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Introduction

Neutron Stars (NSs) are the compact remnants left at the end of the evolutionary history
of massive stars. Characterized by strong-gravity, supranuclear densities, fast rotation and
super strong magnetic field, NSs are among the most exotic and fascinating objects in the
Universe. They embody a physical environment where our knowledge of nature and its fun-
damental laws can be tested under extreme conditions that are not replicable on Earth. Nev-
ertheless, their astronomical manifestation is extremely diverse and still today it is difficult
to draw a unifying picture of the phenomenology of NSs. It is widely accepted that magnetic
fields play a critical role in establishing and governing the observational behaviours of such
stars. This holds particularly true for magnetars: slowly rotating young NSs endowed with
surface magnetic fields of the order of 1014−15G. Their extraordinary observational proper-
ties, characterized by a persistent X-ray emission with high luminosity and by sporadic and
violent events releasing up to ∼ 1045 erg in less then few seconds, are explained in terms
of a huge magnetic energy reservoir hidden in the interior of the star. It is precisely the re-
arrangement and the dissipation of the internal magnetic field that is though to sustain the
observed phenomenology. Unfortunately, it is not well known how magnetar magnetic fields
originate, and even less known are the requirements for their stability. We basically do not
know how the magnetic field organizes inside the star since astronomical observations brings
us information that directly concerns only the geometry of the external magnetic field or, at
most, of the field in the outer crust.

An accurate and precise description of the magnetic field in magnetars and, in general, in
NSs, represents a necessary tool to develop realistic physical models able to shed light on the
physic and the phenomenology of these astrophysical objects. During the last years a vast
effort has been devoted to different aspects of this subjects, such as the origin of the magnetic
field and its morphology, both inside and outside the NS. Recent numerical simulations have
shown that a strong amplification of the magnetic field during core collapse (Mösta et al.
2015) or merging events (Kiuchi et al. 2015, Giacomazzo et al. 2015) is possible. This may
have important consequences on the study of Gamma-Ray Bursts (GRBs): a newly born, fast
rotating and ultramagnetized NS can play as central engine driving the energetic emission of
both Long (Metzger et al. 2011) and Short GRBs (Bucciantini et al. 2012). Concerning the
equilibrium and morphology, the modelization of the outer magnetosphere (Tchekhovskoy
et al. 2013) has been mainly motivated by the necessity to understand pulsed emission of
canonical pulsars. On the other hand the interest in the interior structure of the NSs has been
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ii Introduction

mostly driven by questions of nuclear and theoretical physics, expecially their Equation of
State (EoS) (Lattimer 2012, Chamel et al. 2015) their cooling properties (Viganò et al. 2013),
and the stability of the magnetic field itself (Mitchell et al. 2015). The effects of magnetar
magnetic fields on the structure of the NS are important also from the point of view of
Gravitational Wave (GW) astronomy (Lasky 2015): strong magnetic fields can deform the
star, and such deformation, in conjunction with fast rotation, could lead to the emission
of GWs (Cutler 2002, Dall’Osso et al. 2009, Lasky 2015). Due to the complexity of the
problem, models have been realized either in the Newtonian regime (Lander and Jones 2009,
Glampedakis et al. 2012a, Fujisawa and Eriguchi 2015) on in General Relativity (GR) either
with a perturbative approach (Ciolfi et al. 2009, Gualtieri et al. 2011, Ciolfi and Rezzolla
2013) or assuming a simple morphology for the magnetic field itself (Bocquet et al. 1995,
Kiuchi and Yoshida 2008, Frieben and Rezzolla 2012), with currents always confined inside
the star. Only recently the possibility of currents extending outside in the magnetosphere has
been investigated (Glampedakis et al. 2014, Fujisawa and Kisaka 2014, Akgün et al. 2016).

In general these studies have been limited to specific configurations representative of
typical regimes, and on investigating a few quantities relevant for GWs emission such as the
quadrupolar deformation. However, a detailed study of the parameter space is still partially
lacking. In this Ph.D. thesis we present a comprehensive numerical study of magnetic con-
figurations in NSs, derived in the GR regime, taking into account different magnetic field
geometries that arise from different choices of the current distributions located both in core
and in peripheral region inside the star, but also outside in the near magnetosphere. Our ap-
proach is based on the simultaneous solution of Einstein equations for the metric (under the
simplifying assumption of conformal flatness), of the general-relativistic Euler equation for
the hydro-magnetic equilibrium, and of the Grad-Shafranov equation or Maxwell equations
for the magnetic field structure.

This thesis is organized as follows. In the first chapter we will broadly review the physics
of NSs and recent attempts at their modeling with a particular emphasis to the magnetic field.
We will also provide a quick review on the recent developments in modeling the equilibrium
configurations of magnetized NSs. In Chap. 2 we will introduce the formalism and discuss
the equations we solve through the XNS code which, during the last years has been updated
to handle different magnetic field morphologies and which is discussed in the Appx. A (see
also the website http://www.arcetri.astro.it/science/ahead/XNS/ or Bucciantini
et al. 2014). In Chap. 3 and 4 we begin by presenting respectively purely toroidal and purely
poloidal configurations assuming both static and rotating NSs. In Chap. 5 we will discuss
equilibria endowed with a mixed magnetic field, while Chap. 6 is devoted to twisted magne-
tosphere models. In all cases we present a qualitative discussion of the equilibrium models,
of the current distributions and the associated magnetic field morphology. With a wide sam-
pling of the parameter space, we characterize how some physical quantities of interest, such
as the stellar deformation, change with mass, rotation, and magnetic field geometry. In par-
ticular, we will provide simple parametrizations of the deformation effects in terms of the

http://www.arcetri.astro.it/science/ahead/XNS/
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magnetic field strength, the spin frequency, the current distribution and the associated ener-
getic. Finally, in Chap. 7 we will present an application to the physics of GRBs. In particular
we will explore the possible consequences of quark deconfinement in the phenomenology of
long GRBs in terms of timescales and energetics, modeling the quasi-stationary spin-down
evolution for both Hadron and Quark stars.

This thesis is partly based on results published by the Author: Chaps. from 3 to 5 are
adapted from Pili et al. (2014), Bucciantini et al. (2015b) and Pili et al. (2017) (in prepara-
tion), Chap. 6 is closely based on Pili et al. (2015) and finally Chap. 7 refers to Pili et al.
(2016).
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1 Neutron stars

In this chapter we introduce the physics of NSs from a general viewpoint emphasizing,
in particular, the importance of the magnetic field. After a brief historical introduction, we
will discuss the different types of astronomical sources associated with NSs, detailing in
particular how a different morphology of the magnetic field affects their phenomenology.
We will focus on the possible origin of strong magnetic fields inside NSs considering also
the possible observational implications for GRBs and GW emission. In the last section we
will summarize the current status of magnetized NS modelization.

1.1 A brief history of discoveries

The early history of NSs dates back to 1931 when Lev Landau first speculated about the
possible existence of a star resembling a gigantic nucleus (see Yakovlev et al. 2013 ). His
work was published in February 1932, the same month of the announcement of the discovery
of neutrons (Chadwick 1932). Two years later, Baade and Zwicky proposed the idea that the
final outcome of a supernova (SN) explosion is a star whose hydro-static equilibrium is
guaranteed by the degenerate pressure of neutrons. Later, Gamow (1937, 1938) and Landau
(1938) discussed the possibility that the stellar radiation is powered by the accretion of matter
on a neutron star core, while the first general relativistic approach to NS was developed by
Tolman (1939) and Oppenheimer and Volkoff (1939). They separately derived the general
relativistic equation of selfgravitating hydrostatic equilibrium, named “TOV equation” after
them. The very small radii of these objects meant that they could not be observed with the
instruments available at that time.

The interest for NSs was only renewed during 1950s when many efforts were made in
order to obtain a description of dense stellar matter (Harrison et al. 1958) considering also
nuclear interaction (Cameron 1959) through the new effective nucleon-nucleon potential de-
veloped by Skyrme (1959) and superfluidity (Migdal 1959). The first attempts to estimate
the thermal emission of cooling NSs was made by Stabler (1960) and Chiu and Salpeter
(1964) and at that point the advent of X-ray astronomy seemed to give the first real opportu-
nity to detect NSs (Tsuruta and Cameron 1966). However, even if at the beginning of 1960s
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2 Chapter 1. Neutron stars

many extrasolar X-ray sources had already been discovered (Giacconi et al. 1962, 1964),
their association with NSs (Shklovskii 1967) did not convince the astrophysical community.
The very discovery of NSs arrived in a completely different way. In 1967 Pacini showed
that rotating NSs, if endowed with strong magnetic field, would loose their rotational en-
ergy through electromagnetic dipole emission (Pacini 1967) and that such energy could be
pumped into a Supernova Remnant (SNR). In August of the same year Susan Jocelyn Bell
discovered a weak and variable radio-source, known today as pulsar PSR B1919+21, charac-
terized by the emission of a highly periodic pulse with an astonishingly stable period: it was
constant to better than 1 part over 107. After few months of observations it was proposed that
the radiation may be associated with oscillations of white dwarfs stars (Hewish et al. 1968).
However the first hypothesis on oscillating stars was soon ruled out by the lack of higher
harmonics: this would imply that only one mode was excited, unlikely for an astrophysical
source. Independently from Pacini, in that same year Gold (1968) proposed the so called
“lighthouse model” suggesting that the pulsars are actually rotating NSs. The final evidence
in its favor was given by the discovery of the Crab pulsar and the measure of its spin pe-
riod: 33 ms, too short to be due to a white draft (Comella et al. 1969). Moreover since the
Crab PSR is located within a SNR, this provided a striking confirmation of the Baade and
Zwicky’s idea.

Within a year from the discovery, Counselman and Shapiro (1968) realized that pulsars,
because of the high stability of their periods, would be valuable tools to test GR. Then, in
1974, came the first discovery of a pulsar in a binary-NS system, the famous Hulse & Taylor
pulsar (PSR B1913+16), which has provided the first indirect evidence of the existence of
GWs: the orbital decay inferred from timing measures agrees with the value obtained in GR
assuming gravitational radiation (Hulse and Taylor 1975).

At this point, although the interpretation of pulsars as strongly magnetized NS had been
commonly accepted, there was no independent estimate confirming the presence of a strong
magnetic field. This evidence came in 1976 when Trümper and collaborators observed strong
cyclotron line emission in the spectrum of Hercules X-1, a binary system composed of a NS
accreting matter from a normal star. The inferred magnetic field was 5.3× 1012 G (Truemper
et al. 1978). The most magnetized NSs, named magnetars, were casually discovered few
years later, in 1979, as Soft Gamma Repeaters (SGRs). Initially labelled as a sub-class of
Gamma Ray Bursts (GRBs), only in 1987 they were recognized as different objects. In-
deed, unlike GRBs, SGRs are recurrent sources. The idea that SGRs represent a new kind
of super-magnetized NSs was finally suggested by Duncan and Thompson (1992), Thomp-
son and Duncan (1993). However, the first confirmation of the magnetar hypothesis arrived
with the measurement of the dipole magnetic field of SGR 1900+14 by Kouveliotou et al.
(1999). Since the ’80s to nowadays the continuous development of space technology has
enlarged our knowledge of NSs phenomenology. The Einstein X-ray observatory has al-
lowed the discovery of a new class of NSs, the Anomalous X-ray Pulsars (AXPs) (Gregory
and Fahlman 1980), which are now classified as a magnetar sub-class. ROSAT, ASCA and
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BeppoSAX1 have provided the first reliable detections of thermal radiation from isolated NSs
(see Becker and Pavlov 2002 for a review). In the 21st century the new generation of satel-
lites such as Chandra, XMM-Newton, Swift, INTEGRAL, Fermi and AGILE2 have provided
us unprecedented data on the high-energy emission of NSs. This together with ground-based
observations (radio and optical) has significantly contributed to our understanding of NSs
and their physical properties.

Among the many recent discoveries, it is worth to mention the discovery of 2M� NSs
(Demorest et al. 2010, Antoniadis et al. 2013) that has put an important constraint on the EoS
describing NS matter that, still today, remains one of the biggest unknown of NS physics.
Indeed, while experimental data obtained on Earth can be used to infer the composition
and the structure of the outer layers of the NS, where density is well below the critical
nuclear density ρ0 ' 3 × 1014 g cm−3, the same can not be done in the inner core. The
outer crust is composed by degenerate electrons immersed in a Coulomb lattice of fully
ionized atoms. Proceeding inward inside the star, β-captures make nuclei in the lattice more
and more neutron rich until, at density ∼ 1011 g cm−3, neutron drip sets in. This marks the
beginning of the inner crust where the number-density of free neutron grows with depth. At
densities in the range 0.5ρ0 ≤ ρ ≤ 2ρ0, in the outer core, NS matter consists of a strongly
degenerate plasma of neutrons, protons, electrons and possibly muons in beta equilibrium.
The composition of the inner core, where density ranges from 2ρ0 up to (10 − 15)ρ0, is
almost completely unknown. Current theoretical models make different predictions with the
appearance of hyperons, Bose condensate of pions or kaons, or possibly also deconfined
quark matter.

1.2 The neutron stars bestiary

As discussed in the previous section, NSs manifest themselves as different classes of as-
tronomical sources that can be broadly distinguished based on their observational properties.
Their emission covers almost the entire electromagnetic spectrum and, in the majority of
the cases, it shows pulses or modulation. Differences in the pulse profiles, in the spectral
features of their emission and in the possible bursting activities are at the base of the ob-
servational classification of the NS families. In the following we will briefly introduce the
main families of the currently identified “beasts” in the so called “Neutron Star Zoo”. More
exhaustive reviews can be found in Mereghetti (2011), Kaspi (2010), Harding (2013), Tauris
et al. (2015).

From the pulsed/modulated emission of a NS we can directly measure both the NS ro-
tational period P and its time derivative Ṗ. According to the simple magnetic dipole model
(Pacini 1967, Gold 1968) the spindown of NSs is mainly due to magnetic braking and hence

1 ROSAT - RÖntgenSATellit; ASCA - Advanced Satellite for Cosmology and Astrophysics; Beppo-SAX -
Satellite per Astronomia a raggi-X named in honour of Giuseppe “Beppo” Occhialini.

2XMM - X-ray Multi-Mirror; INTEGRAL - INTErnational Gamma-Ray Astrophysical Laboratory; AG-
ILE - Astro-Rivelatore Gamma a Immagini LEggero.
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Figure 1.1: P − Ṗ diagram for the known population of isolated NSs. Blue lines are curves of constant char-
acteristic age, grey lines of constant dipole spin-down luminosity, dashed lines of constant dipole
magnetic field. Adapted from Harding (2013).

the values of P and Ṗ can be combined, assuming a typical NS radius, to provide an indirect
estimate of the dipole magnetic field (Bdipole ∝

√
PṖ), of the characteristic age (τ = P/2Ṗ)

and of the dipole spin-down luminosity (Ėd ∝ B2P−4). In Fig. 1.1 NSs are shown in terms of
the measured P and Ṗ.

• Rotation-Powered Pulsars
The bulk of the observed NSs population, with period ranging from ∼ 1 ms up to ∼ 10
s, is represented by the Rotationally Powered Pulsars (RPPs). The emission of this
kind of NSs is powered by the rotation of the NS itself. It is evident from Fig. 1.1 that
RPPs can be divided in two subclasses: the canonical pulsars and the millisecond pul-
sars (MSPs). Canonical pulsars with ∼ 0.03s . P . 10 s and Bdipole ∼ 1010−1014 G are
thought to originate from core collapse SNe. MSPs, with P . 10 ms, Bdipole . 1010 G
and characteristic age τ & 100 Myr, are the possible final outcome of a NS evolv-
ing in a close binary system. The majority of RPPs have been discovered thanks to
their radio pulsation, but some of them are visible also as pulsating optical, X-ray or
γ-ray sources. The spin frequency evolution of RPPs is typically very stable and pre-
dictable and unique exceptions are represented by glitches. Other irregularities are
pulse nulling phenomena, i.e. abrupt cessations of the pulsed radio emission for up to
∼ 104 s. The latter are particularly dramatic in a subclass of RPPs, the Rotating Ra-
dio Transient (RRATs), where no regular pulsar emission is observed between single
pulses (Gajjar et al. 2012).
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• Magnetars
Magnetars are located in the up-right corner of the P − Ṗ diagram (Fig. 1.1). They
are young (with a typical age of 104 yr), isolated NSs characterized by slow rotation
(P ∼ 2 − 12 s) and a surface magnetic field strength of the order of 1014 − 1015 G. As
anticipated in Sec. 1.1 the magnetar class is divided in two sub-classes: Soft Gamma
Repeaters (SGRs) and Anomalous X-ray pulsars (AXPs). Both exhibit a persistent
X-ray emission with luminosities LX ∼ 1034 − 1036 erg s−1 (that in the case of transient
magnetar lowers to LX ∼ 1032 in the quiescent phase). They are both characterized by
flaring activity with X-ray bursts whose duration is ∼ 0.1 − 1 s and peak luminosities
∼ 1040 − 1041 erg s−1. SGRs are sources of violent events, known as giant flares,
during which an amount of energy ∼ 1044 − 1046 erg is released in few seconds [for
recent reviews, see Rea and Esposito (2011), Mereghetti et al. (2015), Turolla and
Esposito (2013), Turolla et al. (2015)]. Since they are slow rotators, their emission can
not be powered by spin-down energy losses but it is thought to come form the huge
magnetic energy reservoir stored in the interior of the NS (Duncan and Thompson
1992, Thompson and Duncan 2001).

• X-ray Isolated Neutron Stars
X-ray Isolated Neutron Stars (XINSs) are nearby NSs, with distances < 500 pc, char-
acterized by slow rotation (P ∼ 3−11 s) and strong magnetic fields (1013 G). Observed
in the X-ray band, their emission is mainly thermal with a luminosity that can be even
larger than the spin down luminosity (for a review on XINSs observational proper-
ties see Turolla 2009). Therefore, the XINSs emission is believed to be powered by
the residual thermal energy supplied by the decay of an initially high magnetic field
(Heyl and Kulkarni 1998). Because of the poor statistic (only 7 objects are classified
as XINS), at the moment it is not clear if they can be connected with other families of
the NSs zoo: XINS may be extreme RRATs (McLaughlin et al. 2006), high-B RPPs
viewed off-beam or old magnetars (Pons et al. 2009).

• Compact Central Objects
Compact Central Objects (CCOs) represent the most puzzling class of NS zoology and
their nature is still largely debated. They owe their name to their central position in
SNRs. Similarly to XINSs, they are seen as soft X-ray thermal sources without any
apparent emission at other wavelengths.
The unique feature of CCOs is that the characteristic age τ ∼ 100 Myr is much larger
than the age of the SNR (104 yr). This may suggest that CCOs are born as slow rotators
with a low initial magnetic field (Gotthelf and Halpern 2008). Indeed, when measure-
ments of Ṗ are possible (just in three cases: RX J0822.0-4300 in Puppis A, CXOU
J185238.6+004020 in Kes79 and 1E 1207.4-5209 in PKS 1209-51/52, see Gotthelf
et al. 2013), the inferred magnetic field is of the order of Bdipole ∼ 1010 G. Despite this,
their pulse morphology indicates a strongly non-uniform surface temperature distribu-
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tion which, in turn, seems to suggest the existence of a strong decaying magnetic field
hidden in the interior. As proposed by Shabaltas and Lai (2012) the magnetic field
could be submerged by mass fallback accretion during core collapse and re-emerge
later in the NS lifetime. This scenario seems to be confirmed by recent observation
regarding the Calvera X-ray source. Initially thought as a XINS, recent measurements
of Ṗ ,inferring a spin-down magnetic field Bdipole ∼ 1011 G, suggest to include Calvera
among CCOs (Halpern et al. 2013). Finally a very puzzling CCO, 1E 1613485055,
characterized by a very long periodicity of ∼ 6.67 hr, has shown an energetic flaring
activity typical of magnetars phenomenology (Rea et al. 2016, D’Aı̀ et al. 2016).

• Accretion-powered Neutron Stars
NSs are found also in binary systems. When the system experiences accretion episodes
due to mass transfer either through winds or an accretion disk the NS manifests itself as
an accretion-powered NS. In this case the spin evolution is governed by the accretion
rather than by the magnetic field. Measurements of the magnetic field are possible
when cyclotron lines are present in the spectrum.

1.2.1 The neutron star emission and the magnetic field morphology

A key role in the diversification of the NS families is surely played by the magnetic field
morphology. It is indeed commonly accepted that the magnetic field plays a crucial role
in shaping their emission. For example, magnetars and high magnetic field RPPs share a
comparable dipolar magnetic field strength but they behave in a completely different way:
the former are almost radio-quiet (with the exception of transient periods of radio-activity
McLaughlin et al. 2006) while the latter are detected as radio-PSRs. This may suggest that
while RPPs are characterized by a mainly dipolar magnetic field, magnetar emission may
originate from a more complex morphology.

The standard approaches made in the modelization of NS magnetospheric emission are
based on the simplifying assumption of a vacuum dipole geometry (Deutsch 1955, Ruderman
and Sutherland 1975, Arons and Scharlemann 1979, Cheng et al. 1986, Dyks and Rudak
2003). With this simple geometry it is however possible to explain the main electrodynamic
properties of RPPs, reconstruct the properties of the source (such as the magnetic inclination
and the rotation axis of the pulsar) and fairly reproduce the general shape of the pulse profile
(Harding and Muslimov 2011, Ferdman et al. 2013, Guillemot et al. 2013, Perera et al. 2014,
Seyffert et al. 2014). Nevertheless, a deeper understanding of the complex processes involved
in RPPs emission requires more complex magnetic field morphologies as shown by Bai and
Spitkovsky (2010). The anomalous braking index of some PSRs, and in particular of PSR
J1640-4631 which is the unique PSR having a braking index > 3, can be explained in terms
of a strong quadrupolar fields in the magnetosphere (Archibald et al. 2016). Asseo and
Khechinashvili (2002) and Harding and Muslimov (2011) have shown that multipole fields
can increase the pair cascade efficiency. This can justify why PSR J2144-3933, located
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beyond the death line according to standard models, emits radio-waves. Multipolar magnetic
fields may be also important for a more accurate modelization of the pulse profile and phase
diagrams (Bonazzola et al. 2015, Pétri 2015).

The morphology of the near magnetosphere is linked to the complex processes occurring
inside the NS. These are particularly relevant for the other classes of NSs (XINSs, CCOs and
magnetars) where the bulk of the emission appears to be powered by the dissipation of the
internal magnetic field. In the case of CCOs, the large anisotropy of the surface temperature
distribution, inferred by the pulse profile, requires the existence of a strong crustal toroidal
field which is able to channel heat from the star interior to hot-spots on the surface (Shabal-
tas and Lai 2012). In the case of magnetars, readjustments of the internal magnetic field are
usually invoked to explain their characteristic flaring and bursting activity (e.g. Thompson
and Duncan 2001): while global rearrangements of the magnetic field, possibly depending
on the coupled crust-core evolution, are expected to power giant-flares (Lander et al. 2015,
Lander 2016), Hall drift and Ohmic diffusion occurring in the crust are thought to originate
bursts (Viganò et al. 2013). Indeed, the evolution of the crustal magnetic stresses initially
induces elastic deformations of the crust but, when the maximum strain is reached, plastic
shear flows are produced (Perna and Pons 2011). This leads to quickly developing instabili-
ties that dissipate the magnetic energy fueling the ignition of bursts (Beloborodov and Levin
2014). As initially suggested by Thompson et al. (2002) and Beloborodov and Thompson
(2007) the dissipation of the energy inside the star can also induce a twist of the emergent
magnetic field into a non-potential state which, in turn, is sustained by electric currents that,
threading the magnetosphere, might interact with the thermal photons emitted by the sur-
face of the NSs. This explains why magnetars persistent X-ray spectra are well fitted by
a blackbody-like component at kT ∼ 0.5 keV, joined with a power-law tail that becomes
dominant above 10 keV (Kuiper et al. 2006). The latter indeed can be explained in terms of
resonant cyclotron scattering of the thermal photons by magnetospheric particles (An et al.
2013, Beloborodov 2013). Such twisted magnetosphere scenario has been strengthened by
the detection of a proton cyclotron feature in the X-ray spectrum of the ‘low-field’ magnetar
SGR 0418+5729 which is compatible with a strong and localized field of the order of 1015 G
(Tiengo et al. 2013). Phase-variable absorption features have been observed in other mag-
netars (Rodrı́guez Castillo et al. 2016, Makishima et al. 2016) but also in XINSs (Borghese
et al. 2015).

