u) ≥ 1

p
m0[u]pK −

λ

q
‖u‖qq,w +

1

r
‖u‖rr,h

=
1

p
m0[u]pK −

[
λ

q
‖u‖qq,w −

1

pr
‖u‖rr,h

]
− 1

pr
‖u‖rr,h +

1

r
‖u‖rr,h

≥ 1

p
m0[u]pK − Cλ +

1

pr
‖u‖rr,h

≥ 1

p
m0[u]pK +

1

pr

(
‖u‖pr,h − 1

)
− Cλ

≥ min {m0, r
−1}

p
‖u‖p − Cλ −

1

pr
.

Hence, Jλ is bounded below and coercive in Y . The last part of the lemma

follows at once by the coercivity of Jλ and the reflexivity of the space Y ,

proved in Proposition 3.2.1.

For any (x, u) ∈ Rn × R put

(3.3.5) f(x, u) = λw(x)|u|q−2u− h(x)|u|r−2u,

so that

(3.3.6) F (x, u) =

∫ u

0

f(x, v)dv =
λ

q
w(x)|u|q − h(x)

|u|r

r
.
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Lemma 3.3.2. For any fixed u ∈ Y the functional Fu : Y → R, defined by

Fu(v) =

∫
Rn
f(x, u(x))v(x)dx,

is in Y ′. In particular, if vk ⇀ v in Y then Fu(vk)→ Fu(v) as k →∞.

Proof. Fix u ∈ Y . Clearly Fu is linear. Moreover, using (3.2.3), we get for

all v ∈ Y

|Fu(v)| ≤ λ

∫
Rn
w(x)|u|q−1|v| dx+

∫
Rn
h(x)|u|r−1|v|dx

≤ λ ‖u‖q−1
q,w ‖v‖q,w + ‖u‖r−1

r,h ‖v‖r,h ≤
√

2
(
λCw‖u‖q−1

q,w + ‖u‖r−1
r,h

)
‖v‖,

and so Fu is continuous in Y .

Lemma 3.3.3. The functional Jλ : Y → R is of class C1(Y ) and Jλ is

sequentially weakly lower semicontinuous in Y , that is if un ⇀ u in Y , then

(3.3.7) Jλ(u) ≤ lim inf
k→∞

Jλ(uk).

Moreover, Jλ attains its infimum e = eλ in Y , which is an entire solution

of (Pλ
2 ).

Proof. A simple calculation shows that 1
p
M ([u]pK) is convex in Y , since M

is convex and monotone non–decreasing in R+
0 by (M) and of class C1(Y ).

Therefore, 1
p
M ([u]pK) is sequentially weakly lower semicontinuous in Y by

Corollary 3.9 of [23], so that

(3.3.8) M ([u]pK) ≤ lim inf
k→∞

M ([uk]
p
K)

along any sequence (uk)k, with uk ⇀ u in Y .

Denote with Φw the functional u 7→ ‖u‖qq,w/q. By Lemma 3.2.3 and

Theorem 3.10 of [23] we also have that Φw is weakly continuous, so that in

particular Φw is continuous in Y . Furthermore, Φw is Gâteaux–differentiable

in Y and for all u, ϕ ∈ Y

〈Φ′w(u), ϕ〉 =

∫
Rn
w(x)|u|q−2uϕ dx.

Now, let (uk)k, u ∈ Y be such that uk ⇀ u in Y and fix ϕ ∈ Y , with

‖ϕ‖ = 1. By Lemma 3.2.3 and Proposition A.8–(ii) of [12], it follows that

vk = |uk|q−2uk → v = |u|q−2u in Lq
′
(Rn, w). Therefore, by (3.2.3) we have

|〈Φ′w(uk)− Φ′w(u), ϕ〉| ≤ ‖vk − v‖q′,w‖ϕ‖q,w ≤ Cw‖vk − v‖q′,w.
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Hence, ‖Φ′w(uk)−Φ′w(u)‖Y ′ ≤ Cw‖vk− v‖q′,w, that is Φ′w(uk)→ Φ′w(u) in Y ′.

Thus, Φw is of class C1(Y ) and as k →∞

(3.3.9)

∫
Rn
w(x)|uk|q−2ukϕdx→

∫
Rn
w(x)|u|q−2uϕ dx

for all ϕ ∈ Y .

Finally, it remains to show that also the functional u 7→ ‖u‖rr,h/r, denoted

by Φh, is of class C1(Y ). The continuity of Φh follows from the continuity

of the embedding Y ↪→ Lr(Rn, h). Hence Φh is weakly lower semicontinuous

in Y again by Corollary 3.9 of [23]. On the other hand, Φh is Gâteaux–

differentiable in Y and for all u, ϕ ∈ Y

〈Φ′h(u), ϕ〉 =

∫
Rn
h(x)|u|r−2uϕ dx.

Let (uk)k, u ∈ Y be such that uk → u in Y . Then, uk → u in Lr(Rn, h), and

so vk = |uk|r−2uk → v = |u|r−2u in Lr
′
(Rn, h) by Proposition A.8–(ii) of [12].

Therefore,

‖Φ′h(uk)− Φ′h(u)‖Y ′ ≤ sup
ϕ∈Y
‖ϕ‖=1

‖vk − v‖r′,h · ‖ϕ‖r,h ≤ ‖vk − v‖r′,h = o(1)

as k →∞. This gives the C1 regularity of Φh.

Suppose now that uk ⇀ u in Y . Fix a subsequence (vkj)j of the sequence

k 7→ vk = |uk|r−2uk. Of course ukj ⇀ u in Y and by Proposition 3.2.2 there

exists a further subsequence (ukji )i such that ukji → u a.e. in Rn. Thus

vkji → v = |u|r−2u a.e. in Rn. On the other hand, (vkji )i is bounded in

Lr
′
(Rn, h), since ‖vkji‖

r′

r′,h = ‖ukji‖
r
r,h and (ukji )i is bounded in Lr(Rn, h).

Therefore, vkji ⇀ v in Lr
′
(Rn, h) by Proposition A.8–(i) of [12]. In con-

clusion, due to the arbitrariness of (vkj)i, the entire sequence vk ⇀ v in

Lr
′
(Rn, h) as k →∞. Hence, in particular for all ϕ ∈ Y

(3.3.10)

∫
Rn
h(x)|uk|r−2ukϕdx→

∫
Rn
h(x)|u|r−2uϕ dx

as k →∞.

For the second part of the lemma, let (uk)k, u ∈ Y be such that uk ⇀ u

in Y . The definition of Jλ and (3.3.6) give

Jλ(u)− Jλ(uk) =
1

p
[M ([u]pK)−M ([uk]

p
K)] +

∫
Rn

[F (x, uk)− F (x, u)]dx.
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Hence, by (3.3.8)

(3.3.11) lim sup
k→∞

[Jλ(u)− Jλ(uk)] ≤ lim sup
k→∞

∫
Rn

[F (x, uk)− F (x, u)]dx.

By (3.3.5) and (3.3.6), for all t ∈ [0, 1],

(3.3.12)

Fu(x, u+ t(uk − u)) = f(x, u+ t(uk − u))

= f(x, u) + (uk − u)

∫ t

0

fu(x, u+ τ(uk − u))dτ,

where clearly fu(x, z) = λ(q − 1)w(x)|z|q−2 − h(x)(r − 1)|z|r−2. Multiply-

ing (3.3.12) by uk − u and integrating over [0, 1], we obtain

(3.3.13)

F (x, uk)− F (x, u) = f(x, u)(uk − u)

+ (uk − u)2

∫ 1

0

(∫ t

0

fu(x, u+ τ(uk − u))dτ

)
dt.

By (3.3.3), with t = z, k1 = λw(x)(q − 1), k2 = h(x)(r − 1), α = q − 2 > 0

and β = r − 2 > 0, we get

(3.3.14) fu(x, z) ≤ 2C1w(x)2/q

[
w(x)r/q

h(x)

](q−2)/(r−q)

,

where C1 is a positive constant, depending only on q, r and λ. Consequently,

(3.3.13) yields

(3.3.15)

∫
Rn

[F (x, uk)− F (x, u)]dx ≤
∫
Rn
f(x, u)(uk − u)dx

+ C1H
(q−2)/q‖uk − u‖2

q,w,

by Hölder’s inequality and (3.1.3). Now, Lemma 3.3.2 gives

(3.3.16) lim
k→∞

∫
Rn
f(x, u)(uk − u) dx = 0,

and Lemma 3.2.3 implies

(3.3.17) lim
k→∞
‖uk − u‖q,w = 0.

Combining (3.3.15)–(3.3.17) with (3.3.11) we get the claim (3.3.7).

Finally, Corollary 3.23 of [23] yields the existence of a global minimizer

e = eλ of Jλ in Y for each λ > 0 and e is therefore an entire solution

of (P2).
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3.4 Existence of two solutions

The number

λ = inf
u∈Y

‖u‖q,w=1

{
q

p
M ([u]pK) +

q

r
‖u‖rr,h

}

is positive. Indeed, for all u ∈ Y with ‖u‖q,w = 1, by Hölder’s inequality

and (3.1.3), we have

1 = ‖u‖qq,w =

∫
Rn

w(x)

h(x)q/r
h(x)q/r|u|qdx ≤ H(r−q)/r‖u‖qr,h.

Consequently, we get

q

p
M ([u]pK) +

q

r
‖u‖rr,h ≥

m0q

p
[u]pK +

q

r
H(q−r)/q ≥ m0q

pCpw
+
q

r
H(q−r)/q.

In other words, λ ≥ m0q/pC
p
w + qH(q−r)/q/r > 0, as stated.

Lemma 3.4.1. For all λ > λ there exists a global nontrivial non–negative

minimizer e ∈ Y of Jλ with negative energy, that is Jλ(e) < 0. In particular,

e is a nontrivial non–negative entire solution of (Pλ
2 ).

Proof. By Lemma 3.3.3 for each λ > 0 there exists a global minimizer e =

eλ ∈ Y of Jλ, that is

Jλ(e) = inf
v∈Y

Jλ(v).

We prove that e 6≡ 0 whenever λ > λ, showing that Jλ(e) < 0.

Let λ > λ. Then there exists a function v ∈ Y , with ‖v‖q,w = 1, such

that

λ‖v‖qq,w = λ >
q

p
M ([v]pK) +

q

r
‖v‖rr,h,

that is

Jλ(v) =
1

p
M ([v]pK)− λ

q
‖v‖qq,w +

1

r
‖v‖rr,h < 0.

In particular, Jλ(e) ≤ Jλ(v) < 0, as required.

Hence, for any λ > λ equation (Pλ
2 ) has a nontrivial entire solution e ∈ Y

such that Jλ(e) < 0. Finally, we may assume e ≥ 0 in Rn. Indeed, |e| ∈ Y ,

being
∣∣ |e(x)| − |e(y)|

∣∣ ≤ |e(x)− e(y)| for all x, y ∈ Rn. Moreover, Jλ(|e|) ≤
Jλ(e), since [|u|]K ≤ [u]K for all u ∈ Y and so M ([|e|]pK) ≤M ([e]pK) by (M).

This gives Jλ(e) = Jλ(|e|), due to the minimality of e.
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Proposition 3.4.2. Non–negative entire solutions of (P2) are exactly the

critical points of the C1(Y ) functional

Jλ(u) =
1

p
M ([u]pK)− λ

q
‖u+‖qq,w +

1

r
‖u‖rr,h, u ∈ Y.

Proof. It is apparent from the proof of Lemma 3.3.3 that also Jλ is of class

C1(Y ). Along any non–negative function u ∈ Y we have Jλ(u) = Jλ(u),

so that non–negative entire solutions of (P2) are critical points of Jλ. To

see the vice versa, first observe that |u+(x) − u+(y)| ≤ |u(x) − u(y)| and

|u−(x) − u−(y)| ≤ |u(x) − u(y)| for all x, y ∈ Rn, so that both u+ and

u− ∈ Y for all u ∈ Y . Furthermore, for all u ∈ Y

〈u,−u−〉K =

∫ ∫
R2n

(
u+(x)u−(y) + u−(x)u+(y) + |u−(x)− u−(y)|2

)
·

× |u(x)− u(y)|p−2K(x− y)dxdy ≥ [u−]2K .

Finally, if u ∈ Y is a critical point of Jλ, then, taking ϕ = −u− ∈ Y as test

function, we get by (M)

0 = M([u]pK)〈u,−u−〉K + ‖u−‖rr,h ≥ m0[u−]pK + ‖u−‖rr,h ≥ 0,

in other words u− = 0 in Y , that is the critical point u of Jλ is non–negative

in Rn.

By Lemma 3.4.1 and Proposition 3.4.2 the global nontrivial non–negative

minimizer e ∈ Y of Jλ is also a critical point of Jλ and Jλ(e) = Jλ(e) < 0.

Lemma 3.4.3. For any v ∈ Y \ {0} and λ > 0 there exist %, depending on v

and λ, with % ∈ (0, [v]K), and α = α(%, λ) > 0 such that Jλ(u) ≥ α for

all u ∈ Y , with [u]K = %. Furthermore, also Jλ verifies the Mountain Pass

geometry stated above.

Proof. Let u be in Y , with [u]K = %. By (M) and (3.2.3)

Jλ(u) ≥ Jλ(u) ≥ m0

p
[u]pK −

λ

q
Cqw[u]qK ≥

(
m0

p
− λ

q
Cqw[u]q−pK

)
[u]pK .

Therefore, it is enough to take %, with 0 < % < min
{

(m0q/pλC
q
w)1/(q−p), [v]K

}
and the number α =

(
m0/p− λCqw%q−p/q

)
%p > 0 satisfies the assertion. The

last part of the lemma follows now at once.
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The proof of Lemma 3.4.3 in particular shows that for all λ > 0 the trivial

solution u = 0 is a strict local minimum of both Jλ and Jλ in Y . Indeed, fix

a positive number %, with % < (m0q/pλC
q
w)1/(q−2). Then for all u ∈ Y , with

0 < ‖u‖ ≤ %, by (M) and (3.2.3)

Jλ(u) ≥ Jλ(u) ≥
(
m0

p
− λ

q
Cqw%

q−p
)

[u]pK > 0,

as stated.

Proof of the first part of Theorem 3.1.1. We recall that Jλ is of

class C1(Y ) by Proposition 3.4.2. Moreover, by Lemmas 3.4.1 and 3.4.3 and

Theorem A.3 of [12], for all λ > λ there exists a sequence (uk)k in Y such

that for all k

(3.4.1)

cλ ≤Jλ(uk) ≤ cλ +
1

k2
and ‖J ′

λ(uk)‖Y ′ ≤
2

k
,

where cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) and

Γ = {γ ∈ C([0, 1];Y ) : γ(0) = 0, γ(1) = e}.

By Lemma 3.3.1 the sequence (uk)k is bounded in Y . By Propositions 3.2.1,

3.2.2, Lemma 3.2.3 and the fact that Lq(Rn, w) and Lr(Rn, h) are uniformly

convex Banach spaces in virtue of Proposition A.6 of [12], it is possible to

extract a subsequence, still relabeled (uk)k, satisfying

(3.4.2)
uk ⇀ u in Y, uk ⇀ u in Lr(Rn, h), [uk]K → `,

uk → u in Lq(Rn, w), u+
k → u+ in Lq(Rn, w),

for some u ∈ Y and some ` ∈ R+
0 , since |u+

k (x)− u+(x)| ≤ |uk(x)− u(x)| for

all x ∈ Rn. In particular, by (M)

(3.4.3) M([uk]
p
K)→M(`p) > 0 as k →∞.

We claim that ‖uk − u‖ → 0 in Y . Clearly, 〈J ′
λ(uk) −J ′

λ(u), uk − u〉 → 0

as k → ∞, since uk ⇀ u in Y and J ′
λ(uk) → 0 in Y ′ as k → ∞ by (3.4.1)

and (3.4.2). Hence, as k →∞

(3.4.4)

o(1) = 〈J ′
λ(uk)−J ′

λ(u), uk − u〉 = M([uk]
p
K)[uk]

p
K +M([u]pK)[u]pK

− 〈uk, u〉K [M([uk]
p
K) +M([u]pK)]

−
∫
Rn

[
g(x, uk)− g(x, u)

]
(uk − u)dx,
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where g(x, z) = λw(x)(z+)q−1 − h(x)|z|r−2z for (x, z) ∈ Rn+1. Thus, using

the notation (3.3.5) and putting Ik = 〈uk, u〉K [M([uk]
p
K) +M([u]pK)], we get

by (3.3.14), Hölder’s inequality and (3.1.3)

M([uk]
2
K)[uk]

2
K +M([u]2K)[u]2K

= Ik +

∫
Rn

[
g(x, uk)− g(x, u)

]
(uk − u) dx+ o(1)

= Ik +

∫
Rn

(uk − u)2dx

∫ 1

0

gu(x, u+ t(uk − u))dt+ o(1)

≤ Ik +

∫
Rn

(uk − u)2dx

∫ 1

0

fu(x, u+ t(uk − u))dt+ o(1)

≤ Ik + 2C1H
(q−2)/q‖uk − u‖2

q,w + o(1).

Passing now to the limit as k →∞, we have

M(`p)`p +M([u]pK)[u]pK ≤ [u]pK
[
M(`p) +M([u]pK)

]
,

that is ` ≤ [u]K by (M) and (3.4.3). In other words,

[u]K ≤ lim
k→∞

[uk]K = ` ≤ [u]K ,

which implies at once that

(3.4.5) [uk − u]K → 0,

since uk ⇀ u in Y ↪→ Ds
K(Rn) and Ds

K(Rn) is a uniformly convex Banach

space. Thus, (3.4.4) and (3.4.5) yield that

0 ≤
∫
Rn
h(x)(|uk|r−2uk − |u|r−2u)(uk − u) dx→ 0

as k →∞. Hence,

(3.4.6) ‖uk − u‖rr,h ≤ kr

∫
Rn
h(x)(|uk|r−2uk − |u|r−2u)(uk − u) dx→ 0,

thanks to Simon’s inequality |ξ−ξ0|r ≤ kr(|ξ|r−2ξ−|ξ0|r−2ξ0)·(ξ−ξ0) valid for

all ξ, ξ0 ∈ R, being r > 2. Therefore, ‖uk−u‖r,h → 0 as k →∞. Combining

this fact with (3.4.5) we obtain that ‖uk − u‖ → 0, that is uk → u in Y

as k →∞.
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We next prove that u is a second independent nontrivial non–negative

entire solution of problem (Pλ
2 ). Clearly, for any ϕ ∈ Y

(3.4.7) 〈J ′
λ(uk), ϕ〉 = M([uk]

p
K)〈uk, ϕ〉K −

∫
Rn
g(x, uk)ϕdx,

with g defined above. Now, by (3.3.9) and (3.4.2), as k →∞∫
Rn
w(x)(u+

k )q−1ϕdx→
∫
Rn
w(x)(u+)q−1ϕdx

for all ϕ ∈ Y . Hence, since uk → u in Y , passing to the limit as k → ∞
in (3.4.7) and using also (3.3.10) and (3.4.5), we have for all ϕ ∈ Y

M([u]pK)〈u, ϕ〉s,p = λ

∫
Rn
w(x)(u+)q−1ϕdx−

∫
Rn
h(x)|u|r−2uϕ dx,

since 〈J ′
λ(uk), ϕ〉 → 0 as k →∞ for all ϕ ∈ Y by (3.4.1).

Finally, Jλ(u) = cλ = limk→∞Jλ(uk), being Jλ ∈ C1(Y ) by Propo-

sition 3.4.2. Therefore, u is a second nontrivial independent critical point

for Jλ, being Jλ(u) = cλ > 0 > Jλ(e), that is u is a second nontrivial

non–negative entire solution of (Pλ
2 ). 2

From Proposition 3.4.2 it is apparent that the second nontrivial non–

negative entire solution u = uλ ∈ Y , constructed in the proof above, is a

critical point of Jλ, with Jλ(u) = Jλ(u) = cλ > 0 > Jλ(e) = Jλ(e). We

next prove an important property of the asymptotic behavior as λ → ∞
of cλ.

Proposition 3.4.4. Under the assumptions of Theorem 3.1.1

lim
λ→∞

cλ = 0,

where cλ is the level in (3.4.1) of the Mountain Pass solution uλ of (Pλ
2 ),

constructed in the proof of Theorem 3.1.1.

Proof. Let λ > λ and let e ∈ Y be the function given in Lemma 3.4.1. Since

Jλ satisfies the Mountain Pass geometry of Lemma 3.4.3 and the path t 7→ te,

t ∈ [0, 1], is in Γ defined in (3.4.1), it follows that there exists tλ ∈ (0, 1) such

that Jλ(tλe) = maxt∈[0,1] Jλ(te), being cλ > 0. Hence, 〈J ′λ(tλe), e〉 = 0. Thus,

〈J ′λ(tλe), tλe〉 = 0 and by (3.3.2)

(3.4.8) M([tλe]
p
K)[tλe]

p
K = λtqλ‖e‖

q
q,w − trλ‖e‖rr,h.



38 S. Saldi Nonlocal nonlinear problems

Let (λk)k be a sequence, with λk → ∞. We suppose that λk > λ for any

k ∈ N, without loss of generality. Thus, there exists t ≥ 0 and a subsequence

(tkj)j of (tλk)k such that tkj → t as j →∞. Clearly t = 0. Otherwise, (3.4.8)

implies

M([te]pK)[te]pK + ‖te‖rr,h = ‖te‖qq,w lim
j→∞

λkj =∞,

which gives an obvious contradiction. In particular, the entire sequence (tλk)k
converges to 0. This shows that

lim
λ→∞

tλ = 0,

being (λk)k, with λk →∞, arbitrary. In conclusion, as λ→∞

0 < cλ ≤ max
t∈[0,1]

Jλ(te) = Jλ(tλe) =
1

p
M ([tλe]

p
K)− λ

q
tqλ‖e‖

q
q,w +

1

r
trλ‖e‖rr,h

≤ 1

p
M (tpλ[e]

2
K) +

‖e‖rr,h
r

trλ → 0,

since of course M (τ)→ 0 as τ → 0+. This completes the proof.

Proposition 3.4.5. Under the assumptions of Theorem 3.1.1

lim
λ→∞
‖uλ‖ = 0,

where uλ is the Mountain Pass solution of (Pλ
2 ), constructed in the proof

of Theorem 3.1.1.

Proof. Using the notation of the statement, it is apparent that

(3.4.9) lim sup
λ→∞

[uλ]K <∞ and lim sup
λ→∞

‖uλ‖r,h <∞.

Otherwise from (3.3.4) and Proposition 3.4.4 we would get an easy con-

tradiction. Now, fix a sequence (λk)k, with λk → ∞ as k → ∞, and let

k 7→ uk = uλk be the corresponding Mountain Pass sequence of solutions

of (Pλk
2 ). Hence, there exists a subsequence (ukj)j of (uk)k, a function u ∈ Y

and a number ` ∈ R+
0 such that [ukj ]K → ` and

ukj ⇀ u in Ds,p
K (Rn), ukj → u in Lq(Rn, w), ukj ⇀ u in Lr(Rn, h)

as j →∞, by Proposition 3.2.1 and Lemma 3.2.3. Assume by contradiction

that u 6= 0. Then, (3.2.5) holds along any solution ukj , so that

M(`p)`p + lim sup
j→∞

‖ukj‖rr,h = ‖u‖qq,w lim
j→∞

λkj ,
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which contradicts (3.4.9). Therefore, u = 0 as stated and the entire se-

quence (uk)k satisfies (3.4.2), with u = 0.

By (3.2.4) for all k ∈ N and all ϕ ∈ Y

M([uk]
p
K)〈uk, ϕ〉K +

∫
Rn
h(x)|uk|r−2ukϕdx = λk

∫
Rn
w(x)|uk|q−2ukϕdx.

Thus, by (3.3.10) the left–hand side approaches zero as k →∞, since uk ⇀ 0

in Y . Hence also the right–hand side should tend to zero as k → ∞. In

particular, by (3.3.9)

(3.4.10) lim
k→∞

λk‖uk‖qq,w = 0.

Therefore, [uk]K → ` = 0 by (3.2.7), that is uk → 0 in Ds,p
K (Rn), by (3.4.2)

and the fact that Ds,p
K (Rn) is a uniformly convex Banach space. More-

over, (3.2.5) and (3.4.10) imply at once that uk → 0 in Lr(Rn, h). In conclu-

sion, uk → 0 in Y . Since the sequence (λk)k, with λk →∞, is arbitrary, this

completes the proof.

3.5 Existence of non–negative solutions

Put

λ∗∗ = inf
{
λ > 0 : (Pλ

2 ) admits a nontrivial non–negative entire solution
}
.

Lemma 3.4.1 assures that this definition is meaningful and that λ ≥ λ∗∗ ≥ λ∗,

where λ∗ is introduced in Section 3.2 thanks to Lemma 3.2.4.

Theorem 3.5.1. For any λ > λ∗∗ problem (Pλ
2 ) admits a nontrivial non–

negative entire solution uλ ∈ Y .

Proof. Fix λ > λ∗∗. By definition of λ∗∗ there exists µ ∈ (λ∗∗, λ) such that

Jµ has a nontrivial critical point uµ ∈ Y , with uµ ≥ 0 in Rn. Of course, uµ
is a subsolution for (Pλ

2 ). Consider the following minimization problem

inf
v∈C

Jλ(v), C = {v ∈ Y : v ≥ uµ}.

Clearly C is closed and convex by Proposition 3.2.2, and in turn also weakly

closed in Y . Moreover, by Lemmas 3.3.1 and 3.3.3, Theorem 6.1.1 of [21]

can be applied in Y and so in the weakly closed set C. Hence, Jλ attains its

infimum in C, i.e. there exists uλ ≥ uµ such that Jλ(uλ) = infv∈C Jλ(v).
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We claim that uλ is a solution of (Pλ
2 ), which is clearly non–negative.

Indeed, take ϕ ∈ C∞0 (Rn) and ε > 0. Put

ϕε = max{0, uµ − uλ − εϕ} ≥ 0 and vε = uλ + εϕ+ ϕε,

so that vε ∈ C. Of course 0 ≤ 〈J ′λ(uλ), vε− uλ〉 = ε〈J ′λ(uλ), ϕ〉+ 〈J ′λ(uλ), ϕε〉,
and in turn

(3.5.1) 〈J ′λ(uλ), ϕ〉 ≥ −
1

ε
〈J ′λ(uλ), ϕε〉.

Define Ωε = {x ∈ Rn : uλ(x) + εϕ(x) ≤ uµ(x) < uλ(x)}, so that Ωε is

a subset of suppϕ. Since uµ is a subsolution of (Pλ
2 ) and ϕε ≥ 0, then

〈J ′λ(uµ), ϕε〉 ≤ 0. In particular,

〈J ′λ(uλ), ϕε〉 = 〈J ′λ(uµ), ϕε〉+ 〈J ′λ(uλ)− J ′λ(uµ), ϕε〉 ≤ 〈J ′λ(uλ)− J ′λ(uµ), ϕε〉.

Using the notation of (3.3.5), we get∣∣∣∣ ∫
Ωε

[f(x, uλ)− f(x, uµ)] · [−u(x)− εϕ(x)]dx

∣∣∣∣
≤ ε

∫
Ωε

|f(x, uλ)− f(x, uµ)| · |ϕ(x)|dx,

since 0 ≤ −u− εϕ = uµ − uλ + ε|ϕ| < ε|ϕ| in Ωε. Therefore,

〈J ′λ(uλ), ϕε〉 ≤ 〈M([uλ]
p
K)uλ −M([uµ]pK)uµ, ϕε〉K

+ ε

∫
Ωε

|f(x, uλ)− f(x, uµ)| · |ϕ(x)|dx

By convexity of 1
p
M ([u]pK) in Y we have

1

p
M ([uµ]pK) ≥ 1

p
M ([uλ]

p
K) + 〈M([uλ]

p
K)uλ, uµ − uλ〉K

≥ 1

p
M ([uµ]pK) + 〈M([uµ]pK)uµ, uλ − uµ〉K

+ 〈M([uλ]
p
K)uλ, uµ − uλ〉K ,

so that 〈M([uλ]
p
K)uλ −M([uµ]pK)uµ, uµ − uλ〉K ≤ 0. Hence,

〈J ′λ(uλ), ϕε〉 ≤ ε

(∫
Ωε

ψ(x)dx+

∫ ∫
R2n

U (x, y)dxdy

)
,



S. Saldi Nonlocal nonlinear problems 41

where ψ(x) = |f(x, uλ)− f(x, uµ)| · |ϕ| and

U (x, y) =
[
M([uλ]

p
K)|uλ(x)− uλ(y)|p−2

(
uλ(x)− uλ(y)

)
−M([uµ]pK)|uµ(x)− uµ(y)|p−2

(
uµ(x)− uµ(y)

)]
·

× [ϕ(x)− ϕ(y)] ·K(x− y).

Now∫ ∫
R2n

U (x, y)dxdy =

∫ ∫
Ωε×Ωε

U (x, y)dxdy +

∫ ∫
Ωε×(Rn\Ωε)

U (x, y)dxdy

+

∫ ∫
(Rn\Ωε)×Ωε

U (x, y)dxdy

≤
∫ ∫

Ωε×Rn
|U (x, y)| dxdy +

∫ ∫
Rn×Ωε

|U (x, y)| dxdy.

Thus,

(3.5.2)

〈J ′λ(uλ), ϕε〉 ≤ ε

(∫
Ωε

ψ(x)dx +

∫ ∫
Ωε×Rn
|U (x, y)| dxdy

+

∫ ∫
Rn×Ωε

|U (x, y)| dxdy
)

= εIε.

We claim that ψ is in L1(suppϕ). Indeed, |f(x, uλ)−f(x, uµ)| is in L1
loc(Rn),

being

|f(x, uλ)− f(x, uµ)| ≤ λw(x)
(
uq−1
λ + uq−1

µ

)
+ h(x)

(
ur−1
λ + ur−1

µ

)
.

In fact, by Hölder’s inequality and (3.1.2), we obtain

(3.5.3)

∫
suppϕ

w(x)uq−1
λ dx ≤ |suppϕ|1/2∗‖w‖℘‖uλ‖q−1

2∗ = C1,

and C1 = C1(suppϕ). Finally, since h ∈ L1
loc(Rn) and uλ ∈ Lr(Rn, h), then

(3.5.4)

∫
suppϕ

h(x)ur−1
λ dx ≤

(∫
suppϕ

h(x)dx

)1/r

‖uλ‖r−1
r,h = C2,

with C2 = C2(suppϕ). The estimates (3.5.3) and (3.5.4) hold also for uµ.

The claim is so proved.

We next show that

(3.5.5) lim
ε→0+

Iε = 0.
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Indeed,
∫

Ωε
ψ(x)dx = o(1), since |Ωε| → 0 as ε → 0+, Ωε ⊂ suppϕ and by

the fact that ψ ∈ L1(suppϕ).

Now, U (x, y) ∈ L1(R2n), being Y ↪→ Ds,p
K (Rn) by (3.2.1). Therefore for

all η > 0 there exists Rη so large that∫ ∫
(suppϕ)×(Rn\BRη )

|U (x, y)| dxdy < η/2,

∫ ∫
(Rn\BRη )×(suppϕ)

|U (x, y)| dxdy < η/2.

Since |Ωε × BRη | = |BRη × Ωε| → 0 as ε → 0+ and U ∈ L1(R2n), it follows

that there exist δη > 0 and εη > 0 such that for all ε ∈ (0, εη]

|Ωε ×BRη | < δη,∫ ∫
Ωε×BRη

|U (x, y)| dxdy < η/2 and

∫ ∫
BRη×Ωε

|U (x, y)| dxdy < η/2.

Therefore, for all ε ∈ (0, εη]∫ ∫
Ωε×Rn

|U (x, y)| dxdy < η and

∫ ∫
Rn×Ωε

|U (x, y)| dxdy < η,

being Ωε ⊂ suppϕ. Hence (3.5.5) holds.

In conclusion, by (3.5.1), (3.5.2) and (3.5.5) we get 〈J ′λ(uλ), ϕε〉 ≤ o(ε)

as ε → 0+, so that by (3.5.1) it follows that 〈J ′λ(uλ), ϕ〉 ≥ o(1) as ε → 0+.

Therefore, 〈J ′λ(uλ), ϕ〉 ≥ 0 for all ϕ ∈ C∞0 (RN), that is 〈J ′λ(uλ), ϕ〉 = 0 for

all ϕ ∈ C∞0 (Rn). Since Y = C∞0 (Rn)
‖·‖

, we obtain that uλ is a nontrivial

non–negative solution of (Pλ
2 ).

Theorem 3.5.2. Problem (Pλ∗∗
2 ) admits a nontrivial non–negative entire

solution in Y .

Proof. Let (λk)k be a strictly decreasing sequence converging to λ∗∗ and

uk ∈ Y be a nontrivial non–negative entire solution of (Pλk
2 ). By (3.2.4) we

get for all ϕ ∈ Y

(3.5.6) M([uk]
p
K)〈uk, ϕ〉K =

∫
Rn
fn(x, uk)ϕdx,

where k 7→ fn(x, uk) = λnw(x)|uk|q−2uk − h(x)|uk|r−2uk, similarly as defined

in (3.3.5). By (3.2.4)–(3.2.6) and the monotonicity of (λk)k, we obtain

m0[uk]
p
K + ‖uk‖rr,h ≤M([uk]

p
K)[uk]

p
K + ‖uk‖rr,h

= λk‖uk‖qq,w ≤ κq2λ
1+rq/p(r−q)
k ≤ κq2λ

1+rq/p(r−q)
1 .
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Therefore ([uk]K)k and (‖uk‖r,h)k are bounded, and in turn also (‖uk‖)k
is bounded. By Propositions 3.2.1, 3.2.2, Lemma 3.2.3 and the fact that

Lq(Rn, w) and Lr(Rn, h) are uniformly convex Banach spaces in virtue of

Proposition A.6 of [12], it is possible to extract a subsequence, still rela-

beled (uk)k, satisfying

(3.5.7)
uk ⇀ u in Y, uk ⇀ u in Lr(Rn, h), [uk]K → `,

uk → u in Lq(Rn, w), uk → u a.e. in Rn,

for some u ∈ Y and some ` ∈ R+
0 . In particular, by (M)

M([uk]
p
K)→M(`p) > 0 as k →∞.

Furthermore, u ≥ 0 a.e. in Rn and we claim that u is the solution we are

looking for.

To this aim, we first show that [u]K = `. Since uk is a nontrivial non–

negative entire solution of (Pλk), it follows that 〈J ′λk(uk), ϕ〉 = 0 for all

ϕ ∈ Y and for all k ∈ N. In particular, taking ϕ = uk − u, we obtain

(3.5.8)

0 = 〈J ′λk(uk), uk − u〉 = M([uk]
p
K) ([uk]

p
K − 〈uk, u〉K)

− λk
[
‖uk‖qq,w −

∫
Rn
w(x)|uk|q−2ukudx

]
+ ‖uk‖rr,h −

∫
Rn
h(x)|uk|r−2ukudx.

Clearly 〈uk, u〉K → [u]pK and
∫
Rnw(x)|uk|q−2uku dx → ‖u‖qq,w as k → ∞

by (3.5.7). Thus, passing to the inferior limit in (3.5.8) and using also (3.3.10),

we get

(3.5.9) M(`p) (`p − [u]pK) +
(

lim inf
k→∞

‖uk‖rr,h − ‖u‖rr,h
)

= 0.

Now, [u]K ≤ lim infk→∞[uk]K ≤ ` and ‖u‖rr,h ≤ lim infk→∞‖uk‖rr,h, so that

the two addends in (3.5.9) vanish, being both non–negative. In particular,

this yields that [u]K = `, since M(`p) > 0 by (M). Therefore, passing to the

limit in (3.5.6) as k →∞, we get by (3.3.9) and (3.3.10)

M([u]pK)〈u, ϕ〉K = λ∗∗
∫
Rn
w(x)|u|q−2uϕdx−

∫
Rn
h(x)|u|r−2uϕdx

for all ϕ ∈ Y . Hence u is a non–negative entire solution of (Pλ∗∗
2 ).
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We finally claim that u 6≡ 0. Indeed, (3.2.6) applied to each uk implies

that ‖uk‖q,w ≥ κ1λ
1/(p−q)
k , so that by (3.5.7)

‖u‖q,w = lim
k→∞
‖uk‖q,w ≥ κ1(λ∗∗)1/(p−q) > 0,

since λk ↘ λ∗∗ and λ∗∗ > 0. This shows the claim and completes the

proof.

Proof of Theorem 3.1.1–(ii). The existence of λ∗∗ ≥ λ∗ follows directly

from Lemma 3.4.1, as already noted. The definition of λ∗∗, Theorems 3.5.1

and 3.5.2 show at once the validity of (ii) of Theorem 3.1.1. 2

Of course the nontrivial non–negative entire solutions constructed in The-

orems 4.3.6 and 4.3.9 are also critical points of Jλ.



Chapter 4

Problem (P3)

In this chapter we deal with the question of the asymptotic stability of

solutions of the following Kirchhoff system, governed by the fractional p–

Laplacian operator, with an external force and nonlinear damping terms

(P3)


utt + (−∆)spu+ µ|u|p−2u+ %(t)M([u]ps,Ω)|ut|p−2ut

+Q(t, x, u, ut) + f(t, x, u) = 0 in R+
0 ×Ω,

u(t, x) = 0 on R+
0 ×(Rn\Ω),

where Ω is a bounded domain of Rn, with n > ps, and u = (u1, . . . , uN) =

u(t, x) represents the vectorial displacement, with N ≥ 1. The term µ|u|p−2u,

where µ ≥ 0, plays the role of a perturbation, M is a dissipative Kirchhoff

function and % ≥ 0 is in L1
loc(R

+
0 ).

Problem (P3) generalizes the model proposed in [28], where the Lapla-

cian operator is considered. Moreover, in problem (P3) the source function f

depends also on t and x, the Kirchhoff function is multiplied by the func-

tion %(t) and we add a perturbation and a nonlinear damping term.

The Kirchhoff function M : R+
0 → R+

0 verifies the following condition.

(M) M is a continuous function, with M(τ) ≥ 0 for τ ≥ 0.

Here we consider also the degenerate case, that is, from a physical point of

view, when the base tension of the string modeled by the equation is zero.

However, in some results of Sections 4.3 and 4.4, where specified, we need the

non–degeneracy of the problem in order to overcome some technical difficul-

ties due to the Kirchhoff structure of the problem. Sometimes the Kirchhoff

function M is assumed Lipschitz continuous, but not always monotone, as

45



46 S. Saldi Nonlocal nonlinear problems

in [38], even if the model proposed by Kirchhoff is clearly monotone. In (M)

we do not request the monotonicity of the function, as assumed in other

papers such as [9, 10, 14], where M is taken of the standard form (1.3.1).

4.1 Structural setting

Throughout the chapter we assume

Q ∈ C(R+
0 × Ω× RN × RN → RN), f ∈ C(R+

0 × Ω× RN → RN).

The function Q, representing a nonlinear damping, is always assumed to

verify

(4.1.1) (Q(t, x, u, v), v) ≥ 0 for all arguments t, x, u, v,

where (·, ·) is the inner product of RN .

The external force f is assumed to be derivable from a potential F , that

is

(4.1.2) f(t, x, u) = ∂uF (t, x, u),

where F ∈ C1(R+
0 × Ω× RN → R+

0 ) and F (t, x, 0) = 0. Moreover, we allow

(f(t, x, u), u) to take negative values, that is

(4.1.3) (f(t, x, u), u) ≥ −λ|u|p in R+
0 × Ω× RN ,

for some λ ∈ [0, λ1), where λ1 denotes the first eigenvalue of the scalar

fractional p–Laplacian in Ω, with zero Dirichlet boundary conditions, defined

in Section 4.2.

Here we need and assume the condition p∗ ≥ 2, that is

(4.1.4) 2n/(n+ 2s) ≤ p < n/s,

in order to get the standard embeddings.

Following [84], we also deal with a special case of (P3), which occurs

when p = 2, Q(t, x, u, v) = a(t)tαv, with a satisfying

1/C ≤ a(t) ≤ C in R+
0 ,
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for some C > 0 and α ∈ R, and f(t, x, u) = V (t, x)u, where V is a bounded

continuous function in I × Ω. In other words, we study the solutions of

(P3,lin)


utt + (−∆)su+ µu+ %(t)M([u]2s,Ω)ut

+a(t)tαut + V (t, x)u = 0 in I × Ω,

u(t, x) = 0 on I × (Rn \ Ω),

where I = [1,∞) and for simplicity we treat only the case N = 1.

The behavior of solutions as t → ∞ depends crucially on the parameter

α. We show in Section 4.5 that if |α| ≤ 1, then the rest field is asymptotically

stable. On the other hand, when α < −1 there exist oscillatory solutions that

do not approach zero when t → ∞, whereas if α > 1 there exist solutions

that approach nonzero functions ψ as t→∞. In this section, we also need an

important result related to the eigenvalues and eigenfunctions of a perturbed

problem driven by the fractional Laplacian. This result is proved in the

Appendix, following [70] and [88].

In Section 4.2 we introduce the natural solution space for (P3), we give

the definition of a strong solution and we make the assumptions needed for f

and Q. In Section 4.3 we prove some auxiliary lemmas and the main result

of [79], concerning the global stability of the solutions, and in Section 4.4

we deal with local asymptotic stability for problem (P3), also in the special

case when the auxiliary function k and % are related. Section 4.5 is dedicated

to the linear case while in Section 4.6 we extend the results of Sections 4.3

and 4.4 when the fractional p–Laplacian operator is replaced by a more gen-

eral elliptic nonlocal integro–differential operator. In particular, we consider

the problem

(P3,K)


utt − LKu+ %(t)M([u]pK,Ω)|ut|p−2ut + µ|u|p−2u

+Q(t, x, u, ut) + f(t, x, u) = 0 in R+
0 ×Ω,

u(t, x) = 0 on R+
0 ×(Rn\Ω),

where LK is an integro–differential nonlocal operator and K : Rn\{0} → R+

is a positive weight, satisfying the natural restriction listed in Section 4.6. The

last section is an appendix, where we give the detailed proof of the results

related to eigenvalues and eigenfunctions of a perturbed problem involving

the fractional Laplacian.
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4.2 Preliminaries

We denote with

〈ϕ, ψ〉 =

∫
Ω

(ϕ, ψ)dx

the elementary bracket pairing in Ω ⊂ Rn, provided that (ϕ, ψ) ∈ L1(Ω). We

consider Lρ(Ω;RN) where ρ > 1, endowed with the natural norm

‖ϕ‖ρ =

(∫
Ω

|ϕ|ρ
)1/ρ

.

Following Section 1.1, we introduce the natural solution space, adapting the

construction to the vectorial case. We recall thatDs,p
0 (Ω;RN) = C∞0 (Ω;RN)

‖·‖Ω
,

where ‖ · ‖Ω is the standard fractional Gagliardo norm, given by

‖u‖Ω =

(∫ ∫
Ω×Ω

|u(x)− u(y)|p|x− y|−(n+ps)dxdy

)1/p

for all u ∈ W s,p
0 (Ω;RN). Furthermore, Ds,p(Rn;RN) denotes the fractional

Beppo–Levi space, that is the completion of C∞0 (Rn;RN), with respect to

the norm

[u]s,p =

(∫ ∫
R2n

|u(x)− u(y)|p|x− y|−(n+ps)dxdy

)1/p

.

Moreover, by Theorems 1 and 2 of [67]

(4.2.1)

‖u‖p
Lp∗ (Rn;RN )

≤ cn,p
s(1− s)

(n− ps)p−1
[u]ps,p,∫

Rn
|u(x)|p dx

|x|ps
≤ cn,p

s(1− s)
(n− ps)p

[u]ps,p

for all u ∈ Ds,p(Rn;RN), where cn,p is a positive constant depending only

on n and p. Hence

Ds,p(Rn;RN) ={u ∈ Lp∗(Rn;RN) : |u(x)−u(y)|·|x−y|−(s+n/p)∈Lp(R2n;RN)}.

Following [55], we put

D̃s,p(Ω;RN) = {u ∈ Lp∗(Ω;RN) : ũ ∈ Ds,p(Rn;RN)},
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with the norm [u]s,Ω = [ũ]s,p, where ũ is the natural extension of u in the

entire Rn, with value 0 in Rn \ Ω. Clearly,

[u]s,Ω =

(
‖u‖pΩ + 2

∫
Ω

|u(x)|pdx
∫
Rn\Ω
|x− y|−(n+ps)dy

)1/p

≥ ‖u‖Ω.

Since here Ω is regular, an application of Theorem 1.4.2.2 of [55] shows that

D̃s,p(Ω;RN) = C∞0 (Ω;RN)
[ · ]s,Ω

. Finally, since Ω is bounded and regular,

by (4.2.1) there exists a constant cΩ > 0 such that

cΩ‖ũ‖W s,p(Rn;RN ) ≤ ‖ũ‖s,p = [u]s,p ≤ ‖ũ‖W s,p(Rn;RN )

for all u ∈ D̃s,p(Ω;RN), and so, using also Corollary 1.4.4.10 of [55], we have

the main property

D̃s,p(Ω;RN) = {u ∈ W s,p
0 (Ω;RN) : u d(·, ∂Ω)−s ∈ Lp(Ω;RN)}

= {u ∈ Ds,p(Rn;RN) : u = 0 a.e. in Rn \ Ω}
= {u ∈ W s,p(Ω;RN) : ũ ∈ W s,p(Rn;RN)},

where d(x, ∂Ω) is the distance from x to the boundary ∂Ω of Ω.

For simplicity and abuse of notation, in the following we still denote by u

the extension of every function u ∈ D̃s,p(Ω;RN), by setting u = 0 in Rn \ Ω.

Moreover, we put

〈ϕ, ψ〉s,Ω =

∫ ∫
R2n

|ϕ(x)−ϕ(y)|p−2(ϕ(x)−ϕ(y))(ψ(x)−ψ(y))|x−y|−(n+ps)dxdy,

for all ϕ, ψ ∈ D̃s,p(Ω;RN).

Let λ1 be the first eigenvalue of the scalar problem

(4.2.2)

{
(−∆)spu = λ |u|p−2u in Ω,

u = 0 in Rn \ Ω,

in D̃s,p(Ω), that is λ1 is defined by the Rayleigh quotient

(4.2.3) λ1 = inf
u∈D̃s,p(Ω), u 6=0

∫∫
R2n |u(x)− u(y)|p|x− y|−(n+ps)dxdy∫

Ω
|u|pdx

.

By Theorem 5 of [65] the infimum in (4.2.3) is achieved and λ1 > 0.

Now define

X ′ = C(R+
0 → D̃s,p(Ω;RN)) ∩ C1(R+

0 → L2(Ω;RN))
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and

X =
{
φ ∈ X ′ : Eφ is locally bounded on R+

0

}
,

where Eφ is the total energy of the field φ, that is

Eφ = Eφ(t) =
1

2
‖φt‖2

2 + A φ(t) + Fφ(t),

where

A φ(t) =
1

p
[φ]ps,p +

µ

p
‖φ‖pp

and Fφ, the potential energy of the field, is given by

Fφ = Fφ(t) =

∫
Ω

F (t, x, φ(t, x))dx.

In writing Eφ and Fφ we make the tacit agreement that F (t, ·, φ(t, ·)) is of

class L1(Ω) for all t ∈ R+
0 , so Fφ is well–defined.

Our motivation for introducing the setX is that a solution of (P3) should,

whatever else, be sought in a function space for which the total energy is well–

defined and bounded on any finite interval, and X has just this property.

The definition of X moreover applies without reference to the external

force condition (4.1.3), so that the definition of solution given below applies

equally whether f satisfies (4.1.3) or not. Of course f must be derivable from

a potential as in (4.1.2).

A strong solution of (P3) is a function u ∈ X satisfying the following two

conditions:

(A) Distribution identity

〈ut, φ〉]t0 =

∫ t

0

{
〈ut, φt〉 − 〈u, φ〉s,p − 〈µ|u|p−2u, φ〉 − 〈Du, φ〉

}
dτ

Du = %(·)M([u]ps,Ω)|ut|p−2ut +Q(·, ·, u, ut) + f(·, ·, u) : R+
0 × Ω→ RN

for all t ∈ R+
0 and φ ∈ X.

(B) Conservation law

(i) Du = %(t)M([u]ps,Ω)‖ut‖pp + 〈Q(t, ·, u, ut), ut〉−Ftu ∈ L1
loc(R

+
0 ),

(ii) Ftu ≤ 0, t 7→ Eu(t) +
∫ t

0
Du(τ)dτ is non–increasing in R+

0 .
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We emphasize that condition (B) is an essential attribute of solution.

Indeed, standard existence theorems for (P3) in the literature always yield

solutions satisfying both (A) and (B) in the stronger form in which the func-

tion in (B)–(ii) is assumed to be constant. On the other hand (A) alone does

not imply (B), even if the integrability condition (B)–(i) is assumed a priori.

Conditions (B)–(ii) and (4.1.1) imply, however, that Eu is non–increasing

in R+
0 .

A remaining issue is to determine a category of functions f and Q for

which the preceding definition is meaningful. In particular, it must be shown

that

(4.2.4) 〈f(t, ·, u), φ(t, ·)〉, 〈Q(t, ·, u, ut), φ(t, ·)〉 ∈ L1
loc(R+

0 ),

so that the right–hand side integral in identity (A) will be well–defined.

To obtain (4.2.4) observe first that if u, φ ∈ X, then

(4.2.5) u, φ ∈ C(R+
0 → Lp

∗
(Ω;RN)).

We make the following natural hypotheses on f and Q, in the principal

case n ≥ 2.

(H) Conditions (4.1.2) and (4.1.3) hold and there exists an exponent q ≥ p

such that

(a) |f(t, x, u)| ≤ const. (1 + |u|q−1)

for all (t, x, u) ∈ R+
0 × Ω× RN .

Moreover, if q > p∗, f verifies (a) and

(b) (f(t, x, u), u) ≥ κ1|u|q−κ2|u|1/q−κ3|u|p
∗

for all (t, x, u) ∈ R+
0 ×Ω×RN

for appropriate constants κ1 > 0, κ2, κ3 ≥ 0.

When f ≡ 0 then (H)–(a) holds for any fixed q ∈ [p, p∗], so that (H)–(b)

is unnecessary.

(AS) Condition (4.1.1) holds and there are exponents m, r satisfying

2 ≤ m < r ≤ ν, ν = max{q, p∗},

where m′ and r′ are the Hölder conjugates of m and r, and non–negative

continuous functions d1 = d1(t, x), d2 = d2(t, x), such that for all argu-

ments t, x, u, v,

(a)
|Q(t, x, u, v)| ≤ d1(t, x)1/m(Q(t, x, u, v), v)1/m′

+ d2(t, x)1/r(Q(t, x, u, v), v)1/r′
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and the following functions δ1 and δ2 are well–defined

δ1(t) = ‖d1(t, ·)‖ν/(ν−m), δ2(t) =

{
‖d2(t, ·)‖ν/(ν−r), if r < ν,

‖d2(t, ·)‖∞, if r = ν.

Moreover, there are functions σ = σ(t), ω = ω(τ), τ = |v|, such that

(b) (Q(t, x, u, v), v) ≥ σ(t)ω(|v|) for all arguments t, x, u, v,

where ω ∈ C(R+
0 → R+

0 ) is such that

ω(0) = 0, ω(τ) > 0 for 0 < τ < 1, ω(τ) = τ 2 for τ ≥ 1,

while σ ≥ 0 and σ1−℘ ∈ L1
loc(R

+
0 ) for some exponent ℘ > 1.

The conditions (4.2.4) are consequences of the assumptions (H) and (AS).

Indeed, by (H)–(a) for all u, φ ∈ X

|〈f(t, ·, u), φ(t, ·)〉| ≤ const.(‖φ‖1 + ‖u‖q−1
q · ‖φ‖q),

so that 〈f(t, ·, u), φ(t, ·)〉 is locally bounded on R+
0 , whenever u, φ ∈ X,

since ‖ · ‖q of any function of X is locally bounded in R+
0 either by the

Sobolev embedding theorem when 1 < q ≤ p∗ or by the assumption (H)–(b)

when q > p∗. Indeed, in the latter case for all u ∈ X

F (t, x, u) =

∫ 1

0

(f(t, x, τu), u)dτ

≥
∫ 1

0

(κ1|u|qτ q−1 − κ2|u|1/qτ−1/q′ − κ3|u|p
∗
τ p
∗−1)dτ

=
κ1

q
|u|q − qκ2|u|1/q −

κ3

p∗
|u|p∗ ,

and, since κ1 > 0, we then have

(4.2.6) ‖u(t, ·)‖qq ≤
q

κ1

(
Fu(t) + qκ2|Ω|1/q

′‖u(t, ·)‖1/q
1 +

κ3

p∗
‖u(t, ·)‖p

∗

p∗

)
.