At present, motivated also by the observation of transient behaviours, understanding the
connections between the different NS families remains a fundamental question in the field.
This is however a difficult task that requires a better understanding of how NSs form, how
the initial magnetic field is configured, and how the NS evolves at later stages. Nowadays,
magneto-thermal evolution models (Yakovlev and Pethick 2004, Arras et al. 2004, Pons and
Geppert 2007, Pons et al. 2009, Viganò et al. 2013) represent the first important attempt to
obtain a unified picture.
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1.3 The birth of a NS and its magnetic field

The properties of neutron stars cannot be understood without considering their violent
origin. Although there is a general consensus concerning the main aspects of the formation
of a NS in core collapse events (see Janka 2012 for a recent review), we still lack a precise
understanding of many key details of the physical processes involved, especially concerning
the origin of the magnetic field.

NSs are believed to form after core collapse SN explosions of massive stars with typically
8M� . M . 25M�. In such kind of stars, the standard theory of stellar evolution predicts
that as nuclear burning proceeds an iron core is formed. Since iron has the highest binding
energy per nucleon, no energy can be released by further thermonuclear fusions and, as it
cools, the entire core is supported by the degeneracy pressure of electrons. As the mass
of the iron core grows the Fermi energy of electrons increases and electron capture on iron
nuclei becomes energetically favorable. The iron core becomes unstable to gravitational
collapse. During the collapse the temperature in the core increases and when it exceeds the
value T ∼ 109K photo-dissociation of iron nuclei occurs. This subtracts thermal energy
to the core accelerating the collapse. When the density of the core exceeds 1011 g cm−3

the diffusion time-scale of neutrinos becomes larger then the dynamical time-scale of the
collapse so that neutrinos are trapped inside the iron core and form a Fermi sea together with
electrons. At ∼ 100 ms since the collapse the density inside the core reaches the critical
value of the nuclear density ρ0 ∼ 1014 g cm−3 and nucleons are so close together that the
repulsive component of nuclear strong force becomes dominant causing a sudden stiffening
of the EoS. As a consequence the pressure now becomes high enough to stop the collapse
and causes the inner core to bounce. The rebounding inner core triggers the formation of
an outward shock wave that, sustained also by the neutrino flux coming from the inner core,
expands into the external layers of the collapsing star. The shock wave blows off the entire
star giving rise to a SN explosion.

The compact remnant left behind a successful SN explosion is a hot and neutron rich
object, the so called proto-NS (PNS), whose complex evolution is characterized by large en-
tropy gradients (Pons et al. 1999), instabilities (Urpin 2010), dynamo (Duncan and Thomp-
son 1992, Bonanno et al. 2003), and intense neutrino-driven winds (Pons et al. 1999). It is
only after a typical Kelvin-Helmholz tymescale, ∼ 100 s after core bounce, that the PNS
becomes transparent to neutrinos, it rapidly cools, and reaches a state that is dynamically
very close its final equilibrium (Burrows and Lattimer 1986), even if its thermal and mag-
netic evolution can last much longer (Viganò et al. 2013), and late phase transitions are still
possible (Staff et al. 2006, Drago and Pagliara 2015). It is during this brief lapse of time that
the magnetic properties of the resulting NS, such as the magnetic field strength, geometry
and distribution, will be set. Once the crust begins to form, it will tend to “freeze” magnetic
field lines in their position, and only dissipative effects might then affect its evolution (Vi-
ganò et al. 2013). Given that the dynamics of the core collapse is so fast that to first order
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Figure 1.2: Magnetic flux φp for strongly magnetized main sequence stars (squares) white dwarfs (circles),
high magnetic field pulsars (triangle), and magnetars (diamonds) (from Ferrario et al. 2015).

the core evolves as if it was detached from the outer layers of the surrounding star, it is rea-
sonable to expect that the magnetic properties might be related to the conditions in the core
of the progenitor, like its rotational profile (Duncan and Thompson 1992, Spruit 2009) or the
presence of a seed field (Woltjer 1960, Ruderman 1972). However, given the complexity of
the problem, it is difficult to establish a clear relation between them.

The origin of magnetars, among all NSs species, is a particularly puzzling problem.
Because of their huge magnetic field, one naturally wonder how it originates and many evo-
lutionary scenarios have been proposed so far (see Spruit 2009, Ferrario et al. 2015 and
Popov 2015 for reviews): the magnetar magnetic field can be either completely inherited by
a strongly magnetized progenitor star, as the fossil-field scenario suggests (Woltjer 1960, Ru-
derman 1972), or generated by dynamo mechanism during the proto-NS phase as proposed
in the original magnetar model (Duncan and Thompson 1992). In the first hypothesis the
final magnetic field results from the magnetic flux freezing during the core collapse. This is
suggested in particular by the broad similarity of the magnetic flux of the most magnetized
Main Sequence star with the magnetic flux of NSs (see Fig. 1.2 and Ferrario et al. 2015
and references therein for a discussion). This model has been investigated in Ferrario and
Wickramasinghe (2006, 2008) through a population synthesis, showing that magnetars are
probably descendants of massive and strongly magnetized OB stars with magnetic field of
the order of 104 G. Nevertheless Spruit (2008) had pointed out that the paucity of suitable
magnetized progenitors is inconsistent with the observational inferred magnetar birth-rate
(Woods 2008, Keane and Kramer 2008). This suggests that in a large fraction of magne-
tars the core compression does not produce strong enough magnetic fields. However if the
nascent NS rotates with a millisecond period, the inherited magnetic field can be further
increased by the differential rotation acquired during core collapse that winds up the mag-
netic field lines (Burrows et al. 2007) and leads to possible dynamo effects (Bonanno et al.
2003, Rheinhardt and Geppert 2005, Braithwaite 2006a, Moiseenko et al. 2006). In prin-
ciple, after the core bounce, there is enough free energy available to amplify the magnetic
field up to 1017 G. In this case magnetars are the successors of rapidly rotating stellar cores.
Nevertheless at present it is still not clear how the evolution of the star rotation proceeds
before and after the collapse (Ott et al. 2006). As an example the association of AXP CXO
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J164710.2-455216 with the young cluster Westerlund 1 (with an age of ∼ 4Myr Clark et al.
2005) suggests that some magnetars can even originate from very high mass & 40M� main
sequence stars (Muno et al. 2006), that undergo consistent mass losses through powerful
stellar winds or mass transfer onto a binary companion preventing the collapse into a Black
Hole (BH). In the case of an isolated progenitor, the stellar core can be substantially spun-
down by the magneto-frictional coupling with the outer layers during the Red Supergiant
phase (Heger et al. 2005, Yoon 2015). In contrast, as suggested by Popov and Prokhorov
(2006) and Popov (2015), a possible enhancement of rotation can occur if the progenitor
star evolves in a close binary system undergoing mass accretion transfer and tidal synchro-
nization. Recently, Clark et al. (2014) have provided a number of arguments in favor of the
possible origin of CXO J164710.2-455216 in a massive binary system, identifying the puta-
tive pre-SN companion. Interestingly, recent 3D numerical simulations of core collapse SNe
have shown that fast rotation can help the onset of neutrino driven explosions (see Nakamura
et al. 2014, Takiwaki et al. 2016, Gilkis 2016 or Müller 2016 for a recent review). High reso-
lution 3D MHD models by Mösta et al. (2015) show that the magneto-rotational instabilities
can grow magnetar-strength magnetic fields with a strong toroidal component. Let us finally
recall that ultra magnetized NSs can be formed also during NS merger events, as shown in
the numerical simulations by Giacomazzo et al. (2015), where magnetic field of the order of
1016 G are reached. It remains open the question if such NSs can survive long enough to give
observable signature, or if they are bound to collapse to BH on timescales of milliseconds
(Giacomazzo and Perna 2013) .

Numerical studies, devoted to initial field amplification, typically follow the evolution of
the magnetic field for, at most, few tens of milliseconds after the formation of the proto-NS.
Nevertheless, at this time the magnetic field is still far from its final stable configuration,
but it continues to evolve until, after ∼ 100 s (a Kelvin-Helmholtz time-scale), a crust be-
gins to form, freezing the magnetic field on the NS surface (Pons et al. 1999). From now
on the magnetic field evolves on the much longer diffusive time-scales (Braithwaite and
Spruit 2006, Viganò et al. 2013, Gourgouliatos et al. 2013, 2016, Elfritz et al. 2016, Passa-
monti et al. 2016). In the case of a proto-magnetar, given that the Alfvénic crossing time
(∼ 0.01 s for a magnetic field of the order of 1016 G ) is much smaller than the typical
Kelvin-Helmholtz time-scale, the magnetic field can completely decay against instabilities,
unless a stable equilibrium is reached before the crust forms (Spruit 2008). The stability
problem has been investigated by Braithwaite and Nordlund (2006), Braithwaite and Spruit
(2006), Braithwaite (2009) and Mitchell et al. (2015) by means of numerical simulations in
the Newtonian MHD regime. They found that, in a stably stratified star, an initial random
magnetic field with non vanishing helicity always relaxes to a characteristic geometry that
persists for many Alfvén times (see Fig. 1.3). In the emerging configuration, usually dubbed
as Twisted-Torus (TT), the poloidaly field is roughly axisymmetrically twined with a toroidal
field, of comparable strength, into a ring-like region located just underneath the surface of
the star. The exterior field they find is mainly a dipole with only smaller contributions from
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Figure 1.3: The shape of the TT magnetic field obtained by Braithwaite and Nordlund (2006), Braithwaite and
Spruit (2006) viewed from different angles. The dotted surface represents the stellar surface, with
stronger magnetic field in yellow, weaker in black.

higher-order multipoles (note however that they impose a potential field outside the NS sur-
face, confining any current to the interior). A common conclusion of these works is that
stability requires that the toroidal field is energetically dominant with respect to the poloidal
one (for a discussion on recent developments see Sec. 1.4).

1.3.1 Gamma Ray bursts

The formation of a rapidly rotating magnetar can have important observational impli-
cations: magnetars could be fundamental to explain GRBs, the most luminous explosions
known in the Universe.

While there is a compelling evidence that these events are associated with the core col-
lapse of massive stars (Woosley 1993), in the case of long GRBs, merging event or accretion
induced collapse (Paczynski 1986), in the case of short GRBs, it is not yet well established
whether the burst is produced by a disk accreting onto a BH, within the so-called Collapsar
model (Woosley 1993), or by the outflow emerging from a fast rotating and highly mag-
netized proto-neutron star in the so called proto-magnetar models (Usov 1992, Bucciantini
et al. 2009, Metzger et al. 2011, Bucciantini et al. 2012). In the latter case, the combination of
a rapid millisecond-like rotation with a magnetic field of typical magnetar strength can easily
drive a relativistic outflow with energetics of the order of ∼ 1049−50 erg s−1. This is enough
to power both Short and Long GRBs, for a typical duration of 10 − 100 s corresponding to
the characteristic Kelvin-Helmholtz timescale of a newly formed NS.

It is possible that both these systems, BHs and magnetars, contribute in producing GRBs,
depending on the initial condition of the progenitor (in particular its mass, spin frequency and
magnetic field). With the discovery by Swift of GRB extended emission (for Long GBRs),
and plateaus (for short GRBs) after the initial prompt phase (Nousek 2006, Zhang 2006),
the magnetar models has grown in popularity. These late-time activities, lasting up to 104 s
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and present in a sizable fraction of GRBs, suggest a continuous energy injection by a long
lasting central engine. In particular as shown by several authors (Troja et al. 2007, Dall’Osso
et al. 2011, Rowlinson et al. 2013, 2014), the shape of the light-curves of many GRBs are
more naturally interpreted within the proto-magnetar model as due to the pulsar-like energy
injection powered by the residual rotational energy left after the prompt emission.

Within the proto-magnetar model an important ingredient, which regulates the temporal
evolution of the jet and its gamma-ray luminosity, is the neutrino signal released by the
star due to deleptonization (the gradual neutronization of matter) and cooling. In particular,
neutrinos ablate baryonic matter from the surface and provide a tiny amount of baryonic
load which is crucial for an efficient internal dissipation of the kinetic and magnetic energy
of the jet into gamma-ray emission. When the neutrino luminosity drops below ∼ 1050 erg/s
(after a few tens of seconds), the magnetization (or the Lorentz factor) grows too large and
the prompt emission ends. Notice that in the case of short GRBs, originating from NS-NS
binary merger, the presence of a highly baryon polluted environment left behind soon after
the merging event could actually hinder the formation and the propagation of a relativistic jet
(Murguia-Berthier et al. 2014, Just et al. 2016). An alternative model, the so-called “time-
reversal” scenario has been proposed by (Ciolfi and Siegel 2015) and (Rezzolla and Kumar
2015). In this scenario, the jet is launched only few minutes after the merging event, once
the proto-magnetar left behind the merger collapses into a BH3.

Another known problem of the canonical proto-magnetar model is that it is not easy to
reactivate the inner engine and therefore to describe multi-episodes of the prompt emission
of long GRBs (e.g. Zhang et al. 2012) or X-ray flares occurring during the afterglow (Zhang
et al. 2006). Possible solutions to overcome this limitation have been recently suggested,
such as mass accretion (Penacchioni et al. 2013, Bernardini et al. 2014) but also delayed,
spin-down induced, phase transition from a ‘standard’ NS to a quark star (Staff et al. 2006,
Yasutake et al. 2010). In Chap. 7 we will explore the possible implications of quark decon-
finement on the long GRB light-curves.

3 In the “time-reversal” model for short GRBs the product of the binary-NS merger is a supramassive
differentially rotating proto-magnetar that, losing its rotational energy through magnetic braking, collapses into
a BH. The slow highly baryon loaded neutrino-driven wind emerging from the newly-born proto-magnetar
is quenched when the star settles down to uniform rotation. At this point (. 0.1 − 10 s after the merger) the
baryon density of the wind begins to drops and the wind, driven by the NS spin-down, becomes relativistic. The
progressive loss of centrifugal support leads the NS to collapse into a BH, possibly surrounded by an accretion
debris disk, after 1−103 s since the merger, depending on the stability of the star. Since the fast magnetized wind
has pushed outward the slow baryon rich wind, the BH-disk system is able to launch a relativistic jet producing
the prompt emission. Within this picture, although the spin-down energy is injected into the environemnt by
the NS before the jet formation, it is seen after the prompt emission because it takes a finite time to diffuse
out of the optical thick ejecta, resulting in a delayed X-ray afterglow. Nevertheless, as pointed out by Margalit
et al. (2015), it is not clear whether the collapse of the rigidly rotating NS creates a debris disk around the BH
necessary to explain the retarded formation of the jet (see also Metzger 2016 for a discussion).
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1.3.2 Gravitational waves from magnetized Neutron Stars

The recent detections of GWs by the aLIGO (advanced Laser Interferometer Gravitational-
Wave Observatory) observatories heralds a new era in GW astronomy (Abbott et al. 2016b,a).
Among the different possibilities, and in particular compact binary coalescences (BH-BH,
BH-NS and NS-NS), also newly born millisecond magnetars from core collapse SNe have
been often considered as a promising source of detectable GWs with the second generation of
ground-based detectors, not only in the case of formation by binary NS mergers (Dall’Osso
et al. 2015), but also in the more common case of core collapse SNe (Stella et al. 2005,
Dall’Osso et al. 2009, Mastrano et al. 2011).

The super-strong magnetic field hosted in magnetars is able to induce substantial defor-
mations in the structure of the NS itself, with typical ellipticities given by |e| ≈ 10−8(B/1014G)2

(i.e. Cutler 2002, Haskell et al. 2008, Mastrano et al. 2013 and references therein; see also
Sec. 2.7 for the definition). Moreover if the initial magnetic magnetic field is energetically
dominated by the toroidal component, as expected also from numerical simulations (Braith-
waite and Nordlund 2006, Mösta et al. 2015), the resulting deformation is prolate. As ini-
tially pointed out by Cutler (2002) this geometry is the most favorable for the GW emission:
in this case, even if the magnetic symmetry axis is initially aligned with the spin axis (and
hence no GW is produced), the internal dissipative processes minimize the energy of the
system driving the magnetic axis toward orthogonal rotation (Mestel and Takhar 1972, Jones
1976). Therefore this process, usually dubbed as ‘spin-flip’, maximizes the efficiency of the
GW production and, in the context of the millisecond magnetar model, the release of energy
through GWs enters in direct competition with the magnetic braking. In particular, Dall’Osso
et al. (2009) have estimated that, if the newly-born magnetar has a toroidal magnetic field
∼ 1016 G but a poloidal magnetic field . 1014 G, the magnetic braking is less efficient than
the GWs emission that will carry away most of the rotational energy in the first day after
formations. The resulting GW signal would be observable with advanced Ligo/Virgo up to
Virgo cluster distances (∼ 20 Mpc). Inside this horizon the magnetar birth rate is estimated
to be 1 per yr (Stella et al. 2005).

Recent analyses of the light curves of short GRBs by Lasky and Glampedakis (2016) and
super-luminous SNe by Moriya and Tauris (2016) have shown that, if interpreted in terms
of energy injection by a rapidly rotating engine, the shape of such light curves indicates that
most of the rotational energy losses are compatible with the hypothesis that magnetic braking
prevails over GWs emission. This either implies small stellar ellipticities (|e| . 10−3 − 10−4),
constraining the toroidal field to be . 1016 G, or inefficient spin-flip mechanism which is
due, in turn, to the high temperature of the proto-magnetar or to a very large stellar defor-
mation (Lasky and Glampedakis 2016). Lasky and Glampedakis (2016) conclude that the
post-merger GW emission associated with magnetar phenomenology will probably be only
marginally detectable even with third-generation Einstein Telescope (Punturo et al. 2010)
within a horizon of 20 Mpc.

It is worth to remember that NSs are possible sources of GWs also at later time after their
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formation due to a number of mechanisms that include magnetic deformations, glitches,
flares and superfluid turbulence (for recent reviews see Andersson et al. 2011 and Lasky
2015). Until now searches for GWs signals from targeted pulsar have produced no evidence
of GW emission. This has been used to set upper limits on NSs ellipticities (Aasi et al. 2014,
2015). The strongest constraints have been obtained for millisecond pulsars J2124-3358 and
J2129-5721 with |e| ≤ 6.7× 10−8 and |e| ≤ 6.8× 10−8 respectively while for radio pulsars the
typical constraint is |e| . 10−4 − 10−6 (Aasi et al. 2014). In the particular case of the Crab
pulsar it was found that the GW luminosity is . 1% of the observed spin-down luminosity,
thereby limiting the ellepticity to |e| ≤ 10−4 and the internal magnetic field to ≤ 1016G
(Abbott et al. 2008, Aasi et al. 2014). In general the magnetic fields in the NS population are
too weak to induce a sufficient deformation that would be currently observable. Moreover
even in the case of magnetars, where stronger internal magnetic fields can induce suitable
deformations4, the characteristic slow rotation (P ∼ 1 − 10ms) implies a low frequency GW
emission that is not detectable with groud-based GW observatories. Interestingly, if NSs
are endowed with exotic states of matter such as colour-superconducty, we expect larger
deformations up to three order of magnitude with respect to ‘normal’ NS matter (Owen 2005,
Haskell et al. 2007, Glampedakis et al. 2012b). Therefore, future detections of GW from
magnetized NS could provide important clues on the fundamental state of nuclear matter.

1.4 Modeling magnetized neutron stars

Theoretical models for equilibria of Newtonian magnetized stars have a long tradition,
dating back to Chandrasekhar and Fermi (1953) (also Ferraro 1954, Roberts 1955, Prender-
gast 1956, Woltjer 1960, Monaghan 1965, 1966, Ostriker and Hartwick 1968, Miketinac
1975, Roxburgh 1966), up to more recent developments (Tomimura and Eriguchi 2005,
Yoshida et al. 2006, Akgün and Wasserman 2008, Fujisawa et al. 2012, Mastrano et al.
2013). Models for stars endowed with strong magnetic fields in GR have started to been
published only in the last years, because the additional complexity of the equations can
only be dealt with the use of numerical tools. Many of these models are limited to simple
configurations of either a purely toroidal (Kiuchi and Yoshida 2008, Kiuchi et al. 2009, Ya-
sutake et al. 2010, Frieben and Rezzolla 2012, Fujisawa 2015) or a purely poloidal magnetic
field (Bocquet et al. 1995, Bonazzola and Gourgoulhon 1996, Konno 2001, Yazadjiev 2012,
Cardall et al. 2001, Franzon et al. 2016a,b). In the latter case, equilibrium models has been
computed also in perturbative f (R)-gravity (e.g. Cheoun et al. 2013, Astashenok et al. 2015,
Bakirova and Folomeev 2016). The strongest driver in developing these models has been
the investigation of the role played by the magnetic field, in conjunction with rotation, on
the deformation of the NS. However, as originally suggested by Prendergast (1956), such

4Some recent claims of a free precession in magnetar 4U 0142+61 suggest a prolate deformation of the NS
with |e| ∼ 10−4, possibly caused by a toroidal magnetic field of the order of 1016 G (Makishima et al. 2014,
2016) to be compared with the inferred dipole magnetic field of 1014 G.
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simple configurations are expected to be unstable (Wright 1973, Tayler 1973, Markey and
Tayler 1974, 1973, Flowers and Ruderman 1977). The instability of both purely poloidal
and purely toroidal fields has been explored also numerically by Braithwaite (2006b, 2007),
Lander and Jones (2011a,b), Asai et al. (2016) in the Newtonian regime or in GR by Kiuchi
et al. (2008, 2011), Ciolfi et al. (2011), Lasky et al. (2011) and Ciolfi and Rezzolla (2012).
All these works confirm that both configurations are always subject to Parker and/or Tayler
instability (Parker 1955, 1966, Tayler 1973) and the rotation of the star can only marginally
stabilize the system. While poloidal fields are particularly vulnerable in the region of closed
field lines around the neutral line, the toroidal magnetic field develops instability at the center
of the star (see also Ciolfi 2014 or Braithwaite and Spruit 2015 for a discussion).

As anticipated in Sec. 1.3, Braithwaite and collaborators have shown that TT configura-
tions are likely to be stable. This appears natural considering that the toroidal magnetic field
acts to stabilize the poloidal field in the closed field lines region while the poloidal field sta-
bilizes the toroidal one at the centre of the star. In particular, they found a stability condition
in terms of the toroidal-to-poloidal magnetic field energy ratio, that has been recently refined
in a semi-analytical study in non-barotropic star by Akgün et al. (2013)

2a(Emag/Egrav) < Hpol/Htor . 0.8 (1.1)

where Emag/Egrav is the magnetic to gravitational energy ratio, Hpol/Htor is the toroidal-to-
poloidal magnetic field energy ratio, and a is a constant depending on the stellar stratification.

Inspired by these results, many authors have presented TT equilibrium models in order
to evaluate the deformations induced by a mixed field configuration. Due to the complexity
of the problem, this has been done either assuming Newtonian gravity by Yoshida et al.
(2006), Lander and Jones (2009, 2012), Glampedakis et al. (2012a), Fujisawa et al. (2012),
Armaza et al. (2014, 2015) or within GR following a perturbative approach (Ciolfi et al.
2009, 2010). Only recently the fully GR non-linear regime has been explored under the
assumption of conformally flat spacetime (by the Author, see Chaps. 2-5) or solving the
full set of Einstein-Maxwell equations (Uryū et al. 2014). Interestingly in all these works,
where the equilibrium solution is obtained solving the 2D axisymmetric Euler equation and
Grad-Shafranov (GS) equation (Grad and Rubin 1958, Shafranov 1956, 1966) on top of a
barotropic star, a common outcome is that the toroidal field remains always energetically
sub-dominant with respect to the poloidal one with Hpol/Htor < 0.1. The main reason for this
is that to increase the toroidal magnetic field, one needs to rise also the toroidal currents (the
two being related due to equilibrium requirement in the GS equation), which act to change
the structure of the poloidal field, reducing the volume occupied by the toroidal field. To
circumvent this problem, Ciolfi and Rezzolla (2013), Fujisawa and Eriguchi (2013, 2015)
have designed very ad-hoc prescriptions for the current distribution and boundary conditions
that we will discuss in Chapt. 5. Another possibility to obtain higher Htor/Hpol is to relax
the barotropicity requirement, related to the integrability of Euler equation, and consider
a multifluid NS as shown in Glampedakis et al. (2012a). It is important to mention, that
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stratification, and hence non-barotropicity, is expected to be important in the stability of
the system (Reisenegger 2009): even if the toroidal component is energetically dominant,
a mixed magnetic field configuration may be always unstable in a barotropic star. This
conjecture is strongly supported by a recent numerical investigation by Mitchell et al. (2015)
where the authors compare the evolution of an initial random magnetic field in a barotropic
and in a non barotropic star. In the former case, where buoyancy force due to stratification are
absent, the magnetic field always decay in few Alfvén times through an axially symmetric
instability in which the toroidal flux flows radially out of the star where, because they assume
a poorly conductive atmosphere, the twist is dissipated.