Therefore ‖u‖q ∈ L∞loc(R
+
0 ), since Fu is locally bounded by the definition of

X and the fact that u ∈ D̃s,p(Ω;RN). This completes the proof of the claim

in the case q > p∗.

Moreover

(4.2.7) 〈Q(t, ·, u, ut), φ(t, ·)〉 ∈ L1
loc(R+

0 ),
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since δ1, δ2 ∈ L1
loc(R

+
0 ) by (AS)–(a) and Du ∈ L1

loc(R
+
0 ) by (B)–(i), see

Section 2 of [85]. Thus (4.2.4) holds and so the distribution identity (A) is

well–defined.

The main results are proved under the additional assumption that

(4.2.8) Ftu ≤ 0 in R+
0 ,

along a global solution u ∈ X. This request is trivially automatic, whenever

either f does not depend on t, or Ft ≤ 0 in R+
0 ×Ω×RN , as well as in many

other cases, and for simplicity, we assume it in the definition of solution.

4.3 Global asymptotic stability for (P3)

In this section, we present some auxiliary lemmas and the proof of the

main theorem.

Theorem 4.3.1. Let (H) and (AS) hold. Suppose there exists a function k

satisfying either

(4.3.1) k ∈ CBV (R+
0 → R+

0 ) and k 6∈ L1(R+
0 ) or

(4.3.2) k ∈ W 1,1
loc (R+

0 → R+
0 ), k 6≡ 0 and lim

t→∞

∫ t

0

|k′(τ)|dτ∫ t

0

k(τ)dτ

= 0.

Assume finally

(4.3.3) lim inf
t→∞

[A(k(t)) + C(k(t))]

/∫ t

0

kdτ <∞ ,

where

(4.3.4)

A(k(t)) = B(k(t)) +

(∫ t

0

σ1−℘k℘ dτ

)1/℘

,

B(k(t)) =

(∫ t

0

δ1k
m dτ

)1/m

+

(∫ t

0

δ2k
r dτ

)1/r

and C(k(t)) is defined in Lemma 4.3.4. Then along any strong solution u

of (P3) we have

(4.3.5) lim
t→∞

Eu(t) = 0 and lim
t→∞

(‖ut‖2 + [u]s,Ω) = 0.
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The integral condition (4.3.3) prevents the damping term Q being either

too small (underdamping) or too large (overdamping) as t → ∞ and was

introduced by Pucci and Serrin in [85], see also [83].

When N = 1, or Q is tame, that is

(T ) Q is tame, if there exists κ ≥ 1 such that

|Q(t, x, u, v)| · |v| ≤ κ(Q(t, x, u, v), v) (automatic if N = 1),

then condition (AS)–(a) is equivalent to

(4.3.6) |Q(t, x, u, v)| ≤ const.{d1(t, x)|v|m−1 + d2(t, x)|v|r−1}

(this can be proved exactly as in Remark 1 of Section 5 in [85]).

Before proving Theorem 4.3.1 we give three preliminary lemmas under

conditions (AS)–(a) and (H) which make the definition of strong solution

meaningful.

Lemma 4.3.2. Let u be a strong solution of (P3). Then the non–increasing

energy function Eu verifies in R+
0

(4.3.7) Eu ≥ 1

2
‖ut‖2

2 +
µ

p
‖u‖pp +

1

p

(
1− λ

λ1

)
[u]ps,Ω ≥ 0.

Moreover

(4.3.8)
‖u‖2, ‖ut‖2, [u]s,Ω, ‖u‖q, ‖u‖p∗ , M([u]ps,Ω) ∈ L∞(R+

0 ),

Du = 〈Q(t, x, u, ut), ut〉+ %(t)M([u]ps,Ω)‖ut‖pp −Ftu ∈ L1(R+
0 ).

Furthermore, if

(4.3.9) inf
R+

0

M(t) > 0

then %‖ut‖pp ∈ L1(R+
0 ).

Proof. By (4.1.3) we get F (t, x, u) ≥ −λ|u|p/p, so Fu(t) ≥ −λ‖u(t, ·)‖pp/p.
Clearly, if u ∈ D̃s,p(Ω;RN), then |u| ∈ D̃s,p(Ω). Moreover, we have λ1‖u‖pp =

λ1‖|u|‖pp ≤ [|u|]ps,Ω ≤ [u]ps,Ω for all u ∈ D̃s,p(Ω;RN), by (4.2.3) and elementary
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inequalities. Hence by the definition of E and (4.2.3) we have

Eu =
1

2
‖ut‖2

2 +
1

p
[u]ps,Ω +

µ

p
‖u‖pp + Fu(t)

≥ 1

2
‖ut‖2

2 +
1

p
[u]ps,Ω +

µ

p
‖u‖pp −

λ

p
‖u‖pp

≥ 1

2
‖ut‖2

2 +
1

p
[u]ps,Ω +

µ

p
‖u‖pp −

λ

pλ1

[u]ps,Ω

=
1

2
‖ut‖2

2 +
µ

p
‖u‖pp +

1

p

(
1− λ

λ1

)
[u]ps,Ω ≥ 0.

Since 0 ≤ λ < λ1, we get (4.3.7).

In order to prove conditions (4.3.8), first note that Eu is bounded above

by Eu(0). We immediately have that ‖ut‖2, ‖u‖p and [u]s,Ω ∈ L∞loc(R
+
0 ). Since

the space D̃s,p(Ω;RN) is continuously embedded in L2(Ω;RN) by (4.1.4),

we have also ‖u‖2 ∈ L∞loc(R
+
0 ). Furthermore, when p ≤ q ≤ p∗, since the

embeddings D̃s,p(Ω;RN) ↪→ Lq(Ω;RN) and D̃s,p(Ω;RN) ↪→ Lp
∗
(Ω;RN) are

continuous, also ‖u‖q, ‖u‖p∗ ∈ L∞(R+
0 ).

If q > p∗, using (H)–(b) we get (4.2.6) since u ∈ X. Therefore also ‖u‖q is

of class L∞(R+
0 ), since Fu is bounded above – actually also below by (4.1.3)

– being Eu(t) ≤ Eu(0) and ‖ut‖2, [u]s,Ω ∈ L∞(R+
0 ), so that also M([u]ps,Ω) is

in L∞(R+
0 ). This completes the proof of (4.3.8).

Moreover, Du ∈ L1(R+
0 ) is a consequence of (B): indeedEu ≥ 0 by (4.3.7)

and Du ≥ 0, giving

0 ≤
∫ t

0

Du(τ)dτ =

∫ t

0

{
〈Q(τ, ·, u, ut), ut〉+ %(t)M([u]ps,Ω)‖ut‖pp −Ftu

}
dτ

≤ Eu(0)− Eu(t) ≤ Eu(0).

Finally, if infR+
0
M(t) > 0, put m0 the corresponding positive value. We

have

m0

∫ t

0

%(τ)‖ut‖ppdτ ≤
∫ t

0

%(τ)M([u]ps,Ω)‖ut‖ppdτ <∞

for all t > 0, so %‖ut‖pp ∈ L1(R+
0 ), as claimed.

By (B)–(ii) and Lemma 4.3.2 it is clear that there exists l ≥ 0 such that

(4.3.10) lim
t→∞

Eu(t) = l.
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Lemma 4.3.3. Let u be a strong solution of (P3) and suppose that l > 0

in (4.3.10). Then there exists a constant α = α(l) > 0 such that on R+
0

(4.3.11) L u = ‖ut‖2
2 + [u]ps,Ω + µ‖u‖pp + 〈f(t, ·, u), u〉 ≥ α.

Proof. The proof relies on the principal ideas used for proving [14, Lemma 3.3]

and [85, Lemma 3.4]. Since Eu(t) ≥ l for all t ∈ R+
0 it follows that

(4.3.12) ‖ut‖2
2 + [u]ps,Ω + µ‖u‖pp ≥ η(l −Fu) on R+

0 ,

where η = min {2, p} > 1. Let

(4.3.13) J1 = {t ∈ R+
0 : Fu(t) ≤ l/η′}, J2 = {t ∈ R+

0 : Fu(t) > l/η′}.

For t ∈ J1

(4.3.14) ‖ut‖2
2 + [u]ps,Ω + µ‖u‖pp ≥ η

(
l − l

η′

)
= l.

Using (4.1.3) and (4.3.14), we find that in J1

L u = ‖ut‖2
2 + [u]ps,Ω + µ‖u‖pp + 〈f(t, ·, u), u〉

≥ ‖ut‖2
2 + [u]ps,Ω + µ‖u‖pp − λ‖u‖pp

≥ ‖ut‖2
2 + [u]ps,Ω + µ‖u‖pp −

λ

λ1

[u]ps,Ω ≥
(

1− λ

λ1

)
l.

Before dividing the proof into two parts, we observe that

(4.3.15) |Fu| ≤ C1(‖u‖1 + ‖u‖qq)

by (H)–(a), see [85]. Now we denote with ξρ the Sobolev constant of the

continuous embedding D̃s,p(Ω;RN) ↪→ Lρ(Ω;RN), for all 1 ≤ ρ ≤ p∗, that is,

(4.3.16) ‖u‖ρ ≤ ξρ[u]s,Ω,

where ξρ = ξp∗|Ω|1/ρ−1/p∗ and depends on n, p, s, ρ, |Ω|.
Case 1. q ≤ p∗. By (4.3.15) and (4.3.16) we have

(4.3.17) |Fu| ≤ C([u]s,Ω + [u]qs,Ω)

consequently in J2

(4.3.18)
l

η′
< Fu(t) ≤ 2C

{
[u(t, ·)]s,Ω, if [u(t, ·)]s,Ω ≤ 1,

[u(t, ·)]qs,Ω, if [u(t, ·)]s,Ω > 1,
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for an appropriate constant C > 0, depending on C1 given in (4.3.15), ξ1, ξq
given in (4.3.16) and q. Hence

(4.3.19) [u(t, ·)]s,Ω ≥ min

{
l

2Cη′
,

(
l

2Cη′

)1/q
}

= C2(l) > 0

and in J2

L u ≥
(

1− λ

λ1

)
Cp

2 (l).

Therefore, if J2 6= ∅, (4.3.11) holds with

α = α(l) =

(
1− λ

λ1

)
min{l, Cp

2 (l)} > 0.

Case 2. q > p∗. Using (4.3.15), (H)–(b) and Hölder’s inequality, we have

for t ∈ J2
l

η′
< Fu(t) ≤ C1(‖u(t, ·)‖1 + ‖u(t, ·)‖qq)

≤ c0

(
〈f(t, ·, u(t, ·)), u(t, ·)〉+ κ1‖u(t, ·)‖1

+ κ2|Ω|1/q
′‖u(t, ·)‖1/q

1 + κ3‖u(t, ·)‖p
∗

p∗

)
,

where c0 = C1/κ1, since κ1 > 0. But ‖u‖1 ≤ ξ1[u]s,Ω by (4.3.16) and Hölder’s

inequality. Therefore, by (4.3.16)

〈f(t, ·, u), u〉+ c1[u]s,Ω + c2[u]
1/q
s,Ω + c3[u]p

∗

s,Ω > l/c0η
′,

where c1 = κ1ξ1, c2 = κ2|Ω|1/q
′
ξ

1/q
1 ≥ 0 and c3 = κ3ξ

p∗

p∗ ≥ 0. Hence, if

〈f(t, ·, u(t, ·)), u(t, ·)〉 ≥ 0, for t ∈ J2 we have

(4.3.20) either 〈f(t, ·, u(t, ·)), u(t, ·)〉 ≥ l/2c0η
′ or [u(t, ·)]s,Ω ≥ c4,

where c4 = c4(l, c0, η) > 0 is an appropriate constant, arising when

c1[u]s,Ω + c2[u]
1/q
s,Ω + c3[u]p

∗

s,Ω ≥ l/2c0η
′.

On the other hand, if t ∈ J2 and 〈f(t, ·, u(t, ·)), u(t, ·)〉 < 0, then we get

[u(t, ·)]s,Ω ≥ c5, where c5 ≥ c4 is a suitable number arising from

c1[u]s,Ω + c2[u]
1/q
s,Ω + c3[u]p

∗

s,Ω > l/c0η
′.

By (4.1.3) the conclusion (4.3.11) holds, with

α = min {(1− λ/λ1)l, (1− λ/λ1)cp5, c
p
4, l/2c0η

′} > 0,

since l > 0, λ ∈ [0, λ1), c0 > 0 and c5 ≥ c4 > 0. This completes the proof.
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Lemma 4.3.4. For all t ≥ T ≥ 0 we have

(4.3.21)

∫ t

T

%(τ)k(τ)M([u]ps,Ω)
∣∣〈|ut|p−2ut, u〉

∣∣dτ ≤ ε3(T )C(k(t)),

where ε3(T ) = K
(∫ ∞

T

K%(t)dt

)1/p′

→ 0 as T → ∞, the Kirchhoff damped

function K% is defined by

K%u = %M([u]ps,Ω)‖ut‖pp, K = sup
t∈R+

0

(
‖u(t, ·)‖p ·M([u(t, ·)]ps,Ω)1/p

)
and

(4.3.22) C(k(t)) =

(∫ t

T

%(τ)kp(τ)dτ

)1/p

.

Proof. By (4.3.8) clearly K <∞. Hence by integration from T to t and use

of Hölder’s inequality twice, we obtain∫ t

T

%(τ)k(τ)M([u(τ, ·)]ps,Ω)
∣∣〈|ut|p−2ut, u〉

∣∣dτ
≤ K

∫ t

T

%(τ)k(τ)M([u(τ, ·)]ps,Ω)1/p′‖|ut|p−1(τ, ·)‖p′dτ

≤ ε3(T )

(∫ t

T

%(τ)kp(τ)dτ

)1/p

,

where ε3(T )→ 0 as T →∞ by Lemma 4.3.2.

Proof. Following the main ideas of the proof of [14, Theorem 3.1] and [85,

Theorem 1], first we treat case (4.3.1) in the simpler situation in which k

is not only CBV (R+
0 ), but also of class C1(R+

0 ). Suppose, for contradiction

that l > 0 in (4.3.10). Define a Lyapunov function by

V (t) = k(t)〈u, ut〉 = 〈ut, φ〉, φ = k(t)u.

Since k ∈ C1(R+
0 ) and φt = k′u + kut, it is clear that φ ∈ X. Hence, by the

distribution identity (A) in Section 4.2, we have for any t ≥ T ≥ 0

(4.3.23)

V (τ)
]t
T

=

∫ t

T

{
k′〈u, ut〉+ 2k‖ut‖2

2 − k
[
‖ut‖2

2

+[u]ps,Ω + µ‖u‖pp + 〈f(τ, ·, u), u〉
]}
dτ

−
∫ t

T

k〈Q(τ, ·, u, ut), u〉dτ

−
∫ t

T

k%M([u]ps,Ω)〈|ut|p−2ut, u〉dτ.
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We now estimate the right hand side of (4.3.23). First

(4.3.24) sup
R+

0

|〈u(t, ·), ut(t, ·)〉| ≤ sup
R+

0

‖u(t, ·)‖2 · ‖ut(t, ·)‖2 = U <∞

by (4.3.8) of Lemma 4.3.2. Now, using Lemma 4.3.3

(4.3.25) −
∫ t

T

k
{
‖ut‖2

2 + [u]ps,Ω + µ‖u‖pp + 〈f(τ, ·, u), u〉
}
dτ ≤ −α

∫ t

T

kdτ,

and by Lemmas 3.2 and 3.3 of [85]

(4.3.26) −
∫ t

T

k〈Q(τ, ·, u, ut), u〉dτ ≤ ε1(T )B(k(t)),

(4.3.27)

∫ t

T

k‖ut‖2
2dτ ≤ θ

∫ t

T

kdτ + ε2(T )C(θ)

(∫ t

0

σ1−℘k℘dτ

)1/℘

,

where C(θ) = ω
1/℘′

θ , ωθ = sup{τ 2/ω(τ) : τ ≥
√
θ/|Ω|},

(4.3.28)

ε1(T ) =

(
sup
R+

0

‖u(t, ·)‖ν

)
·

[(∫ ∞
T

〈Q(τ, ·, u, ut), ut〉dτ
)1/m′

+

(∫ ∞
T

〈Q(τ, ·, u, ut), ut〉dτ
)1/r′

]
,

and

(4.3.29) ε2(T ) =

(
sup
R+

0

‖ut(t, ·)‖2/℘
2

)
·
(∫ ∞

T

〈Q(τ, ·, u, ut), ut〉dτ
)1/℘′

,

with ε1(T ) = o(1) and ε2(T ) = o(1) as T → ∞ by (4.3.8) of Lemma 4.3.2.

Now, applying (4.3.24)–(4.3.27) and (4.3.21), from (4.3.23) we obtain

(4.3.30)

V (τ)
]t
T
≤ U

∫ t

T

|k′|dτ + 2θ

∫ t

T

kdτ

+ 2ε2(T )C(θ)

(∫ t

0

σ1−℘k℘dτ

)1/℘

− α
∫ t

T

kdτ + ε3(T )C(k(t)) + ε1(T )B(k(t)),
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where ε1(T ) is defined in (4.3.28), ε2(T ) in (4.3.29), ε3(T ) in (4.3.21), B(k)

in (4.3.4) and C(k) in (4.3.22). By (4.3.3) there is a sequence ti ↗∞ and a

number ` > 0 such that

(4.3.31) A(k(ti)) + C(k(ti)) ≤ `

∫ ti

0

kdτ.

Choose θ = θ(l) = α/4 and fix T > 0 so large that

(4.3.32) ε(T )[2C(θ) + 1]` ≤ α/4,

being ε(T ) = max{ε1(T ), ε2(T ), ε3(T )} = o(1) as T → ∞. Consequently,

for ti ≥ T ,

(4.3.33) V (ti) ≤ U

∫ ti

T

|k′|dτ + S(T )− α

4

∫ ti

T

kdτ,

where S(T ) = V (T ) + ε(T )[2C(θ) + 1]`
∫ T

0
kdτ . Thus by (4.3.1) we get

(4.3.34) lim
i→∞

V (ti) = −∞,

since k′ ∈ L1(R+
0 ) being k ∈ CBV (R+

0 ). On the other hand, by (4.3.24) and

recalling that k is bounded,

(4.3.35) |V (t)| ≤

(
sup
R+

0

k

)
‖u(t, ·)‖2 · ‖ut(t, ·)‖2 ≤

(
sup
R+

0

k

)
U

for all t ∈ R+
0 . This contradiction completes the first part of the proof.

The proof of the general case, k ∈ CBV (R+
0 ) but not k ∈ C1(R+

0 ),

proceeds as in [9, Theorem 3.3]. Let k ∈ C1(R+
0 ) and G ⊂ R+

0 be an open

subset such that

(i) 2k ≥ k ≥

{
k in R+

0 \G
0 in G

; (ii) Var k ≤ 2 Var k;

(iii)

∫
G

kds ≤ 1.

Clearly k ∈ CBV (R+
0 ) by (ii). We next prove that k satisfies both (4.3.1)

and (4.3.3). Note that since k 6∈ L1(R+
0 ) it is possible to find a value T1

such that

(4.3.36)

∫ T1

0

kdτ ≥ 2.
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Considering t ≥ T1, by (i), (ii) and (4.3.36) we obtain

(4.3.37)

∫ t

0

kdτ ≥
∫

[0,t] \G
kdτ ≥

∫ t

0

kdτ −
∫
G

kdτ ≥
∫ t

0

kdτ − 1 ≥ 1

2

∫ t

0

kdτ.

Hence k satisfies (4.3.1). Moreover, by (i) and (4.3.37) for all t ≥ T1

[
A(k(t)) + C(k(t))

] ∫ t

0

kdτ ≤ 4 [A(k(t)) + C(k(t))]

∫ t

0

kdτ ,

where k 7→ A(k) is defined in (4.3.4) and k 7→ C(k) in (4.3.22). This shows

that k also satisfies (4.3.3).

The general case is therefore reduced to the situation when k is smooth,

and the proof is complete under the condition (4.3.1).

Suppose now that k verifies (4.3.2). We still obtain φt = k′u + kut, so

that φ ∈ X. Clearly Lemmas 4.3.2 and 4.3.3 continue to hold, as well as

Lemmas 3.2 and 3.3 of [85], that is (4.3.26) and (4.3.27) are available. From

now on we follow the proof of the previous case until obtaining (4.3.33). By

the definition of V we now get

|V (ti)| ≤ Uk(ti) ≤ U

{
k(0) +

∫ ti

0

|k′|dτ
}
,

so that by (4.3.33)

(4.3.38)
α

4

∫ ti

0

kdτ ≤ 2U

∫ ti

0

|k′|dτ + S(T ) + Uk(0).

First note that k 6∈ L1(R+
0 ) by (4.3.2). Now, dividing (4.3.38) by

∫ ti
0
kdτ , we

contradict (4.3.2) as i→∞.

In conclusion, in both cases, we have proved that Eu(t) approaches zero

as t→∞. Finally, by (4.3.7), it follows that (4.3.5) holds. 2

We now give other weaker versions of Theorem 4.3.1 when k and % are

related, only considering the case p ≥ 2. These facts were first noted in

Section 7 of the celebrated article [84] in the simpler case of strongly damped

systems.

We first give a stability result when k and % are related by the condition

(4.3.39) k(t) ≤ const. %(t) for t sufficiently large.
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The importance of Theorem 4.3.6 relies on the fact that condition (4.3.39)

allows to remove the assumption (AS)–(b) on the distributed damping Q,

which forces a control from below for Q, while the natural growth condition

for Q, that is (AS)–(a), continues to be required. Before proving these theo-

rems, in Lemma 4.3.5 below we establish an estimate for the norm ‖ut(t, ·)‖2

in terms of ‖ut(t, ·)‖p.
From now on, we only consider the case p ≥ 2, without further mention-

ing.

Lemma 4.3.5. For all θ > 0 there exists a number Λ(θ) ≥ 0 such that

(4.3.40) ‖ut(t, ·)‖2
2 ≤ θ + Λ(θ)‖ut(t, ·)‖pp for all t ∈ R+

0 .

Proof. Fix t ∈ R+
0 and θ > 0. Define

Ω1 = Ω1(t) = {x ∈ Ω : |ut(t, x)| ≤
√
θ/|Ω|},

Ω2 = Ω2(t) = {x ∈ Ω : |ut(t, x)| ≥
√
θ/|Ω|}.

Clearly,

(4.3.41) ‖ut(t, ·)‖2
2 =

(∫
Ω1

+

∫
Ω2

)
|ut(t, x)|2dx and

∫
Ω1

|ut(t, x)|2dx ≤ θ.

We immediately have that∫
Ω2

|ut(t, x)|2dx =

∫
Ω2

|ut(t, x)|2

|ut(t, x)|p
|ut(t, x)|pdx ≤

(
θ

|Ω|

)(2−p)/2

‖ut(t, ·)‖pp,

so (4.3.40) holds, with Λ(θ) = (θ/|Ω|)(2−p)/2.

Theorem 4.3.6. If condition (4.3.9) holds and there exists a function k,

satisfying either (4.3.1) or (4.3.2), the relation (4.3.39) and

(4.3.42) lim inf
t→∞

[B(k(t)) + C(k(t))]

/∫ t

0

kdτ <∞ ,

where k 7→ B(k) is defined in (4.3.4) and k 7→ C(k) is defined in (4.3.22),

then along any solution of (P3) property (4.3.5) holds.

Proof. We once more proceed by contradiction assuming l > 0 in (4.3.10)

and distinguish two cases.
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If k satisfies (4.3.1), we follow the proof of the same case of Theorem 4.3.1

until the derivation of (4.3.23). Now, Lemmas 4.3.2–4.3.3 and Lemma 3.2

of [85] are still valid, so that (4.3.24)–(4.3.26) are available. Moreover,

Lemma 4.3.4 and (4.3.8) give (4.3.21). While (4.3.27) no longer holds and

Lemma 3.3 of [85] must be replaced by the following argument; cf. [84,

Lemma 7.3].

Take θ = α/4 in (4.3.40), so that Λ(θ) = Λ(α), combining (4.3.39)

with (4.3.40), for T sufficiently large, in replacement of (4.3.27) we have

for all t ≥ T

(4.3.43)

2

∫ t

T

k‖ut(τ, ·)‖2
2dτ ≤

α

2

∫ t

T

kdτ + Λ̃(α)

∫ t

T

%(τ)‖ut(τ, ·)‖pp dτ

≤ α

2

∫ t

T

kdτ + ε4(T ),

where Λ̃(α) depends on Λ(α) and on the constant given in (4.3.39), while

(4.3.44) ε4(T ) = Λ̃(α)

∫ ∞
T

%(τ)‖ut(τ, ·)‖pp dτ = o(1)

as T →∞ by Lemma 4.3.2, since (4.3.9) holds. Therefore, instead of (4.3.30)

we get

(4.3.45)

V (τ)
]t
T
≤ U

∫ t

T

|k′|dτ + ε4(T )

− α

2

∫ t

T

kdτ + ε3(T )C(k(t)) + ε1(T )B(k(t)),

where ε1(T ) is defined in (4.3.28) and ε3(T ) in (4.3.21). Thus, we obtain

(4.3.46) V (ti) ≤ U

∫ ti

T

|k′|dτ + S(T )− α

4

∫ ti

T

kdτ,

where now ti ↗∞ and ` > 0 are taken so that

(4.3.47) B(k(ti)) + C(k(ti)) ≤ `

∫ ti

0

kdτ

by (4.3.42), ε(T ) = max{ε1(T ), ε3(T ), ε4(T )} ≤ α/4` for T even larger, if

necessary, and S(T ) = V (T ) + ε(T )
{

1 + `
∫ T

0
kdτ

}
. Hence, (4.3.1) im-

plies (4.3.34), which gives the required contradiction in virtue of (4.3.35).

When k ∈ CBV (R+
0 ) \ C1(R+

0 ) the proof can proceed as in Theorem 4.3.1.
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If k satisfies (4.3.2), arguing as in Theorem 4.3.1 and using (4.3.43) in

place of (4.3.27), and (4.3.47) in place of (4.3.31), we get again a contradic-

tion.

Corollary 4.3.7. Let (4.3.9) hold and δ1, δ2 ∈ L∞(R+
0 ). Suppose that % is

either of class CBV (R+
0 ) \ L1(R+

0 ), or that % ∈ W 1,1
loc (R+

0 ) ∩ L∞(R+
0 ), % 6≡ 0

and |%′(t)| = o(%(t)) as t→∞. Then (4.3.5) holds.

Proof. It is sufficient to apply Theorem 4.3.6, with k = %. Indeed, in the

case % ∈ CBV (R+
0 ) \ L1(R+

0 ), conditions (4.3.1) and (4.3.39) hold at once.

On the other hand, if % ∈ W 1,1
loc (R+

0 ), |%′(t)| = o(%(t)) as t → ∞ and % 6≡ 0,

then (4.3.2), (4.3.39) are satisfied and % 6∈ L1(R+
0 ), as in the previous case.

Otherwise, if % ∈ L1(R+
0 ), by (4.3.2) it follows that

∫∞
0
|%′(τ)|dτ = 0, and

so % ≡ const. and in turn % ≡ 0 since % ∈ L1(R+
0 ) by assumption of con-

tradiction, which is impossible, being % 6≡ 0. Moreover, since % is of class

CBV (R+
0 )\L1(R+

0 ), or % ∈ W 1,1
loc (R+

0 )∩L∞(R+
0 ), it follows that % is bounded

and so supR+
0
% ≤ %0 < ∞. Therefore, since m < r and applying Young’s

inequality, we get

(4.3.48)

(∫ t

0

δ2%
rdτ

)1/r

=

(∫ t

0

δ2%
m+(r−m)dτ

)1/r

≤ %
(r−m)/r
0

(∫ t

0

δ2%
mdτ

)1/r

≤ r −m
r

%0 +
m

r

(∫ t

0

δ2%
mdτ

)1/m

≤ const.

(∫ t

0

δ2%
mdτ

)1/m

.

We repeat the same argument with m and p. First suppose that p < m.

Arguing as in (4.3.48), we immediately obtain(∫ t

0

δ1%
mdτ

)1/m

+

(∫ t

0

%p+1dτ

)1/p

≤ const.

[(∫ t

0

δ1%
pdτ

)1/p

+

(∫ t

0

%p+1dτ

)1/p
]

(4.3.49)

≤ const.

[
δ

1/p
1 ρ

1/p′

0

(∫ t

0

%dτ

)1/p

+ %0

(∫ t

0

%dτ

)1/p
]
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≤ const.

(∫ t

0

%dτ

)1/p

.

Suppose now that m < p. Arguing as before, we get

(4.3.50)

(∫ t

0

δ1%
mdτ

)1/m

+

(∫ t

0

%p+1dτ

)1/p

≤ const.

[(∫ t

0

δ1%
mdτ

)1/m

+

(∫ t

0

%m+1dτ

)1/m
]

≤ const.

[
δ

1/m
1 ρ

1/m′

0

(∫ t

0

%dτ

)1/m

+ %0

(∫ t

0

%dτ

)1/m
]

≤ const.

(∫ t

0

%dτ

)1/m

.

Combining (4.3.48)–(4.3.50), we obtain

0 ≤ {B(k(t)) + C(k(t))}
/∫ t

0

kdτ ≤ const.

(∫ t

0

% dτ

)−(1−1/min{p,m})

→ 0,

as t → ∞, being min{p,m} > 1 and % 6∈ L1(R+
0 ) in both cases. Hence, also

condition (4.3.42) holds.

We provide now a global stability for (P3) when (4.3.39) is replaced by

(4.3.51) |k′| ≤ const. %1/pk1/p′ a.e. in R+
0 ,

assuming the entire condition (AS).

Theorem 4.3.8. Let (4.3.9) and (AS)–(b) hold. If there exists a function k ∈
[W 1,1

loc (R+
0 ) ∩ L∞(R+

0 )] \ L1(R+
0 ), satisfying (4.3.51) and (4.3.3), then along

any solution u of (P3) property (4.3.5) holds.

Proof. Assume by contradiction that l > 0 in (4.3.10). We proceed as in the

proof of the first case in Theorem 4.3.1, but estimating the term
∫ t
T
k′〈u, ut〉dτ

as in [84]. Since p ≥ 2, we immediately have that

(4.3.52) ‖ut‖2 ≤ |Ω|1/2−1/p‖ut‖p.

Moreover, ‖u‖2 ∈ L∞(R+
0 ) by Lemma 4.3.2, and in turn, using (4.3.51), we

obtain for a.a. t ∈ R+
0

(4.3.53)
|k′〈u(t, ·), ut(t, ·)〉| ≤ const. %1/pk1/p′‖u(t, ·)‖2 · ‖ut(t, ·)‖2

≤ const. %1/pk1/p′ ‖ut(t, ·)‖p.
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By (4.3.52), (4.3.53) and Hölder’s inequality we get∫ t

T

|k′〈u, ut〉|dτ ≤ const.

(∫ t

T

kdτ

)1/p′ (∫ t

T

%‖ut(t, ·)‖pp dτ
)1/p

.

It follows immediately that

(4.3.54)

∫ t

T

|k′〈u, ut〉|dτ ≤ ε5(T )

(
1 +

∫ t

T

kdτ

)
,

where

ε5(T ) = const.

(∫ ∞
T

%‖ut(τ, ·)‖pp dt
)1/p

= o(1)

as T →∞ by Lemma 4.3.2, since (4.3.9) holds. Hence (4.3.30) becomes

(4.3.55)

V (τ)
]t
T
≤ ε5(T )

(
1 +

∫ t

T

kdτ

)
+ 2θ

∫ t

T

kdτ

+ 2ε2(T )C(θ)

(∫ t

0

σ1−℘k℘dτ

)1/℘

− α
∫ t

T

kdτ

+ ε3(T )C(k(t)) + ε1(T )B(k(t)),

where again the dominating term is−α
∫ t
T
kdτ , and ε1(T ) is defined in (4.3.28),

ε2(T ) in (4.3.29) and ε3(T ) in (4.3.21). Call ` the number verifying (4.3.31)

and take θ = θ(l) = 3α/16. Furthermore, fix T > 0 even larger, if nec-

essary, so that ε(T ) ≤ 3α/8 [1 + `+ 2C(θ)`], where now we define ε(T ) =

max{ε1(T ), ε2(T ), ε3(T ), ε5(T )} = o(1) as T → ∞. Proceeding as in Theo-

rem 4.3.1, in place of (4.3.33), we obtain, after some calculations,

(4.3.56) V (ti) ≤ S(T )− α

4

∫ ti

T

kdτ,

where S(T ) = V (T ) + ε(T ){1 + [1 + 2C(θ)]`
∫ T

0
kdτ}. Since k 6∈ L1(R+

0 ),

by (4.3.56) we get (4.3.34), which gives a contradiction in virtue of (4.3.24)

and of the fact that k is bounded. This contradiction produce at once (4.3.5)

as in the proof of Theorem 4.3.6.

Combining the proof techniques of the main Theorems 4.3.6 and 4.3.8, we

obtain another result of independent interest in which only condition (AS)–

(a) is required on the damping term Q. More precisely, we have the following

theorem.



S. Saldi Nonlocal nonlinear problems 67

Theorem 4.3.9. If (4.3.9) holds and there exists a function

k ∈ [W 1,1
loc (R+

0 ) ∩ L∞(R+
0 )] \ L1(R+

0 ),

satisfying (4.3.39), (4.3.51) and (4.3.42), then any solution u of (P3) has

the property (4.3.5).

Proof. As in the proof of Theorem 4.3.8 we proceed by contradiction as-

suming l > 0 and observe that the technique used in Theorem 4.3.1 for the

regular case when k satisfies (4.3.1) can be adopted in a similar way. To do

this we only estimate
∫ t
T
k(τ)‖ut(τ, ·)‖2

2dτ in the same way of the proof of the

Theorem 4.3.6, while the term
∫ t
T
k′(τ)〈u(τ, ·), ut(τ, ·)〉dτ in the same way of

the proof of the Theorem 4.3.8. More precisely, we get once more (4.3.43),

(4.3.53) and (4.3.54). Therefore, (4.3.55) becomes

(4.3.57)
V (τ)

]t
T
≤ ε5(T )

(
1 +

∫ t

T

kdτ

)
+ ε4(T )− α

2

∫ t

T

kdτ

+ ε3(T )C(k(t)) + ε1(T )B(k(t)),

where ε1(T ) is defined in (4.3.28), ε3(T ) in (4.3.21), ε4(T ) in (4.3.44) and ε5(T )

in (4.3.54). Denote by ` the number verifying (4.3.47). Of course we have that

ε(T ) = max{ε1(T ), ε3(T ), ε4(T ), ε5(T )} = o(1) as T →∞, hence fix T > 0 so

large that ε(T ) ≤ α/4(1 + `). Proceeding as in the proofs of Theorems 4.3.6

and 4.3.8, we obtain (4.3.56) where now S(T ) = V (T ) + ε(T ){2 + `
∫ T

0
kdτ}.

Since k 6∈ L1(R+
0 ) by (4.3.56), we get (4.3.34) which gives a contradiction

using (4.3.24).

Hence (4.3.5) follows at once, as always.

Remark: The importance of Theorems 4.3.6 and 4.3.9 relies mainly on the

fact that the stability of global solutions of (P3) is established without re-

quiring any lower bound for the external damping Q, that is without assuming

(AS)–(b). This is possible thanks to assumption (4.3.39).

Corollary 4.3.10. Let (4.3.9) hold. Suppose that

% ∈ [W 1,1
loc (R+

0 ) ∩ L∞(R+
0 )] \ L1(R+

0 ), |%′(t)| = O(%(t)) as t→∞,

and that δ1, δ2 ∈ L∞(R+
0 ). Then (4.3.5) holds.

Proof. It is sufficient to apply Theorem 4.3.9, with k = %, since, by the same

main arguments used in the proof of Corollary 4.3.7, now % trivially verifies

all the structural assumptions of Theorem 4.3.9.
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4.4 Local asymptotic stability for (P3)

In this section, we show some results concerning the local asymptotic

stability. Theorem 4.4.6 provides a local stability result under a growth

condition on f , assumed only for u sufficiently small. Following [9], the

purpose is reached thanks to a deep qualitative analysis of the geometry of

the problem, which allows us to get stability, provided that the initial data

belong to an appropriate region Σ̃0 in the phase plane, see Figure 4.1.

Figure 4.1: The phase plane (υ,E)

In particular, if the couple (‖u(0, ·)‖q, Eu(0)) ∈ Σ̃0 then (‖u(t, ·)‖q, Eu(t))

belongs to the region Σ̃0 for all t ∈ R+
0 , along any global solution u of (P3).

This means that is the trajectory of (‖u(t, ·)‖q, Eu(t)) lies in the same region

as the time grows up, once the initial values (‖u(0, ·)‖q, Eu(0)) belong to it.

Here we do not need the non–degeneracy of the problem, assumed in [9] for

the local stability in order to overcome some technical difficulties due to the

Kirchhoff structure of the problem. For further general comments we refer

to the paper [73].

From here on, we assume (AS)–(a) and the assumption (H) on the func-

tion f , with the exception that condition (4.1.3) is replaced by the following

(4.4.1) lim inf
u→0

(f(t, x, u), u)

|u|p
≥ −λ̄, for some λ̄ ∈ [0, λ1),
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while (H)–(a) is assumed with the further restriction that p < q < p∗ and (b)

is dropped.

Note that in the proof of the next three lemmas we do not use the as-

sumption (4.2.8).

Lemma 4.4.1. There exist λ ∈ (λ, λ1) and c > 0 such that

(4.4.2) (f(t, x, u), u) ≥ −λ|u|p − c|u|q

for all (t, x, u) ∈ R+
0 × Ω× RN . Moreover, if u is a solution of (P3), then

(4.4.3)

Fu(t) ≥ −λ
p
‖u(t, ·)‖pp −

c

q
‖u(t, ·)‖qq

Eu(t) ≥ 1

2
‖ut(t, ·)‖2

2 +
1

2p

(
1− λ

λ1

)
[u(t, ·)]ps,Ω

+ ã‖u(t, ·)‖pq − c̃‖u(t, ·)‖qq,

ã =
1

2pξpq

(
1− λ

λ1

)
> 0, c̃ =

c

q

for all t ∈ R+
0 , where ξq is given in (4.3.16).

Proof. Fix λ ∈ (λ, λ1). By (4.4.1) we have (f(t, x, u), u) ≥ −λ|u|p for all

(t, x, u) ∈ R+
0 × Ω× RN , with |u| < δ, provided that δ ∈ (0, 1] is sufficiently

small. On the other hand, (H)–(a) and |u| ≥ δ imply

(f(t, x, u), u) ≥ −κ(|u|1−q + 1)|u|q ≥ −κ(δ1−q + 1)|u|q,

so that, putting c = κ(δ1−q + 1), we have (f(t, x, u), u) ≥ −c|u|q for all

(t, x, u) ∈ R+
0 × Ω × RN such that |u| ≥ δ. Hence (4.4.2) holds, with c

as large as we wish. Integrating (4.4.2), we obtain at once the first part

of (4.4.3) along the solution u.

As already noted in the proof of Lemma 4.3.2, clearly λ1‖u‖pp ≤ [|u|]ps,Ω ≤
[u]ps,Ω for all u ∈ D̃s,p(Ω;RN), by (4.2.3). Hence, by the definitions of Eu and

of λ1, we have in R+
0

Eu(t) ≥ 1

2
‖ut(t, ·)‖2

2 +
1

p
[u(t, ·)]ps,Ω + Fu(t)

≥ 1

2
‖ut(t, ·)‖2

2 +
1

2p

(
1− λ

λ1

)
[u(t, ·)]ps,Ω

+
1

2pξpq

(
1− λ

λ1

)
‖u(t, ·)‖pq −

c

q
‖u(t, ·)‖qq.
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In particular, the second inequality of (4.4.3) follows at once by application

of (4.3.16).

Since p < q by (H)–(a), the set

Σ̃0 = {(υ,E) ∈ R2 : 0 ≤ υ < z0, Γ(υ) ≤ E < Ẽ0},

where Γ(υ) = 2ãυp − c̃υq,

(4.4.4) z0 =

(
ã

c

)1/(q−p)

and Ẽ0 = ã

(
2− 1

q

)
zp0 ,

with ã and c̃ given in (4.4.3), see Figure 4.1, is well defined. Without loss

of generality, we also assume that ã/c ≤ 1, by taking c sufficiently large, if

necessary. Here and in the rest of the section u is a fixed solution of (P3)

and υ(t) = ‖u(t, ·)‖q.

Lemma 4.4.2. If (υ(0), Eu(0)) ∈ Σ̃0, then for all t ∈ R+
0

(4.4.5) (υ(t), Eu(t))∈ Σ̃0 and 2Eu(t) ≥ ‖ut(t, ·)‖2
2+

1

p

(
1− λ

λ1

)
[u(t, ·)]ps,Ω.

Proof. By (4.4.3) and again (4.3.16), we have

Eu(t) ≥ 1

2
‖ut(t, ·)‖2

2 +
1

2pξpq

(
1− λ

λ1

)
‖u(t, ·)‖pq + ã‖u(t, ·)‖pq − c̃‖u(t, ·)‖qq

≥ 2ãυ(t)p − c̃υ(t)q.

Now, if there would exist t such that υ(t) = z0, then we would get

2ãzp0 − c̃z
q
0 = Ẽ0 > Eu(0) ≥ Eu(t) ≥ 2ãzp0 − c̃z

q
0,

which is impossible. Therefore υ(t) 6= z0 for all t ∈ R+
0 . Hence by the

continuity of υ we have υ(R+
0 ) ⊂ [0, z0), being υ(0) < z0. Consequently, we

have proved that along any solution u ∈ X

(4.4.6) Ẽ0 > Eu(0) ≥ Eu(t) ≥ 2ãυ(t)p − c̃υ(t)q ≥ 0 for all t ∈ R+
0 ,

since 0 ≤ υ(t) < z0 ≤ 1 for all t ∈ R+
0 . Hence (υ(t), Eu(t)) ∈ Σ̃0 and (4.4.3)

gives

(4.4.7) Eu(t) ≥ 1

2
‖ut(t, ·)‖2

2 +
1

2p

(
1− λ

λ1

)
[u(t, ·)]ps,Ω + ãυ(t)p − c̃υ(t)q.

Since ãυp − c̃υq ≥ 0 in [0, z0) we get (4.4.5) at once.
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It is possible to obtain similar results as in Lemmas 4.4.1 and 4.4.2, in

terms of [u(t, ·)]s,Ω, rather than ‖u(t, ·)‖q.

Lemma 4.4.3. If (υ(0), Eu(0)) ∈ Σ̃0, then for all t ∈ R+
0

[u(t, ·)]ps,Ω + 〈f(t, ·, u), u〉 ≥ 1

2

(
1− λ

λ1

)
[u(t, ·)]ps,Ω.

Proof. First of all

〈f(t, ·, u), u〉 ≥ −λ‖u(t, ·)‖pp − c‖u(t, ·)‖qq

by (4.4.2), so that, by (4.3.16), we get

[u(t, ·)]ps,Ω + 〈f(t, ·, u), u〉 ≥ [u(t, ·)]ps,Ω −
λ

λ1

[u(t, ·)]ps,Ω − c‖u(t, ·)‖qq

≥
(

1− λ

λ1

)
[u(t, ·)]ps,Ω − c‖u(t, ·)‖qq

≥ 1

2

(
1− λ

λ1

)
[u(t, ·)]ps,Ω +

1

2ξpq

(
1− λ

λ1

)
υ(t)p(4.4.8)

− cυ(t)q

≥ 1

2

(
1− λ

λ1

)
[u(t, ·)]ps,Ω + ãυ(t)p − cυ(t)q,

where ã is defined in (4.4.3). The quantity ãυ(t)p− cυ(t)q ≥ 0 for all t ∈ R+
0 ,

since υ(R+
0 ) ⊂ [0, z0). Thus, from (4.4.8) the lemma is proved.

Lemma 4.4.4. If (υ(0), Eu(0)) ∈ Σ̃0, then (4.3.7) and (4.3.8) continue to

hold.

Proof. The fact that ‖ut‖2, [u]s,Ω and M([u]ps,Ω) are in L∞(R+
0 ) now follows

at once by (4.4.5); moreover ‖u‖2 ∈ L∞(R+
0 ) by (4.1.4). The latter part

of (4.3.7)1 is a consequence of the continuity of the Sobolev embeddings

D̃s,p(Ω;RN) ↪→ Lq(Ω;RN) and D̃s,p(Ω;RN) ↪→ Lp
∗
(Ω;RN), being in partic-

ular p < q ≤ p∗ by (H)–(a). Property (4.3.8) can be proved exactly as in

Lemma 4.3.2.

Also in the proof of the next lemma we do not use that (4.2.8) holds.

Lemma 4.4.5. If the limit l is positive in (4.3.10), then there exists a positive

number α = α(l) such that (4.3.11) is true.
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Proof. Let us denote by L u the same operator introduced in (4.3.11). By

Lemma 4.4.3, we get in R+
0

(4.4.9)

L u(t) ≥ ‖ut(t, ·)‖2
2 + µ‖u(t, ·)‖pp +

1

2

(
1− λ

λ1

)
[u(t, ·)]ps,Ω

≥ 1

2

(
1− λ

λ1

)[
‖ut(t, ·)‖2

2 + µ‖u(t, ·)‖pp + [u(t, ·)]ps,Ω
]
.

As in the proof of Lemma 4.3.3 we have (4.3.12) and now divide R+
0 into the

sets J1 and J2 given in (4.3.13). Hence, by (4.3.14), in J1 we obtain

(4.4.10) L u(t) ≥ 1

2

(
1− λ

λ1

)
l.

Condition (4.3.15) is still valid and in turn we get once more (4.3.19) in J2.

Moreover, by (4.4.9) for all t ∈ J2

(4.4.11) L u(t) ≥ 1

2

(
1− λ

λ1

)
Cp

2 (l),

where C2(l) is defined in (4.3.19). Hence, combining (4.4.10) with (4.4.11),

we obtain (4.3.11) with

α = α(l) =
1

2

(
1− λ

λ0

){
min {l, Cp

2 (l)} if J2 6= ∅,
l, if J2 = ∅.

This completes the proof.

The next theorem is our main local asymptotic stability result for (P3).

Theorem 4.4.6. Let also (AS)–(b) hold and k be an auxiliary function sat-

isfying (4.3.3) and either (4.3.1) or (4.3.2). If the initial data [u(0, ·)]s,Ω,

‖ut(0, ·)‖2 are sufficiently small, then (4.3.5) continues to hold.

Proof. Let us first prove that if the initial data ‖ut(0, ·)‖2 and [u(0, ·)]s,Ω are

sufficiently small, then (υ(0), Eu(0)) ∈ Σ̃0. Indeed, the continuity of the

embedding D̃s,p(Ω;RN) ↪→ Lq(Ω;RN) implies that

υ(0) = ‖u(0, ·)‖q<z0 ≤ 1

if [u(0, ·)]s,Ω is small enough. On the other hand, the definition of Eu, (4.3.17)

and (4.3.19) give

Eu(0) ≤ 1

2
‖ut(0, ·)‖2

2 +

(
µ

pλ1

+
1

p
+ 2C

)
[u(0, ·)]s,Ω.
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This shows that Eu(0) < Ẽ0 for sufficiently small initial data. Finally, since

0 ≤ υ(0) < z0, it follows that ãυ(0)p−c̃υ(0)q ≥ 0 and so Eu(0) ≥ 0 by (4.4.3).

Now we prove that Eu(t) → 0 as t → ∞ and proceed by contradiction,

assuming l > 0 in (4.3.10) and showing that all the necessary estimates used

in the proof of Theorem 4.3.1 are still valid in this setting, provided that

the couple (υ(0), Eu(0)) ∈ Σ̃0. We consider separately the cases when k

verifies (4.3.1) and (4.3.2).

Let us first suppose k ∈ CBV (R+
0 ) ∩ C1(R+

0 ). Define the Lyapunov

function V (t) = k(t)〈u, ut〉 as in Theorem 4.3.1, so that (4.3.23) is still true.

Of course, Lemmas 3.2 and 3.3 of [85] give respectively (4.3.26) and (4.3.27)

as before. Inequality (4.3.25) is a consequence of Lemma 4.4.5, while (4.3.24)

is now valid by Lemma 4.4.4 and also by the request that (υ(0), Eu(0)) is in

Σ̃0. Hence we obtain (4.3.30) and the proof can now follow word by word

the proof of Theorem 4.3.1 in the regular case, as well as in the general

case k ∈ CBV (R+
0 ) \ C1(R+

0 ).

If k verifies (4.3.2), the proof is the same as in Theorem 4.3.1, with the

only exception that Lemmas 4.4.1–4.4.5 are used in place of Lemmas 4.3.2

and 4.3.3.

Also for the local asymptotic stability we consider cases in which k and %

are related and investigate the effects on the stability of the problem. From

now on we suppose p ≥ 2, so Lemma 4.3.5 is valid and (4.3.40) is available

once more. Here we also need the non–degeneracy of the problem, so we

assume that (4.3.9) holds, without further mentioning.

Theorem 4.4.7. If there exists an auxiliary function k, satisfying (4.3.39),

(4.3.42) and either (4.3.1) or (4.3.2), and if the initial data [u(0, ·)]s,Ω and

‖ut(0, ·)‖2 are sufficiently small, then (4.3.5) continues to hold.

Proof. As shown in Theorem 4.4.6, if the initial data [u(0, ·)]s,Ω and ‖ut(0, ·)‖2

are sufficiently small, then (υ(0), Eu(0)) ∈ Σ̃0. As usually, if l = 0 in (4.3.10),

then the second condition in (4.3.5) follows at once. Hence, let us assume by

contradiction that l > 0 in (4.3.10).

We start by proving the theorem in the case when k verifies (4.3.1). Sup-

pose first that k ∈ CBV (R+
0 ) ∩ C1(R+

0 ). Define V (t) = k(t)〈ut, u〉 as al-

ways and get (4.3.23). Condition (4.3.24) is valid thanks to Lemma 4.4.4

and to the fact that (υ(0), Eu(0)) ∈ Σ̃0. Moreover, (4.3.25) derives from

Lemma 4.4.5 and (4.3.26) from Lemma 3.2 of [85]. On the contrary, (4.3.27)
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is no more available, so that we need to estimate the term
∫ t
T
k‖ut(τ, ·)‖2

2dτ

as in the proof of Theorem 4.3.6. Taking θ = α/4 in (4.3.40), we obtain

(4.3.43)–(4.3.44). Hence, (4.3.45) follows at once. Therefore, by (4.3.42) we

derive (4.3.47) and from now on the proof can be completed as in Theo-

rem 4.3.6.

Finally, if k satisfies condition (4.3.2), the proof is the same as for Theo-

rem 4.3.6.

Corollary 4.4.8. Suppose that δ1, δ2 ∈ L∞(R+
0 ), and either that % is of

class CBV (R+
0 ) \ L1(R+

0 ), or that % is in W 1,1
loc (R+

0 ) ∩ L∞(R+
0 ), % 6≡ 0 and

|%′(t)| = o(%(t)) as t → ∞. If the initial data [u(0, ·)]s,Ω, ‖ut(0, ·)‖2 are

sufficiently small, then (4.3.5) holds.

Proof. It is sufficient to apply Theorem 4.4.7, with k = %, since % satisfies

the structural assumptions as shown in the proof of Corollary 4.3.7.

Theorem 4.4.9. Let (AS)–(b) hold and let k be an auxiliary function of class

[W 1,1
loc (R+

0 )∩L∞(R+
0 )] \L1(R+

0 ), satisfying (4.3.3) and (4.3.51). If the initial

data [u(0, ·)]s,Ω, ‖ut(0, ·)‖2 are sufficiently small, then (4.3.5) continues to

hold.

Proof. We remind that, as shown in the proof of Theorem 4.4.6, if [u(0, ·)]s,Ω
and ‖ut(0, ·)‖2 are sufficiently small, then (υ(0), Eu(0)) ∈ Σ̃0. Hence, let

(υ(0), Eu(0)) ∈ Σ̃0. We follow the strategy used in the proof of the regular

case given in Theorem 4.4.6, with the difference that the term
∫ t
T
k′〈u, ut〉dτ

in (4.3.23) is treated as in Theorem 4.3.8, so we obtain again the rela-

tions (4.3.53)–(4.3.54). Therefore, we get (4.3.55), with α = α(l) > 0 given

by Lemma 4.4.5, and consequently (4.3.56). Hence, we find the required

contradiction exactly as in the proof of Theorem 4.3.8.

Theorem 4.4.10. If there exists an auxiliary function

k ∈ [W 1,1
loc (R+

0 ) ∩ L∞(R+
0 )] \ L1(R+

0 ),

satisfying (4.3.39), (4.3.51) and (4.3.42), and the initial data [u(0, ·)]s,Ω,

‖ut(0, ·)‖2 are sufficiently small, then (4.3.5) continues to hold.