From an observational point of view, we have no direct access to the morphology of the
internal magnetic field. As discussed in Sec. 1.2.1, all the hypotheses are based on indirect
evidences (i.e. hot-spots, anomalous braking indexes, bursts etc.) that can be interpreted
in terms of a complex internal magnetic field morphology. On the other hand, the bulk of
the NS emission is controlled by the exterior magnetic field. For this reason, in the astro-
physical community, a vast effort has been devoted to the modelization of the physics of the
exterior magnetic field. As pointed out in the seminal work by Goldreich and Julian (1969)
rotating NSs are surrounded by a magnetosphere filled by a charge-separated plasma, where
the dynamics is completely controlled by the electromagnetic field, while the pressure and
the inertia of the fluid are ineffective. Michel (1973a), Scharlemann and Wagoner (1973)
found that in the case of axisymmetric force-free equilibria the magnetosphere is described
by the so-called pulsar equation which was numerically solved for the first time for a dipole
by Contopoulos et al. (1999). In the subsequent years, MHD models of NS magnetosphere
have been generalized to include non-axisymmetric geometries (Spitkovsky 2006, Philippov
et al. 2014, Melrose and Yuen 2014), GR effects (Gralla and Jacobson 2014, Gralla et al.
2016, Bonazzola et al. 2015, Pétri 2016a), quantum effects (Pétri 2016b). Recently particle-
in-cell simulations have started to appear as well (Chen and Beloborodov 2014, Philippov
and Spitkovsky 2014, Philippov et al. 2015a,b, Belyaev 2015), motivated by the fact that
the MHD description does not allow one to model particle acceleration that occurs in the so
called ‘gaps’.

As discussed in Sec. 1.2.1 there is a growing observational evidence that, in the vicinity
of the NS and especially in the case of magnetars, the magnetic field can host a large twist as-
sociated with a strong component of the toroidal field. This twisted magnetosphere scenario
has been successfully validated by calculation of synthetic spectra (Lyutikov and Gavriil
2006, Fernández and Thompson 2007, Nobili et al. 2008, Taverna et al. 2014). Typically,
the standard reference model is the one discussed in Thompson et al. (2002) where the mag-
netosphere is described in terms of a self-similar, globally twisted, dipolar magnetic field.
This model has been refined to account for higher order multipoles by Pavan et al. (2009), in
response to observational indications of a local, rather than global, twist (Woods et al. 2007,
Perna and Gotthelf 2008). More general equilibrium models have been obtained by Viganò
et al. (2011) using a magneto-frictional method, originally developed for the study of the
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Solar corona (Yang et al. 1986, Roumeliotis et al. 1994), or by Parfrey et al. (2013) who,
with time-dependent numerical simulations, investigated the response of the magnetosphere
to different shearing profiles of the magnetic footpoints. More recently, Akgün et al. (2016)
presented magnetospheric models based on the solution of the Grad-Shafranov equation.

Due to the complexity of the problem, studies have been limited either on the internal
field structure (assuming a prescription for the magnetosphere) or on the external magne-
tosphere (assuming an internal current distribution). It is obvious that the two cannot be
worked out independently, and global models are a necessary step forward. A first attempt in
this direction has been recently made in Glampedakis et al. (2014). Considering non-rotating
stars in Newtonian regime, they show that a “Grad-Shafranov approach” to the problem can
be used to obtain global equilibrium configurations, with twists and currents extending from
the interior to the magnetosphere. A similar modelization as been presented also by the
author (see Chap. 6) and by Fujisawa and Kisaka (2014) who include a surface current dis-
tribution at the core-crust interface. A different approach was used in Ruiz et al. (2014)
where, for the first time, detailed GR models of inside-out pulsar magnetosphere were de-
veloped. In particular they search for steady state configurations by evolving in time the NS
and by matching the interior field, evolved according to ideal MHD equations, to the exterior
solution modeled in the force-free regime.





2 The Mathematical Framework

In order to obtain GR models of magnetized NSs we have to solve, simultaneously, both
Einstein’s equation and the magnetohydrodynamic (MHD) equations. The major difficulties
in this task come from the complexity of Einstein’s equation itself. Indeed they are a set
of non-linear partial differential equations for the metric that in general, apart from some
specific cases, must be solved numerically. However, even in that case, due to the complexity
of the equations involved it is convenient to introduce some simplifications.

To a first approximation for the typical inferred magnetic field strengths, a magnetized
rotating NS is described as a stationary and axisymmetric fully degenerate compact object.
Since the symmetry of the physical system must reflect on the geometry of the spacetime
we can assume that also the spacetime is stationary and axisymmetric1. Unfortunately, in
the case of magnetized NSs, imposing such symmetries on the spacetime does not lead to a
sufficient simplification of Einstein’s equation and one has to resort either to a perturbative
approach or to limit himself to simple configurations of the magnetic field. Since we want
to model magnetic fields of general morphology, also in the fully non-linear regime, we
have adopted a particular strategy in order to simplify Einstein’s equation: we assume the
spacetime to be conformally-flat.

In this chapter we will introduce the general formalism we have adopted to construct
our equilibrium models. We will present and justify our assumptions on the symmetries
and properties of the spacetime, that we have chosen. We will show how, under those as-
sumptions, given a distribution of momentum-energy, one can solve Einstein’s equation, and
determine the associated metric. Then we will illustrate how to derive an equilibrium con-
figuration, for the matter and the electromagnetic field, on a given metric.

In the following we assume a signature (−,+,+,+) for the spacetime metric. We adopt
1 Real NSs are neither axisymmetric nor stationary systems. NSs constantly spin down because of magnetic

braking, so that they cannot be considered as strictly stationary objects. Their magnetic field, which is only
roughly axisymmetric, induces non axisymmetric deformations in the structure of the NS itself (Lasky and
Melatos 2013). Moreover, in some extreme cases of rapidly rotating and/or strongly magnetized NSs, different
kinds of instabilities may drive the star into an approximately triaxial configuration (see Uryū et al. 2016
and references therein for a discussion). However since the magnetic field strength inside a NS is at most
∼ 1016 G, magnetic perturbation to the equilibrium configurations can be, in principle, accurately described as
(asymmetric) perturbations to a spherical/axi-symmetric star (depending on the rotational rate). In this thesis
we assume that also the magnetic field is axisymmetric in order to simplify the problem.
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the standard convention with Greek indices running from 0 to 3, while latin indices run from
1 to 3. Quantities are expressed in geometrized units where c = G = M� = 1, unless other-
wise stated, and all

√
4π factors entering Maxwell’s equations are absorbed in the definition

of the electromagnetic field.

2.1 The 3+1 formalism

Our approach to the numerical modelization of magnetized NSs is based on the so called
3 + 1 formalism of GR (e.g. Alcubierre 2008, Baumgarte and Shapiro 2010, Gourgoulhon
2012). The major advantage provided by this approach is that it allows one to recover a
more intuitive picture of the physics of gravity. Indeed, while in the fully covariant formu-
lation of GR time and space are indistinguishable since they are treated on an equal footing,
in the 3+1 formulation time regains a distinct and preferential role and the geometry of
the spacetime itself is described as a continuous ‘time-lapse’ evolution of the geometry of
three-dimensional spaces. Within this formalism the evolution of the gravitational field is
formulated in the form of a initial value problem. Indeed, the first works that mark the origin
of the 3+1 formalism were mainly devoted to the Cauchy problem in GR and the study of
its initial conditions (Darmois 1927, Lichnerowicz 1939, Fourès-Bruhat (Choquet-Bruhat)
1952). Further improvements arose from the development of an Hamiltonian formulation of
GR by Arnowitt et al. (1962) and Dirac (1958) inspired by the first attempts to unify quantum
theory and gravity. Finally during the ’70s the 3+1 formalism became a primary tool for the
development of the nascent Numerical Relativity (York 1973, 1979, Nakamura et al. 1987).
Nowadays most of the numerical codes for the evolution of Einstein’s equation, or for the
evolution of fluid/MHD quantities within a fixed or evolving spacetime, are built on top of
the 3+1 formalism.

Considering a globally-hyperbolic spacetime endowed with a metric tensor gµν, the basic
idea at the origin of the 3+1 formulation is to provide a foliation of the space time itself. This
mathematical structure is obtained defining a smooth and regular scalar field t all over the
manifold. The latter is chosen so that its level surfaces slice the four-dimensional manifold
into a family of spacelike three dimensional surfaces {Σt}, with time-like unit normal nµ. By
construction nµ is colinear with the gradient of t:

nµ = −α(dt)µ, (2.1)

where α is known as the lapse function and ensures the correct normalization of nµ. Notice
that nµ defines the four-velocity of the so called Eulerian observers. If we promote the role
of t as the global time coordinate, the lapse function measures the proper time of the Eulerian
observer.

The induced three-metric that measures proper distances within each Σt is given by:

γµν = gµν + nµnν. (2.2)
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Actually, γµν defines also the projection operator onto the spatial hyper-surfaces Σt: in order
to decompose any generic tensor field into a normal and spatial component, it is sufficient
to contract its indexes with −nµ or with γ

µ
ν. As an example the extrinsic curvature Kµν,

which measures the curvature of Σt as an embedded manifold, can be defined as the spatial
projection of the covariant derivative ∇ of nµ:

Kµν := −γρµ ∇ρnν. (2.3)

Since nµKµν = nνKµν = 0, the extrinsic curvature is a purely spatial tensor. A completely
equivalent definition of the extrinsic curvature can be given in terms of the induced metric
as:

Kµν = Lnγµν, (2.4)

where Ln stands for the Lie derivative2 along the vector field nµ.

If xµ := {t, xi} are the spacetime coordinates adapted to the foliation introduced above,
the generic line element is rewritten as

ds2 = −α2dt2 + γi j(dxi + βidt)(dx j + β jdt), (2.6)

where βi, a purely spatial vector field, is known as shift vector and describes how the spatial
coordinates xi change from a slice to another. It can be also viewed as the relative velocity
between the Eulerian observer and the lines of constant spatial coordinates. With this choice
for the coordinates, the unit normal field has components nµ = (1/α,−βi/α) and nµ = (−α, 0).

As already discussed, the aim of the 3 + 1-formalism is to cast Einstein’s equation in the
form of a Cauchy problem. Starting from the full covariant expression of the Einstein field
equation

Gµν = 8πT µν, (2.7)

where Gµν is the Einstein tensor and T µν is the stress-energy tensor, and considering the dif-
ferent projections obtained contracting the previous equation with the unit normal vector and
γ
µ
ν, it is possible to show that Einstein’s field equation splits into an evolutionary equation

for the extrinsic curvature

∂tKi j = βk DkKi j + Kik D jβ
k + K jk Diβ

k − Di D jα+

α[Ri j + KKi j − 2KikKk
j ] + 4πα[γi j(S − E) − 2S i j], (2.8)

2 The Lie derivative of a generic tensor field T of type (k, l) with respect to the vector field v is defined as:

(LvT)α1...αk
β1...βl

= v µ∂µTα1...αk
β1...βl

−

k∑
i=1

Tα1...
i↓
σ...αk

β1...βl
∂σvαi +

l∑
i=1

Tα1...αk

β1...
i↓
σ...βl

∂βi v
σ, (2.5)

where i indicates the position of the σ index to be saturated with ∂σvαi or ∂βi v
σ.
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plus a set of constraints that must be satisfied at all times

R + K2 − Ki jKi j = 16πE, (2.9)

D j(Ki j − Kγi j) = 8πS i, (2.10)

that are know, respectively, as the Hamiltonian constraint and the momentum constraint.
Here Di := γ

µ
i ∇µ is the covariant derivative with respect to the 3-metric γi j (so that Dkγi j =

0), Ri j is the Ricci tensor, again with respect to γi j, R := Ri
i the corresponding Ricci scalar,

K := Ki
i is the trace of the extrinsic curvature. As far as the fluid sources are concerned

E := nµnνT µν, S i := −n µγ
i
νT

µν, and S i j := γi
µγ

j
νT

µν (of trace S := S i
i) are, respectively, the

energy density, momentum density, and the stress-energy tensor as measured by the Eulerian
observers. Finally, to close the system we need also an evolutionary equation for the three
metric which descends directly from the definition 2.4 of the extrinsic curvature

∂tγi j = −2αKi j + Di β j + D j βi. (2.11)

The evolutionary equations Eq. 2.8 and Eq. 2.11 plus the constraints 2.9 and 2.10 are known
as the ADM equations. Notice that while the tensor fields Ki j and γi j, are the true dynamical
fields, both the lapse function α and the shift vector βi are gauge functions and can be speci-
fied freely by choosing the foliation build on top of the manifold. Therefore it is natural that
Einstein’s equation does not provide any evolutionary equation for these scalar fields.

In order to find a solution to this system of equations one has to specify the initial data
and then evolve the dynamical fields Ki j and γi j in time. However, the initial condition
can not be specified arbitrarily but they must satisfy both the hamiltonian and momentum
constraint. These constraints indeed select the geometry γi j of the three dimensional slice
Σt which is compatible with the matter content of the spacetime T i j. Notice, however, that
for a given energy-matter content of the spacetime, such equations form a system of four
differential equations in the twelve dynamical quantities γi j and Ki j. This implies that eight
of the initial data are freely specifiable in order to solve the constraints. Nevertheless there
is no natural and unique procedure to separate the dynamical fields from the constrained
components. A common approach to this task lies in the conformal decomposition of the
constraint equations (Lichnerowicz 1944, York 1971, 1972). The starting idea is to define an
auxiliary metric γ̃i j on the slice Σt which is related to the induced metric through a conformal
transformation

γi j = ψ4γ̃i j (2.12)

where ψ is a strictly positive scalar field. It is then possible to define a Levi-Civita connec-
tion D̃ associated with the conformal metric (D̃kγ̃i j = 0), and the curvature tensor can be
expressed in terms of conformal quantities. In particular the Ricci scalar appearing in the
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Hamiltonian constraint is related to its conformal counterpart R̃ by the relation:

R =
1
4

R̃ −
8
ψ5 ∆̃ψ (2.13)

where ∆̃ is the conformal Laplacian ∆̃ := γ̃i jD̃iD̃ j. The next step is to separate the extrinsic
curvature in its trace K plus a traceless part:

Ki j = Ai j −
1
3
γi jK. (2.14)

and finally decompose the traceless part in a transverse (divercence free) and longitudinal
component:

Ai j = Ai j
TT + (LW)i j, (2.15)

where L is the conformal Killing operator defined as

(LX)i j := DiX j + D jXi −
2
3
γi j DkXk. (2.16)

Finally another conformal transformation is applied to the trace free part of the extrinsic
curvature (Pfeiffer and York 2003, Cordero-Carrión et al. 2009):

Ai j = ψζ−8
(

1
σ̃

(L̃W)i j + Ãi j
TT

)
, (2.17)

where L̃ is expressed in term of the covariant derivative D̃i, ζ is a free parameter and σ̃ is
a free weight function. Different choices for ζ and the weight function σ̃ lead to different
reformulations of the momentum constraint but, in all cases, constraints are cast into a set
of four elliptic equations for the four unknown quantities ψ and W i, that can be solved with
the appropriate boundary conditions. The other quantities such as the conformal metric γ̃,
the trace K, the tensor Ãi j

TT , the weight function σ̃ together with the source term E and S i

are specified as free data. Notice that, within this approach it is not possible to provide any
input on the possible evolution of the spatial metric. This can be done within the Conformal
Thin Sandwich (CTS) approach (York 1999). Without going into the details the main idea
is to provide not only the conformal metric but also its time derivative on the initial slice
Σt. The resulting decomposition of the extrinsic curvature is analogous to the one shown in
Eq. 2.17, and can be then obtained by choosing ζ = −2 and identifying W i = βi, σ̃ = 2ψ−6α.
Finally the transverse traceless part of the estrinsic curvature is expressed in terms of the time
derivative of the conformal metric. Within this approach the momentum and Hamiltonian
constraints translate into four differential equation for ψ and βi. An extra equation for α can
be obtained from the trace of Eq. 2.8 specifying also ∂tK in the initial conditions. Notice
that the CTS approach seems to be particularly suitable for the construction of stationary (or
quasistationary) configurations as initial data.

As soon as the solution to the constraints is provided, one can evolve in time the initial
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condition thus obtained. From the mathematical point of view, if the constraints are satisfied
at a specific time, due to the Bianchi identities, they will be satisfied at any time. From
a numerical point of view, once the equations are discretized to be solved, this is no longer
true and initial small deviations and round-off errors can be amplified catastrophically during
the evolution. Different computational methods have been developed and they are divided
in two main classes: free evolution schemes, where constraints are explicitly solved only at
the beginning and their violations is minimized through an appropriate reformulation of the
evolution equations (Shibata and Nakamura 1995, Baumgarte and Shapiro 1999), eventually
with the addition of propagating modes and damping terms (Bona et al. 2003, Bernuzzi and
Hilditch 2010); costrained schemes, where one solves some or all the constraints at every
time-step (Bonazzola et al. 2004), imposing, in some cases, also extra conditions on the
metric in order to simplify the equations (Wilson and Mathews 2003, Isenberg 2008).

Since we are interested in modeling stationary equilibrium configurations for magnetized
NSs we will not perform a time evolution, but we will exploit the fully constrained scheme
developed by Wilson and Mathews (2003), Isenberg (2008) and extended by Cordero-Carrión
et al. (2009) to obtain our models as we will discuss in Sec. 2.3.

2.1.1 The energy-momentum content of the spacetime

A standard approach in the modelization of rotating magnetized NSs, in the context of
GRMHD, is to assume that the star can be described as an ideal magnetized plasma. Such
approximation can be considered suitable only within ∼ 100 s from the birth of the NS,
when it is too hot to form a crystalline crust and allow a superfluid/superconducting phase
(Chamel and Haensel 2008, Potekhin et al. 2015). Even if both the presence of the crust and
superfluidity are crucial ingredients that should be taken into account in a realistic modeliza-
tion of NSs, since they both affects the long term evolutionary (Arras et al. 2004, Yakovlev
et al. 2008, Glampedakis et al. 2011, Viganò et al. 2013, 2015) and observational proper-
ties (Glampedakis et al. 2012b) as well as the structure of the magnetic field (Gourgouliatos
et al. 2013, Palapanidis et al. 2015, Glampedakis and Lasky 2015, 2016, Gourgouliatos et al.
2016), but they are less relevant to the problem of the dynamical magneto-equilibrium in
newly-born NSs, which we have investigated in this thesis.

The energy-momentum tensor can be separated in two contributions:

T µν = T µν

fluid + T µν
EM. (2.18)

The perfect fluid component can be written as

T µν

fluid = ρhuµuν + pgµν, (2.19)

where ρ is the mass density, h := (e + p)/ρ is the specific enthalpy with the energy density
e and the pressure p = p(ρ, e) (provided by some form of the EoS), as measured by the
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comoving observer with four-velocity given by uµ; the electromagnetic part instead reads

T µν
EM = Fµ

λFνλ −
1
4

(FλκFλκ)gµν, (2.20)

where the antisymmetric tensor Fµν, the Faraday tensor, encodes all the information about
the electromagnetic field. In particular Fµν can be decomposed, with respect to the comoving
observer, into an electric component, parallel to uµ, and a magnetic component, orthogonal
to uµ. In particular, if eµ and bµ are the electric field and the magnetic field experienced by
the comoving observer then

Fµν = u[µeν] + εµναβuαbβ, (2.21)

where εµναβ is the Levi-Civita tensor (related to the Levi-Civita alternating symbol εµναβ
through the relations εµναβ =

√
−gεµναβ) and the square brackets denote antisymmetrization

over the enclosed indices (i.e. u[µeν] = uµeν − eµuν).
The equations of motion regulating the behaviors of the fluid and the magnetic field are

given by the baryon number conservation:

∇µ(ρuµ) = 0, (2.22)

the local covariant conservation of the energy momentum

∇µT µν = 0, (2.23)

and the homogeneus Maxwell’s equations

∇µ
∗Fµν = 0, (2.24)

where the ∗ operator is the standard Hodge dual such that ∗Fµν = εµναβFαβ. The system is
then closed by the relativistic Ohm’s Law for a perfectly conducting plasma, which corre-
sponds to the condition of a vanishing comoving electric field (for more general forms of
Ohm’s law see Bucciantini and Del Zanna 2013)

eµ := uνFµν = 0. (2.25)

The Ohm’s Law substantially replaces the inhomogeneous Maxwell’s equation

∇µFµν = − jν, (2.26)

where jµ is the four-current density3. Just as in the Newtonian MHD, the four current can be
considered a derived quantity.

3 In the general formulation of Maxwell’s equations in material medium , such as in superfluid-
superconducting NS plasma (Glampedakis et al. 2011, Gusakov and Dommes 2016), the electromagnetic field
is described using an additional antisymmetric tensor, the so called excitation tensor Hµν which is related to the
electric displacement dµ and the magnetic field hµ (the magnetic field denoted with bµ introduced in the main
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As far as concerns Eq. 2.23 notice that this is true for the total T µν: since the fluid and
the electromagnetic field can in principle exchange energy and momentum the divergence of
T µν

fluid or T µν
EM separately does not vanishes. In particular since ∇µT

µν
EM = −Fµν jµ, Eq. 2.23 can

be written as
∇µT

µν

fluid = Fµν jµ := Lν (2.31)

where Lµ is the Lorentz force. Now, considering that uµLµ = 0 because of the ideal MHD
condition (Eq. 2.25) and using the continuity equation, Eq. 2.22, the orthogonal projection
of the previous equation with respect to uµ provides the GR expression of the Euler equation

ρhaµ + uµuν∂νp + ∂µp = Lµ (2.32)

where we have introduced the four-acceleration field aµ = uν∇νuµ.
In the context of the 3+1 formalism, we have to decompose all quantities in their spatial

and temporal component. In the case of the electric and magnetic field, in analogy with
the definition of eµ and bµ, the electric and magnetic field seen by the Eulerian observer are
simply given by

Eµ = Fµνnν and Bµ = ∗Fµνnν, (2.33)

where both Eµ and Bν are purely spatial four-vector since nµEµ = nµBµ = 0. Substituting
this expression in Eqs. 2.24 and 2.26 , after few calculations one obtains the 3+1 splitting
of the Maxwell’s equations (Thorne and MacDonald 1982, Baumgarte and Shapiro 2003,
Gourgoulhon 2012):

DiBi = 0 (2.34)

∂tBi = −ε i jk D j(αEk) + αKBi +LβBi (2.35)

DiEi = ρe (2.36)

body of the text is actually the induced magnetic field) with:

Hµν = u[µdν] + εµνλσuλhσ. (2.27)

The Maxwell’s equations are now written as

∇[λFµν] = 0 and ∇[λHµν] = Iλµν, (2.28)

where Iλµν is the free charge-current density tensor. The two tensor Fµν and Hµν are not independent but they
are linked through the constitutive relation

Fµν = κ
αβ

µν Hαβ (2.29)

where κµναβ is the so called constitutive tensor that encodes the electric and magnetic properties of the medium,
such as the magnetic and electric susceptibilities, the polarization and magnetization vector. However, in a vac-
uum spacetime or in the case of ideal plasma, with zero electric and magnetic susceptibilities, the constitutive
tensor is exclusively related to the metric through

κ
µν

αβ =
1
2
√
−gεαβλσ(gλµgσν − gλνgσµ) (2.30)

where εαβλσ is the Levi-Civita symbol. Hence the constitutive tensor reduces to the standard Hodge dual so
that Hµν = ∗Fµν and we recover the formulation given in Eqs. 2.24 and 2.26.
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∂tEi = ε i jk D j(αBk) + αKEi +LβEi − αJi (2.37)

where again Di is the covariant derivative associated with the induced metric and ε i jk is the
alternating tensor in three dimensions (related to the four-dimensional Levi-Civita tensor by
εi jk = n0ε0i jk). Finally ρe = nµ jµ is the charge density and Ji = γi

µ jµ is the current vector.
Regarding the fluid quantities the components of the four-velocity uµ can be written in

terms of the Lorentz factor Γ and the three velocity vi of the fluid relative to the Eulerian
observer through

uµ =
Γ

α
(1, αvi − βi). (2.38)

From the normalization uµuµ = −1 it follows Γ = (1−vivi)−1/2 which justifies its identification
with the Lorentz factor. Notice also that the three velocity vi is related to the coordinate
velocity ui/ut by the relation vi = α−1(ui/ut + βi). With this choice for the four-velocity
decomposition, the 3+1 counterpart of the MHD condition in Eq. 2.25 takes the familiar
form

Ei = −εi jkv jBk. (2.39)

Here, we post-pone the discussion of the 3+1 decomposition of the Euler equation to Sec. 2.5
when we will exploit the spacetime symmetries assumed for our equilibrium models.