Proof. Again, as shown in Theorem 4.4.6, if the initial data [u(0, ·)]s,Ω and

‖ut(0, ·)‖2 are sufficiently small, then (υ(0), Eu(0)) ∈ Σ̃0. Hence, consider

(υ(0), Eu(0)) ∈ Σ̃0. We use the technique adopted for the proof of the regular
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case in Theorem 4.4.6, but we estimate the term
∫ t
T
k′〈u, ut〉dτ in (4.3.23) in

the same manner of Theorem 4.4.9. Indeed, (4.3.52)–(4.3.54) are still valid,

so that we obtain once more (4.3.57), where now α derives from Lemma 4.4.5.

As in the proof of Theorem 4.3.9, let ` be the number satisfying (4.3.47), in

virtue of (4.3.42). We get once more (4.3.56) and the proof can be completed

as in Theorem 4.3.9.

Corollary 4.4.11. Suppose that % is of class [W 1,1
loc (R+

0 )∩L∞(R+
0 )]\L1(R+

0 ),

|%′(t)| = O(%(t)) as t → ∞ and that δ1, δ2 ∈ L∞(R+
0 ). If the initial data

[u(0, ·)]s,Ω, ‖ut(0, ·)‖2 are sufficiently small, then (4.3.5) holds.

Proof. It is sufficient to apply Theorem 4.4.10, with k = %, since, by the same

main arguments used in the proof of Corollary 4.4.8 and Theorem 4.4.9, now %

trivially verifies all the structural assumptions of Theorem 4.4.10.

4.5 The linear case

In this section, following [84, Section 5], we consider an important special

case of (P3), that is p = 2, Q(t, x, u, v) = a(t)tαv, with a satisfying

(4.5.1) 1/C ≤ a(t) ≤ C in R+
0

for some C > 0 and α ∈ R, and f(t, x, u) = V (t, x)u, where V is a bounded

continuous function in I ×Ω. In other words, here we study the solutions of

(P3,lin)


utt + (−∆)su+ µu+ %(t)M([u]2s,Ω)ut

+a(t)tαut + V (t, x)u = 0 in I × Ω,

u(t, x) = 0 on I × (Rn \ Ω),

where I = [1,∞) and for simplicity we treat only the case N = 1.

We immediately observe that (H)–(a) is verified with q = 2, being V

bounded. Thus (H)–(b) is dropped. Furthermore, condition (4.3.6) is veri-

fied, with m = 2, r ∈ (2, 2∗],

(4.5.2) d1(t, x) =
1

σ(t)
= Ct|α|

and d2(t, x) = 0. Indeed,

(4.5.3) |Q(t, x, u, v)| = a(t)tα|v| ≤ Ct|α||v|,
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since t ≥ 1 and (4.5.1) holds. Moreover, again by (4.5.1), (4.5.2) and the fact

that t ∈ I, we get

(4.5.4) Q(t, x, u, v) · v = a(t)tαv2 ≥ v2

Ct|α|
,

that is (AS)–(b), where we can take ℘ = 2.

Theorem 4.5.1. Let the assumptions listed in this section hold. If

(4.5.5) %(t) ≤ const. t for t sufficiently large

and |α| ≤ 1, then all the solutions of problem (P3,lin) have property (4.3.5).

Proof. We next prove that in this setting all the hypotheses of Theorem 4.3.1

still hold. Take k ≡ 1, so (4.3.1) is verified. Moreover, recalling that δ1(t) =

‖d1(t, ·)‖2∗/(2∗−2) = ‖d1(t, ·)‖n/2s we get

(4.5.6)

A(1) + C(1) =

(∫ t

0

δ1dτ

)1/2

+

(∫ t

0

1

σ
dτ

)1/2

+

(∫ t

0

%(τ)dτ

)1/2

≤
(∫ t

0

Cτ |α||Ω|2s/ndτ
)1/2

+

(∫ t

0

Cτ |α|dτ

)1/2

+

(∫ T

0

%(τ)dτ +

∫ t

T

τdτ

)1/2

≤ const.
(
t(|α|+1)/2 + 1 + t

)
.

Hence, by (4.5.5) and (4.5.6) condition (4.3.3) reduces to

(4.5.7) lim inf
t→∞

A(1) + C(1)

t
≤ const. lim

t→∞

(
t(|α|−1)/2 +

1

t
+ 1

)
<∞,

being |α| ≤ 1. Therefore, we can apply Theorem 4.3.1 and property (4.3.5)

holds at once.

When |α| > 1, we cannot apply Theorem 4.5.1. If |α| > 1, we consider

the special case

(P̂3,lin)


utt + (−∆)su+ µu+ %(t)ut

+a(t)tαut + V (x)u = 0 in I × Ω,

u(t, x) = 0 on I × (Rn \ Ω),
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of (P3,lin), that is the case in which M(τ) ≡ m0 > 0, V (t, x) = V (x) ≥ −µ,

V (x) > −µ a.e. in Ω and % ∈ L1(I) denotes the function m0%.

Now consider solutions of (P̂3,lin) having the separated form

(4.5.8) u(t, x) = w(t)e(x),

where e = ek is an eigenfunction of (−∆)s + V (x) + µ in Ω, with Dirichlet

boundary conditions, that is e = 0 in Rn \ Ω. The corresponding eigenvalue

λk is positive, by Theorem 4.7.3 in the Appendix, applied here with a0(x) =

V (x) + µ. An easy calculation shows that w is a solution of the ordinary

differential equation

(4.5.9) w′′ + [a(t)tα + %(t)]w′ + λw = 0, t ∈ I.

We recall now Theorem 5.1′ of [83], which provides necessary conditions

for global asymptotic stability of the rest state u ≡ 0 for the quasi–variational

ordinary differential system

(4.5.10) (∇G(u, u′))′−∇uG(u, u′)+f(t, u)+Q(t, u, u′) = 0, J = [R,∞),

where G = G(u, v), ∇ denotes the gradient operator with respect to the

variable v and f(t, u) = ∇uF (t, u). We suppose that

G ∈ C1(RN×RN ;R), F ∈ C1(J×RN ;R), Q ∈ C(J×RN×RN ;RN)

and that G(u, 0) = F (u, 0) = 0. Put H(u, v) = (∇G(u, v), v)−G(u, v), so in

particular H(u, 0) = 0 for all u.

Theorem 4.5.2 (Theorem 5.1′ of [83]). Assume N = 1 and suppose that

H(0, v) is strictly increasing for v > 0 and strictly decreasing for v < 0. Let

u be a solution of (4.5.10) on J such that u(t)→ 0 as t→∞. Suppose that

for every t ∈ J and for all u, v sufficiently small

(4.5.11) H(u, v) > 0, v 6= 0,

(4.5.12) F (t, u) ≥ 0, 0 ≤ Ft(t, u) ≤ ψ(t) with ψ ∈ L1(J),

(4.5.13) 0 ≤ (Q(t, u, v), v) ≤ δ̂(t)H(u, v),

where

(4.5.14) δ̂ ∈ L1(J).

Then u ≡ 0 in J .
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Observe now that, as in [84], equation (4.5.9) satisfies hypotheses (4.5.11)–

(4.5.14), with J = I, H(u, v) = v2/2, F (t, u) = λu2/2 and δ̂ = 2[a(t)tα+%(t)].

Therefore the only solution of (4.5.9) that approaches zero at infinity is the

trivial solution w ≡ 0.

This being shown, it is easy to argue that all nontrivial solutions of (4.5.9)

are oscillatory, with amplitude approaching a nonzero limit as t → ∞. It

may be noted that the behavior of solutions of (4.5.9) when α < −1 is then

essentially the same as for the wave equation itself in a bounded domain with

zero boundary data.

When α > 1, solutions of (P̂3,lin) again do not in general approach zero

as t → ∞, though their behavior is quite different from the case α < −1.

We say that a function

ψ = ψ(x) ∈ Y = span {ek}∞k=1

is attainable if there exists a solution u of (P̂3,lin) such that

(4.5.15) lim
t→∞
‖u(t, ·)− ψ‖2 = 0.

Theorem 4.5.3. Every function ψ ∈ Y is attainable for problem (P̂3,lin)

and the set of attainable functions is dense in L2(Ω).

Proof. The proof is based on [84, Theorem 5.1]. We first show that every

eigenfunction ek of (−∆)s + V (x) + µ in Ω, with eigenvalue λk > 0 by

Theorem 4.7.3 of the Appendix, is attainable. For this purpose, consider the

function

uk(t, x) = wk(t)ek(x),

which satisfies (P̂3,lin) if and only if wk is a solution of (4.5.9), with λ = λk.

Moreover, we have
1

a(t)tα + %(t)
∈ L1(I),

since α > 1 and a verifies (4.5.1). Hence, by [82, Theorem 4.4] it follows that

the set of attainable limits at ∞ of solutions of (4.5.9) is dense in R. On

the other hand, since (4.5.9) is linear, the set of attainable limits for (4.5.9)

must in fact be all of R. Hence for an appropriate solution wk 6= 0 we get

lim
t→∞
‖uk(t, ·)− ek‖2 = 0.
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Finally, again from the linearity of (P̂3,lin), we obtain (4.5.15) for every ψ ∈
Y . Indeed, given ψ ∈ Y , there exist ek1 , . . . , ekj and real coefficients β1, . . . , βj
such that ψ =

∑j
i=1 βieki . Consider the function

u(t, x) =

j∑
i=1

βiuki(t, x) =

j∑
i=1

βiwki(t)eki(x),

where the functions wki are the appropriate solutions such that

lim
t→∞
‖uki(t, ·)− eki‖2 = 0 for any i = 1, . . . , j.

Since (P̂3,lin) is linear, we get that also u is a solution. Moreover, we have

‖u(t, ·)− ψ‖2 =

∣∣∣∣∣
∣∣∣∣∣
j∑
i=1

βiuki(t, ·)−
j∑
i=1

βieki

∣∣∣∣∣
∣∣∣∣∣
2

≤
j∑
i=1

βi‖uki(t, ·)− eki‖2 → 0

as t→∞. Hence, (4.5.15) holds for every ψ ∈ Y , as claimed.

4.6 Asymptotic stability for (P3,K)

In this section, we extend the results of Sections 4.3 and 4.4 when the

fractional p–Laplacian operator is replaced by a more general elliptic nonlocal

integro–differential operator.

Hence, we consider the problem (P3,K), governed by the operator −LK ,

which up to a multiplicative constant depending only on n, s and p is defined

by

−LKϕ(x) =

∫
Rn
|ϕ(x)− ϕ(y)|p−2[ϕ(x)− ϕ(y)]K(x− y)dy,

along any function ϕ ∈ C∞0 (Ω).

The weight K : Rn \ {0} → R+ satisfies the natural restrictions listed in

Chapter 2.

From now on we endow D̃s,p(Ω;RN) with the weighted Gagliardo norm

[u]K,Ω =

(∫ ∫
R2n

|u(x)− u(y)|pK(x− y)dxdy

)1/p

.

By (K2), we get

[u]s,Ω ≤ K
−1/p
0 [u]K,Ω,
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so that (4.3.16) is still valid.

Let λ1,K be the first eigenvalue of the scalar problem

(4.6.1)

{
−LKu = λ |u|p−2u in Ω,

u = 0 in Rn \ Ω,

in D̃s,p(Ω), that is λ1,K is defined by the Rayleigh quotient

(4.6.2) λ1,K = inf
u∈D̃s,p(Ω), u 6=0

∫∫
R2n |u(x)− u(y)|pK(x− y)dxdy∫

Ω
|u|pdx

.

By Lemma 2.1 of [53] the infimum in (4.6.2) is achieved and λ1,K > 0.

In this setting, we can extend the results of Sections 4.3 and 4.4, where

the proofs proceed in the same way, up to the replacement of the appropriate

norm and the first eigenvalue.

4.7 Appendix

In this section, following [70] and [88], we present an important result of

independent interest, concerning the problem

(Pλ)

{
(−∆)su+ a0(x)u = λu in Ω,

u = 0 in Rn \ Ω,

where a0(x) is a bounded non–negative continuous function, with a0 > 0 a.e.

in Ω.

Denote by E the closure of C∞(Ω) with respect to the norm

(4.7.1) ‖u‖E =
(
[u]2s,Ω + ‖u‖2

2,a0

)1/2
,

where ‖·‖2,a0 is the natural norm in the weighted Lebesgue space L2(Ω, a0),

that is

‖u‖2,a0 =

(∫
Ω

a0(x)|u(x)|2dx
)1/2

.

Notice that E is a Hilbert space, endowed with the inner product

(4.7.2) 〈u, v〉E = 〈u, v〉s,Ω + 〈a0u, v〉,
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where in this section 〈·, ·〉 denotes the bracket pairing in L2(Ω) and, with

abuse of notation, the duality pairing. We consider the weak formulation of

the problem and define

(4.7.3) J (u) =
1

2
‖u‖2

E.

Let us give some preliminary results.

Proposition 4.7.1. If X? is a non–empty weakly closed subspace of E and

M? = {u ∈ X? : ‖u‖2 = 1}, then there exists u? ∈M? such that

(4.7.4) min
u∈M?

J (u) = J (u?)

and

(4.7.5) 〈J ′(u?), ϕ〉 = λ?〈u?, ϕ〉 for any ϕ ∈ X?,where λ? = 2J (u?) > 0.

Proof. In order to prove (4.7.4), we use the direct method of minimization.

Let us take a minimizing sequence uj of J on M?, i.e. a sequence uj ∈M?

such that

(4.7.6) J (uj)→ inf
u∈M?

J (u) ≥ 0 > −∞ as j →∞.

Then the sequence J (uj) is bounded in R, and so, by the definition of J , we

get that ‖uj‖E is also bounded.

Since E is a reflexive space, up to a subsequence still denoted by uj, we

have that uj converges weakly in E to some u? ∈ X?, being X? weakly closed.

The weak convergence gives that

〈J ′(uj), ϕ〉 → 〈J ′(u?), ϕ〉 for any ϕ ∈ E

as j →∞. Moreover, by the boundedness of ‖uj‖E, up to a subsequence we

have

uj → u? in L2(Rn)

as j →∞, since

(4.7.7) the embedding E ↪→ L2(Ω) is compact.

Hence, ‖u?‖2 = 1, that is u? ∈M?. Using the Fatou lemma we deduce that

lim
j→∞
J (uj) =

1

2
lim
j→∞

(
[uj]

2
s,Ω + ‖uj‖2

2,a0

)
≥ 1

2

(
[u?]

2
s,Ω + ‖u?‖2

2,a0

)
= J (u?) ≥ inf

u∈M?

J (u),
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so that, by (4.7.6), we get J (u?) = infu∈M? J (u). This gives (4.7.4).

Now we prove (4.7.5). For this, let ε ∈ (−1, 1), ϕ ∈ X?, cε = ‖u? + εϕ‖2

and uε = (u? + εϕ)/cε. We observe that u? ∈M?,

c2
ε = ‖u?‖2

2 + 2ε

∫
Ω

u?(x)ϕ(x)dx+ o(ε)

and [u? + εϕ]2s,Ω = [u?]
2
s,Ω + 2ε〈u?, ϕ〉+ o(ε).

Consequently, being ‖u?‖2 = 1,

2J (uε) =
‖u?‖2

E + 2ε〈u?, ϕ〉E + o(ε)

1 + 2ε
∫

Ω
u?ϕdx+ o(ε)

= (2J (u?) + 2ε〈J ′(u?), ϕ〉+ o(ε)) ·
(

1− 2ε

∫
Ω

u?ϕdx+ o(ε)

)
= 2J (u?)− 2ε

(
〈J ′(u?), ϕ〉 − 2J (u?)

∫
Ω

u?ϕdx

)
+ o(ε).

Moreover, notice that we have J (u?) > 0 because otherwise we would have

u? ≡ 0, but 0 6∈ M?. This and the minimality of u? imply (4.7.5).

Proposition 4.7.2. If λ 6= λ̃ are different eigenvalues of problem (Pλ), with

eigenfunctions e and ẽ ∈ E, respectively, then

(4.7.8) 〈e, ẽ〉E = 0 =

∫
Ω

e(x)ẽ(x)dx.

Moreover, if e is an eigenfunction of problem (Pλ) corresponding to an eigen-

value λ, then

(4.7.9) ‖e‖2
E = λ‖e‖2

2.

Proof. We may suppose that e 6≡ 0 and ẽ 6≡ 0. We put g = e/‖e‖2 and

g̃ = ẽ/‖ẽ‖2, which are eigenfunctions as well and we calculate the weak

formulation of problem (Pλ) for g with test function g̃ and vice versa. We

obtain

(4.7.10) λ

∫
Ω

g(x)g̃(x) = 〈J ′(g), g̃〉 = 〈J ′(g̃), g〉 = λ̃

∫
Ω

g(x)g̃(x)dx,

that is

(λ− λ̃)

∫
Ω

g(x)g̃(x)dx = 0.
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Thus, since λ 6= λ̃,

(4.7.11)

∫
Ω

g(x)g̃(x)dx = 0.

By plugging (4.7.11) into (4.7.10), we obtain

〈g, g̃〉E = 〈J ′(g), g̃〉 = 0.

This and (4.7.11) complete the proof of (4.7.8). Finally, (4.7.9) can be easily

proved by choosing ϕ = e in the weak formulation of (Pλ).

Theorem 4.7.3. Consider the problem

(Pλ) (−∆)su+ a0(x)u = λu.

(a) Problem (Pλ) admits an eigenvalue λ1 which is positive and that can

be characterized as follows

(4.7.12) λ1 = min
u∈E\{0}

‖u‖2
E∫

Ω
|u|2dx

.

(b) There exists a non–negative function e1 ∈ E, which is an eigenfunc-

tion corresponding to the eigenvalue λ1, which attains the minimum

in (4.7.12), that is ‖e1‖2 = 1 and

(4.7.13) λ1 = ‖e1‖2
E.

(c) The set of the eigenvalues of problem (Pλ) consists of a sequence

(λk)k∈N, with

(4.7.14) 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ . . .

and

(4.7.15) λk →∞ as k →∞.

Moreover, for any k ∈ N the eigenvalues can be characterized as follows

(4.7.16) λk+1 = min
u∈Pk+1\{0}

‖u‖2
E∫

Ω
|u|2dx

,

where

(4.7.17) Pk+1 = {u ∈ E : 〈u, ej〉E = 0 for any j = 1, . . . , k} .
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(d) For any k ∈ N there exists a function ek+1 ∈ Pk+1, which is an eigen-

function corresponding to λk+1, attaining the minimum in (4.7.16), that

is ‖ek+1‖2 = 1 and

(4.7.18) λk+1 = ‖ek+1‖2
E.

(e) The sequence (ek)k∈N of eigenfunctions corresponding to λk is an or-

thogonal basis of both E and D̃s,2(Ω).

Proof. We follow the proof of Proposition 9 of [88].

(a) For this, we note that the minimum defining λ1 exists and that λ1 is

an eigenvalue, thanks to (4.7.4) and (4.7.5), applied here with X? = E.

(b) Again by (4.7.4), the minimum defining λ1 is attained at some e1 ∈ E,

with ‖e1‖2 = 1. The fact that e1 is an eigenfunction corresponding to λ1 and

formula (4.7.12) follow from (4.7.5), again with X? = E.

(c) We define λk+1 as in (4.7.16): we notice indeed that the minimum

in (4.7.16) exists and it is attained at some ek+1 ∈ Pk+1, thanks to (4.7.4)

and (4.7.5), applied here with X? = Pk+1, which, by construction, is weakly

closed.

Moreover, since Pk+1 ⊆ Pk ⊆ E, we get that

0 < λ1 ≤ λ2 ≤ . . . λk ≤ λk+1 ≤ . . .

Also, (4.7.5) with X? = Pk+1 says that

(4.7.19) 〈J ′(ek+1), ϕ〉 = λk+1〈ek+1, ϕ〉 for any ϕ ∈ Pk+1.

In order to show that λk+1 is en eigenvalue with eigenfunction ek+1, we need

to show that formula (4.7.19) holds for any ϕ ∈ E, not only in Pk+1. For

this, we argue recursively, assuming that the claim holds for 1, . . . , k and

proving it for k + 1. The base of induction is given by the fact that λ1 is an

eigenvalue, as shown in assertion (a). We use the direct sum decomposition

E = span {e1, . . . , ek} ⊕ (span {e1, . . . , ek})⊥ = span {e1, . . . , ek} ⊕ Pk+1,

where the orthogonal ⊥ is intended with respect to the scalar product of E,

namely 〈·, ·〉E. Thus, given any ϕ ∈ E, we write ϕ = ϕ1 +ϕ2, with ϕ2 ∈ Pk+1
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and ϕ1 =
∑k

i=1 ciei, for some c1, . . . , ck ∈ R. Then, from (4.7.19) tested with

ϕ2 = ϕ− ϕ1, we know that

(4.7.20)

〈J ′(ek+1), ϕ〉−λk+1〈ek+1, ϕ〉=〈J ′(ek+1), ϕ1〉−λk+1〈ek+1, ϕ1〉

=
k∑
i=1

ci [〈J ′(ek+1), ei〉−λk+1〈ek+1, ei〉] .

Furthermore, testing the weak formulation of problem (Pλ) for ei against

ek+1 for i = 1, . . . , k, allowed by the inductive assumption, and recalling that

ek+1 ∈ Pk+1, we see that

0 = 〈ek+1, ei〉E = 〈J ′(ek+1), ei〉 = λk+1〈ek+1, ei〉.

Thus, by (4.7.14)

〈J ′(ek+1), ei〉 = 0 = 〈ek+1, ei〉

for any i = 1, . . . , k. By plugging this into (4.7.20), we conclude that (4.7.19)

holds true for any ϕ ∈ E, that is λk+1 is an eigenvalue with eigenfunction ek+1.

Now we prove (4.7.15): for this, we start by showing that if k, h ∈ N,

with k 6= h, then

〈ek, eh〉E = 0 =

∫
Ω

ek(x)eh(x)dx.

Indeed, let k > h, hence k − 1 ≥ h. Therefore,

ek ∈ Pk = (span {e1, . . . , ek−1})⊥ ⊆ (span {eh})⊥ ,

and so 〈ek, eh〉E = 0. But ek is an eigenfunction and, using the weak formu-

lation of problem (Pλ) for ek tested with ϕ = eh, we get

0 = 〈ek, eh〉E = 〈J ′(ek), eh〉 = λk

∫
Ω

ek(x)eh(x)dx,

as claimed.

To complete the proof of (4.7.15), suppose by contradiction that λk → c

for some constant c ∈ R. Then λk is bounded in R. Since ‖ek‖2
E = λk

by (4.7.9), we deduce by (4.7.7) that there is a subsequence for which

ekj → e∞ in L2(Ω)

as kj →∞, for some e∞ ∈ L2(Ω). In particular, (ekj)j is a Cauchy sequence

in L2(Ω). But this is in contradiction with the fact that if eki and ekj are

orthogonal in L2(Ω) we have

‖ekj − eki‖2
2 = ‖ekj‖2

2 + ‖eki‖2
2 = 2.
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Now, to complete the proof of (c), we need to show that the sequence

of eigenvalues constructed in (4.7.16) exhausts all the eigenvalues of the

problem, i.e. that any eigenvalue of problem (Pλ) can be written in the

form (4.7.16). We show this by arguing, once more, by contradiction. Let us

suppose that there exists an eigenvalue

(4.7.21) λ 6∈ (λk)k∈N ,

and let e ∈ E be a normalized eigenfunction relative to λ, so ‖e‖2 = 1. Then,

by (4.7.9) we have

(4.7.22) 2J (e) = ‖e‖2
E = λ.

Thus, by the minimality of λ1 given in (4.7.12) and (4.7.13), we get that

λ = 2J (e) ≥ 2J (e1) = λ1.

This, (4.7.21) and (4.7.15) imply that there exists k ∈ N such that

(4.7.23) λk < λ < λk+1.

We claim that e 6∈ Pk+1. Indeed, if e ∈ Pk+1, from (4.7.22) and (4.7.16) we

deduce that λ = 2J (e) ≥ λk+1, which contradicts (4.7.23). As a consequence,

there exists i ∈ {1, . . . , k} such that 〈e, ei〉E 6= 0. But this is in contradiction

with (4.7.8), which can be easily adapted to our problem. In conclusion,

(4.7.21) is false and this completes the proof of (c).

(d) Again using (4.7.4) with X? = Pk+1, the minimum defining λk+1

is attained at some ek+1 ∈ Pk+1. The fact that ek+1 is an eigenfunction

corresponding to λk+1 has been checked in (c) and in turn (4.7.18) follows

from (4.7.5).

(e) The orthogonality has been already showed in (c), so we need to prove

that the sequence of eigenfunctions (ek)k∈N is a basis for both E and D̃s,2(Ω).

Let us start to prove that it is a basis for E. First, we show that if v ∈ E is

such that 〈v, ek〉E = 0 for any k ∈ N, then v ≡ 0. To this aim, we argue by

contradiction and suppose that there exists a nontrivial v ∈ E such that

(4.7.24) 〈v, ek〉E = 0 for any k ∈ N.

Then, up to normalization, we can assume that ‖v‖2 = 1. Thus, from (4.7.15),

there exists k ∈ N such that

2J (v) < λk+1 = min
u∈Pk+1

‖u‖2=1

‖u‖E.
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Hence, v 6∈ Pk+1 and so there exists j ∈ N for which 〈v, ej〉E 6= 0. This

contradicts (4.7.24), as claimed.

We use now a standard Fourier analysis technique in order to show

that (ek)k∈N is a basis for E. We define υi = ei/‖ei‖E and, given g ∈ E,

gj =

j∑
i=1

〈g, υi〉Eυi.

We point out that for any j ∈ N, gj belongs to span {e1, . . . , ej}. Let vj =

g − gj. By the orthogonality of (ek)k∈N in E, we get

0 ≤ ‖vj‖E = 〈vj, vj〉E = ‖g‖2
E + ‖gj‖2

E − 2〈g, gj〉E

= ‖g‖2
E + 〈gj, gj〉2E − 2

j∑
i=1

〈g, υi〉2E = ‖g‖2
E −

j∑
i=1

〈g, υi〉2E.

Therefore, for any j ∈ N

j∑
i=1

〈g, υi〉2E ≤ ‖g‖2
E

and so
∑∞

i=1〈g, υi〉2E is a convergent series. Thus, if we set

τj =

j∑
i=1

〈g, υi〉2E,

we get that (τj)j is a Cauchy sequence in R. Moreover, using again the

orthogonality of (ek)k∈N in E, we see that, if h > j,

‖vh − vj‖2
E =

∣∣∣∣∣
∣∣∣∣∣

h∑
i=j+1

〈g, υi〉Eυi

∣∣∣∣∣
∣∣∣∣∣
2

E

=
h∑

i=j+1

〈g, υi〉2E = τh − τj.