We conclude this section providing explicitly the source terms of Eistein’s equation,
Eqs. 2.8-2.10,

E := nµnνT µν= (e+p)Γ2 − p + 1
2 (EiEi + BiBi), (2.40)

S i := −n µγ
i
νT

µν= (e+p)Γ2vi + ε i jkE jBk, (2.41)

S i j := γi
µγ

j
νT

µν= (e+p)Γ2viv j−EiE j−BiB j+[p + 1
2 (EiEi + BiBi)]γi j. (2.42)

2.2 Choice for the metric

Our equilibrium models for magnetized NSs are based on the assumption that the matter
distribution and the magnetic field content of the spacetime is stationary and axisymmetric.
As a consequence, also the spacetime itself must retain the same symmetries. These imply
the existence of two Killing vectors: a timelike Killing vector ξ associated with the time in-
variance of the system, and a spacelike Killing vector χ which is instead associated with the
rotational invariance (Carter 1970, 1973). At this point, it seems natural to adopt a coordi-
nate system adapted with the spacetime symmetries. In particular, considering spherical-like
coordinates [t, r, θ, φ] the two Killing vector are promoted to the role of coordinate fields, i.e.
ξ = ∂t and χ = ∂φ. With this choice all the quantities defined on the spacetime manifold
depend only on (r, θ), while (t, φ) are ignorable variables.

In a stationary and axisymmetric spacetime the timelike surfaces S, parametrized as
r = cost, θ = cost are known as surfaces of transitivity. At every point of S its tangent space
Π is spanned by the two Killing vector, so that Π := Vect(ξ,χ). Any vector V is said to be
toroidal if V ∈ Π ⇒ Vµ = ctξ

µ + cφχµ (with cφ , 0), and poloidal (or meridional) if it lies
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in the spacelike 2-plane perpendicular to Π. Additional properties are valid for the subset of
circular spacetimes, for which the coordinates (r, θ) span the two-surfaces orthogonal to Π,
leading to the simplification gtr = gtθ = grφ = gθφ = 0. This type of metric is generated by
configurations of matter-energy for which the momentum-energy tensor T µν is also circular,
and this happens when

ξµT µ[νξκχλ] = 0, χµT µ[νξκχλ] = 0. (2.43)

Consider now the case of rotating, magnetized compact objects to be described as equi-
librium solutions of the GRMHD system. The stress-energy tensor reads

T µν = (e + p + b2)uµuν − bµbν + (p + 1
2b2)gµν, (2.44)

where we have used the MHD condition (Eq.2.25). With this form of the momentum-
energy tensor, the circularity condition holds provided the 4-velocity is toroidal, that is
u ∈ Π ⇒ uµ := ut(ξµ + Ωχµ), due to ξµuµ , 0, where Ω := uφ/ut = dφ/dt is the fluid
angular momentum as measured by an observer at rest at spatial infinity. If one looks for
magnetic configurations independent of the flow structure, in the limit of ideal MHD, circu-
larity requires that the comoving magnetic field must be either purely toroidal, bµ ∈ Π, with
bµuµ = 0 ⇒ bt = −Ωbφ, or purely poloidal, that is bµξµ = bµχµ = 0. In the latter case,
stationarity requires solid body rotation uφ/ut = const (Oron 2002), or Ω must be a constant
on magnetic surfaces (Gourgoulhon et al. 2011), as we will discuss in Sect. 2.5. For mixed
magnetic fields configurations the circularity of the spacetime does not hold.

In the case of circular spacetimes and spherical-like coordinates, the line element can be
further simplified to:

ds2 = −α2dt2 + γi jdxidx j + R2(dφ − ωdt)2, (2.45)

where R =
√
γφφ is knows as quasi-isotropic radius, ω = −βφ is the frame dragging potential,

and the poloidal two-metric with (i, j = r, θ) can always be orthogonalized introducing a
conformal factor ψ, so that γrθ = 0, γrr = ψ4, γθθ = r2ψ4. The determinant of the three-
metric is then

√
γ = Rrψ4. Models of stationary and axisymmetric equilibria of rotating NSs

are generally built on top of this metric (e.g. Gourgoulhon 2010), even in the magnetized
case (Bocquet et al. 1995, Kiuchi and Yoshida 2008, Frieben and Rezzolla 2012) for either
purely poloidal or purely toroidal fields. However, in the mixed field case, even if the above
form of the metric is no longer appropriate, sensible deviations from circularity are expected
to arise only for unrealistically large values of the magnetic field of ∼ 1019 G (Oron 2002).
Moreover, it has been verified (Shibata and Sekiguchi 2005, Dimmelmeier et al. 2006, Ott
et al. 2007, Bucciantini and Del Zanna 2011), that even for highly deformed star, up to the
mass shedding limit, the difference between R and ψ2r sin θ is at most of the order of 10−3

(see also Appx. A for a discussion), and the metric can be further simplified to

ds2 = −α2dt2 + ψ4[dr2 + r2dθ2 + r2 sin2θ (dφ − ωdt)2]. (2.46)
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with the volume element of the three-metric given by
√
γ = ψ6r2 sin θ. Under this latter

assumption, the spatial three-metric is conformally flat, and the spherical coordinates can be
identified with the canonical isotropic coordinates. This form is particularly suitable to be
solved numerically, as it is described in the following section.

2.3 Solving Einstein’s equation

The assumption of conformal flatness implies that the induced metric is related to the flat
Remannian three-metric fi j by a conformal transformation

γi j = ψ4 fi j. (2.47)

where the conformal factor satisfies ψ = (γ/ f )1/12, with f := det fi j. This assumption was
initially adopted by Isenberg (2008) and Wilson and Mathews (1989) in order to provide a
waveless approximation to general relativity, which is now known as the IWM approxima-
tion or as the Conformally Flat Condition (CFC). With this choice the covariant derivative
associated to the flat three-metric fi j is the standard nabla operator in flat spacetime D̃i = ∇i,
while the scalar curvature (see Eq. 2.13 ) simply reduces to

R = −8ψ−5∆ψ, (2.48)

in which ∆ := ∇i ∇
i is the usual Laplacian of flat space. A second assumption made in the

context of the CFC is to demand maximal slicing

K = 0. (2.49)

Notice that while this last requirement can always be satisfied by selecting a maximal slicing
for the foliation, Eq. 2.47 is exact only in the case of a spherical symmetric spacetime (Gour-
goulhon 2012). In the other cases the requirements in Eq. 2.47 represent an approximation
of the correct metric.

The conformal decomposition adopted in the CFC approximation can be obtained from
Eq. 2.17 by a CTS-like decomposition with ζ = 4, σ = 2α and Ai j

TT = 0 so that the extrinsic
curvature is

Ki j = ψ−4Ãi j with Ãi j =
1

2α
(L β)i j, (2.50)

where the conformal operator L is now associated to the flat metric. Notice that in the
CTS approach the transverse traceless component Ai j

TT can be expressed in terms of the time
derivative of the conformal metric.

The final set of CFC elliptic equations may be written in terms of the sources and of Ãi j

(containing α and first derivatives of βi) as

∆ψ = −[2πE + 1
8 fik f jlÃi jÃkl]ψ5, (2.51)
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∆(αψ) = [2π(E + 2S ) + 7
8 fik f jlÃi jÃkl]αψ5, (2.52)

∆L β
i = 16παψ4S i + 2ψ6Ãi j ∇ j(αψ−6), (2.53)

where
∆L β

i := ∇ j(L β)i j = ∆βi + 1
3 ∇

i(∇ jβ
j), (2.54)

is the so-called conformal vector Laplacian operator, associated to the flat 3-metric fi j and
applied to βi.

The CFC approximation has been often used to study gravitational collapses (Dim-
melmeier et al. 2002a,b, Cerdá-Durán et al. 2005), quasi-equilibrium configurations of bi-
nary NSs (Baumgarte et al. 1997, 1998, Bonazzola et al. 1999, Oechslin et al. 2004), or to
investigate the stability and evolution of NSs (Saijo 2004, Cerdá-Durán et al. 2008, Abdika-
malov et al. 2009)4. However in some highly relativistic situations, the CFC system may
suffer of non-uniqueness issues that prevent numerical codes to converge (Cordero-Carrión
et al. 2009). This problem has been however solved in Cordero-Carrión et al. (2009), con-
sidering a slightly different approach named XCFC (eXtended CFC), which is in turn based
on a different choice for the extrinsic curvature decomposition. In particular one requires a
conformal transverse traceless (CTT) decomposition with ζ = −2 and σ = 1, resulting in

Ki j = ψ−10Âi j, with Âi j := (LW)i j + Âi j
TT . (2.57)

Consistency between the CTS and CTT decompositions (notice that Âi j = ψ6Ãi j) requires
a non-vanishing Âi j

TT . However it has been demonstrated (Cordero-Carrión et al. 2009) that
this quantity is even smaller than the non-conformally flat part of the spatial metric within the
CFC approach, and hence it can be safely neglected on the level of the CFC approximation.
Thus we set, as an additional hypothesis

Âi j
TT = 0⇒ Âi j = (LW)i j, (2.58)

so that Âi j is defined in terms of the auxiliary vector W i alone. The latter is derived from the
momentum constraint that becomes

∇ jÂi j = ∆LW i = 8πψ10S i, (2.59)

4 In the main body of this section we have derived the conformal rescaling given in Eq. 2.50 starting from
CTS. Nevertheless, CFC is actually a fully constrained approach to GR. The same scaling, indeed, can be
obtained noticing that under the assumption of K = 0 the trace of Eq. (2.11) and its traceless part respectively
become

∂t ln γ1/2 ≡ ∂t lnψ1/6 = Diβ
i, (2.55)

2αKi j = Diβ j + D jβi −
2
3 (Dkβ

k)γi j = (Lβ)i j. (2.56)

where ∂tγ = 0 if, and only if, Diβ
i = 0, and the extrinsic curvature can be expressed in terms of derivatives of

the shift vector alone. Then, adopting a time-evolution rescaling of the extrinsic curvature Ki j = ψ−4Ãi j, the
conformal Killing operator associated with the initial metric γi j coincides with the one associated with the flat
metric.
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to be added to the other CFC equations.

The final augmented set of CFC elliptic equations, also known as XCFC equations, is
then the following (Cordero-Carrión et al. 2009)

∆LW i = 8π f i jŜ j, (2.60)

∆ψ = −2πÊ ψ−1 − 1
8 fik f jlÂklÂi j ψ−7, (2.61)

∆(αψ) = [2π(Ê + 2Ŝ )ψ−2 + 7
8 fik f jlÂklÂi j ψ−8]αψ, (2.62)

∆L β
i = 16παψ−6 f i jŜ j + 2Âi j ∇ j(αψ−6), (2.63)

where for convenience we have introduced rescaled fluid source terms of the form

Ŝ j := ψ6S j, Ê := ψ6E, Ŝ := ψ6S , (2.64)

and we remind that
Âi j = ∇iW j + ∇ jW i − 2

3 (∇kWk) f i j. (2.65)

Notice that while in CFC all the equations were strongly coupled, here the equations can
be solved hierarchically one by one, in the given order, since each right hand side just con-
tains known functions or the variable itself and of previously computed quantities. Moreover,
the mathematical structure of the Poisson-like equations for ψ and α guarantees the local
uniqueness of the solution. Indeed, it can be demonstrated that for a differential equation of
the form

∆u = suq (2.66)

where s is the source term and q provides the exponent of non-linearity, only the condition
sq ≥ 0, which is verified by both Eqs. 2.61 and 2.62, ensures that the solution u is locally
unique.

Even if the XCFC formulation, just as the CFC, represents an approximation to ‘exact’
GR, it is possible to show that the solutions obtained for both rotating and/or magnetized NSs
are compatible with that obtained in full GR. Differences, indeed, are of the order of 0.1%
(see Appx. A). Given the great simplification of the equations involved, the XCFC equations
are at the base of the XNS metric solver (Bucciantini and Del Zanna 2011), which provides
equilibrium models for axisymmetric NSs. Notice that in the case of static NSs, one has to
solve only the equation for α and ψ, being βi = 0. In the case of purely rotational flows
(βr = βθ = 0), one has to solve only the azimuthal components of Eqs. 2.60-2.63.

2.4 Electromagnetic Fields

In the hypothesis of conformal flatness or circular spacetime the stationary Maxwell’s
equations, Eqs. 2.34-2.37, can be written in a compact form, using standard 3-dimensional
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vector quantities and the related divergence and curl operators defined with respect to the
3-metric γi j, as

D · B = 0, (2.67)

D × (αE) + (B · D)β = 0, (2.68)

D · E = ρe, (2.69)

D × (αB) − (E · D)β = αJ, (2.70)

where we have used the notation (D × V)i = ε i jk D jVi for the curl operator.

Eq. 2.67 implies that the magnetic field can be written as the curl of a vector potential
A such that Bi = ε i jk∂ j(Ak). This, together with the assumption of axisymmetry, ∂φ = 0,
implies that the poloidal (r, θ) components of the magnetic field can be expressed in terms
of the gradient of a scalar function Ψ(r, θ) ≡ Aφ, called magnetic flux function. Analogously
the φ-component of the magnetic field can be written using another scalar function I, such
that Bφ = α−1I for later convenience, known as the current function. By introducing the or-
thonormal triad eî = ∂i/

√
γii, with eî× e ĵ = εî ĵk̂ek̂, the magnetic vector field can be expressed

as
B =

DΨ

R
× eφ̂ +

I

αR
eφ̂. (2.71)

where R := √γφφ = ψ2r sin θ and DΨ is the vector field associated with the gradient of Ψ,
with components given by (DΨ)î = ∂iΨ/

√
γii. The isosurfaces Ψ(r, θ) = cost, are known as

magnetic surfaces, and they contain the magnetic poloidal field-lines. Moreover any scalar
function f satisfying B · D f = 0 will be constant on them: f = f (Ψ). It is possible to show,
starting from Eq. 2.70, that the poloidal component of the 3-current is related to the curl of
the azimuthal magnetic field, αJi = εi jφ∂ j(αBφ), such that

J =
DI
αR
× eφ̂ + Jφ̂eφ̂, (2.72)

where the toroidal component is given by

α

R
Jφ̂ = −D ·

(
α

R2 DΨ

)
+ E · Dω. (2.73)

From the other sourceless Maxwell’s equation, Eq. 2.68, under the same constraints of
stationarity, axisymmetry and circularity/conformal-flatness, one finds αEφ = 0. By noticing
that with our assumptions (B · D)β = −D × (β × B), the same equation implies that the
poloidal components of the electric field are related to the gradient of a new scalar function
Φ ≡ At as:

αE + β × B = αE − ωDΨ = DΦ. (2.74)

Specializing our choice to a conformally flat metric, in Eq. 2.46, R = ψ2r sin θ and the
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components of the magnetic field in local coordinate read:

Br =
∂θΨ
√
γ
, Bθ = −

∂rΨ
√
γ
, Bφ =

I

αψ4r2 sin θ
; (2.75)

instead the components of the electric field are given by:

Er =
1
αψ4 (∂rΦ + ω∂rΨ), Eθ =

1
αr2ψ4 (∂θΦ + ω∂θΨ), Eφ = 0. (2.76)

Finally the Maxwell-Gauss equation, Eq. 2.69, can be written as an elliptical PDE for the
electromagnetic potentials Φ and Ψ, as a function of the charge and current density.

∆Φ = ψ4
[
αρe + ωψ4r2 sin2 θJφ

]
−
ωψ4r2 sin2 θ

α2 ∂ω∂Φ[
1 +

ω2ψ4r2 sin2 θ

α2

]
∂ω∂Ψ − ∂ ln(α−1ψ2) [∂Φ + 2ω∂Ψ] −

2ω
r

[
∂rΨ +

1
r tan θ

∂θΨ

]
. (2.77)

The same can be done for the Maxwell-Ampère equation Eq. 2.70:

∆̃3Ψ̃ = ψ4r sin θ
(
∂ω∂Φ + ω∂ω∂Ψ

α2 − ψ4Jφ
)

+ ∂ ln (α−1ψ2)∂Ψ, (2.78)

where, for convenience, we have introduced the quantity Ψ̃ := Ψ/(r sin θ). The new operators
are defined as:

∂ f∂g := ∂r f∂rg +
1
r2∂θ f∂θg, (2.79)

∆̃3 := ∆ −
1

r2 sin2 θ
. (2.80)

These equations completely define the electromagnetic field in the entire space, once the
charge and current distribution are known, independently of the fluid properties.

2.5 Matter

Let us discuss here the equilibrium condition for the matter distribution under the simul-
taneous action of gravity and electromagnetic field. Assuming purely rotational flow, the
three-dimensional velocity is given by

v =
Ω − ω

α
Reφ̂, (2.81)

where Ω := uφ/ut is the angular velocity of the fluid as seen by an observer at rest at spatial
infinity. Here we will consider for simplicity rigid rotation so that Ω = cost.

As discussed in Sec. 2.1.1 the dynamics of matter is described by the Euler Eq. 2.32.
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Recalling that ui = 0, (i = r, θ) and ∂t = ∂φ = 0, so that uν∂ν = 0, the four-acceleration
reduces to

aµ = −1
2uνuλ∂µgνλ, (2.82)

and its spatial projection in the 3 + 1 formulation is

ai =
Γ2

2α2 [∂i(α2 − R2ω2) + 2Ω∂i(R2ω) −Ω2∂iR2]. (2.83)

Recalling the definition of v in Eq. 2.81, and given the relation v2Γ2∂i ln v = ∂i ln Γ, one
finally gets:

∂i p
ρh

+ ∂i lnα − ∂i ln Γ =
Li

ρh
. (2.84)

Notice that axisymmetry implies necessarily Lφ = 0.

In order cast this equation into an integrable form, suitable for numerical solutions, two
assumptions are required:

• a barotropic EoS p = p(ρ), as in the case of a polytropic law

p = Ka ρ
1+1/n ⇒ h = 1 + (n + 1)Ka ρ

1/n, (2.85)

where Ka is the polytropic constant, n is the polytropic index, such that ∂i p/(ρh) =

∂i ln h;

• an external conservative force with potentialM

L = ρh DM. (2.86)

The first one is usually justified by the fact that matter in neutron stars can be considered
fully degenerate (zero temperature). The second one, on the other hand, restricts the possible
choices of current distribution (see e.g. Akgün et al. 2013 for examples where this constrain
is relaxed), but is the only one that permits to compute equilibria in the fully non perturbative
regime.

Under those two assumptions one can integrate Euler’s equation to derive the so called
Bernoulli integral

ln
h
hc

+ ln
α

αc
− ln

Γ

Γc
− =M−Mc, (2.87)

where we have indicated with the label c a reference position, for instance the center of the
NS.

Inside the star the ideal MHD condition guarantees that the electric field is always or-
thogonal to the magnetic field, i.e. E ·B = 0, so that B ·DΦ = 0 and the electric potential can
be expressed as a function of the magnetic potential, Φ = Φ(Ψ). In particular the ideal MHD
condition provides the following relation between the two potentials (see e.g. Gourgoulhon
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et al. 2011)
DΦ = −Ω DΨ, (2.88)

that in the case of rigid rotation can be easily integrated in

Φ = −ΩΨ + C (2.89)

where C is an integration constant, that can be shown to correspond to an arbitrary net charge.
The other possible integrability condition for equation Eq. 2.88 is Ψ = Ψ(Ω); however, as
pointed out by Bonazzola et al. (1993), this latter condition can not be fulfilled in general
since Ψ has to solve also the stationary Maxwell-Ampère equation, Eq. 2.78. Indeed, as
anticipated in Sec. 2.2, the strict requirement arising from stationarity is that the rotational
rate should be constant on the magnetic surfaces. For example the simplest prescription of
constant specific angular momentum leads to a rotation largely stratified on cylinders, known
as von Zeipel cylinders (von Zeipel 1924), while the simplest prescriptions for the current
distribution typically used in NS modelization (Lander and Jones 2009, Ciolfi et al. 2009)
lead to dipole-like magnetic surfaces.

From Eq. 2.39, one can then express the electric field and the associated charge density
in terms of the magnetic flux function

E = −
Ω − ω

α
DΨ, (2.90)

ρe = −D ·
(
Ω − ω

α
DΨ

)
. (2.91)

Using these results, the Lorentz force per unit volume acting on the plasma is

L = ρeE + J × B = (J − ρev) × B, (2.92)

which, using also Eq. 2.71 and Eq. 2.72, becomes:

L =

(
Jφ̂
R
− ρe

Ω − ω

α

)
DΨ −

I DI
α2R2 +

DI×DΨ · eφ̂
αR2 eφ̂. (2.93)

As required by axisymmetry the aximuthal component of the Lorentz force must vanish.
This corresponds to require that I = I(Ψ), and we can write

L =

(
Jφ̂
R
−
I

α2R2

dI
dΨ
− ρe

Ω − ω

α

)
DΨ. (2.94)

Finally equating it to Eq. 2.86 and requiring the integrability condition M = M(Ψ) one
obtains

Jφ̂
R

= ρh
dM
dΨ

+
I

α2R2

dI
dΨ

+ ρe
Ω − ω

α
. (2.95)

By making use of Eq. 2.73 this can be written as a single equations for Ψ and, after some
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algebra, one obtains the relativistic Grad-Shafranov (GS) equation

D·
[
α

R2

(
1−v2

)
DΨ

]
+
I

αR2

dI
dΨ

+ αρh
dM
dΨ

= 0. (2.96)

Notice that since we have used the Ideal MHD condition, the GS equation is strictly valid
only inside the NS. On the other hand if one assumes the existence of a low density plasma
that, without affecting the dynamics, can provide the required charges and currents, the con-
dition E·B = 0 can be extended also outside the NS. This is the base of the so called force-free
degenerate electro-dynamic (or magnetodynamic, Komissarov 2011), and is the prescription
generally adopted in magnetospheric models that focus just on the exterior (Michel 1973b,
Contopoulos et al. 1999, Timokhin 2006, Spitkovsky 2006, Tchekhovskoy et al. 2013, Pétri
2016b), and that has been recently extended to global models (Ruiz et al. 2014). In this case,
given the negligible dynamical effects of the plasma, the Lorentz force must vanishes. Hence
the force-free limit of the GS equation can be obtained with M(Ψ) = cost or equivalently
with ρ→ 0. One obtains

D·
[
α

R2

(
1−v2

)
DΨ

]
+
I

αR2

dI
dΨ

= 0. (2.97)

which is also known as the pulsar equation.

Notice that the force-free GS equation could have also been derived requiring L = 0 with
the assumption that Ω is the rotational rate of the magnetic field lines, namely Ω = −dΦ/dΨ,
so that the velocity v = α−1(Ω − ω)Reφ̂ refers to the motion of the immaterial field-lines as
measured by the Eulerian observer. In this case there is nothing to prevent v > 1 once the
Light Cylinder, defined by R = RL = α−1(Ω−ω), is crossed. On the contrary, in the case v is
associated with the fluid rotation then v < 1 everywhere and we do not have a transition at the
generalized Light Cylinder. Moreover, there is a net energy flow along those field-lines that
cross the Light Cylinder which is not strictly consistent with our assumption of stationarity.