Hence, (vj)j is a Cauchy sequence in E. By the completeness of E, it follows

that there exists v ∈ E such that

(4.7.25) vj → v in E as j →∞.

Now, we observe that if j ≥ k,

〈vj, υk〉E = 〈g, υk〉E − 〈gj, υk〉E = 〈g, υk〉E − 〈g, υk〉E = 0.
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Hence, by (4.7.25), it easily follows that 〈v, υk〉E = 0 for any k ∈ N, and so

that v ≡ 0. Therefore, we get

gj = g − vj → g − v = g in E as j →∞.

This and the fact that gj belongs to span {e1, . . . , ej} for all j ∈ N yield that

(ek)k∈N is a basis in E.

To complete the proof of (e), we need to show that (ek)k∈N is a basis

for D̃s,2(Ω). For this, take v ∈ D̃s,2(Ω) and let vj ∈ C∞0 (Ω) be such that

[vj − v]s,Ω ≤ 1/j. Notice that vj ∈ E. Therefore, since we know that

(ek)k∈N is a basis for E, there exist kj ∈ N and a function wj, belonging to

span
{
e1, . . . , ekj

}
, such that

‖vj − wj‖E ≤ 1/j.

In conclusion, we get

[v − wj]s,Ω ≤ [v − vj]s,Ω + [vj − wj]s,Ω ≤ [v − vj]s,Ω + ‖vj − wj‖E ≤ 2/j.

This shows that the sequence (ek)k∈N is a basis in D̃s,2(Ω), as required.



Chapter 5

Problems (P4) and (P5)

In this chapter we deal with the existence of nontrivial non–negative so-

lutions of Schrödinger–Hardy systems driven by two possibly different frac-

tional ℘–Laplacian operators.

The starting point is the fractional Schrödinger–Hardy system in Rn

(P4)


(−∆)smu+ a(x)|u|m−2u− µ |u|

m−2u

|x|ms
= Hu(x, u, v),

(−∆)spv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
= Hv(x, u, v),

where µ and σ are real parameters, n > ps, with s ∈ (0, 1) and 1 < m ≤ p <

m∗ = mn/(n−ms).

5.1 Structural setting and main results

Throughout the chapter we assume that s ∈ (0, 1), n > ps and 1 <

m ≤ p < m∗, without further mentioning. As noticed in Section 1.1, the

embedding Ds,℘(Rn) ↪→ L℘
∗
(Rn) is continuous. By Theorems 1 and 2 of [67],

we know that

(5.1.1)

‖u‖℘℘∗ ≤ cn,℘
s(1− s)

(n− ℘s)℘−1
[u]℘s,℘, ℘∗ =

℘n

n− ℘s
, n > ℘s,

‖u‖℘H℘ ≤ cn,℘
s(1− s)

(n− ℘s)℘
[u]℘s,℘, ‖u‖℘H℘ =

∫
Rn
|u(x)|℘ dx

|x|℘s
,

for all u ∈ Ds,℘(Rn), where the positive constant cn,℘ depends only on n

and ℘.

89
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The first result is based on the best fractional Hardy–Sobolev constant,

which for all ℘ > 1 is denoted by H℘ = H(℘, n, s), and is given by

(5.1.2) H℘ = inf
u∈Ds,℘(Rn)

u6=0

[u]℘s,℘
‖u‖℘H℘

,

where ‖ · ‖H℘ is defined in (5.1.1). Clearly, H℘ > 0 thanks to (5.1.1).

The weight functions a and b are of class V (Rn). The family V (Rn)

consists of all functions V ∈ C(Rn) satisfying

(V1) V is bounded from below by a positive constant;

(V2) there exists κ > 0 such that lim|y|→∞meas({x ∈ Bκ(y) : V (x) ≤ c}) = 0

for any c > 0,

where Bκ(y) denotes any open ball of Rn centered at y and of radius κ > 0.

The natural solution space for system (P4) is the real Banach space

W = Em,a×Ep,b, endowed with the norm ‖(u, v)‖ = ‖u‖Em,a +‖v‖Ep,b , where

Em,a =

{
u ∈ Ds,m(Rn) :

∫
Rn
a(x)|u(x)|mdx <∞

}
,

Ep,b =

{
v ∈ Ds,p(Rn) :

∫
Rn
b(x)|v(x)|pdx <∞

}
,

‖u‖Em,a =
(
[u]ms,m + ‖u‖mm,a

)1/m
, ‖v‖Ep,b =

(
[v]ps,p + ‖v‖pp,b

)1/p
,

and ‖ϕ‖℘,V =
(∫

Rn V (x)|ϕ|℘dx
)1/℘

for all ℘ > 1, V ∈ V (Rn) and ϕ is in

L℘(Rn, V ).

As noted in Lemma 5.2.2, see Lemma 4.1 of [35] for a proof, under the

solely condition (V1), the embeddings

W ↪→ W s,m(Rn)×W s,p(Rn) ↪→ Lν(Rn)× Lν(Rn)

are certainly continuous for all ν ∈ [p,m∗], being 1 < m ≤ p < m∗. Thus,

the numbers

(5.1.3) λν = inf

{
‖u‖νEm,a + ‖v‖νEp,b :

∫
Rn
|(u, v)|νdx = 1

}
are well defined and strictly positive.

Concerning the nonlinearity H, we first assume
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(H1) H : Rn × R2 → R is continuous and admits partial derivatives Hu and

Hv of class C(Rn × R2), H ≥ 0 in Rn × R2, H(x, 0, 0) = 0 in Rn and

Hu(x, u, v) = 0 if x ∈ Rn and u ≤ 0, v ∈ R, while Hv(x, u, v) = 0 if

x ∈ Rn, u ∈ R and v ≤ 0;

(H2) There are an exponent r ∈ (p,m∗) and a number λ ∈ [0, λp) such that

for every ε > 0 there exists Cε > 0 for which the inequality

|Hz(x, z)| ≤ (λ+ ε)|z|p−1 + Cε|z|r−1, z = (u, v), |z| =
√
u2 + v2,

holds for all (x, z) ∈ Rn × R2, where λp is introduced in (5.1.3) and

Hz = (Hu, Hv);

(H3) lim
|z|→∞
u>0∨v>0

H(x, z)

|z|p
=∞, uniformly in Rn;

(H4) There exist a non–negative function g of class L1(Rn) and a constant

CF ≥ 1 such that

F (x, tu, tv) ≤ CFF (x, u, v) + g(x)

for a.e x ∈ Rn and all u ∈ R+
0 , v ∈ R+

0 and t ∈ (0, 1), where

F (x, z) = Hz(x, z) · z − pH(x, z).

Clearly, when F does not depend on x the function g should be identically

zero in (H4) and F = F (u, v) ≥ 0 by (H1). A simple example of function

H = H(u, v) verifying (H1)–(H4) is given by H(u, v) = ξ2 log(1 + ξ), ξ =

ξ(u, v) =
√

(u+)2 + (v+)2, with 2n/(n+ 2s) < m ≤ p = 2, CF = 1 and

g = 0, see Figure 5.1. Thus 2 < m∗.

Figure 5.1: The functions H(u, v) = H(ξ) = ξ2 log(1+ξ) and F (u, v) = F (ξ) = ξ3/(1+ξ)
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Another model function for H satisfying (H1)–(H4), when again 1 < m ≤
p = 2 and ξ = ξ(u, v) =

√
(u+)2 + (v+)2, is given by

(5.1.4)

H(u, v) =


4ξ2 log(1 + ξ), 0 ≤ ξ ≤ 1,

(4 log 2 + 1/2)ξ2 + ξ − 3/2, 1 ≤ ξ ≤ 2,

(4 log 2 + 5/8)ξ2 +
ξ2

8
· log(ξ − 1), ξ ≥ 2,

F (u, v) = Hz(u, v) · (u, v)− 2H(u, v) =


4ξ3

1 + ξ
, 0 ≤ ξ ≤ 1,

3− ξ, 1 ≤ ξ ≤ 2,

1

8
· ξ3

ξ − 1
, ξ ≥ 2,

with g = 0 and CF = 2.

Figure 5.2: The functions H = H(u, v) = H(ξ) and F = F (u, v) = F (ξ) defined

in (5.1.4)

A final model function for H satisfying (H1)–(H4), when again 1 < m ≤
p = 2 and ξ = ξ(u, v) =

√
(u+)2 + (v+)2, is given for all x ∈ Rn by

H(x, u, v) = φ(x) ·



2ξ2 log(1 + ξ), 0 ≤ ξ ≤ 1,

(log 4 + 7/2)ξ2 + ξ2 log ξ2 − 7/2, 1 ≤ ξ ≤ 3,

(2 log 6 + 28/9− (8 log 2)/27)ξ2

+
4ξ2

27
· log(1 + ξ), ξ ≥ 3,

F (x, u, v) = Hz(x, u, v) · (u, v)− 2H(x, u, v)

= φ(x) ·


2ξ3

1 + ξ
, 0 ≤ ξ ≤ 1,

2ξ2 − 8ξ + 7, 1 ≤ ξ ≤ 3,

4

27
· ξ3

1 + ξ
, ξ ≥ 3,
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where φ is a non–negative nontrivial bounded continuous function of class

L1(Rn). In particular, (H4) holds, with CF = 1 and g = 2φ. In this example,

H(x, z) = φ(x)H(z), F (x, z) = φ(x)Φ(z) and Φ has a negative minimum.

See Figure 5.3 for the graphs of H and Φ.

Figure 5.3: The functions H = H(u, v) = H(ξ) and Φ = Φ(u, v) = Φ(ξ)

Theorem 5.1.1. Under the assumptions (H1)–(H4) and with a and b satis-

fying (V1)–(V2) system (P4) has at least one nontrivial non–negative entire

solution (u, v) ∈ W for any µ ∈ (−∞,Hm) and for any σ ∈ (−∞,Hp) such

that

(5.1.5) 1− µ+

Hm

− σ+

Hp

− 2p−1 λ

λp
> 0,

being λ ∈ [0, λp) given in (H2).

It is interesting to note that when |Hz(x, z)| = o(|z|p−1) as z → 0, uni-

formly in Rn, and there exist an exponent r ∈ (p,m∗) and a constant c > 0

such that

|Hz(x, z)| ≤ c(1 + |z|r−1) for all (x, z) ∈ Rn × R2,

then (H2) holds with λ = 0. This is the case of the example H(u, v) =

ξ2 log(1 + ξ), ξ = ξ(u, v) =
√

(u+)2 + (v+)2 and 2n/(n+ 2s) < m ≤ p = 2.

In these circumstances, condition (5.1.5) simplifies into the more familiar

natural request µ < Hm and σ < Hp.

The second result is a radial version of Theorem 5.1.1 under the solely

condition (V1) on the coefficients a and b, that is possibly covering the inter-

esting case a ≡Constant> 0 and b ≡Constant> 0.

Theorem 5.1.2. Assume that n ≥ 2, that a, b, Hz(·, z) are radial for all

z ∈ R2. Suppose that (V1) and (H1) hold and replace (H2) by
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(H2)′ There are numbers q, r, with p < q < r < m∗, and λ ∈ [0, λq) such

that for every ε > 0 there exists Cε > 0 for which the inequality

|Hz(x, z)| ≤ (λ+ ε)|z|q−1 + Cε|z|r−1

holds for all (x, z) ∈ Rn × R2.

Then system (P4) has at least one nontrivial non–negative entire radial so-

lution (u, v) ∈ W for any µ ∈ (−∞,Hm) and for any σ ∈ (−∞,Hp) such

that

(5.1.6) 1− µ+

Hm

− σ+

Hp

− 2p−1 λ

λq
> 0.

Recall that s ∈ (0, 1) and n > 2s are fixed. The prototype H(u, v) =

ξq log(1 + ξ), ξ = ξ(u, v) =
√

(u+)2 + (v+)2, satisfies condition (H2)′, with

λ = 0, 2n/(n+ 2s) < m ≤ p = 2, and any q ∈ (2, 2 + η), where r = 2 + η

and η ∈ (0, [m(n+ 2s)− 2n]/(n−ms)).
Furthermore, we study the system in Rn

(P5)



(−∆)smu+ a(x)|u|m−2u− µ |u|
m−2u

|x|ms
= Hu(x, u, v) + |u|m∗−2u+

+
θ

m∗
(u+)θ−1(v+)ϑ+ϕ(x),

(−∆)spv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
= Hv(x, u, v) + |v|p∗−2v+

+
ϑ

m∗
(u+)θ(v+)ϑ−1+ψ(x),

where θ > 1, ϑ > 1 with θ + ϑ = m∗, ϕ is a non–negative perturbation of

class Lm(Rn), with m the Hölder conjugate of m∗, that is m = m′n/(n+m′s),

while ψ is a non–negative perturbation of class Lp(Rn), with p the Hölder

conjugate of p∗, i.e. p = p′n/(n+ p′s).

Theorem 5.1.3. Under the assumptions (H1), (H2), with a and b satisfying

(V1)–(V2), there exists a number δ > 0 such that for all non–negative pertur-

bations ϕ and ψ, with 0 < ‖ϕ‖m + ‖ψ‖p < δ, system (P5) has at least one

nontrivial non–negative entire solution (u, v) ∈ W for any µ ∈ (−∞,Hm)

and for any σ ∈ (−∞,Hp) satisfying (5.1.5), provided that either m < p and

µ ≤ 0, or m = p.

We end with the radial version of the previous result.
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Theorem 5.1.4. Assume that n ≥ 2, that a, b, Hz(·, z) are radial for all

z ∈ R2. Suppose that a and b satisfy (V1), and that (H1) and (H2)′ hold. Then

there exists a number δ > 0 such that for all non–negative perturbations ϕ

and ψ, with 0 < ‖ϕ‖m + ‖ψ‖p < δ, system (P5) has at least one nontrivial

non–negative entire radial solution (u, v) ∈ W for any µ ∈ (−∞,Hm) and

for any σ ∈ (−∞,Hp) satisfying (5.1.6), provided that either m < p and

µ ≤ 0, or m = p.

5.2 Preliminaries

We start the section commenting the structural assumptions used in The-

orem 5.1.1. Condition (V2), which is weaker than the coercivity assumption,

V (x) → ∞ as |x| → ∞, was originally discussed by Bartsch and Wang

in [19] to overcome the lack of compactness. Model functions H satisfying

(H1)–(H4) and (H2)′ are briefly discussed in the Introduction.

We say that the couple (u, v) ∈ W is an entire (weak) solution of (P4) if

(5.2.1)

〈u, Φ〉Em,a + 〈v, Ψ〉Ep,b − µ〈u, Φ〉Hm − σ〈v, Ψ〉Hp

=

∫
Rn

[Hu(x, u, v)Φ(x) +Hv(x, u, v)Ψ(x)]dx

for any (Φ, Ψ) ∈ W , where

〈u, Φ〉s,℘ =

∫ ∫
R2n

|u(x)− u(y)|℘−2(u(x)− u(y))(Φ(x)− Φ(y))

|x− y|n+℘s
dxdy,

〈u, Φ〉Em,a = 〈u, Φ〉s,m +

∫
Rn
a(x)|u(x)|m−2u(x)Φ(x)dx,

〈v, Ψ〉Ep,b = 〈v, Ψ〉s,p +

∫
Rn
b(x)|v(x)|p−2v(x)Ψ(x)dx,

〈u, Φ〉Hm =

∫
Rn
|u(x)|m−2u(x)Φ(x)

dx

|x|ms
,

〈v, Ψ〉Hp =

∫
Rn
|v(x)|p−2v(x)Ψ(x)

dx

|x|ps
.

Clearly, the entire (weak) solutions of (P4) are exactly the critical points of

the Euler–Lagrange functional associated with (P4), that is of

Iµ,σ(u, v) =
1

m
‖u‖mEm,a +

1

p
‖v‖pEp,b −

µ

m
‖u‖mHm −

σ

p
‖v‖pHp −

∫
Rn
H(x, u, v)dx.
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The functional Iµ,σ is well defined in W and under conditions (H1)–(H2) the

functional Iµ,σ is of class C1(W ), and for any fixed (u, v) ∈ W

(5.2.2)

〈I ′µ,σ(u, v), (Φ, Ψ)〉 =〈u, Φ〉Em,a + 〈v, Ψ〉Ep,b − µ〈u, Φ〉Hm − σ〈v, Ψ〉Hp

−
∫
Rn

[Hu(x, u, v)Φ+Hv(x, u, v)Ψ ]dx

for all (Φ, Ψ) ∈ W .

Let us recall that a functional J : X → R of class C1(X), on a real

Banach space X = (X, ‖ · ‖), with its dual space X ′, is said to satisfy the

Cerami condition (C) if any Cerami sequence associated with J has a strongly

convergent subsequence in X. A sequence (uk)k in X is called a Cerami

sequence, if (J(uk))k is bounded and (1 + ‖uk‖) · ‖J ′(uk)‖X′ → 0 as k →∞.

The celebrated mountain pass theorem of Ambrosetti and Rabinowitz can

be stated also in terms of the existence of Cerami’s sequences as a direct

consequence of Corollaries 4 and 9 of [42]. We give it in the stronger form as

presented in Theorem I of [37] and refer to [37, 42] for further comments. In-

deed, this is exactly the version we shall use in order to prove Theorem 5.1.1.

Theorem 5.2.1. Let X be a real Banach space and let J ∈ C1(X) satisfy

max{J(0), J(e)} ≤ α < β ≤ inf
‖u‖=ρ

J(u),

for some α < β, ρ > 0 and e ∈ X, with ‖e‖ > ρ. Let c ≥ β be characterized

by
c = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} is the set of continuous

paths joining 0 and e, then there exists a Cerami sequence (uk)k in X such

that J(uk)→ c ≥ β as k →∞.

Finally, if the functional J satisfies the Cerami condition (C) at mini–

max level c, then c is a critical value of J in X.

We end the section by recalling that 0 < s < 1, n > ps, 1 < m ≤ p < m∗,

so that some basic results on the fractional Sobolev space W can be derived

and used in the next sections.

Lemma 10 of [86] shows that the spaces Em,a = (Em,a, ‖ · ‖Em,a) and

Ep,b = (Ep,b, ‖ · ‖Ep,b) are two separable, reflexive Banach spaces. Hence,

W = (W, ‖ · ‖) is a separable and reflexive Banach space by Theorem 1.12

of [2]. Furthermore, combining the results of Lemmas 4.1 and 5.1 of [35] and

Theorem 2.1 of [86], we have
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Lemma 5.2.2. Let (V1) hold. Then the embeddings

W ↪→ W s,m(Rn)×W s,p(Rn) ↪→ Lν(Rn)× Lν(Rn)

are continuous if ν ∈ [p,m∗], and

‖(u, v)‖ν ≤ ‖u‖ν + ‖v‖ν ≤ Cν‖(u, v)‖ for all (u, v) ∈ W,(5.2.3)

where Cν depends on ν, n, s, m and p. If in addition also (V2) holds, then

the embedding

W ↪→↪→ Lν(Rn)× Lν(Rn)

is compact when ν ∈ [p,m∗).

Finally, if n ≥ 2, then the embedding Wrad ↪→↪→ Lν(Rn) × Lν(Rn) is

compact for all ν ∈ (p,m∗), where

Wrad = {(u, v) ∈ W : u and v are radially symmetric with respect to 0}.

The number Cν in (5.2.3) is related to λν defined in (5.1.3) by Cν = λ
−1/ν
ν .

According to Proposition A.10 of [12], we have

Lemma 5.2.3. Let {(uk, vk)}k ⊂ W be such that (uk, vk) ⇀ (u, v) weakly in

W as k → ∞. Then, up to a subsequence, (uk, vk) → (u, v) a.e. in Rn as

k →∞.

5.3 Existence of solutions of (P4)

To prove Theorem 5.1.1, we shall apply Theorem 5.2.1 to the functional

Iµ,σ introduced in Section 5.2. In what follows C might denote different

constants.

Lemma 5.3.1. Any Cerami sequence of Iµ,σ is bounded in W , provided that

µ < Hm and σ < Hp.

Proof. Let {(uk, vk)}k be a Cerami sequence of Iµ,σ in W . Then there exists

C > 0 independent of k such that

(5.3.1)
|Iµ,σ(uk, vk)| ≤ C for all k and

(1 + ‖(uk, vk)‖)I ′µ,σ(uk, vk)→ 0 as k →∞.
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Hence there exists εk > 0, with εk → 0, such that

(5.3.2) |〈I ′µ,σ(uk, vk), (Φ, Ψ)〉| ≤ εk‖(Φ, Ψ)‖
1 + ‖(uk, vk)‖

for all (Φ, Ψ) ∈ W and all k ∈ N. Choosing (Φ, Ψ) = (uk, vk) in (5.3.2), we

deduce∣∣∣∣‖uk‖mEm,a + ‖vk‖pEp,b − µ‖uk‖
m
Hm − σ‖vk‖

p
Hp

−
∫
Rn

[Hu(x, uk, vk)uk +Hv(x, uk, vk)vk] dx

∣∣∣∣
= |〈I ′µ,σ(uk, vk), (uk, vk)〉| ≤

εk‖(uk, vk)‖
1 + ‖(uk, vk)‖

≤ εk ≤ C.

Hence we have

(5.3.3)

−‖uk‖mEm,a − ‖vk‖
p
Ep,b

+ µ‖uk‖mHm + σ‖vk‖pHp

+

∫
Rn

[Hu(x, uk, vk)uk +Hv(x, uk, vk)vk] dx ≤ C

We claim that {(uk, vk)}k is bounded in W .

Arguing by contradiction, we assume that ‖(uk, vk)‖ → ∞ as k → ∞
and, without loss of generality, that ‖(uk, vk)‖ ≥ 1 for all k. Set (Xk, Yk) =

(uk, vk)/‖(uk, vk)‖. Of course, ‖(Xk, Yk)‖ = 1. Then there exists (X, Y ) ∈ W
such that, up to a subsequence,

(Xk, Yk) ⇀ (X, Y ) in W, (Xk, Yk)→ (X, Y ) a.e. in Rn,

(Xk, Yk)→ (X, Y ) in Lν(Rn)× Lν(Rn)

for any ν ∈ [p,m∗) by Lemmas 5.2.2 and 5.2.3.

Let X−k = min{0, Xk} and Y −k = min{0, Yk}. Clearly, {(X−k , Y
−
k )}k is also

bounded in W . Take (Φ, Ψ) = (X−k , Y
−
k ) in (5.3.2). Since ‖(uk, vk)‖ → ∞,

by (H1) as k →∞

o(1) =
〈I ′µ,σ(uk, vk), (X

−
k , Y

−
k )〉

‖(uk, vk)‖m−1

=
1

‖(uk, vk)‖m

[
〈uk, u−k 〉s,m + 〈uk, u−k 〉m,a + 〈vk, v−k 〉s,p

+ 〈vk, v−k 〉p,b − µ〈uk, u
−
k 〉Hm − σ〈vk, v

−
k 〉Hp

]



S. Saldi Nonlocal nonlinear problems 99

−
∫
Rn

Hu(x, uk, vk)u
−
k +Hv(x, uk, vk)v

−
k

‖(uk, vk)‖m
dx

=
1

‖(uk, vk)‖m

[
〈uk, u−k 〉s,m + ‖u−k ‖

m
m,a(5.3.4)

+ 〈vk, v−k 〉s,p + ‖v−k ‖
p
p,b − µ‖u

−
k ‖

m
Hm − σ‖v

−
k ‖

p
Hp

]
≥ 1

‖(uk, vk)‖m

(
‖u−k ‖

m
Em,a + ‖v−k ‖

p
Ep,b
− µ‖u−k ‖

m
Hm − σ‖v

−
k ‖

p
Hp

)
≥
(

1− µ+

Hm

)
‖X−k ‖

m
Em,a +

(
1− σ+

Hp

) ‖v−k ‖
p
Ep,b

‖(uk, vk)‖m

≥
(

1− µ+

Hm

)
‖X−k ‖

m
Em,a ,

where the first inequality follows from the following elementary inequality

valid for all ℘ > 1

(5.3.5) |ξ− − η−|℘ ≤ |ξ − η|℘−2(ξ − η)(ξ− − η−) for ξ, η ∈ R,

while the second inequality follows from (5.1.1) and the fact that µ < Hm

and σ < Hp. Hence, it follows at once that ‖X−k ‖Em,a → 0 as k → ∞.

Similarly, as k →∞

o(1) =
〈I ′µ,σ(uk, vk), (X

−
k , Y

−
k )〉

‖(uk, vk)‖p−1

≥ 1

‖(uk, vk)‖p

(
‖u−k ‖

m
Em,a + ‖v−k ‖

p
Ep,b
− µ‖u−k ‖

m
Hm − σ‖v

−
k ‖

p
Hp

)
≥
(

1− µ+

Hm

) ‖u−k ‖mEm,a
‖(uk, vk)‖p

+

(
1− σ+

Hp

)
‖Y −k ‖

p
Ep,b

≥
(

1− σ+

Hp

)
‖Y −k ‖

p
Ep,b

.

Thus ‖Y −k ‖Ep,b → 0 as k →∞. Therefore, we get

(X−k , Y
−
k )→ (0, 0) in W as k →∞.

This implies that (X−, Y −) = (0, 0) a.e. in Rn. Hence, X ≥ 0 and Y ≥ 0

a.e. in Rn.

Set Ω+ = {x ∈ Rn : either X(x) > 0 or Y (x) > 0} and

Ω0 = {x ∈ Rn : (X(x), Y (x)) = (0, 0)}.
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Assume Ω+ has a positive Lebesgue measure. Since ‖(uk, vk)‖ → ∞ as

k →∞, then

|(uk, vk)| =
∥∥(uk, vk)

∥∥ · |(Xk, Yk)| → ∞ a.e. in Ω+.

Consequently, by (H3)

lim
k→∞

H(x, uk, vk)

‖(uk, vk)‖p
= lim

k→∞

H(x, uk, vk)

|(uk, vk)|p
· |(Xk, Yk)|p =∞,

a.e. in Ω+. Then the Fatou lemma gives at once that

lim
k→∞

∫
Rn

H(x, uk, vk)

‖(uk, vk)‖p
dx = lim

k→∞

∫
Rn

H(x, uk, vk)|(Xk, Yk)|p

|(uk, vk)|p
dx =∞.(5.3.6)

Now, (5.3.1) yields that

(5.3.7)

∫
Rn
H(x, uk, vk)dx ≤

1

m
‖u‖mEm,a+

1

p
‖v‖pEp,b−

µ

m
‖u‖mHm

− σ

p
‖v‖pHp + C

for all k ∈ N. Dividing by ‖(uk, vk)‖p ≥ 1 for all k, we get forthwith

lim sup
k→∞

∫
Rn

H(x, uk, vk)

‖(uk, vk)‖p
dx ≤ 2

m
+
|µ−|
mHm

+
|σ−|
pHp

+
C

‖(uk, vk)‖p
,

by virtue of (5.1.1), where as before t− = min{0, t} for any t ∈ R. This

contradicts (5.3.6). In conclusion, Ω+ has zero measure, that is, (X, Y ) =

(0, 0) a.e. in Rn.