In order to preserve the stationarity requirement one can force the poloidal fields lines to
be contained inside the star, adding an ad hoc singular toroidal current at the stellar surface
(Tomimura and Eriguchi 2005). The other possibility, which is often adopted in literature
(see for example Bocquet et al. 1995, Franzon et al. 2016a), is to consider an electrovacuum
approximation, assuming that field-lines extend also outside the NS surface into a ‘vacuum’.
In this case one cannot define any meaningful reference frame in the exterior, such that
it is not possible to enforce any relation between Ψ and Φ. Indeed there are regions where
E ·B , 0, which are known as vacuum gaps (Goldreich and Julian 1969, Michel and Li 1999,
Cheng et al. 1986). In this case one cannot use a single GS equation over the entire space
but one should solve the potentials separately inside and outside the NS with the requirement
of continuity at the stellar surface. While the vacuum corresponds to the simple assumption
ρe = Jφ = 0, inside the ideal MHD condition, together with the requirement of integrability,
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can be easily translated into a condition on the charge and current distribution

ρe = −
αv2

ω −Ω
ρhΓ2 dM

dΨ
+
ω −Ω

αψ4v2 ∂ ln Γ2∂Ψ −
1
ψ4∂ω∂Ψ, (2.98)

Jφ = ρhΓ2 dM
dΨ
−

1
ψ8r2 sin2 θ

∂ ln Γ2∂Ψ +
ω −Ω

α2ψ4 ∂ω∂Ψ. (2.99)

Note however that it is not sufficient to impose these forms for the source terms into Eq. 2.77
in order to ensure ideal MHD inside the NS, because Eq. 2.77 defines the electromagnetic
field minus an arbitrary harmonic function. This harmonic function (which guarantees ideal
MHD inside) corresponds to a singular source term (a surface charge), that have been ne-
glected in deriving the integrability conditions, where we only considered distributed forces.
Moreover the solution is not unique but depends on the arbitrary constant of integration C in
Eq. 2.89, which regulates the global net charge of the NS.

2.6 Choices for the currents function

The morphology of the magnetic field is controlled by the form of the free functionsM
and I. As discussed in the previous section the magnetization functionM is associated with
the Lorentz force appearing in the Euler equation, Eq. 2.84. The current function I, instead,
is related only to the toroidal component of the magnetic field.

If the magnetic field has a poloidal component then Ψ , 0 andM can be expressed as a
function of the magnetic potential Ψ alone because of the orthogonality relation fL ·B = 0. A
common choice is to expressM as the sum of a linear function of Ψ plus a non-linear term
(Bocquet et al. 1995, Ciolfi et al. 2009, Lander and Jones 2009), namely

M(Ψ) = kpolΨ

(
1 +

ξ

ν + 1
Ψν

)
(2.100)

where kpol is the so-called poloidal magnetization constant, ξ is the non-linear magnetization
constant and ν is the poloidal magnetization index of the non linear term. The functional
form for I is instead chosen as

I(Ψ) =
a

ζ + 1
Θ[Ψ − Ψmax](Ψ − Ψmax)ζ+1, (2.101)

where Θ[.] is the Heaviside function, Ψmax is the maximum value the φ component of the
vector potential reaches on the stellar surface or at a certain distance from the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted torus magnetization index.
This functional form allows one to limit the domain of the toroidal magnetic field. The value
of Ψmax fixes the last magnetic surface bonding the region where the toroidal magnetic field is
confined. For example choosing Ψmax as the maximum value of Ψ at the surface, allows one
to confine the toroidal magnetic field all within the star, obtaining TT configurations. On the
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other hand one can select different prescriptions for Ψmax that allow twisted magnetopsheres,
where the toroidal field exists also outside the star. These choices are again quite usual in
literature (Ciolfi et al. 2009, Lander and Jones 2009, Glampedakis et al. 2014, Fujisawa et al.
2013, Fujisawa and Kisaka 2014, Uryū et al. 2014). Alternative formulation of Eqs. 2.100-
2.101 will be discussed in Chapter 4 and 5.

In the case of a purely toroidal field, most of the formalism leading to the Grad-Shafranov
equation does not apply, since Ψ = 0 and we cannot define the usual free functions on
magnetic surfaces. However, since Eq. 2.84 is still valid, we can look for a scalar function
M (though no longer a function of Ψ) such that Li = ρh∂iM. Then, using Eq. 2.93 with
Ψ = 0, the integrability condition in Eq. 2.86 reads:

DM = −
I DI
ρhα2R2 . (2.102)

Defining a new quantity G = ρhα2R2, the previous equation can be easily integrated if we
assume a barotropic-like dependency for the current function I = I(G), namely

I = KmGm (2.103)

where Km is the toroidal magnetization constant and m ≥ 1 is the toroidal magnetization
index. With this assumption the magnetization functionM is given by (Kiuchi and Yoshida
2008, Kiuchi et al. 2009, Yasutake et al. 2010, Frieben and Rezzolla 2012)

M = −
mK2

m

2m − 1
G2m−1, (2.104)

and the magnetic field is related to the enthalpy per unit volume through

Bφ = α−1KmGm = α−1Km( ρhα2R2)m. (2.105)

Here the magnetization constant Km regulates the strength of the magnetic field (more specif-
ically the magnetic flux through the meridional plane), while the magnetization index m
governs to the distribution of the magnetic field inside the star.

2.7 Global quantities

In order to characterize each equilibrium model we have computed a wide set of global
physical quantities. Here we give their definition assuming CFC.
The relevant quantities are: the gravitational mass

M :=
∫ [

2p + ρhΓ2
(
1 + v2 + 2R2vω

)
+ B2 + E2 − εφi j

ω

α
EiB j

]
αψ6 sin θ drdθdφ; (2.106)
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the baryonic mass

M0 :=
∫

ρΓψ6r2 sin θ drdθdφ; (2.107)

the proper mass

Mp :=
∫

eΓψ6r2 sin θ drdθdφ; (2.108)

the total electromagnetic energy

H :=
1
2

∫
(B2 + E2)ψ6r2 sin θ drdθdφ; (2.109)

the magnetic energy in the toroidal component

Htor :=
1
2

∫
BφBφψ

6r2 sin θ drdθdφ; (2.110)

the magnetic energy in the poloidal component

Hpol :=
1
2

∫
(BrBr + BθBθ)ψ6r2 sin θ drdθdφ; (2.111)

the Komar angular momentum:

J =

∫
(e + p)Γ2vψ8r3 sin2 θ drdθdφ; (2.112)

the rotational kinetic energy

K :=
1
2
JΩ (2.113)

and the absolute value of the binding energy

W := |M − Mp − H − K|, (2.114)

where the integrals are defined over the all three-dimensional space.

In order to characterize the geometrical properties of the magnetic field, other quanti-
ties must be introduced. For a purely toroidal magnetic field , the magnetic flux through a
meridional half-plane which, analogously to Kiuchi and Yoshida (2008), is given by

ΦB :=
∫ π

0
dθ

∫ ∞

0

√
BφBφψ

4r dr. (2.115)

In the presence of a poloidal magnetic field we can estimate the magnetic dipole moment
µ of the star. This is usually defined (see Bocquet et al. (1995)) by the leading term of the
asymptotic behavior of the magnetic field components at r → ∞, where the spacetime metric
is flat. However this definition is not well suited for our numerical scheme XNS, where the
numerical domain is not compactified but extends only over a few stellar radii outside the
NS. Therefore we have evaluated the magnetic dipole moment at finite distance (∼ 3 stellar
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radii) from the star verifying that this is constant in a curved spacetime. In particular, from
a multipole expansion of Eq. (2.125), assuming that outside the star the line element is well
approximated by the Schwarzschild solution and selecting the dipole term (` = 1), one can
find a simple relation that connects the dipole moment µ to the φ−component of the vector
potential Ψ̃, the gravitational mass M and the radial coordinate r, namely

Ψ̃ = µ
(
1 +

M
4r

) sin θ
r2 . (2.116)

Finally there are global quantities related exclusively to the shape and deformation of the
star. These are the equatorial radius re, the polar radius rp, and the circumferential radius

Rcirc := ψ2(re, π/2)re. (2.117)

In the majority of cases, the surface of the star is well fitted by a super-ellipsoid generated
by the rotation of

r =

[(
cos θ

rp

)ns

+

(
sin θ

re

)ns
]− 1

ns

, (2.118)

where ns, the index of ellipticity, regulates the shape of the ellipse. Other important quantities
related to the deformation of the star are the surface ellipticity, given by

es :=
re

rp
− 1 (2.119)

and the mean deformation that, following Kiuchi and Yoshida (2008), is defined by

ē :=
Izz − Ixx

Izz
, (2.120)

where Izz and Ixx are the moment of inertia, respectively in the parallel and orthogonal direc-
tion to the axis of symmetry

Izz :=
∫

er4 sin3 θdrdθdφ (2.121)

Ixx :=
1
2

∫
er4 sin θ(1 + cos2 θ)drdθdφ. (2.122)

The deformation rate ē has the advantage that it can be computed as an integral over the
star, but it is strictly a Newtonian quantity (we have however verified that the inclusion of
magnetic and kinetic energy gives negligible contributions being them dominated by the
matter distribution). In GR, the relevant quantity for the emission of GWs is the quadrupolar
ellipticity eq, defined as

eq = −
3
2
Izz

I
(2.123)

where Izz is the gravitational quadrupole moment and I is the moment of inertia. The gravi-
tational quadrupole moment can not be computed as an integral over the star but must be de-
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rived from the asymptotic structure of the metric terms (Bonazzola and Gourgoulhon 1996)
in the limit r → ∞. The moment of inertia can be properly defined only for rotating stars as
the ratio of the Komar angular momentum over the rotational rate I := J/Ω (Bonazzola and
Gourgoulhon 1996, Frieben and Rezzolla 2012). In the case of a non rotating stars, it can be
evaluated in the limit Ω→ 0

I ' lim
Ω→0

J

Ω
=

∫
(e + p)

ψ10

α−1 r4 sin3 θdrdθdφ. (2.124)

Interestingly, we find that in almost all our models the quadrupolar ellipticity scales as the
deformation ratio: eq/ē = 0.40± 0.05 (see also Frieben and Rezzolla 2012). In the following
chapters we will consider ē rather that eq since with our numerical approach ē is a more
robust quantity being the result of an integration over a confined domain.

2.8 Modeling magnetized Neutron Stars

In the previous sections we have introduces all the formalism at the base of our numerical
models. While the details of the XNS code are discussed in Appx. A, here we summarize
the equations the we have to solve depending on the specific choice for the morphology of
the magnetic field. In the remainder of this thesis we will consider static configurations with
purely toroidal, purely poloidal or mixed magnetic field. For the rotating configurations we
will consider exclusively purely poloidal or purely toroidal magnetic fields with all the cur-
rent terms confined inside the star, since mixed field morphologies leads to configurations
where the Poynting flux does not vanishes contradicting the requirement of stationarity (see
also Sec. 2.5). In particular, Einstein’s equation as well as the Bernoulli integral are obvi-
ously solved for each configuration, the Lorentz force contribution to the Bernoulli integral
M is evaluated through different methods:

• in the case of NSs endowed with a purely toroidal field the magneticM is simply given
by Eq. 2.104;

• in the case of static configurations with poloidal or mixed magnetic field, the magnetic
potential Ψ in the expression ofM (Eq. 2.100) and I (Eq. 2.101) is obtained by solving
the non-rotating limit of the GS equation which in local coordinates reads

∆̃3Ψ̃ +
∂Ψ∂ ln(αψ−2)

r sin θ
+ ψ8r sinθ

(
ρh

dM
dΨ

+
I

α2R2

dI
dΨ

)
= 0, (2.125)

where ∆3 is given in Eq. 2.80;

• for rotating NSs with a purely poloidal field the electromagnetic potentials are obtained
solving the Maxwell-Gauss Eq. 2.77 for Ψ and the Maxwell-Ampère Eq. 2.78 for Φ,
with the source terms given by Eqs. 2.98 and 2.99 (see also Appx. A for a detailed
discussion).
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Given that our work focuses on the role of magnetic field only, in this thesis we have
adopted a simple polytropic EoS (with the exception of Chap. 7 where we consider more
physically motivated EoS), with a polytropic index n = 1 and a polytropic constant Ka =

110 (in geometrized units5). These values are commonly used in literature and allow us
a straightforward comparison with previous results (Kiuchi and Yoshida 2008, Frieben and
Rezzolla 2012). In the unmagnetized case, for a central density ρc = 8.576×1014g cm−3, this
EoS gives an equilibrium configuration characterized by a baryonic mass M0 = 1.680M�, a
gravitational mass M = 1.551M�, and a circumferential radius Rcirc = 14.19km. This will be
our reference model for comparison to magnetized and rotating cases.

5 This corresponds to Ka = 1.6 × 105cm5g−1s−2.



3 Purely Toroidal Magnetic Fields

The morphology of the magnetic field might strongly depend on the details of the NS
formation. It is natural to expect that, after a merging event or after the gravitational collapse
of a rapidly rotating progenitor, the resulting NS is characterized by an appreciable degree of
differential rotation (Janka and Moenchmeyer 1989). This differential rotation, in turn, can
reshape the initial configuration of the magnetic field leading to the formation of a strong
toroidal component. Then, as already discussed in Chap. 1, if the toroidal magnetic field is
energetically dominant, it induces a prolate deformation of the structure of the NS, favoring
the possible spin-flip mechanism (Cutler 2002) necessary to make the NS itself an efficient
gravitational waves emitter.

In this chapter we will present a detailed study of various equilibrium configurations
endowed with a purely toroidal magnetic field. We will analyze how the structure of the NS
changes with the magnetic field strength, the distribution of the associated currents and the
centrifugal effects. In particular, in the first section of this chapter, which is based on Pili
et al. (2014), we will focus only on static configurations at fixed baryonic mass. This allows
us to investigate the role of the magnetic field alone. In the second section we will introduce
rotation. The remaining part of the chapter is devoted to the study of global trends and to the
possible parametrization of the magnetic field effects.

3.1 Static configurations

Configurations with a purely toroidal magnetic field are obtained with the barotropic-type
expression forM(G) in Eq. 2.104 which we recall here for convenience:

M = −
mK2

m

2m − 1
G2m−1,

where Km regulates the strength of the magnetic field while m is linked to the distribution
of currents inside the star. Configurations with higher m are characterized by currents more
concentrated in narrower regions.

Let us first compare equilibrium configurations with different values of m. In Fig. 3.1

43
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we show the strength of the magnetic field and the distribution of the baryonic density for
two equilibrium configurations characterized by the same baryonic mass M0 = 1.68M�,
the same maximum value of the internal magnetic field strength Bmax = 6.134 × 1017 G, but
with different values of the toroidal magnetization index: m = 1 and m = 2 respectively.
In Tab. 3.1 we list some physical properties of these models. Concerning the distribution
of magnetic field, the two models look qualitatively very similar: as expected for a toroidal
field arising from our choice for M, in both cases the magnetic field vanishes on the axis,
reaches a maximum at 20%-30% of the NS radius and then decreases moving toward the
surface where it vanishes. Quantitatively, however, there are significative differences. In
the case m = 1 the magnetic field strength goes to zero on axis as r sin θ, while the ratio
B2/p, a monotonically increasing function of radius, tends to a constant at the stellar surface
(the magnetic field decreases as fast as the pressure). On the other hand in the case m = 2
the magnetic field strength goes to zero on axis ∝ (r sin θ)3, while the ratio B2/p reaches a
maximum inside the star, and then goes to zero at the stellar surface.

Table 3.1: Global physical quantities of the equilibrium models displayed in Fig. 3.1 with baryonic mass
M0 = 1.68M� and maximum magnetic field strength Bmax = 6.134 × 1017 G.

Model ρc M re rp/re Rcirc H/W ē ΦB

[1014g cm−3] [M�] [km] [km] [10−1] [10−1] [1030 G cm2]

Km = 0 8.576 1.551 12.08 1.000 14.19 0.000 0.000 0.000
m = 1 8.430 1.596 18.10 1.139 20.15 2.013 -8.130 1.538
m = 2 8.588 1.577 14.01 1.104 15.92 1.246 -3.730 0.862

Similar considerations hold for the distribution of the baryonic density (Fig. 3.1). In
both cases the magnetic stresses lead to a prolate deformation of the star. This affects the
internal layers even more than the outer ones. Indeed, the typical prolateness of the iso-
density surfaces in the core is larger than the deformation of the stellar surface, and the
external low-density layers. Interestingly, to this axial compression of the internal layers
corresponds an expansion of the outer part of the star to larger radii, due to the extra pressure
support provided by the magnetic field. There are two noticeable differences between the
m = 1 and m = 2 cases, in this respect. For m = 1 the iso-density surfaces are, to a good
approximation, prolate ellipsoids, while in the m = 2 case they tend to be more barrel-shaped.
More important, despite the internal maximum magnetic field being the same, the m = 2 case
shows smaller deformation. This can be explained in terms of the energetics of the magnetic
field that for higher m is reduced by the shrinkage of the magnetic field distribution toward
the stellar surface. As we will discuss in Sec. 3.4, even comparing models with the same
magnetic energy, the deformation is slightly reduced for higher m at most by 5%. This can
be justified recalling that the action of the magnetic tension, responsible for the anisotropy, is
∝ B2/R (R is now the radius of curvature of the magnetic field line). For higher values of m
the magnetic field reaches its maximum at increasingly larger radii, resulting in a relatively
smaller tension. This can be rephrased in terms of currents, suggesting that currents in the
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Figure 3.1: Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of
the baryonic density (bottom) for models with baryonic mass M0 = 1.68M�, maximum magnetic
field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue
curves represent the surface of the star. Other global quantities related to these configurations are
listed in Table 3.1.
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Figure 3.2: Variation, with respect to the unmagnetized equilibrium model, of the central baryon density ρc,
of the gravitational mass M, of the circumferential radius Rcirc and of the mean deformation rate
ē along the equilibrium sequence of magnetized non-rotating configurations with constant M0 =

1.68M� and m = 1 or m = 2.

outer layers have minor effects with respect to those residing in the deeper interior.

Apart from a qualitative analysis of the structure and shape of these equilibrium models,
it is possible to investigate in detail the parameter space as a function of various quanti-
ties and to check how they are related. In particular, following Kiuchi and Yoshida (2008)
and Frieben and Rezzolla (2012) we compute sequences of magnetized equilibrium models
characterized by a constant baryonic mass M0 = 1.68M�, evaluating how global quantities
change increasing the magnetization of the star Km. In Fig. 3.2 we plot the deviation of the
central baryonic density ρc, the gravitational mass M, the circumferential radius Rcirc and the
deformation rate ē, with respect to the unmagnetized case, as a function of the maximum
value of the magnetic field strength for both the m = 1 and m = 2 configurations. Here, the
deviation of the generic quantity Q is defined as:

∆Q =
[Q(Bmax,M0) − Q(0,M0)]

Q(0,M0)
. (3.1)

The comparison between our results and those by Kiuchi and Yoshida (2008) and Frieben
and Rezzolla (2012) is performed in Appx. A. The first thing to notice in Fig. 3.2, is that Bmax

is not a monotonic function of the magnetization constant Km: Bmax initially increases with
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Figure 3.3: Sequences of equilibrium stellar models with purely toroidal field. Top panel: with fixed baryonic
mass M0 and fixed magnetic flux ΦB. Bottom panel: with fixed mean deformation rate ē and fixed
maximum magnetic field strength Bmax. Left panels show configurations with m = 1 while right
ones show configurations with m = 2. M0 is expressed in unit of solar masses M�, ΦB in unity of
1030G cm2 and Bmax in unity of 1018G. The red line is the unmagnetized sequence while the black
dashed lines represent equilibrium configurations with low magnetic flux ΦB. The filled circles
locate the models with the maximum gravitational mass at fixed magnetic flux. Details of these
models are listed in Table 3.2. The yellow squares represent the models shown in Fig. 3.1.

Km, till it reaches a maximum value, and then for higher values of Km it drops. This is due
to the expansion of the star. For small values of Km, the stellar radius changes marginally,
and an increase in Km translates simply into a stronger field. However at higher values of
Km, the radius of the star is largely inflated and any further increase in Km translates into
an expansion of the star and a consequent reduction of the maximum internal field. This
also reflects on the magnetic energy H, which initially grows but at large Km it saturates and
begins to drop. A similar effect shows up in the behaviour of the central density. For small
values of Km the magnetic tension tends to compress the matter in the core, increasing its
density. However as soon as the magnetic field becomes strong enough to cause the outer
layer of the star to expand, the central density begins to drop (recall that the sequence is for
a fixed baryonic mass).

In order to quantify these effects and to search for global trends we have carried out
a full sampling of the parameter space. In Fig. 3.3 we plot the gravitational mass M as a
function of the central density ρc both for sequences with a constant baryonic mass M0 and
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Table 3.2: Global quantities of the maximum mass models shown in Fig. 3.3.

Model ρc M M0 Rcirc rp/re H/W ē Bmax ΦB

[1014g cm−3] [M�] [M�] [km] [10−1] [10−1] [1018 G] [1030 G cm2]

B = 0 17.91 1.715 1.885 11.68 1.000 0.000 0.000 0.000 0.000

m = 1 18.65 1.780 1.901 14.84 1.088 1.670 -4.587 1.129 1.613
17.50 1.852 1.960 17.74 1.107 2.373 -7.833 1.216 2.150
16.85 1.945 2.041 20.86 1.138 2.956 -11.36 1.265 2.690

m = 2 17.69 1.761 1.890 13.22 1.067 1.330 -3.041 1.133 1.080
17.78 1.795 1.916 13.98 1.094 1.747 -4.311 1.262 1.350
17.00 1.838 1.950 15.07 1.115 2.158 -5.944 1.291 1.620

with a constant magnetic flux ΦB. The first thing to notice is that the gravitational mass
generally grows with the magnetic flux ΦB. This trend is reversed only in a small region of
the parameter space characterized by a weak magnetization, with ΦB . 5 × 1030G cm2, and
low central density, ρc . 1 − 1.5 × 1015g cm−3. This is a manifestation of the same effect
discussed above in relation to the trend of the central density in Fig. 3.2. This effect was
already present to a lesser extent in Kiuchi and Yoshida (2008), but not discussed.

Along sequences with fixed ΦB, the configurations with the highest gravitational mass are
very close to those having the highest value for the baryonic mass M0 (they are coincident
within the accuracy of our code), as can be seen in Fig. 3.3, where the filled circles locate the
maximum gravitational mass models in the sequences of constant ΦB. The global quantities
related to these configurations are summarized in Table 3.2. Similarly, for a given M0 the
model with the minimal gravitational mass has also the minimum magnetic flux.

Our set of models allows us also to construct sequences characterized by a constant
magnetic field strength Bmax or a constant deformation rate ē. It is evident that models with a
higher central density, which usually correspond to more compact stars, can harbor a higher
magnetic field with a smaller deformation.

It is important to remark that the deformation ratio ē is a Newtonian quantity and that the
relevant quantity for the GW physics is instead the quadrupolar ellipticity eq (see Sec. 2.7).
However we have found that, as in Frieben and Rezzolla (2012), in almost all our models
the quadrupolar ellipticity is a constant fraction of the deformation ratio: eq/ē = 0.40 ± 0.05
where the uncertainty is mostly due to the asymptotic extrapolation of the metric terms. As
anticipated in Sec. 2.7, in the following we will mainly consider ē, instead of eq, since it is a
robust quantity within our numerical scheme.

3.2 Rotating configurations

The analysis presented previously has been extended to rigidly rotating configurations
where again we have computed a large set of equilibria varying the central density, the mag-
netization, the magnetic field profile, and the rotation frequency. The latter is however main-
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Table 3.3: Global quantities for the configuration shown in Fig. 3.5 with gravitational mass M = 1.55M�.

Bmax Ω ρc M0 Rcirc rp/Re ē ns H/W T/W H/M T/M
1017 G 103s−1 1014g/cm3 M� km 10−1 10−1 10−2 10−2

0.51 3.045 7.31 1.67 10.5 0.90 0.09 2.00 0.01 0.50 0.02 7.62
4.63 2.030 8.24 1.66 16.9 1.00 -0.23 2.00 0.13 0.21 1.32 0.31
5.20 2.030 6.63 1.62 28.9 0.90 -0.79 1.76 2.30 0.38 2.44 0.41

tained below Ω = 5.1 × 103s−1 (corresponding to Ω = 2.5 × 10−2 in geometrized units). At
this frequency the space of models is quite narrow due to mass shedding, and mostly limited
to very compact configurations, while less compact stars are more prone to magnetic and
rotational deformation.

The parameter space is shown in Fig. 3.4, for m = 1, for different values of the constant
rotation rate Ω. As in Fig. 3.3, models are given in terms of the central density ρc and the
gravitational mass M. At each value of the rotation rate Ω we plot sequences of constant
baryonic mass M0 and of constant magnetic flux ΦB and sequences of constant deformation
ratio ē and constant maximum magnetic field strength Bmax. Notice that at low central density
the space of solutions is limited by two physical boundaries: the unmagnetized limit (red
line), and the mass shedding limit (yellow line).

Let us begin by discussing the general interplay between rotation and magnetic field.
As already pointed out by Frieben and Rezzolla (2012), depending on the strength of the
magnetic field versus the rotation rate we can obtain three main typologies of deformation,
as shown in Fig. 3.5 and Tab. 3.3: if the rotation is dominant the resulting configuration
is purely oblate with both positive surface ellipticity es and mean deformation rate ē (left
panel of Fig. 3.5); conversely, if the effects due to the magnetic field prevail the star is purely
prolate with ē < 0 and es < 0, or at most es = 0 (central panel of Fig. 3.5); for intermediate
configurations, when magnetization and rotation can counterbalance, the morphology of the
star is only apparently oblate, with es > 0, but globally prolate, with ē < 0 (right panel of
Fig. 3.5).

While the Lorentz force squeezes the star in the direction of the magnetic axis inflating
also the outer stellar layers (increases its prolateness), rigid rotation flattens the star toward
the equatorial plane (increases its oblateness). Moreover while the rotation acts mainly in
the outer region, where the specific rotational energy is larger, the magnetic field affects
mainly the inner regions where its strength peaks. As a result, close to mass shedding, the
star shows a peculiar diamond-like shape. In general the surface can be approximated by
standard ellipsoids Eq. 2.118 with ns in the range 1.9 − 2.1. It is only for these peculiar
diamond-shaped surfaces that the super-ellipsoid index lowers to ∼ 1.7.

For the rotating models the trends of M0, M and ē with ΦB and ρc remain the same as in
the static case. However, comparing the same sequences for different values of the rotational
frequency Ω, it is clear that also the rotation contributes to increase both the gravitational and
the baryonic mass. For example the maximum mass on the unmagnetized sequences ΦB = 0,
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changes from M = 1.710M� in the non rotating case to M = 1.805M� for Ω = 5.3 × 103s−1

while the related central density drops by ∼ 30% (and from M = 1.770M� in the non rotating
case to M = 1.820M� for Ω = 4.2×103s−1 if ΦB = 2.0). The increase of the gravitational and
the baryonic mass, at a given central density, is a simple volume effect. It is mainly linked
to the growth of the stellar radius caused by the rotation and the magnetic field; indeed the
magnetic energy and the rotational energy contribute together to the value of the gravitational
mass for at most few percents.

The locus of points with ē = 0 is shown in the bottom panels of Figure 3.5 as a black
dashed line. Configurations that are found below this line, characterized by weaker magneti-
zation, have ē > 0. In the same figure we also show the region of the parameter space where
the equatorial radius of the star is larger than the polar one: es > 0. This yellow shaded region
includes not only the purely oblate configurations with ē > 0 but also strongly magnetized
equilibria located in proximity of the mass shedding limit. Notice that for rapid rotators with
Ω & 3 × 103s−1 almost all the obtained equilibria appear as oblate ellipsoids. Finally, at
higher magnetization the mass shedding limit occurs at higher densities with respect to the
non-magnetized case. This happens because the toroidal magnetic field significantly expands
and rarefies the outer layers of the star making them volatile to the centrifugal effects.

In analogy with the static case of the previous section, in Fig. 3.6 we show the variations
∆ρc, ∆M0, ∆Rcirc together with ē as a function of Bmax, for different values of the rotational
rate Ω at fixed gravitational mass M = 1.55M�. As expected, as the rotational rate increases,
the central density together with the baryonic mass drops, while the equatorial circumferen-
tial radius Rc expands. Interestingly, the effect of the magnetic field along these equilibrium
sequences is qualitatively independent from the specific value of Ω, tracing the same behav-
iors of static equilibria discussed in Sec 3.1. Notice, that here we are considering sequences
with fixed gravitational mass: since the central density ρc diminishes with increasing mag-
netization, also the baryonic mass M0 is a decreasing function of the magnetic field. The
rotation acts in two ways: it produces an offset, which can be safely computed for unmag-
netized models, and it increases the effectiveness of the magnetic field (at higher rotations
a lower value of Bmax is required to achieve the same deviation). Indeed we verified that
the curves can be superimposed adding an offset corresponding to the unmagnetized rotators
(Bmax = 0), and rescaling slightly the magnetic field with the rotation rate. Obviously at
higher rotation rate, when the unmagnetized star is already close to the mass shedding limit,
the magnetic field can be increased only marginally, and the magnetic non-linear regime of
highly inflated stars is never reached. We found that while at Ω = 2× 103s−1 the star reaches
the mass shedding when Bmax = 5.1 × 1017 G, and H/M = 0.0245, at Ω = 4 × 103s−1 this
happens for Bmax = 1.1 × 1017 G, and H/M = 0.001.

Another interesting parameter, that describes the joint effect of magnetic field and ro-
tation is the apparent ellipticity. We find that as the rotation rate increases, this shows a
peculiar trend. At low magnetization, the surface shape is always oblate, as expected for
an unmagnetized rotator. As the magnetic field increases, the oblateness diminishes and the
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Figure 3.6: Variation with respect to the unmagnetized and static reference model of the baryon central density
ρc, of the baryon mass M0, of the circumferential radius Rcirc and of the deformation ē, along the
equilibrium sequences with fixed gravitational mass M = 1.55M�, fixed magnetization index
m = 1 but with different rotational rates expressed in unity of 10−3 s−1.
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shape can become prolate (this happens only for Ω < 2.5 × 103s−1). Then as the magnetic
field begins to inflate the outer layer of the star, the local centrifugal support is enhanced,
and the star becomes oblate again (we observe this already at Ω = 103s−1). It was suggested
by Frieben and Rezzolla (2012), that at the mass shedding all models show apparent oblate-
ness: Req > Rpol. Indeed we find this to be consistent with our findings. For example models
with Ω = 103s−1 have es = −0.02 at mass shedding. At lower rotation rates the accuracy
with which we sample the surface, does not allow us to draw any conclusion. However this
second transition toward apparent oblateness, only takes place in a range of magnetic energy
extremely close to the threshold for mass shedding, when the circumferential radius almost
doubles its size.

3.3 Trends at fixed gravitational mass and magnetic poly-
tropic index

The trends shown in Fig. 3.7, suggest that it should be possible to find a global functional
form able to describe with accuracy how global quantities change with similarity variables,
such as the energy ratios H/M and H/W. We focus our analysis on the study of the induced
deformation because this is the key physical parameter for GWs as discussed in Chap. 1.
In the Newtonian case, in the limit Ω, Bmax → 0, it can be shown that deviations should
scale bilinearly in H/W and T/W (Cutler 2002). These ratios represent, in fact, the relative
energies of terms leading to deformations (magnetic field and rotation) with respect to the
gravitational binding energy that tends to sphericize the star. We find for example that quan-
tities like the baryon mass variation ∆M0, the change in central density ∆ρc, the change in
circumferential radius ∆Rcirc, and the deformation ratio ē can be fitted at fixed M and m for
all values of Ω and Bmax as:

∆q = Gq(Ω,H = 0) + Fq

(
[1 + aqΩ

2
ms]H/W

)
, (3.2)

as shown in Fig. 3.7. Here Ωms is the rotation rate in units of the frequency of a millisecond
rotator. The function F is linear in H/W in the limit H → 0, as expected. aq represents the
non-linear coupling between magnetic field and rotation. This non-linear coupling term is
small because rotation and magnetization cannot be increased independently in an arbitrary
way, due to mass shedding. In the case of ē, we find aē = −0.96.

Within this parametrization the role of rotation is completely factored out in G (even if
the kinetic energy enters also in the definition of W), which is linear in Ω2 in the limit Ω→ 0.
It is remarkable that this self-similar scaling holds for highly deformed star in the full GR
regime.

Interestingly we found that the deformation ē, can be fitted equivalently, as a function of
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Figure 3.7: Variation of the baryonic mass, of the central density and of the deformation rate ē with respect
to the unmagnetized rotating reference model, as a function of the magnetic energy to binding
energy ratio H/W or to gravitational mass H/M. The equilibrium sequences with different Ω are
computed holding constant the gravitational mass M = 1.55M�.
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H/M as:

ē = Gē(Ω,H = 0) + Bē

(
H(1 + bēΩ

2
ms)

M

)
, (3.3)

with bē = −0.48, as shown in Fig. 3.7. This reflects the fact that the non-linear coupling
between rotation and magnetic field is negligible.

The bilinear approximation for the deformation is found to hold, with an error < 10% in
the range H/M . 0.01, T/M . 0.006 (equivalently H/W . 0.07, T/W . 0.04 or Bmax .

4 × 1017 G, Ω . 0.001), where one can write:

ē ' −dB B2
17 + dΩ Ω2

ms, (3.4)

with dB ' 9 × 10−3 and dΩ ' 0.3 (B17 is the maximum magnetic field strength in units
1017 G). In this linear regime the effects induced by rotation and magnetic field on the global
deformation of the star ē cancel if B17 ' 6 Ωms, corresponding to a ratio of magnetic to
kinetic energy H/T ' 1.2.

In the same limit Ω, Bmax → 0, also the apparent ellipticity of the surface can be fitted
with a similar bilinaer dependence:

eS ' −sB B2
17 + sΩ Ω2

s , (3.5)

with sB ' 2.5 × 10−3 and sΩ ' 0.4. Note that in terms of apparent ellipticity the effects
induced by rotation and magnetic field cancel at B17 ' 13Ωms, corresponding to a ratio of
magnetic to kinetic energy H/T ' 6.8. This is about a factor 5 higher than for ē, indicating
that apparently oblate star, can in fact have a matter distribution that gives a net prolate
quadrupole.

It is evident that in terms of deformation ratio, the contribution of the magnetic energy
is analogous (even if acting in the opposite way) to that of the rotational energy, and the
two tend to compensate each other close to equipartition, while rotational energy is slightly
more efficient in determining the shape of the surface. This because magnetic field tends to
act in the interior, while rotation mostly affects the outer layers. Note that while formally a
parametrization in terms of Ω2 and B2

max is equivalent to one in T and H, the latter holds with
the same accuracy for a ∼ 50% larger range of magnetic field strengths and rotation rates.

3.4 The role of magnetic field distribution at fixed gravita-
tional mass

In this section we discuss in more detail the effect of the different magnetic field distri-
bution in order to generalize the scaling laws that we have found in the previous section in
order to include also the contribution of the magnetic polytropic index m.

In Fig. 3.8 we show a comparison between rotating equilibria with the same gravitational
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mass and the same value of the maximum magnetic field strength but with different values
of m. A detailed quantitative characterization of these configurations is given in Tab. 3.4. As
the value of m increases the magnetic field distribution becomes more concentrated toward
the surface of the star, with a larger fraction of the star that behaves as if it was essentially
unmagnetized. As a consequence the magnetic energy (at fixed maximum magnetic field
strength) is smaller. This effect however is progressively less pronounced at higher magneti-
zation, as shown by the comparison with the perturbative regime in Fig. 3.8, where we plot
the magnetic field distribution in the radial direction at the equator for both the strong and
weak field regime.

Table 3.4: Global quantities for the configuration shown in Fig. 3.8 with gravitational mass M = 1.55M� and
rotation frequency Ω = 2.03 × 10−3s−1.

Bmax Ω ρc M0 Rcirc rp/re ē ns H/W T/W H/M T/M
1017 G 103s−1 1014g/cm3 M� km 10−2 10−2 10−2 10−3

m=1 5.12 2.3 8.07 1.65 18.3 1.01 -0.35 2.00 12.8 2.32 1.76 3.16
m=2 5.15 2.3 7.93 1.66 16.2 1.01 -0.20 2.00 9.00 2.16 1.29 3.10
m=4 5.15 2.3 7.95 1.66 15.6 1.03 -0.12 2.00 6.65 2.10 0.98 3.10
m=10 5.07 2.3 7.98 1.67 15.3 1.03 -0.07 2.00 4.81 2.06 0.72 3.09

Hence, if parametrized in terms of magnetic field strength, the effects against rotation
are strongly reduced at higher m, leading to a smaller deformation and ellipticity. This is
also evident from Fig. 3.10 where we plot the space of physical solutions in the case m = 2.
Indeed, with respect to the m = 1 case (see Fig. 3.4), the mass-shedding line moves to
lower densities and the region characterized by es > 0 shrinks toward models with lower
compactness. In good part this is due to the fact that the inflationary effect on the outer
layers of the star is also suppressed. In Fig. 3.9, we compare how some global quantities of
interest change with m, in particular ē, ∆Mo and ∆ρc, along the usual equilibrium sequences
with M = 1.551M� considering cases with m = 1, 2, 4. We find that, in terms of Bmax, the
various cases show clearly distinct trends, as already discussed in Sec.3.1. We also found
that for ∆M0, once parametrized in terms of H/W the dependence on m becomes negligible
(less than at most 5% for the fastest rotating configurations). Instead the parametrization
Eq. 3.2 for the quadrupolar deformation leaves a residual dependence on m (at most 15%).
This can be reabsorbed defining an effective energy ratio:

ē = Gē(Ω,H = 0) + Fē

(
[1 + aēΩ

2
ms]

[
0.84 +

0.16
m

]
H
W

)
, (3.6)

which now generalizes Eq. 3.2 for different magnetic field distributions. The same holds
for the apparent ellipticity, with major differences arising only close to the saturation fields,
Bmax & 4 × 1017 G.

Interestingly we found that, once parametrized in terms of H/M as in Eq. 3.3, both ē and
eS show only a weak dependency (within 5%) on the parameter m even in the non-linear
phase. Moreover from an observational point of view, one may prefer a parametrization in
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Figure 3.9: Mean deformation rate ē as a function of the maximum magnetic field strength (top), of the mag-
netic energy to gravitational mass ratio (middle) and of the the effective magnetic energy ratio
[H/W]eff for different values of the magnetization index m ∈ {1, 2, 4} along sequences of fixed
gravitational mass M = 1.55M� in the static case (left), with Ω = 2.03 × 103s−1 (centre) and
Ω = 3.05 × 103s−1(right).
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terms of the gravitational mass which is indeed a measurable quantity.

In the bilinear regime, the parametrization given by Eqs. 3.4-3.5, of the quadrupolar
deformation ē and of the surface ellipticity es, can be generalized as:

ē ' −
dB

m
B2

17 + dΩ Ω2
ms, (3.7)

es ' −
sB

m
B2

17 + sΩ Ω2
ms, (3.8)

with the same values for dB, and sB. Now, since in the bilinear regime ē ∝ 17H/M, Eq. 3.7
also implies that B17 = 1.3 × 102√mH/M.

Given the small residual effect due to m, it is reasonable to conclude that the quadrupolar
and surface deformation gives only a direct indication of the magnetic energy content rather
than of the current distribution, at least in the case of purely toroidal magnetic fields.

3.5 Trends at different mass

This section focuses on how the results depend on the mass and/or compactness of the
NS. In general we found that the trends and scalings found in the previous sections, still
hold at different masses in stable branches of the mass density relation. Obviously at lower
gravitational mass (corresponding also to a lower compactness) the effects of rotation and
magnetic field are enhanced.

For the deformation ratio ē, in the case of unmagnetized rotators, it is possible to reabsorb
the mass differences in the term due to rotation by using as variable T/W, instead of Ω2 or
T/M. We also found that the trend is linear in T/W almost all the way up to the fastest
rotators.

For the effects of the magnetic field on ē, and eS , we find that they can be rescaled defining
effective normalized (with respect to our fiducial model with M = 1.55M�) magnetic energy
ratio, and rotational coupling term, such that:[ H

W

]
eff

=

[
0.84 +

0.16
m

]
1.55M�

M
H
W
, (3.9)

aē eff = −

(
3.94 − 2.98

M
1.55M�

)
. (3.10)

This behavior was already found to hold in the linear regime, for different EoS at fixed mass
by Frieben and Rezzolla (2012). We prove here that it can be also generalized to the non
linear regime for different masses and magnetic field distributions. It is interesting to notice
that, while the rotational energy effects scales as T/W, the magnetic effects go as H/WM.
This might be related to the way mass stratification couples with rotation and magnetic field:
for a rigid rotator, the rotational stratification is independent of density and mass, while,
given the magnetic barotropic law Eq. 3.1, as mass and stratification change so does the
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3
.2

Figure 3.11: Deformation ratio ē with respect to the unmagnetized model in terms of the effective magnetic
energy mass ratio [H/W]eff for configurations having gravitational mass 1.40 − 1.65 M� and
rotational frequency Ω = 0.0 − 3.05 × 103 s−1. The black dashed line represents Eq. 3.11.

Table 3.5: Mass dependency for the ē expansion coefficients.

M dΩ dB sΩ sB

M� 10−1 10−3 10−1 10−3

1.40 4.2 17 6.0 4.8
1.45 3.8 14 5.1 4.1
1.50 3.4 12 4.6 3.6
1.55 3.0 9.5 3.8 2.6
1.60 2.6 7.4 3.5 2.2
1.65 2.2 5.5 3.1 1.5

magnetic field distribution.
We find that the following functional form:

ē ' 3.2
T
W

∣∣∣∣∣
B=0

+ F

([
1 + aē,effΩ2

ms

] [ H
W

]
eff

)
(3.11)

with F (x) = −2.71x − 0.068(10x)3.2 (3.12)

fits the deformation ratio for all values of Ω, H, M and m up to ē ' 1, with an error less than
5% as shown in Fig. 3.11.

In the bilinear regime, the coefficients in Eq. 3.7 will of course be functions of mass, as
shown in Tab. 3.5, and one can immediately see that they show an almost linear trend with
M, and both dΩ and dB decrease as M grows. Interestingly, the ratio dΩ/dB grows with M.

The bilinear relation can be generalized to different masses also by using the magnetic
and kinetic energy H and T , and recalling that for H,T → 0 one has W → Wo = const, we
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Figure 3.12: Variation of the mean deformation ratio ē along equilibrium sequences characterized by fixed
gravitational mass M = 1.75M� and different value of Ω with m = 1. Filled circles represent the
configurations with highest M0 and they split each sequence into a low ρc (solid lines) and high
ρc (dashed lines) branch.

obtain

ē '
Cē

Wo

[
T − 1.3

H
M/M�

]
, (3.13)

where the coefficient Cē depends on the specific EoS and the mass of the reference unmagne-
tized stationary configuration: for our fiducial model with M = 1.551M� we have Cē = 3.2
and W0 = 0.25M�. We recall that even the coefficient 1.3 in general has a residual depen-
dence on m, but it can be taken as constant with an accuracy ∼ 10%.

We can conclude that, in the perturbative regime, the deformation ratio is linear in the
quantity T − 1.3H/(M/M�), which can be considered as a self-similarity variable, with all
the information about the EoS, factored out in a single proportionality coefficient.

We can repeat the same analysis for the surface deformation in the bilinear regime. We
found that the coefficients sB and sΩ in Eq. 3.8 also depend on mass and they both show a
linear trend in accord with what was found for the deformation ratio. Coefficients are given in
Tab. 3.5. Obviously a parametrization in terms of Ω2 and B2

max is not optimal, once different
masses are taken into consideration (at fixed mass Ω2 ∝ T and B2

max ∝ H, so it is equivalent
to a parametrization in terms of kinetic and magnetic energies). We found that using the
effective magnetic energy defined by Eq. 3.9, and T/W for the rotational contribution, the
mass dependence can be reabsorbed analogously to Eq. 3.13, with an accuracy . 10%

eS '
Ces

W0

[
T − 0.23

H
M/M�

]
, (3.14)

with Ces ∼ 4.2. Note that given the accuracy of our solution, the surface deformation of our
models cannot be determined better than 0.01, and models with eS & 0.05 are already in the
non-linear regime.
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Up to this point we limited our investigations to equilibrium sequences with gravitational
mass below the maximum mass of the static and unmagnetized sequences (1.72M� for our
choice of EoS). Moreover we have considered only equilibrium models with central density
below the central density of the configuration with maximum mass (ρc < 1.8 × 1015g cm−3).
This corresponds to selecting sequences that are connected to the stable unmagnetized static
branch and for which a comparison with a static unmagnetized reference model is meaning-
ful.

The trends are more complex if one considers supramassive sequences (see Kiuchi and
Yoshida (2008) for discussion). As an example we show in Fig. 3.12 the variation of the
deformation ratio ē in the case M = 1.75M� for different values of Ω. No static configura-
tion with such gravitational mass exists for magnetic flux ΦB < 1.31 × 1030G cm2, neither
unmagnetized configurations with Ω . 4 × 103s−1.

The trends of ē shown in Fig. 3.12 can be understood by looking also at Fig. 3.4: the
configurations with the minimal deformation is very close to the one that at fixed gravita-
tional mass has the highest M0 Moving away from this configuration, either toward lower or
higher central densities, the deformation rises. At lower densities, despite the fact that the
magnetic field also diminishes, the deformation rises because the star becomes less compact.
At higher density, despite the star becoming more compact the magnetic field rises and its
effect on the deformation becomes stronger. As one can see the interplay between the mag-
netic field, and the compactness can be quite different depending on the branch in the mass
density sequence.

For a rotation rate Ω & 4 × 103s−1, two unmagnetized configurations become possible
(one stable one unstable) and the ē sequence splits in two branches. The one connected with
the unmagnetized configuration with lower ρc, the other connected with the unmagnetized
configuration with higher ρc. Being this latter one more compact, both the effect of rotation
and of the magnetic field are less pronounced.

3.6 Summary

During the evolution of the proto-NS the magnetic field is expected to relax toward a
morphology characterized by a magnetic field with a toroidal component that is energetically
dominant. The phenomenology of magnetars seems to confirm this picture: the extraordinary
energetic activity of AXPs and SGRs may be sustained by the rearrangement and dissipation
of a strong toroidal magnetic field buried inside the NS.

In this chapter we have explored a large sample of equilibrium models endowed with a
purely toroidal field in both the static and rotating case. Our results are in agreement with
those of Frieben and Rezzolla (2012). We find that the deformation of the star is always
prolate if the magnetic energy is larger with respect to the rotational one. Consequently for
very rapid rotators near the mass shedding, or for weakly magnetized rotators, the induced
deformation is oblate. The threshold for oblate/prolate transition of the deformation ratio
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does not coincide with the transition between apparently prolate and apparently oblate NS:
while the transition to ē < 0 happens very close to the equipartition when H/T ∼ 0.8M/M�

the transition to es < 0 is at H/T ∼ 4M/M�. This reflects the different action of magnetic
field (mostly affecting in the inner layers) and rotation (mostly affecting the outer ones).

In the static case, comparing configurations with the same mass, the deformation grows
as the magnetic energy increases; the magnetic field strength instead reaches a maximum
∼ 6 × 1017 G. Saturation is reached when the star begins to inflate to larger radii. While in
the static case the outer layers can apparently inflate without limit, the rotation sets a limit
to the size of the star. Since the magnetic field makes the outer layer more volatile, the
mass shedding frequency reduces with respect to the unmagnetized case. As an example,
considering our reference model with M = 1.55M�, the mass shedding frequency is Ω ∼

4× 103s−1 in the unmagnetized case but Ω ∼ 2× 103s−1 with Bmax ∼ 5× 1017 G. As expected
these effects are more pronounced in low mass stars, while more compact configurations,
of higher central density, show smaller deformations, can support a stronger magnetic fields
and more rapid rotations. As an example configurations with ρc & 1015g cm−3 can support
magnetic field up to ∼ 1018G even for rapid rotation Ω ∼ 4 × 103s−1 with deformations
ē ∼ −1; conversely, configurations with ρc . 1015g cm−3 are characterized by a weaker
magnetic field, always below ∼ 1018G, but they can show larger prolate deformations, with
|ē| > 2 in the case of slow rotations.