Let tk be the smallest value of t ∈ [0, 1] such that

Iµ,σ(tkuk, tkvk) = max
0≤t≤1

Iµ,σ(tuk, tvk).

Take α > 1/2 and set

(Uk, Vk) = (2α)1/m(Xk, Yk) = (2α)1/m (uk, vk)

‖(uk, vk)‖
∈ W.

Lemma 5.2.2 implies that (Uk, Vk) → (0, 0) in Lν(Rn) × Lν(Rn) for any

ν ∈ [p,m∗). Hence, by (H1) and (H2), with ε = 1, we have

(5.3.8)
0 ≤

∫
Rn
H(x, Uk, Vk)dx ≤

∫
Rn

[(λ+ 1)|(Uk, Vk)|p + C1|(Uk, Vk)|r] dx

≤ (λ+ 1)‖(Uk, Vk)‖pp + C1‖(Uk, Vk)‖rr → 0
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as k →∞, since 1 < m ≤ p < r < m∗. Thus, we get

lim
k→∞

∫
Rn
H(x, Uk, Vk)dx = 0.(5.3.9)

Since ‖(uk, vk)‖ → ∞ and ‖(uk, vk)‖ ≥ 1 for all k, we take k0 so large

that (2α)1/m/‖(uk, vk)‖ ∈ (0, 1) for all k ≥ k0. Thanks to the facts that

1 < m ≤ p, α > 1/2 and ‖Xk‖Em,a ≤ ‖Xk‖Em,a + ‖Yk‖Ep,b = 1, we obtain for

all k ≥ k0

Iµ,σ(tkuk, tkvk) ≥ Iµ,σ
(
(2α)1/muk/‖(uk, vk)‖, (2α)1/mvk/‖(uk, vk)‖

)
=

2α

m
‖Xk‖mEm,a +

(2α)p/m

p
‖Yk‖pEp,b

− µ2α

m
‖Xk‖mHm − σ

(2α)p/m

p
‖Yk‖pHp −

∫
Rn
H(x, Uk, Vk)dx

≥ 2α

m

(
1− µ+

Hm

)
‖Xk‖mEm,a +

(2α)p/m

p

(
1− σ+

Hp

)
‖Yk‖pEp,b

−
∫
Rn
H(x, Uk, Vk)dx

≥ 2
ακ

p

(
‖Xk‖pEm,a + ‖Yk‖pEp,b

)
−
∫
Rn
H(x, Uk, Vk)dx

≥ 2
ακ

p2p−1
−
∫
Rn
H(x, Uk, Vk)dx,

where κ = min{1− µ+/Hm, 1− σ+/Hp} > 0.

By (5.3.9), there exists k1 ≥ k0 such that∫
Rn
H(x, Uk, Vk)dx ≤

ακ

p2p−1
for all k ≥ k1.

Therefore
Iµ,σ(tkuk, tkvk) ≥

ακ

p2p−1
for all k ≥ k1.

This, together with the arbitrariness of α > 1/2, yields

lim
k→∞

Iµ,σ(tkuk, tkvk) =∞.(5.3.10)

Since 0 ≤ tk ≤ 1, then (H4) gives at once that∫
Rn
F (x, tkuk, tkvk)dx ≤ CF

∫
Rn
F (x, uk, vk)dx+

∫
Rn
g(x)dx.(5.3.11)
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Following [16, Lemma 7.3] and using the fact that

Iµ,σ(0, 0) = 0 and Iµ,σ(uk, vk)→ c ∈ R,

by (5.3.10) we can assume that tk ∈ (0, 1) for all k sufficiently large and in

turn

0 = tk
d

dt
Iµ,σ(tuk, tvk)

∣∣∣
t=tk

= 〈I ′µ,σ(tkuk, tkvk), (tkuk, tkvk)〉

= ‖tkuk‖mEm,a − µ‖tkuk‖
m
Hm + ‖tkvk‖pEp,b − σ‖tkvk‖

p
Hp

(5.3.12)

−
∫
Rn

[Hu(x, tkuk, tkvk)tkuk +Hv(x, tkuk, tkvk)tkvk] dx.

Combining (5.3.11) and (5.3.12), we get

‖tkuk‖mEm,a − µ‖tkuk‖
m
Hm + ‖tkvk‖pEp,b − σ‖tkvk‖

p
Hp

= p

∫
Rn
H(x, tkuk, tkvk)dx+

∫
Rn
F (x, tkuk, tkvk)dx

≤ p

∫
Rn
H(x, tkuk, tkvk)dx+ CF

∫
Rn
F (x, uk, vk)dx

+

∫
Rn
g(x)dx

for k sufficiently large. From this, it follows that

pIµ,σ(tkuk, tkvk) =
p

m

(
‖tkuk‖mEm,a − µ‖tkuk‖

m
Hm

)
+ ‖tkvk‖pEp,b − σ‖tkvk‖

p
Hp

− p
∫
Rn
H(x, tkuk, tkvk)dx

=
( p
m
− 1
)(
‖tkuk‖mEm,a − µ‖tkuk‖

m
Hm

)
+ ‖tkuk‖mEm,a

− µ‖tkuk‖mHm + ‖tkvk‖pEp,b − σ‖tkvk‖
p
Hp

− p
∫
Rn
H(x, tkuk, tkvk)dx

≤
( p
m
− 1
)(
‖tkuk‖mEm,a − µ‖tkuk‖

m
Hm

)
+ CF

∫
Rn
F (x, uk, vk)dx+

∫
Rn
g(x)dx

≤
( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+ CF

∫
Rn
F (x, uk, vk)dx

+

∫
Rn
g(x)dx,
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since tk ∈ (0, 1) and ‖uk‖mEm,a − µ‖uk‖
m
Hm
≥ 0 by (5.1.1) and the fact that

µ < Hm. Thus, (5.3.10) gives in particular that

(5.3.13)
1

CF

( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+

∫
Rn
F (x, uk, vk)dx→∞

as k →∞. On the other hand, (5.3.1) and the definition of F in (H4) imply

that

C̃ ≥ pIµ,σ(uk, vk) =
p

m

(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+ ‖vk‖pEp,b − σ‖vk‖

p
Hp

− p
∫
Rn
H(x, uk, vk)dx

=
( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+ ‖uk‖mEm,a − µ‖uk‖

m
Hm + ‖vk‖pEp,b

− σ‖vk‖pHp − p
∫
Rn
H(x, uk, vk)dx

=
( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+ ‖uk‖mEm,a − µ‖uk‖

m
Hm + ‖vk‖pEp,b

− σ‖vk‖pHp −
∫
Rn

[Hu(x, uk, vk)uk +Hv(x, uk, vk)vk] dx

+

∫
Rn
F (x, uk, vk)dx

≥ −C +
( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+

∫
Rn
F (x, uk, vk)dx

by (5.3.3). Thus, in particular

1

CF

( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+

∫
Rn
F (x, uk, vk)dx

≤
( p
m
− 1
)(
‖uk‖mEm,a − µ‖uk‖

m
Hm

)
+

∫
Rn
F (x, uk, vk)dx ≤ Const.,

being CF ≥ 1 by (H4), 1 < m ≤ p, and ‖uk‖mEm,a − µ‖uk‖
m
Hm
≥ 0 in virtue of

(5.1.1) and the fact that µ < Hm. This contradicts (5.3.13) and proves the

claim.

Therefore, we conclude that {(uk, vk)}k is bounded in W .

Lemma 5.3.2. The functional Iµ,σ satisfies the Cerami condition (C) in W

for all µ < Hm and for all σ < Hp.

Proof. Let {(uk, vk)}k be a Cerami sequence for Iµ,σ in W . Then there exists

C > 0 independent of k such that (5.3.1) holds. Lemma 5.3.1 asserts that
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{(uk, vk)}k is bounded in W . Hence, up to a subsequence, still denoted by

{(uk, vk)}k, there exists (u, v) ∈ W such that

(5.3.14)

(uk, vk) ⇀ (u, v) in W,

uk ⇀ u in Lm(Rn, |x|−ms), vk ⇀ v in Lp(Rn, |x|−ps),
(uk, vk)→ (u, v) in Lν(Rn)× Lν(Rn),

(uk, vk)→ (u, v) a.e. in R2n,

‖uk − u‖Em,a → i, ‖uk − u‖Hm → j,

‖vk − v‖Ep,b → k, ‖vk − v‖Hp → l,

for any ν ∈ [p,m∗) by Lemmas 5.2.2, 5.2.3 and (5.1.1). Clearly, (5.3.14)

implies that |zk − z| → 0 in Lν(Rn) for all ν ∈ [p,m∗), where zk = (uk, vk)

and z = (u, v).

In particular, the sequence (Uk)k, defined in R2n \Diag (R2n) by

(x, y) 7→ Uk(x, y) =
|uk(x)− uk(y)|m−2[uk(x)− uk(y)]

|x− y|(n+ms)/m′
,

is bounded in Lm
′
(R2n) as well as Uk → U a.e. in R2n, where

U(x, y) =
|u(x)− u(y)|m−2[u(x)− u(y)]

|x− y|(n+ms)/m′
.

Thus, going if necessary to a further subsequence, we get that Uk ⇀ U in

Lm
′
(R2n) as k → ∞. Furthermore, |uk|m−2uk ⇀ |u|m−2u in Lm

′
(Rn, a) by

Proposition A.8 of [12]. Hence,

(5.3.15) 〈uk, Φ〉Em,a → 〈u, Φ〉Em,a

for any Φ ∈ Em,a, since (x, y) 7→ |Φ(x)−Φ(y)|·|x−y|−(n+ms)/m ∈ Lm(R2n) and

Φ ∈ Lm(Rn, a). In the same way, (5.3.14) and Proposition A.8 of [12] imply

that |uk|m−2uk ⇀ |u|m−2u in Lm
′
(Rn, |x|−ms) as k →∞. Consequently,

(5.3.16) 〈uk, Φ〉Hm → 〈u, Φ〉Hm

for any Φ ∈ Em,a.
A similar argument shows that the sequence (Vk)k, defined in R2n \

Diag (R2n) by

(x, y) 7→ Vk(x, y) =
|vk(x)− vk(y)|p−2[vk(x)− vk(y)]

|x− y|(n+ps)/p′
,
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is bounded in Lp
′
(R2n) as well as Vk → V a.e. in R2n, where

V(x, y) =
|v(x)− v(y)|p−2[v(x)− v(y)]

|x− y|(n+ps)/p′
.

Hence, going if necessary to a further subsequence, we have

(5.3.17) 〈vk, Ψ〉Ep,b → 〈v, Ψ〉Ep,b , 〈vk, Ψ〉Hp → 〈v, Ψ〉Hp

for all Ψ ∈ Ep,b.
By (H2), with ε = 1, and (5.3.14), the Hölder inequality gives

(5.3.18)

∫
Rn

∣∣(Hu(x, uk, vk)−Hu(x, u, v)
)
(uk − u)

+
(
Hv(x, uk, vk)−Hv(x, u, v)

)
(vk − v)

∣∣dx
=

∫
Rn
|Hz(x, zk)(zk − z)−Hz(x, z)(zk − z)|dx

≤
∫
Rn

[
(λ+ 1)(|zk|p−1 + |z|p−1)|zk − z|

+ C1(|zk|r−1 + |z|r−1)|zk − z|
]
dx

≤ Cλ
(
‖zk − z‖p + ‖zk − z‖r

)
→ 0,

as k →∞, for a suitable Cλ > 0.

Since {(uk, vk)}k is bounded in W , by (5.3.1) and (5.3.14)–(5.3.18) we

have as k →∞

o(1) = 〈I ′µ,σ(zk)− I ′µ,σ(z), zk − z〉
= ‖uk − u‖mEm,a − µ ‖uk − u‖

m
Hm

+ ‖vk − v‖pEp,b − σ ‖vk − v‖
p
Hp

+ o(1),

which yields by (5.3.14) the main formula

(5.3.19)
im + kp = lim

k→∞
‖uk − u‖mEm,a + lim

k→∞
‖vk − v‖pEp,b

= µ lim
k→∞
‖uk − u‖mHm + σ lim

k→∞
‖vk − v‖pHp = µjm + σlp.

Clearly (5.3.19) gives at once that (uk, vk) → (u, v) in W as k → ∞ when

either µ+ + σ+ = 0 or j + l = 0 and we are done. Let us therefore assume

by contradiction that µ+ + σ+ > 0 and j + l > 0. If either µ+ + l = 0 or

σ+ + j = 0, then either j > 0 and i = 0 or l > 0 and k = 0 by (5.3.19). Both

cases are impossible by (5.1.1). Now, if either µ+ + j = 0 or σ+ + l = 0,

then either l > 0, σ+ > 0 and kp ≤ σ+lp < Hpl
p ≤ kp or j > 0, µ+ > 0
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and im ≤ µ+jm < Hmj
m ≤ im by (5.3.19) and (5.1.1). Both cases give a

contradiction. Finally, it remains to consider the case µ+ > 0, σ+ > 0, j > 0

and l > 0, for which (5.3.19) and (5.1.1) yield that

im + kp = µjm + σlp ≤ µ+jm + σ+lp ≤ Hmj
m +Hpl

p < im + kp,

which is again the desired contradiction. In conclusion, j + l = 0 in all cases

and so (uk, vk)→ (u, v) in W as k →∞ by (5.3.19), as stated.

Now we are in position to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We first show that the functional Iµ,σ satisfies a

mountain pass geometry. Take ε > 0, with 2pε/λp = κ − 2p−1λ/λp, where

κ = min{1− µ+/Hm, 1− σ+/Hp} > 0. This is possible thanks to the main

restriction (5.1.5). By (5.1.3), (5.2.3) and (H2), we have for all (u, v) ∈ W ,

with ‖(u, v)‖ ≤ 1,

(5.3.20)

Iµ,σ(u, v) ≥ 1

m

(
1− µ+

Hm

)
‖u‖mEm,a +

1

p

(
1− σ+

Hp

)
‖v‖pEp,b

− 1

p

∫
Rn

(
λ+ ε

)
|(u, v)|pdx− Cε

∫
Rn
|(u, v)|rdx

≥ κ

p

(
‖u‖pEm,a + ‖v‖pEp,b

)
− 1

p
(λ+ ε)‖(u, v)‖pp

− CεCr
r‖(u, v)‖r

≥ 1

2p−1p

(
κ− 2p−1λ+ ε

λp

)
‖(u, v)‖p − CεCr

r‖(u, v)‖r

=
1

2pp

(
κ− 2p−1 λ

λp
− 2ppCεC

r
r‖(u, v)‖r−p

)
‖(u, v)‖p.

Now fix ρ ∈ (0, 1) so small that κ− 2p−1λ/λp − 2ppCεC
r
rρ

r−p > 0. This can

be done by (5.1.5). Therefore, for all (u, v) ∈ W , with ‖(u, v)‖ = ρ, we have

Iµ,σ(u, v) ≥ ρp

2pp

(
κ− 2p−1 λ

λp
− 2ppCεC

r
rρ

r−p
)

= α > 0.

Let B1 be the unit ball in Rn centered at 0 and let u∗, v∗ ∈ C∞0 (B1) be two

non–negative nontrivial radial functions, such that ‖ |(u∗, v∗)| ‖Lp(B1) > 0.

Let u0 and v0 be the natural extensions of u∗ and v∗, respectively, to the

entire Rn, defining u0(x) = 0 and v0(x) = 0 in Rn \B1. Clearly, (u0, v0) ∈ W ,

with ‖u0‖Em,a > 0 and ‖v0‖Ep,b > 0.
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By (H3) for any positive constant A > 0 there exists δA > 0 such that

H(x, u, v) ≥ A |(u, v)|p/p for all (x, u, v) ∈ Rn × R+
0 × R+

0 , with u > δA and

v > δA. Clearly,

min
(x,u,v)∈B1×[0,δA]2

(
H(x, u, v)− A

p
|(u, v)|p

)
∈ R,

so that there exists CA ≥ 0 such that

H(x, u, v) ≥ A

p
|(u, v)|p − CA for all (x, u, v) ∈ B1 × R+

0 × R+
0 .

Then, for t ≥ 1

Iµ,σ(tu0, tv0) =
tm

m
‖u0‖mEm,a −

µtm

m
‖u0‖mHm +

tp

p
‖v0‖pEp,b −

σtp

p
‖v0‖pHp

−
∫
B1

H(x, tu0, tv0)dx

≤ tp

m

(
‖u0‖mEm,a + |µ−| · ‖u0‖mHm + ‖v0‖pEp,b + |σ−| · ‖v0‖pHp

− A‖ |(u0, v0)| ‖pp
)

+ CA|B1|,

where τ− = min{0, τ} for all τ ∈ R. Choosing A so large that

0 < ‖u0‖mEm,a + |µ−| · ‖u0‖mHm + ‖v0‖pEp,b + |σ−| · ‖v0‖pHp < A ‖ |(u0, v0)| ‖pp,

we get Iµ,σ(tu0, tv0)→ −∞ as t→∞. Thus, there exists (ω,w) = (t0u0, t0v0) ∈
W such that ‖(ω,w)‖ ≥ 2 > ρ and Iµ,σ(ω,w) < 0.

Therefore, we have proved that Iµ,σ satisfies a mountain pass geometry.

Combining this fact with Lemma 5.3.2, an application of Theorem 5.2.1 gives

the existence of (u, v) ∈ W , with (u, v) 6= (0, 0), satisfying

〈u, Φ〉Em,a + 〈v, Ψ〉Ep,b−µ〈u, Φ〉Hm − σ〈v, Ψ〉Hp

=

∫
Rn

[
Hu(x, u, v)Φ+Hv(x, u, v)Ψ

]
dx

for all (Φ, Ψ) ∈ W . Taking Φ = u− = min{0, u} and Ψ = v− = min{0, v}, we

have by (H1), (5.1.5) and (5.3.5)

0 =

∫
Rn

[
Hu(x, u, v)u− +Hv(x, u, v)v−

]
dx

≥
(

1− µ+

Hm

)
‖u−‖mEm,a +

(
1− σ+

Hp

)
‖v−‖pEp,b ≥ 0.

In conclusion, u− = 0 and v− = 0 a.e. in Rn, that is, u ≥ 0 and v ≥ 0 a.e.

in Rn. This completes the proof.
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Let us sketch

Proof of Theorem 5.1.2. The proof of Lemma 5.3.1 goes without essential

changes, by replacing (5.3.8) by

0 ≤
∫
Rn
H(x, Uk, Vk)dx ≤ (λ+ 1)‖(Uk, Vk)‖qq + C1‖(Uk, Vk)‖rr → 0

as k → ∞, thanks to (H1) and (H2)′, with ε = 1, since (Uk, Vk) → (0, 0) in

Lν(Rn)× Lν(Rn) for any ν ∈ (p,m∗) by Lemma 5.2.2.

Similarly, the proof of Lemma 5.3.2 is almost unchanged, since it is enough

to request in (5.3.14) that the exponent ν ∈ (p,m∗), so that the main prop-

erty (5.3.18) is now a direct consequence of (H2)′, which gives at once∫
Rn

∣∣(Hu(x, uk, vk)−Hu(x, u, v)
)
(uk − u)

+
(
Hv(x, uk, vk)−Hv(x, u, v)

)
(vk − v)

∣∣dx
≤ C

(
‖zk − z‖q + ‖zk − z‖r

)
→ 0,

as k →∞, by virtue of Lemma 5.2.2.

Concerning the mountain pass geometry, the proof is the same as for

Theorem 5.1.1, with the only exception that ε > 0 in (H2)′ is taken so that

2pε/λq = κ− 2p−1λ/λq and (5.3.20) is now replaced by

Iµ,σ(u, v) ≥ 1

m

(
1− µ+

Hm

)
‖u‖mEm,a +

1

p

(
1− σ+

Hp

)
‖v‖pEp,b

− 1

p

∫
Rn

(
λ+ ε

)
|(u, v)|qdx− Cε

∫
Rn
|(u, v)|rdx

≥ κ

2p−1p
‖(u, v)‖p − 1

p
· λ+ ε

λq
‖(u, v)‖q − CεCr

r‖(u, v)‖r

≥ 1

2p−1p

(
κ− 2p−1λ+ ε

λq

)
‖(u, v)‖p − CεCr

r‖(u, v)‖r

=
1

2pp

(
κ− 2p−1 λ

λq
− 2ppCεC

r
r‖(u, v)‖r−p

)
‖(u, v)‖p,

which holds for all (u, v) ∈ W , with ‖(u, v)‖ ≤ 1, thanks to (5.1.3), (5.2.3)

and the fact that p < q < r. The rest of the proof is unchanged.

Therefore, the functional Iµ,σ
∣∣
Wrad

admits a nontrivial non–negative crit-

ical point (u, v) ∈ Wrad, that is

〈I ′µ,σ(u, v), (Φ, Ψ)〉 = 0 for all (Φ, Ψ) ∈ Wrad
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and then (u, v) is a critical point of Iµ,σ in the entire space W by the principle

of symmetric criticality of Palais, see Lemma 5.4 of [35], since

(Iµ,σ ◦ a)(u, v) = Iµ,σ(u, v) for all a ∈ G,

where SO(n) = {A ∈ Rn×n : AtA = In and detA = 1} and

(5.3.21) G = {a : W → W : a(u, v) = (u, v) ◦ A, A ∈ SO(n)}.

This completes the proof.

5.4 Existence of solutions of (P5)

System (P5) has a variational structure and the underlying functional is

Jµ,σ : W → W given by

Jµ,σ(u, v) =
1

m
‖u‖mEm,a +

1

p
‖v‖pEp,b −

µ

m
‖u‖mHm −

σ

p
‖v‖pHp −

∫
Rn
H(x, u, v)dx

− 1

m∗
‖u+‖m∗m∗ −

1

p∗
‖v+‖p

∗

p∗ −
1

m∗

∫
Rn

(u+)θ(v+)ϑdx

−
∫
Rn
ϕ(x)udx−

∫
Rn
ψ(x)vdx.

By Lemma 5.2.2 and the choice of θ and ϑ, Jµ,σ is well–defined and of class

C1(W ), with

〈J ′µ,σ(u, v), (Φ, Ψ)〉 = 〈u, Φ〉Em,a + 〈v, Ψ〉Ep,b − µ〈u, Φ〉Hm − σ〈v, Ψ〉Hp

−
∫
Rn

[Hu(x, u, v)Φ+Hv(x, u, v)Ψ ]dx−〈u+, Φ〉m∗ −〈v+, Ψ〉p∗

−
∫
Rn

[
θ

m∗
(u+)θ−1(v+)ϑΦ+

ϑ

m∗
(u+)θ(v+)ϑ−1Ψ

]
dx

−
∫
Rn
φ(x)Φdx−

∫
Rn
ψ(x)Ψdx,

for any (Φ, Ψ) ∈ W , where

〈u+, Φ〉m∗ =

∫
Rn
|u(x)|m∗−2u+(x)Φ(x)dx,

〈v+, Ψ〉p∗ =

∫
Rn
|v(x)|p∗−2v+(x)Ψ(x)dx.

We first prove that (P5) presents a suitable geometry for existence of local

minima provided that the perturbations ϕ and ψ are sufficiently small in

their norms, as shown in [35] for general equations in a different framework.
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Lemma 5.4.1. Under (5.1.5) there exist numbers α, ρ and δ > 0 such that

Jµ,σ(u, v) ≥ α for all (u, v) ∈ W , with ‖(u, v)‖ = ρ, and for all ϕ ∈ Lm(Rn)

and ψ ∈ Lp(Rn), with ‖ϕ‖m + ‖ψ‖p ≤ δ, provided that (5.1.5) holds.

Proof. Take ε > 0, with 2pε/λp = κ−2p−1λ/λp. This is possible thanks to the

main restriction (5.1.5). By (5.1.3), (5.2.3), (H2) and the Hölder inequality,

we have for all (u, v) ∈ W , with ‖(u, v)‖ ≤ 1,

Jµ,σ(u, v) ≥ 1

2p−1p

(
κ− 2p−1λ+ ε

λp

)
‖(u, v)‖p − CεCr

r‖(u, v)‖r

− Cm∗
m∗

m∗
‖(u, 0)‖m∗ −

Cp∗

p∗

p∗
‖(0, v)‖p∗ − 1

m∗
‖u‖θm∗‖v‖ϑm∗

− Cm∗‖ϕ‖m‖(u, 0)‖ − Cp∗‖ψ‖p‖(0, v)‖

≥

[
1

2pp

(
κ− 2p−1 λ

λp

)
‖(u, v)‖p−1 − CεCr

r‖(u, v)‖r−1

− Cm∗
m∗

m∗
‖(u, v)‖m∗−1 −

Cp∗

p∗

p∗
‖(u, v)‖p∗−1 − Cm∗

m∗

m∗
‖(u, v)‖m∗−1

− Cm∗‖ϕ‖m − Cp∗‖ψ‖p

]
‖(u, v)‖,

since ‖u‖θm∗‖v‖ϑm∗ ≤ Cm∗
m∗ ‖u‖θEm,a‖v‖

ϑ
Ep,b
≤ Cm∗

m∗ ‖(u, v)‖m∗ , being θ + ϑ = m∗.

Define for all t ∈ [0, 1]

ηµ,σ(t) =
1

2pp

(
κ− 2p−1 λ

λp

)
tp−1 − CεCr

r t
r−1 − 2

Cm∗

m∗
tm
∗−1 − Cp∗

p∗
tp
∗−1.

There exists ρ ∈ (0, 1) such that maxt∈[0,1] ηµ,σ(t) = ηµ,σ(ρ) > 0, since 1 <

m ≤ p < r < m∗. Taking δ = ηµ,σ(ρ)/2(Cm∗ + Cp∗) we obtain Jµ,σ(u, v) ≥
α = ρηµ,σ(ρ)/2 for all (u, v) ∈ W , with ‖(u, v)‖ = ρ, and for all ϕ ∈ Lm(Rn)

and ψ ∈ Lp(Rn), with ‖ϕ‖m + ‖ψ‖p ≤ δ.