The origin of the toroidal component of the magnetic field, is most likely to be found
in the presence of large amount of differential rotation at birth, which itself is related either
to the rotational profile of the core of the progenitor in core collapse events, or on the dy-
namics of merger in binary systems. For this reason we have investigated various current
distributions, looking for possible signatures that the conditions at formation might leave on
the remnant NS. In particular we have found that, at fixed maximum magnetic field strength,
more concentrated currents (higher m), located in the outer layers of the star, induce weaker
effects than those obtained with a more diffuse current extending deeper inside. This is clear
if one looks at the energetics of the two configurations: being the strength of the magnetic
field fixed, a more concentrated current corresponds to a lower value of the magnetic energy
contained inside the star. Apart from small residual effects, the deformation ratio and the
surface deformation of the star give only a direct indication of the magnetic energy content
rather than the current distribution. Therefore they are more likely linked to the energetics
of the differential rotation rather then its profile.

In literature the deformation is parametrized either in terms of Bmax and Ω, or in terms of
the rotational and magnetic energy. This is equivalent in the bilinear regime, but not so once
the deformation exceeds |ē| ∼ 0.3. For this reason we have investigated both parametrizations
using a large and detailed sample of the parameter space. We have seen that, in opposition
to a parametrization in terms of Bmax and Ω, a parametrization in terms of the ratios H/W
and T/W allows us to reabsorb the role of the current distribution, the rotation and the com-
pactness of the star in a unique scaling law, that holds up to the fully non-linear regime with
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accuracy . 5%. In particular we have seen that the effects of the rotation on various stellar
quantities can be mainly described as a combination of a net effect (corresponding to the
effect of the rotation on the unmagnetized models) plus an enhancement of the magnetic
field effectiveness. Indeed the addition of rotation, diminishing the compactness of the star,
makes the configuration more prone to the effects of the magnetic field itself.

In the case of M = 1.4M�, we can compare our result with those obtained by Cut-
ler (2002) and Frieben and Rezzolla (2012) in the Newtonian limit (a comparison with
GR results by Frieben and Rezzolla (2012) is not straightforward since they use a differ-
ent parametrization based on the mean value of the magnetic field strength inside the star).
In particular for the relation ē = aΩT/W + aBH/W we obtain aΩ = 3.2 and aB = 2.97 (see
Eq. 3.13) which are similar to those obtained by Frieben and Rezzolla (2012), aΩ = 3.8 and
aB = 3.5, and those obtained by Cutler (2002) with aΩ = aB = 3.75. Differences between
distortion coefficients depends on the choices for the EoSs: while both Cutler (2002) and
Frieben and Rezzolla (2012) adopt as reference model a NS having stellar radius R = 10 km,
the former adopts an incompressible fluid and the latter a polytropic with n = 1; in our case
we use n = 1 as well, but with a different polytropic constant leading to a NS with R = 15 km
(see Sec. 2.8). Notice that our choice, leading to less compact configuration, should in prin-
ciple imply higher value for aΩ and aB. However our calculations are made in GR and as
pointed out by Frieben and Rezzolla (2012), a Newtonian treatment overestimates the correct
distortion coefficient. Interestingly, for M = 1.4M�, we find a ratio aΩ/aB ∼ 1.078, simi-
lar to the value 1.085 found by Frieben and Rezzolla (2012) in the Newtonian limit. This
suggests that the relative contributions of the magnetic field and of the rotation are the same
independently from the compactness of the star, that only affect their absolute values.



4 Purely Poloidal Magnetic Field

Having investigated purely toroidal configurations, where however the magnetic field
is fully confined inside the star, and has no other observational signatures than the NS de-
formation, in this chapter we consider equilibria with purely poloidal geometry, where the
magnetic field extends also outside, where it is accessible through direct electromagnetic ob-
servations. As already anticipated in the introduction, the structure of the magnetic field near
the surface of the NS may significantly differ from a purely dipole magnetic field, depending
on the current distribution. Going beyond the pure dipole approximation, it is crucial to de-
velop a reliable picture of local phenomenology (i.e. the spectral features of PSR J0821-4300
Gotthelf et al. 2013) that takes place near the surface of the star, and bears the signature of
the higher-order multipoles. This in turn reflects the morphology of the current distribution
inside the star, such that one can hope to use observations to constrain the latter.

This chapter, that focuses on modeling poloidal magnetic fields, is organized as follows:
in Sec. 4.1 we analyze static configurations in order to isolate the effects of the magnetic
field and the associated current distribution; we also discuss how different choices for the
current distribution manifest themselves at the surface of the star; in Sec. 4.2 we study the
interplay between rotation and electromagnetic field; in the remaining sections we present
a quantitative analysis of the parameter space and show that even in the case of poloidal
magnetic field it is possible to derive self-similar scalings. This chapter is based on Pili et al.
(2014), Bucciantini et al. (2015b), Pili et al. (2017).

4.1 Static Models

Equilibrium configurations with purely poloidal magnetic field are obtained by choosing
the current functionM as in Eq. 2.100, i.e.

M(Ψ) = kpolΨ

(
1 +

ξ

ν + 1
Ψ ν

)
,

where kpol regulates the magnetization of the equilibrium configuration, ξ can be chosen
such that the non-linear term leads to subtractive currents (ξ < 0) or additive currents (ξ > 0),

67
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Figure 4.1: Left panel: magnetic field surfaces (isocontours of Ψ̃) and distribution of the magnetic strength
B =

√
BrBr + BθBθ. Right panel: baryonic density distribution. The blue curves represent the

surface of the star. The model is characterized by M0 = 1.68M�, Bmax = 6.256 × 1017 G and
magnetic dipole moment µ = 2.18835 erg G−1.

while the value of ν sets how much concentrated these currents are. Notice that the properties
of the magnetic configuration are controlled exclusively byM(Ψ) since we set I = 0 so that
the conduction current is purely toroidal

Jφ = ρhkpol (1 + ξΨ ν) . (4.1)

In Fig. 4.1 with present a model obtained with ξ = 0 so that only linear currents are
present. This model shares the same baryonic mass M0 = 1.68M� and similar value of the
maximum magnetic field strength Bmax = 6.256×1017G with the models shown in Fig. 3.1 for
the purely toroidal case. In contrast to the toroidal case, for a purely poloidal magnetic field
the NS acquires an oblate shape. The magnetic field threads the entire star and reaches its
maximum at the very center. The pressure support provided by the magnetic field, leads to a
flattening of the density profile in the equatorial plane. It is possible, for highly magnetized
cases, to build also equilibrium models where the magnetic forces are able to redistribute the
core density by moving the maximum value of ρ from the centre into a ring located in the
equatorial plane (see Fig. 4.2). Because our numerical scheme is less accurate in this regime,
in the following sections we will exclude this kind of configurations from the analysis of the
parameter space. Moreover, as pointed out by Cardall et al. (2001) that adopt a numerical
scheme similar to ours, at even higher magnetization no convergent numerical solution can
be found because the magnetic field pushes off-center a sufficient amount of mass that the
gravitational force, near the center of the star, points outward. Qualitatively, these effects
are analogous to those produced by rotation. Rotation leads to oblate configurations, and for
a very fast rotator, to doughnut-like density distribution. The main difference however, is



Chapter 4. Purely Poloidal Magnetic Field 69

-20 -10 0 10 20

-20

-10

0

10

20

1 2 3

 
 

-20 -10 0 10 20
R(km)

-20

-10

0

10

20

R
(k

m
)

Density (1.e14 g/cm3)

Figure 4.2: Baryonic density distribution for an extremely deformed configuration with a toroidal-like shape.
This configuration is characterized by a baryonic rest mass M0 = 1.749M�, a gravitational mass
M = 1.661M�, a maximum field strength Bmax = 5.815 × 1017 G, a magnetic dipole moment
µ = 3.595 × 1035 erg G−1, a circumferential radius Rcirc = 19.33km and a mean deformation rate
ē = 0.386.

that rotation acts preferentially in the outer stellar layers, leaving the central core unaffected
in all but the most extreme cases. A poloidal magnetic field instead acts preferentially in the
core, where it peaks.

Another difference with respect to cases with a purely toroidal field, is the fact that the
magnetic field extends smoothly outside the NS surface. Surface currents are needed to
confine it entirely within the star (Tomimura and Eriguchi 2005). As a consequence, from
an astrophysical point of view, the dipole moment µ is a far more useful parameter than
the magnetic flux ΦB, because it is in principle an observable (it is easily measured from
spin-down).

Similarly to what was done in the case of a purely toroidal magnetic field, we have built
an equilibrium sequence at fixed baryonic mass M0 = 1.680M�. Changes in the various
global quantities are shown as a function of the maximum magnetic field inside the star
Bmax. The results in Fig 4.3 show that the central density ρc decreases with Bmax while
the gravitational mass M, the circumferential radius Rcirc and the mean deformation ratio ē,
which is now positive (oblateness), grow. As in the toroidal case, the equilibrium sequence
is characterized by a turning point in the maximum magnetic field strength corresponding
to Bmax ≈ 6.3 × 1017 G. Along the sequences, the oblateness initially grows due to a rise
of the magnetic field but, as soon as the maximum is reached, a further increase of the
magnetization causes a rapid expansion of the equatorial radius and a rapid drop in the central
density to which corresponds also a diminution of the polar radius. In the end, this leads to
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Notation is the same as in Eq. 3.1.
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Table 4.1: Global quantities from the poloidal models with maximum gravitational mass in sequences with
fixed magnetic dipole moment µ, shown in Fig. 4.5.

ρc M M0 Rcirc H/W Bmax ē rp/re µ

[1014g cm−3] [M�] [M�] [km] [10−2] [1017 G] [10−1] [10−1] [1035 erg G−1]

17.29 1.725 1.892 11.96 1.821 6.162 0.481 9.551 0.543
17.19 1.740 1.903 11.89 4.275 9.406 1.036 8.961 0.833
16.76 1.757 1.916 11.93 6.647 11.70 1.481 8.442 1.041
16.45 1.785 1.938 12.00 10.17 14.45 2.012 7.922 1.290

configurations with an off-centered density distribution. Notice that, unlike the toroidal field,
the poloidal one does not inflate the outer layers, where the density profile remains similar
to the unmagnetized case. In Fig. 4.4 we also display the variation of the magnetic dipole
moment µ as a function of the maximum field strength Bmax. We notice that the trend is linear
up to ∼ 1017 G and then increases rapidly once the field approaches its maximum.
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Figure 4.4: Magnetic dipole moment µ as a function of the maximum field strength inside the star Bmax for
an equilibrium sequence with the purely poloidal magnetic field and fixed baryon mass M0 =

1.680M�.

Finally we have repeated a detailed parameter study, in analogy to what has been pre-
sented in the previous section, to explore the space (ρc, kpol). In Fig. 4.5 we show various
sequences characterized by a constant baryonic mass M0, or a constant magnetic dipole mo-
ment µ, or a constant maximum field strength Bmax, or a constant deformation ratio ē. As
in the purely toroidal case, it is found that systems with lower central densities are in gen-
eral characterized by larger deformations, for a given magnetic field and/or magnetic dipole
moment. Notice also that, in contrast with the purely toroidal case, here the unmagnetized
sequence is the one characterized by the smallest gravitational mass at fixed central density:
there is no inversion trends with the magnetization kpol.



72 Chapter 4. Purely Poloidal Magnetic Field

M0=1.94
M0=1.92

M0=1.90
M0=1.89

M0=1.78

10
15

ρ
c

[g/cm
3
]

1.5

1.6

1.7

1.8

1.9

M
[M

]

M0=1.68
µ=0.54

µ=0.83

µ=1.04

µ=1.29

µ=1.70

µ=2.19

max=1.62B

max=0.50B

max=0.75B

10
15

ρ
c
[g/cm

3
]

1.4

1.5

1.6

1.7

1.8

1.9

M
 [

M
]

e=0.10

e=0.20

e=0.25

e=0.30
max=1.00B

Figure 4.5: Left panel: equilibrium sequences with fixed magnetic field moment µ and fixed baryonic mass
M0. Right panel: equilibrium sequences with fixed deformation rate ē and maximum field strength
Bmax. The baryonic mass is expressed in units of M�, the magnetic dipole moment in units of
1035 erg G−1 and the maximum field strength in units of 1018G. The red line shows the unmag-
netized sequence while the filled dots locate the configurations with maximum mass for a given
dipole moment µ. Parameters for these configurations are listed in Tab. 4.1.

4.1.1 Non linear current

Our choice for the magnetic function M, allows us to investigate the effects of non-
linear currents terms Jφ = ρhkpolξΨ. Unfortunately we cannot treat configurations with
only non-linear currents, because in this situation the Grad-Shafanov equation has always
a trivial solution Ψ = 0, and our numerical algorithm always converges to it. It is not
clear if non-trivial solutions of the Grad-Shafranov equation exist in any case, and it is just
the numerical algorithm that fails to find them, or if they only exist for specific values of
the background quantities (ρ, φ, α), and in this case it well could be that no self-consistent
model can be build. So to model cases with ξ , 0, is it necessary to add a stabilizing linear
current. This can be done either by adding a distributed current term Jφ = ρhkpol or by
introducing singular currents. For simplicity, we will not consider this latter possibility in
the analysis of the parameter space and we will investigate configurations with distributed
currents alone. The non-linear current terms may in principle produce multipolar magnetic
configurations. Nevertheless, the symmetry of the magnetic field geometry is dictated by the
stabilizing linear currents. Given that a current Jφ = ρhkpol, always gives dipole-dominated
magnetic fields, this geometry will be preserved also by including non-linear terms. To
obtain prevalent quadrupolar magnetic fields, one needs, for example, to introduce singular
currents that are antisymmetric with respect to the equator as we will show later in this
chapter (see Sub. 4.1.3).

In Fig. 4.6 we show the distribution of the linear and non-linear currents inside the star,
both in the additive (ξ = 20) and subtractive (ξ = −5) cases with ν = 1. Non-linear currents
are more concentrated and they peak at larger radii. In the additive case, we succeeded in
building models where non-linear currents are dominant in the outer stellar layers. On the
contrary, for subtractive currents, we could not reach configurations with current inversions.
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Figure 4.6: Comparison among models with different current distributions. Left panel: modulus of the zero-
current term Jφ0 = ρhkpol (left-half) and first-order one Jφ1 = ρhkpolξΨ (right-half) for an equilib-
rium configuration with ξ = 20, M = 1.551M� and µ = 1.477 × 1035 erg G−1. Right panel: same
as the left panel but for a model with ξ = −5, same mass M = 1.550M� and magnetic dipole
moment µ = 1.510× 1035 erg G−1 . The white line locates the points where |Jφ1 |/|J

φ
0 | ∼ 1. The blue

line represents the stellar surface.

In Fig. 4.7 we compare how various global quantities change, as a function of the mag-
netic dipole moment µ for NSs with fixed gravitational mass M = 1.551M�, and for various
values of the parameter ξ ∈ {−10,−5, 0, 20, 40}. We opted for a parametrization in terms of
µ and M instead of Bmax and M0, because the former are in principle observable quantities,
and as such of greater astrophysical relevance, while the latter are not.

Here we can note that, for a fixed dipole moment µ, the addition of negative current terms
(ξ < 0) leads to less compact and more deformed configurations, conversely the presence of
a positive current term (ξ > 0) makes the equilibrium configurations more compact and less
oblate. This might appear as contradictory: increasing currents should make deformations
more pronounced. However this comparison is carried out at fixed dipole moment µ. This
means than any current added to the outer layers, must be compensated by a reduction of the
current in the deeper ones (to keep µ constant). Giving that deformations are dominated by
the core region, this explains why the star is less oblate. The opposite argument applies for
subtractive currents.

4.1.2 Fully saturated current

In this subsection we extend the previous results obtained for ν = 1, to more general
current distributions in order to investigate also the role played by fully saturated non-linear
currents. Because the convergence of our numerical code noticeably slows down with the in-
troduction of non-linear current terms in the first part of this subsection we limit our analysis
to weakly magnetized NSs (i.e. H << M). In this case one can safely assume that the metric
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Figure 4.7: Variations of global quantities with respect to the non-magnetized configuration, as a function of
the magnetic dipole moment, along an equilibrium sequence with fixed gravitational mass M =

1.551M�, and purely poloidal field. Notation is the same as in Fig. 3.2. Filled dots locate the
points where the maximum strength of zeroth-order term Jφ0 = ρhkpol is equal to the maximum
strength of first-order term Jφ1 = ρhkpolξAφ. Details concerning these configurations and those
which show the higher value of µ for each sequence are listed in Tab. 4.2.
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Table 4.2: Global quantities of selected configurations belonging to the equilibrium sequences shown in
Fig 4.7, at M = 1.551M�. For each value of ξ we show the details for the configuration with the
maximal magnetic dipole moment. For cases with ξ = 20, 40 we also present those configurations
where ratio |J1|/|J0| ' 1.

Model ρc M0 Rcirc rp/re ē H/W Bmax µ |J1|/|J0|

[1014g cm−3] [M�] [km] [10−1] [10−1] [10−2] [1017G] [1035erg G−1]

ξ = 20 8.149 1.678 14.48 9.656 0.468 1.443 2.692 0.629 0.989
6.810 1.665 15.54 8.420 1.773 6.656 4.595 1.477 2.421

ξ = 40 8.426 1.680 14.35 9.827 0.127 0.979 1.417 0.118 0.990
7.320 1.670 15.11 8.857 1.352 4.837 3.964 1.230 4.023

ξ = −5 6.176 1.663 15.75 7.774 2.067 7.482 6.243 1.510 0.585

ξ = −10 7.543 1.674 14.79 8.996 1.014 3.099 4.782 0.911 0.691

terms α and ψ are the same as in the unmagnetized case (up to corrections of the order of
H/M). Moreover, also the structure of the NS is weakly affected by the magnetic field and
one has to solve only the GS Eq. 2.125 on top of the TOV solution. The solution of the
GS equation, in turn, does not depend on the specific value of the magnetic field strength:
if Ψ is a solution of the GS equation for given values of kpol, ξ, ν, α, ψ, ρ, then ηΨ will be
the solution for ηkpol, ξ, ν, α, ψ, ρ. This implies that the strength of the magnetic field can be
renormalized to any values for which the weak magnetization regime holds. In particular we
have chosen to display our solutions by normalizing the strength of the magnetic field at the
pole to 1014G. We have verified that the limit of weak fields holds with high level of accuracy
up to a maximum strength ∼ 1016G, corresponding to a typical surface magnetic field of a
few 1015G. Indeed, for higher fields we observe non-linear variations higher that the overall
accuracy of our numerical scheme (∼ 10−3, see also Appx. A). In the following, we adopt a
slightly different form of the current functionM(Ψ) that allows us to renormalize the current
and to avoid divergences related to the iterative nature of our solver. In particular:

M(Ψ) = kpolΨ

[
1 +

ξ̂

ν + 1

(
Ψ

Ψmax

)ν]
, (4.2)

where Ψmax is the maximum value of the magnetic potential.

In Fig. 4.8 we show the magnetic field and the current distribution for a series of models
computed with different values of ξ̂ < 0 and different values for the poloidal index ν. The
effect of the nonlinear term is to suppress the currents in the outer part of the star, and to
concentrate them in the inner region. The same holds for the magnetic field. As ξ̂ decreases,
the interior of the star becomes progressively less magnetized, and the magnetic field is
confined toward the axis. It is interesting to note that this effect becomes significative only
as ξ̂ approaches −1.0 (for values of ξ̂ closer to 0 deviations are marginal). Moreover it is
evident that in the case of subtractive currents the magnetic field geometry that one finds is
almost independent on the magnetization index ν. Indeed the change in poloidal index seems
only to produce marginal effects in the magnetic field distribution, with configurations that
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are slightly more concentrated toward the axis for smaller values of ν. In particular we find
that the unmagnetized and current free region extends to fill the outer half of the star (the
magnetic field at the equator drops to zero at about half the stellar radius). One also finds, in
general, that the ratio of the strength of the magnetic field at the pole, with respect to the one
at the centre, increases by about 30 to 50%, as ξ̂ approaches −1.

Interestingly, we were not able to obtain models with ξ̂ < −1. This implies that we cannot
find configurations where there is a current inversion (the sign of the current is always the
same inside the star). Our relaxation scheme for the GS equation seems at first to converge
to a metastable equilibrium with accuracy ∼ 10−4, but then the solution diverges. We want
to stress here that the Grad-Shafranov equation, in cases where the currents are nonlinear in
the vector potential Ψ, becomes a nonlinear Poisson-like equation, that in principle might
admit multiple solutions and bifurcations (local uniqueness is not guaranteed). This is a
known problem (Ilgisonis and Pozdnyakov 2003), and suggests that a very small tolerance
(we adopt 10−8) is required to safely accept the convergence of a solution. As discussed in
Sec 2.3, a nonlinear Poisson equations of the kind ∇2ψ = kψa satisfy local uniqueness only
if ka ≥ 0. It is evident that this depends on the relative sign of the coefficient and exponent
of the nonliner source term: in our case the relative sign of ξ̂ and ν. Given that ν is always
positive, what matters is just the sign of ξ. This explains why we can obtain solutions with
additive currents (ξ > 0) even in the regime dominated by the nonlinear term, while solutions
with subtractive currents (ξ < 0) can only be built up to ξ > −1, where the contribution of the
nonlinear current is still smaller than the linear one which acts as a stabilizing term. However
we want to recall here that the GS equation is not a Poisson equation, and it is not proved
that the same uniqueness criteria apply.

In Fig. 4.9 we show the opposite case of additive currents, ξ̂ > 0. The value of ν in
this case establishes how much concentrated these currents are, and plays a major role in
determining the properties of the resulting magnetic field. Rising the value of ξ̂ the nonlinear
currents become progressively more important. We can define a nonlinear dominated regime
in the limit of high ξ̂, where the magnetic field structure and distribution converge to a solu-
tion that is independent of ξ̂. The values of ξ̂, at which this limit is reached, depends on ν.
For ν = 1 the limit is achieved already at ξ̂ = 20 as can be inferred from Fig. 4.9, while for
ν = 10 the limit is reached at ξ̂ ∼ 1000.

In contrast with the case ν = 1, where the presence of the non-linear current does not alter
significantly the morphology of the magnetic field, at higher values of ν the magnetic field
geometry in the nonlinear dominated regime changes substantially. The overall current is
strongly concentrated around the neutral point. The location of the neutral point itself shifts
toward the surface of the NS, from about 0.7 stellar radii at ξ = 0 to about 0.8 stellar radii
in the nonlinear dominated limit. Moreover the maximum in the strength of the magnetic
field is not reached at the centre any longer, but at intermediate radii where the nonlinear
current is located. In this case the value of this local maximum can be a factor a few higher
than the value at the centre. Configurations with two local maxima are also possible. This
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Figure 4.8: Strength of the azimuthal current in units of 1019G s−1 (left half of each panel) and strength of
the poloidal magnetic field in units 1014 G (right half of each panel). White contours represent
magnetic field surfaces (isocontours of Ψ̃). The left column represents cases with ν = 1, the central
one those with ν = 4, the right one those with ν = 10. From top to bottom, rows represent cases
with ξ̂ = −0.5,−0.9,−1.0. The thick green line is the stellar surface. In all cases the surface
magnetic field at the pole is 1014 G.
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Figure 4.9: Strength of the azimuthal current in units of 1019G s−1 (left half of each panel) and strength of
the poloidal magnetic field in units 1014 G (right half of each panel). White contours represent
magnetic field surfaces (isocontours of Ψ̃). The left column represents cases with ν = 1, the
central one those with ν = 4, the right one those with ν = 10. From top to bottom, rows represent
cases with ξ̂ = 2.0, 10.0, 200.0. The thick green line is the stellar surface. In all cases the surface
magnetic field at the pole is 1014 G.
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behavior is strongly reminiscent of what is found for the so-called TT configurations, where
a toroidal component of the magnetic field is also present, inducing a current that behaves as
the nonlinear term we have introduced here (see the next Chap. 5).

Figure 4.10: Magnetic field at the surface normalized to the value at the pole, for various values of ξ̂. Left
column represents cases with ν = 1, central column cases with ν = 4 and right column cases with
ν = 10. Upper panels display the total strength of the poloidal magnetic field, middle panels the
strength of the parallel θ component, and lower panels the radial one.