Lemma 5.4.2. Let ρ be given as in Lemma 5.4.1. Set

mµ,σ = inf
{
Jµ,σ(u, v) : (u, v) ∈ Bρ

}
,

where Bρ = {(u, v) ∈ W : ‖(u, v)‖ ≤ ρ}. Then mµ,σ < 0 for all non–negative

perturbations ϕ ∈ Lm(Rn) and ψ ∈ Lp(Rn), with ‖ϕ‖m + ‖ψ‖p > 0.
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Proof. Fix ϕ ∈ Lm(Rn) and ψ ∈ Lp(Rn), with ‖ϕ‖m + ‖ψ‖p > 0. We claim

that there exists a non–negative function h ∈ C∞0 (Rn) such that

(5.4.1)

∫
Rn
h(x)(ϕ+ ψ)dx > 0.

Since ϕ ∈ Lm(Rn) and ψ ∈ Lp(Rn), with ‖ϕ‖m + ‖ψ‖p > 0, the functions

ϕ̃(x) =

{
ϕ(x)m−1, if ϕ(x) 6= 0

0, if ϕ(x) = 0
∈ Lm∗(Rn),

ψ̃(x) =

{
ψ(x)p−1, if ψ(x) 6= 0

0, if ψ(x) = 0
∈ Lp∗(Rn).

Then, there exist two sequences (ϕk)k and (ψk)k in C∞0 (Rn) such that ϕk → ϕ̃

strongly in Lm
∗
(Rn) and a.e. in Rn, while ψk → ψ̃ strongly in Lp

∗
(Rn) and

a.e. in Rn, since C∞0 (Rn) is dense in Lm
∗
(Rn) and in Lp

∗
(Rn). For k0 and k1

in N large enough we have

ϕk0 , ψk1 ≥ 0 a.e. in Rn,

‖ϕk0 − ϕ̃‖m∗ ≤
1

2
‖ϕ‖m−1

m , ‖ψk1 − ψ̃‖p∗ ≤
1

2
‖ψ‖p−1

p .

Put h = ϕk0 + ψk1 . Clearly, h ∈ C∞0 (Rn), h ≥ 0 a.e. in Rn, and (h, h) ∈ W .

Furthermore, the Hölder inequality yields∫
Rn
h(x)

(
ϕ+ ψ)dx ≥

∫
Rn
ϕk0ϕdx+

∫
Rn
ψk1ψdx

≥ −‖ϕk0 − ϕ̃‖m∗‖ϕ‖m + ‖ϕ‖mm − ‖ψk1 − ψ̃‖p∗‖ψ‖p + ‖ψ‖pp

≥ 1

2
‖ϕ‖mm +

1

2
‖ψ‖pp > 0,

by assumption. The claim (5.4.1) is so proved.

By (5.4.1) and (H1)

Jµ,σ(th, th) ≤ tm

m
‖h‖mEm,a +

tp

p
‖h‖pEp,b −

µtm

m
‖h‖mHm −

σtp

p
‖h‖pHp − 2

tm
∗

m∗
‖h‖m∗m∗

− tp
∗

p∗
‖h‖p

∗

p∗ − t
∫
Rn
h(x)

[
ϕ(x) + ψ(x)

]
dx < 0,

provided that for t ∈ (0, 1) is sufficiently small.
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Proof of Theorem 5.1.3. Fix µ ∈ (−∞,Hm) and σ ∈ (−∞,Hp) so that

(5.1.5) holds. First note that if (u, v) is a solution of (P5), then

〈u, Φ〉Em,a − µ〈u, Φ〉Hm + 〈v, Ψ〉Ep,b − σ〈Ψ〉Hp

=

∫
Rn

[Hu(x, u, v)Φ+Hv(x, u, v)Ψ ]dx+ 〈u+, Φ〉m∗ + 〈v+, Ψ〉p∗

+

∫
Rn

[
θ

m∗
(u+)θ−1(v+)ϑΦ+

ϑ

m∗
(u+)θ(v+)ϑ−1Ψ

]
dx

+

∫
Rn
ϕ(x)Φdx+

∫
Rn
ψ(x)Ψdx

for all (Φ, Ψ) ∈ W . Taking Φ = u− = min{0, u} and Ψ = v− = min{0, v}, by

(H1), (5.1.5) and (5.3.5) we get

0 ≥
∫
Rn
ϕ(x)u−dx+

∫
Rn
ψ(x)v−dx

=

∫
Rn

[Hu(x, u, v)u− +Hv(x, u, v)v−]dx+ 〈u+, u−〉m∗

+ 〈v+, v−〉p∗ +

∫
Rn

[
θ

m∗
(u+)θ−1(v+)ϑu− +

ϑ

m∗
(u+)θ(v+)ϑ−1v−

]
dx

+

∫
Rn
ϕ(x)u−dx+

∫
Rn
ψ(x)v−dx

≥
(

1− µ+

Hm

)
‖u−‖mEm,a +

(
1− σ+

Hp

)
‖v−‖pEp,b ≥ 0.

In conclusion, u− = 0 and v− = 0 a.e. in Rn, that is, u ≥ 0 and v ≥ 0 a.e.

in Rn. In other words, any solution of (P5) is non–negative, component by

component.

Take ϕ ∈ Lm(Rn) and ψ ∈ Lp(Rn), with 0 < ‖ϕ‖m + ‖ψ‖p ≤ δ, where

δ > 0 is the number determined in Lemma 5.4.1. By Lemmas 5.4.1, 5.4.2 and

the Ekeland variational principle, in Bρ there exists a sequence {(uk, vk)}k
in Bρ such that

(5.4.2)
mµ,σ ≤ Jµ,σ(uk, vk) ≤ mµ,σ +

1

k
and

Jµ,σ(u, v) ≥ Jµ,σ(uk, vk)−
1

k
‖(u− uk, v − vk)‖

for all k ∈ N and for any (u, v) ∈ Bρ. Fixed k ∈ N, for all (ω,w) ∈ SW ,

where SW = {(ω,w) ∈ W : ‖(ω,w)‖ = 1}, and for all ε > 0 so small that
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(uk + ε ω, vk + εw) ∈ Bρ, we have

Jµ,σ(uk + ε ω, vk + εw)− Jµ,σ(uk, vk) ≥ −
ε

k

by (5.4.2). Since Jµ,σ is Gâteaux differentiable in W , we get

〈J ′µ,σ(uk, vk), (ω,w)〉 = lim
ε→0

Jµ,σ(uk + ε ω, vk + εw)− Jµ,σ(uk, vk)

ε
≥ −1

k

for all (ω,w) ∈ SW . Hence∣∣〈J ′µ,σ(uk, vk), (ω,w)〉
∣∣ ≤ 1

k
,

since (ω,w) ∈ SW is arbitrary. Consequently, J ′µ,σ(uk, vk) → 0 in W ′ as

k → ∞ and clearly, up to a subsequence, the bounded sequence {(uk, vk)}k
weakly converges to some (u, v) ∈ Bρ and has the following properties

(5.4.3)

(uk, vk) ⇀ (u, v) in W, (uk, vk)→ (u, v) a.e. in Rn,

(uk, vk)→ (u, v) in Lν(Rn)× Lν(Rn),

uk ⇀ u in Lm(Rn, |x|ms), vk ⇀ v in Lp(Rn, |x|ps),
‖uk‖Em,a → u, ‖vk‖Ep,b → v, ‖uk‖Hm → h, ‖vk‖Hp → k,

‖u+
k ‖m∗ → i, ‖v+

k ‖p∗ → j,

u+
k ⇀ u+ in Lm

∗
(Rn), v+

k ⇀ v+ in Lp
∗
(Rn),

(u+
k )θ−1(v+

k )ϑ ⇀ (u+)θ−1(v+)ϑ in Lm
∗/(m∗−1)(Rn),

(u+
k )θ(v+

k )ϑ−1 ⇀ (u+)θ(v+)ϑ−1 in Lm
∗/(m∗−1)(Rn),

for any ν ∈ [p,m∗) by Lemmas 5.2.2, 5.2.3 and (5.1.1). In particular,

(5.4.4)

lim
k→∞

∫
Rn

(u+
k )θ−1(v+

k )ϑu+dx =

∫
Rn

(u+)θ(v+)ϑdx,

lim
k→∞

∫
Rn

(u+
k )θ(v+

k )ϑ−1v+dx =

∫
Rn

(u+)θ(v+)ϑdx,

since (u+, v+) ∈ W . While, the Fatou lemma gives

(5.4.5)

∫
Rn

(u+)θ(v+)ϑdx ≤ lim inf
k→∞

∫
Rn

(u+
k )θ(v+

k )ϑdx.

Furthermore, by (H2), (5.4.3) and the Lebesgue dominated convergence the-

orem we have

(5.4.6)

lim
k→∞

∫
Rn

[Hu(x, uk, vk)u+Hv(x, uk, vk)v]dx

=

∫
Rn

[Hu(x, u, v)u+Hv(x, u, v)v]dx
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and similarly

(5.4.7)

lim
k→∞

∫
Rn

[Hu(x, uk, vk)uk +Hv(x, uk, vk)vk]dx

=

∫
Rn

[Hu(x, u, v)u+Hv(x, u, v)v]dx,

lim
k→∞

∫
Rn
H(x, uk, vk)dx =

∫
Rn
H(x, u, v)dx.

Moreover,

(5.4.8)

lim
k→∞

∫
Rn
ϕ(x)ukdx =

∫
Rn
ϕ(x)udx,

lim
k→∞

∫
Rn
ψ(x)vkdx =

∫
Rn
ψ(x)vdx

by (5.4.3), being ϕ ∈ Lm(Rn) and ψ ∈ Lp(Rn).

Let us prove that (u, v), given in (5.4.3), is actually in Bρ, so that (u, v) is

a critical point of Jµ,σ at level mµ,σ < 0. In other words, (u, v) is a nontrivial

solution of (P5). Clearly, Jµ,σ(u, v) ≥ mµ,σ, since (u, v) ∈ Bρ by (5.4.3).

Moreover, (5.4.3), (5.4.4) and (5.4.6) yield as k →∞

(5.4.9)

0 = 〈J ′µ,σ(uk, vk), (u, v)〉+ o(1)

= 〈uk, u〉Em,a − µ〈uk, u〉Hm + 〈vk, v〉Ep,b − σ〈vk, v〉Hp

−
∫
Rn

[Hu(x, uk, vk)u+Hv(x, uk, vk)v]dx

−
∫
Rn

[
θ

m∗
(u+

k )θ−1(v+
k )ϑu+ +

ϑ

m∗
(u+

k )θ(v+
k )ϑ−1v+

]
dx

− 〈u+
k , u〉m∗ − 〈v

+
k , v〉p∗ −

∫
Rn
ϕ(x)udx−

∫
Rn
ψ(x)vdx+ o(1)

= ‖u‖mEm,a − µ‖u‖
m
Hm + ‖v‖pEp,b − σ‖v‖

p
Hp

−
∫
Rn

[Hu(x, u, v)u+Hv(x, u, v)v]dx− ‖u+‖m∗m∗ − ‖v+‖p
∗

p∗

−
∫
Rn

(u+)θ(v+)ϑdx−
∫
Rn
ϕ(x)udx−

∫
Rn
ψ(x)vdx.

Now we divide the proof into two cases.

Case m < p and µ ≤ 0. Multiplying the expression (5.4.9) by 1/p and

subtracting it below, by (5.4.3), (5.4.5) and (5.4.7)–(5.4.8), we find as k →∞

mµ,σ ≤ Jµ,σ(u, v) =
1

m
‖u‖mEm,a −

µ

m
‖u‖mHm +

1

p
‖v‖pEp,b −

σ

p
‖v‖pHp
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−
∫
Rn
H(x, u, v)dx− 1

m∗
‖u+‖m∗m∗ −

1

p∗
‖v+‖p

∗

p∗

− 1

m∗

∫
Rn

(u+)θ(v+)ϑdx−
∫
Rn
ϕ(x)udx−

∫
Rn
ψ(x)vdx

=

(
1

m
− 1

p

)(
‖u‖mEm,a + |µ| · ‖u‖mHm

)
+

1

p

∫
Rn

[Hu(x, u, v)u+Hv(x, u, v)v]dx−
∫
Rn
H(x, u, v)dx

+

(
1

p
− 1

m∗

)
‖u+‖m∗m∗ +

(
1

p
− 1

p∗

)
‖v+‖p

∗

p∗

+

(
1

p
− 1

m∗

)∫
Rn

(u+)θ(v+)ϑdx

−
(

1− 1

p

)∫
Rn
ϕ(x)udx−

(
1− 1

p

)∫
Rn
ψ(x)vdx

≤
(

1

m
− 1

p

)(
‖uk‖mEm,a + |µ| · ‖uk‖mHm

)
+

1

p

∫
Rn

[Hu(x, uk, vk)uk +Hv(x, uk, vk)vk]dx−
∫
Rn
H(x, uk, vk)dx

+

(
1

p
− 1

m∗

)
‖u+

k ‖
m∗

m∗ +

(
1

p
− 1

p∗

)
‖v+

k ‖
p∗

p∗

+

(
1

p
− 1

m∗

)∫
Rn

(u+
k )θ(v+

k )ϑdx−
(

1− 1

p

)∫
Rn
ϕ(x)ukdx

−
(

1− 1

p

)∫
Rn
ψ(x)vkdx+ o(1)

≤ Jµ,σ(uk, vk)−
1

p
〈J ′µ,σ(uk, vk), (uk, vk)〉+ o(1) = mµ,σ,

since ‖u‖Em,a ≤ u, ‖u‖Hm ≤ h, ‖v‖Ep,b ≤ v, ‖v‖Hp ≤ k and 1 < m < p < m∗.

Case m = p. Again we multiply the expression (5.4.9) by 1/p and, subtract-

ing it below, we obtain that as k →∞

mµ,σ ≤ Jµ,σ(u, v) =
1

p
‖u‖pEp,a −

µ

p
‖u‖pHp +

1

p
‖v‖pEp,b −

σ

p
‖v‖pHp

−
∫
Rn
H(x, u, v)dx− 1

p∗
‖u+‖p

∗

p∗ −
1

p∗
‖v+‖p

∗

p∗

− 1

p∗

∫
Rn

(u+)θ(v+)ϑdx−
∫
Rn
ϕ(x)udx−

∫
Rn
ψ(x)vdx

≤ 1

p

∫
Rn

[Hu(x, uk, vk)uk +Hv(x, uk, vk)vk]dx−
∫
Rn
H(x, uk, vk)dx
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+

(
1

p
− 1

p∗

)(
‖u+

k ‖
p∗

p∗ + ‖v+
k ‖

p∗

p∗

)
−
(

1− 1

p

)∫
Rn
ϕ(x)ukdx

+

(
1

p
− 1

p∗

)∫
Rn

(u+
k )θ(v+

k )ϑdx−
(

1− 1

p

)∫
Rn
ψ(x)vkdx+ o(1)

= Jµ,σ(uk, vk)−
1

p
〈J ′µ,σ(uk, vk), (uk, vk)〉+ o(1) = mµ,σ,

using once more (5.4.3), (5.4.5) and (5.4.7)–(5.4.8).

In conclusion, in both cases, (u, v) is a minimizer of Jµ,σ in Bρ and

Jµ,σ(u, v) = mµ,σ < 0 < α ≤ Jµ,σ(ω,w) for all (ω,w) ∈ ∂Bρ by Lemma 5.4.1.

Thus in turn (u, v) ∈ Bρ, so that J ′µ,σ(u, v) = 0 and this implies that (u, v)

is a nontrivial solution of (P5).

Let us sketch

Proof of Theorem 5.1.4. The argument is essentially the same as in the

proof of Theorem 5.1.2, where now the proof of Lemma 5.4.1 goes almost

without changes, taking ε such that 2pε/λq = κ − 2p−1λ/λq by (5.1.6).

Lemma 5.4.2 holds in the same way as for Theorem 5.1.3. Furthermore,

as in the proof of Theorem 5.1.3, now (5.4.3) holds for all ν ∈ (p,m∗).

Thus, (5.4.6)–(5.4.7) continue to hold by (H2)′ and the rest of the proof is

unchanged.

Therefore, the functional Jµ,σ
∣∣
Wrad

admits a nontrivial non–negative crit-

ical point (u, v) ∈ Wrad, that is

〈J ′µ,σ(u, v), (Φ, Ψ)〉 = 0 for all (Φ, Ψ) ∈ Wrad

and then (u, v) is a critical point of Jµ,σ in the entire W by the principle of

symmetric criticality of Palais, see Lemma 5.4 of [35], since

(Jµ,σ ◦ a)(ω,w) = Jµ,σ(ω,w) for all (ω,w) ∈ W and a ∈ G,

where G is defined in (5.3.21).

5.5 Existence of solutions for (P4,K) and (P5,K)

In this section, we extend the results of Sections 5.3 and 5.4 when the frac-

tional ℘–Laplacian operators are replaced by more general elliptic nonlocal

integro–differential operators.
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Hence, we consider in Rn problems

(5.5.1)


− LKmu+ a(x)|u|m−2u− µ |u|

m−2u

|x|ms
= Hu(x, u, v),

− LKpv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
= Hv(x, u, v),

and

(5.5.2)



− LKmu+ a(x)|u|m−2u− µ |u|
m−2u

|x|ms
=Hu(x, u, v) + |u|m∗−2u+

+
θ

m∗
(u+)θ−1(v+)ϑ+ϕ(x),

− LKpv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
=Hv(x, u, v) + |v|p∗−2v+

+
ϑ

m∗
(u+)θ(v+)ϑ−1+ψ(x),

governed by the operator −LK℘ , which up to a multiplicative constant de-

pending only on n, s and ℘ is defined for all x ∈ Rn by

−LK℘ϕ(x) =

∫
Rn
|ϕ(x)− ϕ(y)|℘−2[ϕ(x)− ϕ(y)]K℘(x− y)dy,

along any function ϕ ∈ C∞0 (Rn).

The weight K℘ : Rn \ {0} → R+, ℘ > 1, satisfies the natural restrictions

listed in Chapter 1.

Let us denote by Ds,℘
K℘

(Rn) the completion of C∞0 (Rn) with respect to

[u]s,K℘ =

(∫ ∫
R2n

|u(x)− u(y)|℘K℘(x− y)dxdy

)1/℘

,

which is well–defined by (K2). The embedding Ds,℘
K℘

(Rn) ↪→ Ds,℘(Rn) is con-

tinuous, since [u]s,℘ ≤ K
−1/℘
0 [u]s,K℘ for all u ∈ Ds,℘

K℘
(Rn) by (K1). Thus (5.1.1)

is still valid.

The natural solution space for (5.5.1) is WK = EKm,a × EKp,b, where

EKm,a =

{
u ∈ Ds,m

Km
(Rn) :

∫
Rn
a(x)|u(x)|mdx <∞

}
,

EKp,b =

{
v ∈ Ds,p

Kp
(Rn) :

∫
Rn
b(x)|v(x)|pdx <∞

}
,
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endowed with the norm ‖(u, v)‖ = ‖u‖EKm,a + ‖v‖EKp,b , with

‖u‖EKm,a =
(
[u]ms,Km + ‖u‖mm,a

)1/m
, ‖v‖EKp,b =

(
[v]ps,Kp + ‖v‖pp,b

)1/p

.

Under the solely condition (V1), we have that the embeddings

WK ↪→ W s,m
Km

(Rn)×W s,p
Kp

(Rn) ↪→ Lν(Rn)× Lν(Rn)

are certainly continuous for all ν ∈ [p,m∗], being 1 < m ≤ p < m∗, again by

Lemma 5.2.2. Thus, the numbers

(5.5.3) λν = inf

{
‖u‖νEKm,a + ‖v‖νEKp,b :

∫
Rn
|(u, v)|νdx = 1

}
are well defined and strictly positive.

This being shown, the proofs in Sections 5.3 and 5.4 can proceed in the

same way, up to the replacement of the appropriate norms. Thus we obtain

the following results, recalling that λp in (H2) and λq in (H2)′ are now defined

by (5.5.3).

Theorem 5.5.1. Under the assumptions (K1)–(K2) on Km and Kp, (H1)–

(H4) and (V1)–(V2) on a and b, system (5.5.1) has at least one nontrivial

non–negative entire solution (u, v) ∈ WK for any µ ∈ (−∞,Hm) and for any

σ ∈ (−∞,Hp) verifying (5.1.5).

Theorem 5.5.2. Assume that n ≥ 2, that a, b, Km, Kp, Hz(·, z) are radial

for all z ∈ R2. Suppose that a and b satisfy (V1), that Km and Kp verify

(K1)–(K2) and that (H1) holds, while (H2) is replaced by (H2)′. Then sys-

tem (5.5.1) has at least one nontrivial non–negative entire radial solution

(u, v) ∈ WK for any µ ∈ (−∞,Hm) and for any σ ∈ (−∞,Hp) verifying

(5.1.6).

Theorem 5.5.3. Under the assumptions (H1)–(H2), (K1)–(K2) on Km and

Kp, and (V1)–(V2) on a and b, there exists a number δ > 0 such that for

all non–negative perturbations ϕ and ψ, with 0 < ‖ϕ‖m + ‖ψ‖p < δ, sys-

tem (5.5.2) has at least one nontrivial non–negative entire solution (u, v) ∈
WK for any µ ∈ (−∞,Hm) and for any σ ∈ (−∞,Hp) satisfying (5.1.5),

provided that either m < p and µ ≤ 0, or m = p.
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Theorem 5.5.4. Assume that n ≥ 2, that a, b, Km, Kp, Hz(·, z) are radial

for all z ∈ R2. Suppose that a and b satisfy (V1), that Km and Kp verify (K1)–

(K2) and that (H1) and (H2)′ hold. Then there exists a number δ > 0 such

that all for non–negative perturbations ϕ and ψ, with 0 < ‖ϕ‖m + ‖ψ‖p < δ,

system (5.5.2) has at least one nontrivial non–negative entire radial solution

(u, v) ∈ WK for any µ ∈ (−∞,Hm) and for any σ ∈ (−∞,Hp) satisfying

(5.1.6), provided that either m < p and µ ≤ 0, or m = p.
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Chapter 6

Conclusions and open problems

In this chapter we present some open problems arising from the papers [77,

78, 79, 50], which can be useful for future research. Since the proposed

arguments in this thesis are quite varied, we divide this chapter in sections,

each one related to a particular problem.

6.1 Problem (P1)

We recall that in Chapter 2 we deal with the following problem

(P1)

{
−LKu = λ[a(x)|u|p−2u+ f(x, u)] in Ω,

u = 0 in Rn \ Ω,

The main result is Theorem 2.4.1, where we establish for which values of the

parameter λ problem (P1) admits only the trivial solution or at least two

solutions.

In particular, under the assumptions (F)–(a) and (b), we get that

(i) problem (P1) has only the trivial solution if λ ∈ [0, λ?), where λ? is

defined in (2.2.3);

(ii) if f satisfies also (F)–(c), then problem (P1) admits at least two non-

trivial solutions for every λ ∈ (λ?, λ1), where λ? < λ1 is given in (2.3.8).

An interesting open question is the relation between the crucial values λ?
and λ?. Indeed, now we are not able to establish the existence or non–

existence of solutions in the interval [λ?, λ
?].

121
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The same question arises for the simpler problem{
LKu = λf(x, u) in Ω,

u = 0 in Rn \ Ω,

under condition (F)–(c′). In this case, we have no information if λ ∈ [`?, `
?],

so this situation can be investigated.

6.2 Problem (P2)

In Chapter 3 we study problem

(P2)

M ([u]pK) (−LKu) = λw(x)|u|q−2u− h(x)|u|r−2u in Rn,

[u]pK =

∫ ∫
R2n

|u(x)− u(y)|pK(x− y) dxdy.

In the main result, that is Theorem 3.1.1, we claim that there exists some

crucial values λ∗, λ∗∗ and λ, with 0 < λ∗ ≤ λ∗∗ ≤ λ such that

(i) problem (P2) possesses only the trivial solution if λ < λ∗;

(ii) problem (P2) admits a nontrivial non–negative entire solution if and

only if λ ≥ λ∗∗.

(iii) problem (P2) admits at least two nontrivial non–negative entire solu-

tions for all λ > λ

Also in this case, we can investigate if under suitable assumptions it is pos-

sible that λ∗ = λ∗∗.

Another open question related to this problem is extending the results to

the degenerate case. In fact, in [78] we cover only the non–degenerate case,

in order to overcome some technical difficulties due to the Kirchhoff structure

of the problem.

6.3 Problem (P3)

Chapter 4 presents some results on the asymptotic stability of solutions

for problem

(P3)


utt + (−∆)spu+ µ|u|p−2u+ %(t)M([u]ps,Ω)|ut|p−2ut

+Q(t, x, u, ut) + f(t, x, u) = 0 in R+
0 ×Ω,

u(t, x) = 0 on R+
0 ×(Rn\Ω).
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In the paper [79], we do not need in general the non–degeneracy of the

problem, but we have to assume it in some applications, when % and the

auxiliary function k of Theorem 4.3.1 are related. It can be interesting to

see if there are other relations between k and % which allow us to cover also

the degenerate case.

Furthermore, in Section 4.5 we study the linear case of (P3) and in the

second part of the section we consider the Kirchhoff function as a constant.

Hence, in this setting, we can investigate if the results can be extended under

a more general condition on the function M .

6.4 Problems (P4) and (P5)

The starting point in Chapter 5 is the fractional Schrödinger–Hardy sys-

tem in Rn

(P4)


(−∆)smu+ a(x)|u|m−2u− µ |u|

m−2u

|x|ms
= Hu(x, u, v),

(−∆)spv + b(x)|v|p−2v − σ |v|
p−2v

|x|ps
= Hv(x, u, v),

where µ and σ are real parameters, n > ps, with s ∈ (0, 1) and 1 < m ≤ p <

m∗ = mn/(n−ms).
In (P4), we tried to add a Kirchhoff function multiplying the fractional ℘–

Laplacian operator. However, the complexity of the system and the Kirchhoff

structure of the problem did not allow us to get the desired contradiction

in the proof of the key Lemma 5.3.1. For these reasons, an interesting open

problem is the study of the related Kirchhoff version of the original fractional

Schrödinger–Hardy system (P4), that is

(P4)′


M(‖u‖mEm,a)

[
(−∆)smu+ a(x)|u|m−2u

]
− µ |u|

m−2u

|x|ms
= Hu(x, u, v),

M(‖v‖pEp,b)
[
(−∆)spv + b(x)|v|p−2v

]
− σ |v|

p−2v

|x|ps
= Hv(x, u, v),

The same open problem (P5)′ could be considered also for (P5).
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