One can also look at the strength and distribution of the surface magnetic field, shown in
Fig. 4.10. For decreasing values of ξ < 0 the magnetic field tends to concentrate at the pole,
in a region that is ∼ 30◦ for ξ = −1. The radial magnetic field in the equatorial region is
strongly suppressed, the field is almost parallel to the stellar surface, and the overall strength
of the poloidal field is a factor 10 smaller with respect to the case with ξ = 0 . In general
these results are weakly dependent on the value of ν, with higher values of ν leading to
configurations where the field is slightly less concentrated toward the poles. A quite different
behavior is seen for the cases of additive currents ξ > 0. For ν = 1, the radial component
of the magnetic field tends to be higher than in the case ξ = 0, and it tends to be uniform in
the polar region. The θ component of the magnetic field increases in the equatorial region
by about a factor 2. The overall strength of the magnetic field becomes quite uniform over
the stellar surface in the nonlinear dominated regime. These effects are further enhanced for
increasing values of ν. At ν = 4, in the nonlinear dominated regime, the radial component
of the magnetic field reaches its maximum at ∼ ±25◦ from the equator. The θ component,
parallel to the NS surface, is instead strongly enhanced by about a factor 3 at the equator.
The result is that for increasing ξ there is a transition from configurations where the poloidal
field strength is higher at the poles, to configurations where it is higher (by about 40%) at the
equator, with intermediate cases where it can be almost uniform. At ν = 10 these effects are
even stronger: the radial field now peaks very close to the equator, at ∼ ±10◦, and the overall
strength of the magnetic field can be higher at the equator by a factor ∼ 3 with respect to the
poles. This is the clear manifestation of a concentrated and localized peripheral current close
to the surface of the star.
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Strong field regime

Let us come back to strongly magnetized equilibria in order to characterize the defor-
mation induced by the different current distributions with ν > 1. In Fig. 4.11 we plot the
deformation ratio ē, and the relative variation of the circumferential radius ∆Rcirc for various
values of ν, and with ξ̂ chosen such that the fully non linear regime is reached, both for
subtractive and additive terms. Note that, for subtractive currents, the deformation ratio is
insensitive to the values of ν, because, as we have shown, in the subtractive case, the re-
sulting magnetic field is only very weakly dependent on ν. On the other hand, substantial
differences are observed in the case of additive currents.

Figure 4.11: Upper panel: relative variation of the circumferential radius as a function of the maximum
strength of the magnetic field inside the star, for various values of ν and ξ̂. Lower panel: de-
formation rate as a function of the maximum strength of the magnetic field inside the star. These
sequences are done for a constant gravitational mass M = 1.4M�.

Subtractive currents tend to concentrate the field toward the center. This leads to signi-
ficative changes of the rest mass density distribution limited to the core (structures with two
rest mass density peaks can be reached) without affecting the rest of the star. As a conse-
quence, the deformation rate, being related to the moment of inertia, changes less than in the
case ξ̂ = 0, where a more uniformly distributed magnetic field affects also the outer layers.
On the contrary, additive non linear currents tend to concentrate the field toward the edge of
the star, and thus to produce a stronger deformation. This trend is evident in the circulariza-
tion radius. This radius is almost unchanged for ξ̂ = −1, while for ξ̂ > 0 the field causes a
larger expansion of the outer layers of the star. Note that for ξ̂ = 0,−1 and for ν = 1 the
maximum magnetic field strength is reached at the center. For ν = 4 and ξ̂ >> 1 it is reached
half way through the star (see Fig. 4.9).
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4.1.3 Antisymmetric solutions

As we already discussed in Sect.4.1, the parity of the magnetic field, with respect to the
equator, depends on the parity of the linear current term in the magnetization function M.
All the solutions that we have shown previously are symmetric (for Ψ) with respect to the
equator because this linear current term is proportional to the rest mass density. This is a
requirement built into the integrability condition leading to the Bernoulli integral of Euler
equation that fixes the possible functional forms ofM. If one is willing to relax the global
integrability condition, by allowing for example singular surface currents, it is possible to
obtain antisymmetric solutions. Due to the presence of a surface current, there will be a
jump in the parallel component of the magnetic field at the surface. However, introducing
non linear current terms inM, one can go to the fully non linear saturated regime, where the
contribution of the linear current term becomes negligible, and makes the residual jump in
the magnetic field at the surface arbitrarily small. The non linear current term will preserve
the parity of the surface current. We stress that, in this case, equilibrium and integrability
hold inside the star, except at the surface itself.

If we choose forM the following functional form:

M(Ψ) = kpolΨ

[
ξ̂

ν + 1

(
Ψ

Ψmax

)ν]
, (4.3)

and add to the current Jφ, that enters the Grad-Shafranov Eq. 2.125, a singular current term:

kpol cos θ δ(r − RNS ), (4.4)

by rising the value of ξ̂ one can find solutions that are independent of the strength of the
surface current. We show in Fig. 4.12 the result in the case ν = 1, ξ̂ = 50. The jump at the
surface is much smaller than the value of the magnetic field, and the solution can be assumed
to be smooth. The result is dominated by the quadrupolar component.

Notice that the symmetry of the current term only fixes the symmetry of the final solu-
tion. Every symmetric current will lead to the same symmetric field, which depends only
on ν, while every antisymmetric function will lead to the same antisymmetric field, which
again depends on ν alone. With this approach it is not possible to produce for example oc-
tupolar models (where the dipole and quadrupole components are absent). Even the use of
an octupolar surface current leads to dipolar configurations, in the fully saturated nonlinear
regime. In the presence of non linear current term, multipoles are not eigenfunctions of the
Grad Shafranov, and mode mixing is introduced. For the values of ν that we investigated,
there is always a leading dipole component in the symmetric case, and a leading quadrupole
component in the antisymmetric case, even if the strength of higher order multipoles at the
surface can be relevant.
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Figure 4.12: Antisymmetric solution, with ν = 1. Left panel: azimuthal current density normalized to 0.2
times its maximum. Right panel: magnetic field strength, normalized to the value at the pole.
White contours represent magnetic field surfaces (isocontours of Ψ). The thick green line is the
stellar surface.

4.2 Rotating models

In this section we will characterize the effects of the poloidal magnetic field on the equi-
librium structure of rotating NSs. As far as the current distribution is concerned we will focus
on the simplest choice with ξ = 0 in Eq. 2.100 requiring the solutions to have a vanishing
net electric charge. As in the toroidal field case (see Sec. 3.2) we will limit our investigation
to Ω = 5.1 × 103 s−1 since at this frequency, given our choice for the EoS, the parameter
space is substantially reduced because of mass shedding. The parameter space of our mod-
els is shown in Fig. 4.14, in terms of the central density ρc and the gravitational mass M,
at fixed rotational frequency Ω. In each plot we show equilibrium sequences at fixed bary-
onic mass M0, magnetic dipole moment µ, maximum field strength Bmax, or deformation ē.
As expected, in analogy with the toroidal case, both the gravitational and baryon mass rise
with the magnetization (or equivalently with the magnetic dipole moment µ) and with the
rotational frequency Ω. Here, however, the magnetic field deforms the equilibrium in the
same way of the centrifugal force, flattening the star in the direction of the equatorial plane.
As a consequence all the configurations are oblate and the surface ellipticity es is always
positive. The majority of stellar surfaces can be well approximated with standard ellipsoids
having ns ∼ 2. The differences between the deformation induced by the rotation and the one
due to the poloidal field are clearly evident in the low density region of the parameter space
(ρc . 5× 1015g/cm3) where the superellipsoid index ranges from ∼ 1.6 for the configuration
at the mass-shedding limit, to ns ∼ 2.8 for the most magnetized NSs with Bmax & 7 × 1017G.
Indeed, while rigid rotation acts preferentially on the external equatorial layers of the star,



Chapter 4. Purely Poloidal Magnetic Field 83

Ω
=
0
.0
0

0
.5
0

Ω
=
0
.0
0

0
.5
0

0

0

0
0
.5
0

Fi
gu

re
4.

14
:

Sp
ac

e
of

ph
ys

ic
al

so
lu

tio
n

fo
rr

ig
id

ly
ro

ta
tin

g
N

Ss
en

do
w

ed
w

ith
pu

re
ly

po
lo

id
al

m
ag

ne
tic

fie
ld

ob
ta

in
ed

as
su

m
in

g
a

cu
rr

en
td

is
tr

ib
ut

io
n

w
ith

ξ
=

0
in

E
q.

2.
10

0.
To

p
ro

w
:e

qu
ili

br
iu

m
se

qu
en

ce
s

w
ith

fix
ed

ba
ry

on
ic

m
as

s
M

0
(g

re
en

lin
es

)a
nd

fix
ed

m
ag

ne
tic

di
po

le
m

om
en

tµ
(b

lu
e

lin
es

).
B

ot
to

m
ro

w
:e

qu
ili

br
iu

m
se

qu
en

ce
s

w
ith

fix
ed

m
at

te
rd

ef
or

m
at

io
n

ē
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originating hypoellipsoidal with ns < 2, the Lorentz force associated to the poloidal magnetic
field globally flattens the star, from the core to the external layers, reducing the polar radius
and favouring the occurrence of hyperellipsoids with ns > 2. Two representative equilibrium
configurations are shown in Fig. 4.13 and Tab. 4.3. They both share the same value of the
gravitational mass but, because of the different degree of magnetization and rotation rate,
they have ns ∼ 2.5 (left panel) and ns ∼ 1.8 (right panel). Notice that, as discussed before
in Sec. 4.1 the poloidal field does not inflate the outer layers of the star so that the central
density at the mass shedding, for a given Ω, does not change with respect to the unmagne-
tized case, as shown in the right panels of Fig. 4.14. Our finding suggests that the poloidal
field enhances the stability of the configuration close to the Keplerian limit: indeed while the
equatorial Lorentz force in the core region points outward causing the flattening of the star,
in the outer layers it is directed inward playing a confining role.
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Figure 4.13: Top row: electric (left half panel) and magnetic (right half panel) field distribution together with
the contours of the electric potential Φ (left half panel) and of the magnetic potential Ψ (right half
panel) for two configurations sharing the same gravitational mass but with different Bmax and Ω.
Numerical details are shown in Tab. 4.3. Middle row: profile of the magnetic field strength (solid
lines) and of the electric field strength (dashed lines) in the equatorial (red lines) and polar (blue
lines) direction. Bottom rows: polar and equatorial radial profiles of the baryon density ρc.

In Fig. 4.13 we show the morphology of the magnetic and electric field together with
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the isocontours of the magnetic potential Ψ and the electric potential Φ. Inside the star,
Φ traces the magnetic field lines Ψ = cost in agreement with the ideal MHD requirement
∂iΦ = −Ω∂iΨ (Eq. 2.88). Outside the star the structure of the electric potential is mainly
quadrupolar reflecting the fact that the monopolar component has been filtered out in order
to achieve a globally uncharged configuration. The resulting internal electric field strength
reaches its maximum value between the rotational axis and the neutral line, where it vanishes
together with the magnetic field strength. The exterior electric field instead reaches its max-
imum strength in correspondence of the pole of the star. Obviously, different prescriptions
on the total electric charge of the star lead to different morphologies for the exterior electric
field. The interior one instead remains unchanged. Hence, in our models, the structure of the
star is only marginally affected by the choice for the electrosphere, and the associated global
quantities do not change within the accuracy of the code.

Table 4.3: Global quantities for the configuration shown in Fig. 4.13 with gravitational mass M = 1.55M�.

Bmax Ω ρc M0 Rcirc rp/Re ē ns H/W T/W H/M T/M
1017 G 103s−1 1014g/cm3 M� km 10−2 10−2 10−2 10−2

1.88 1.02 4.79 1.65 20.7 0.62 0.267 1.80 1.60 8.67 0.19 1.02
5.72 4.06 4.30 1.64 17.7 0.64 -0.328 2.20 14.0 0.49 1.79 0.06

4.2.1 The structure of the electrosphere

As discussed in Sec. 2.5 the electric field outside the star is not fully determined by the
ideal MHD condition Eq. 2.89, due to the arbitrary constant in the definition of the har-
monic function Φa. This degree of freedom corresponds to an arbitrary net surface charge
that can always be added to an the equilibrium configuration, and which manifests itself in
the global structure of the electrosphere. The choice for this arbitrary constant is usually
motivated on physical grounds. In the literature a typical choice is to assume a vanishing net
charge (Goldreich and Julian 1969, Bocquet et al. 1995, Franzon and Schramm 2015, Fran-
zon et al. 2016a), based on the assumption that any charged astrophysical object can pull
opposite charges from the interstellar medium (ISM), till it neutralizes. This argument how-
ever is strictly valid only for non-rotating systems. The charge is not a relativistic invariant,
and it is debatable in which reference frame (the ISM or the rotating NS) charge neutrality
should hold. It is indeed well known that a neutrally charged rotating NS, while not able to
attract charges from infinity, can easily pull them from its surface, thus creating a magneto-
sphere and charging itself Goldreich and Julian (1969). Other different choices have been
presented even if less often. One can assume a net charge, in order to minimize the electric
field, responsible for the extraction of charges from the surface (Michel 1974), or in order to
minimize the electromagnetic energy in the space outside the star (Ruffini and Treves 1973).
In the following we esplore these possibilities in order to characterize the structure of the
external electric field, the surface charge distribution, and the associated Lorentz force. For
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Figure 4.15: Top panels: distribution of the electric field strength E =
√

ErEr + EθEθ together with the iso-
contour of the potential Φ for configurations with vanishing net electric charge (left panels) and
vanishing polar electric field (right panels). Bottom panels: radial profiles of the magnetic (blue
lines) and electric (red lines) field strength along the equatorial (solid lines) and the polar direc-
tion (dashed lines).
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convenience, we restrict our investigation in the weak magnetization and slow rotation limit
assuming, for our fiducial model with M = 1.55M� (see Sec. 2.8) a polar magnetic field
Bpole ∼ 1014 G, and a rotation frequency Ω = 2 × 102s−1.

Let us begin, discussing the left panel of Fig. 4.15 where we show the electric field
distribution for a globally uncharged star. The external electric field peaks at the pole, in
the so called polar cap, i.e. the region of magnetic field lines potentially extending at radii
beyond the Light Cylinder. This electric field is capable of lifting charges from the stellar
surface in the magnetosphere and beyond.

In the right panel of Fig. 4.16 we show the electric field distribution for a star where
the external electric field vanishes at the poles. The star is endowed with a non vanishing
net electric charge which, in this case, corresponds to Qe = 3 × 1024statC, still far below
the critical value ∼ 1029statC (i.e. ∼ 0.1

√
GM0 in cgs units) capable to induce substantial

effects in the stellar structure (Ghezzi 2005). The electric field peaks at the stellar equator,
where it is about a factor ∼ 2 stronger than the internal one. This star while unable to extract
charges from the polar cap, can pull them from the ISM.

We have also analyzed the energetics of the electrosphere: the configuration that mini-
mize the electromagnetic energy of the system is the uncharged one. This is in contrast with
the results obtained in Ruffini and Treves (1973), where the minimum energy configuration
has a negative net charge. In that work however, the structure of the magnetic field was
chosen to depend on the specific value of the electric charge.

In either case, the electric field has a discontinuous normal component at the surface,
corresponding to a surface charge given by:

σe = Er
out − Er

in, (4.5)

and shown in Fig. 4.16 normalized to the Goldreich-Julian value σGJ = ΩBpolerp = 9.5 ×
1010statC cm−2. Notice that the sign of the surface charge, as well as the sign of the electric
field, depends on the relative orientation of the magnetic dipole moment and the angular
momentum. As a result the sign of the Lorenz force acting on such surface charge does not.
Our results are shown for the aligned case.

In Fig. 4.16 we also plot the orthogonal and parallel component (with respect to the
magnetic field) of the Lorentz force acting on the surface charge density given by Li =

σeEi. It is possible to see that inside the star the MHD condition guarantees that the parallel
component of the Lorentz force vanishes.

In the uncharged configurations the charge surface density is maximal at the pole. The
Lorentz force with respect to the internal electric field vanishes on the rotation axis, reaches
its maximum strength at latitude ∼ ±50 deg and points always toward the equator, remain-
ing mainly tangential to the stellar surface. The Lorentz force with respect to the external
electric field instead is mainly parallel to the magnetic field in the polar region, and becomes
mainly orthogonal in the equatorial region where it points inward. In the case of a negative
surface charge, (an electron excess if angular momentum and dipole moment are aligned),
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the Lorentz force is able to extract electrons. In the case of a positive surface charge (an
ion excess if angular momentum and dipole moment are counter-aligned) the Lorentz force
will be unable to extract ions. Assuming a cohesive energy ∼ 350keV for an iron chain
with spacing ∼ 10−9cm at B = 1014G (Medin and Lai 2006, 2007), the critical electric field
capable to directly rip iron ions off the stellar crust is of the order of ∼ 1013−14statV/cm
which is larger than the electric fields of our model (∼ 1012). In this case, instead of driving
a magnetospheric current, the overall Lorentz force will stretch the stellar crust outward in
the polar region and inward in the equatorial one, favoring a prolate deformation of the crust
itself, that might counterbalance the oblateness of the underlying star.

The configuration with a vanishing polar Lorentz force is instead characterized by a sur-
face charge density of opposite sign, with respect to the uncharged case, with a maximum
at the equator. By consequence, the action of the surface Lorentz force is reversed: the
maximum strength is reached in the equatorial region, and the force always points toward
the exterior of the star. If the surface charge is made of electrons (counter-aligned case)
such force could pull them out from the surface and fill the closed magnetosphere within the
Light Cylinder. If instead it is made of ions (aligned case) this could lead to an oblate crustal
deformation, that adds to the oblateness of the underlying star.

Let us point here that once one allows the presence of a singular surface charge (and the
related Lorentz force) in the Maxwell Equations Eq. 2.78, then there is no reason to impose
the absence of any singular surface current. This is however usually done in building equi-
librium models, because it guarantees the integrability for non rotating system and avoids
the problem to consider arbitrary crustal currents that in general are not well constrained by
physical arguments. On the other hand the extra degree of freedom associated with a surface
current, can be used to modify the magnetic field structure, and the net Lorentz force at the
surface. In particular if one chooses the following surface current:

Jsurf = σe
Ω − ω

α
δ(r − re), (4.6)

corresponding to the assumption that the surface charge corotates with the star, then a dis-
continuity in the azimuthal component of the magnetic field arises:

Jsurf =
Bθ

in − Bθ
out

ψ2 sin θ
. (4.7)

and both the radial and azimuthal component of the Lorentz force at the surface, with respect
to the internal electromagnetic field vanish. The surface charge and currents are now in
equilibrium with respect to the internal field. Note however that no current can suppress the
component of the Lorentz force parallel to the magnetic field, outside the star. Moreover,
the new current term induces only small deviation . 10−5 on the global structure of the
electromagnetic field. The relevant effect is on the Lorentz force itself.
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Figure 4.16: Top rows: surface charge density, parallel component |L‖| and perpendicular component |L⊥|
of the surface Lorentz force as a function of the colatitude (parallel and perpendicular refer
to the direction of the magnetic field). Bottom row: vector plots of the surface electric field
E î, of the Lorentz force Lî and its perpendicular and parallel component. Numerical values
are normalized to σGJ = EGJ = ΩBpolerp and LGJ = ρGJEGJ (corresponding respectively to
σGJ = 9.5 × 1010statC cm−2, EGJ = 1.2 × 1012statVolt cm−1 and LGJ = 1.1 × 1023dyne cm−2 ).
Panels on the left refer to the uncharged equilibrium configuration while panels on the right refer
to the configuration with vanishing polar electric field.
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4.3 Global trends

4.3.1 Results at fixed gravitational mass

In analogy to what has been done in the toroidal field case (see Sec. 3.2) we present
a detailed analysis of models at fixed gravitational mass M = 1.551M�. In Fig. 4.17 we
show the variation of ρc, M0 and Rc, with respect to the non rotating and unmagnetized
equilibrium configuration, as function of the maximum magnetic field strength Bmax and the
magnetic dipole moment µ along equilibrium sequences with constant rotation frequency
Ω. Just as in the toroidal case, the qualitative effects of the poloidal magnetic field remain
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Figure 4.17: Variation of the baryon mass M0, central density ρc and circumferential radius Rc and of the
deformation ratio ē with respect to the unmagnetized and static reference model along sequences
of constant gravitational mass M = 1.55 M� for different values of the rotational rate Ω as a
function of the maximum strength of the poloidal magnetic field Bmax.

the same independently of the rotational rate: both the baryonic mass M0 and the central
density ρc decrease with Bmax while the circumferential radius Rcirc and the deformation rate
ē grow. Interestingly, independently of Ω, the configuration at the turning point shows a
circumferential radius Rcirc about 20% larger than the unmagnetized model, corresponding
to ē ∼ 0.3.

The role of the rotation can be factored out as an offset, plus an enhancement of the
effectiveness of the magnetic field, and it is still possible to find a self-similarity scaling,



Chapter 4. Purely Poloidal Magnetic Field 91

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

H/W[10
−1
]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

e
−
e
(Ω
,B
=
0
)

Ω=0.00

Ω=1.02

Ω=2.03

Ω=3.05

Ω=4.06

Figure 4.18: Variation of the deformation rate ē with respect to the unmagnetized rotating reference config-
uration as a function of the magnetic to binding energy ratio along sequences with fixed mass
M = 1.55M�.

as for the toroidal field case. In particular Eqs. 3.2 and 3.3 are still valid with aē = −0.15
and bē = 0.27 respectively, in the range Ω . 3 × 103s−1 and T/M . 5 × 10−3 as shown
in Fig. 4.18. With respect to the toroidal case, the sign of bē changes from negative to
positive, while the sign of aē remains the same. Therefore, if parametrized in terms of H/W
the rotation coupling term acts to reduce the deformation of the star. This because at given
H/W, the configurations with slower rotation, have larger magnetic energy H resulting in
a more evident deformation. We stress here that H, which now includes also the electric
energy that contributes at most within few percent on the total energy even for the fastest
rotator, is not entirely confined inside the star as in the toroidal field case. Indeed ∼ 25% of
the total energy is located outside the star.

In the range Bmax . 3×1017G and Ω . 4×103s−1 (corresponding to H/W . 3.5×10−2 and
T/W . 5.1 × 10−2 or H/M . 2.5 × 10−3 and T/M . 4.1 × 10−3 ), which is comparable with
the bilinear regime for the purely toroidal field case (see Eqs. 3.4 and 3.5), the deformation
rate ē is approximated with an accuracy . 10% by the relation

ē = dΩ Ω2
ms + dB B2

17 (4.8)

where dB ' 5.4 × 10−3 and dΩ ' 0.3. Analogously, for the surface ellipticity we find:

es = sΩ Ωms + sB B2
17 (4.9)

with sB ' 5 × 10−3 and sΩ ' 0.4.

These scaling laws can be also given in term of the magnetic dipole moment µ that, in
contrast with Bmax, is a measurable quantity. We obtain, in the same range as before, that:

ē = dΩ Ω2
ms + dµ µ2

35 (4.10)
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where dµ = 0.14 and
es = sΩ Ω2

ms + sµ µ2
35 (4.11)

with sµ ' 0.11 (µ35 is the value of the magnetic dipole moment in unity of 1035erg G−1). In
Fig 4.19 we show the variations of different stellar quantities as functions of µ. Notice that,
just as the magnetic energy, µ is a monotonic function of the magnetization kpol. Moreover,
in the case of ∆M0, a parametrization in terms of µ reduces the non-linear coupling between
rotation and magnetic field.
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Figure 4.19: Variation of the baryonic mass M0, central density ρc and deformation rate ē as a function of
the magnetic dipole moment µ along equilibrium configurations with fixed gravitational mass
M = 1.55M�.

4.3.2 The effects of the current distribution

An extensive investigation of the parameter space in the case of rotating models, using
different prescriptions for the current distribution, is computationally expensive. Indeed, as
anticipated in Sec. 4.1.2, the non-linear current term substantially slows down the conver-
gence of the scheme even in the static case, where we have just to solve the Grad-Shafranov
equation. In order to get some handling on the effects of the current distribution on the de-
formation of the star, as we have done in the toroidal field case, we have just analyzed the
simple static case with ν = 1, confident that in the bilinear regimes the effects of the mag-
netic field and the rotation can be separated. We have found that in the range | ξ | . 30, away
from the fully saturated regime, the effects of the non-linear currents terms can be effectively



Chapter 4. Purely Poloidal Magnetic Field 93

reabsorbed with a parametrisation in terms of H/W (or equivalently H/M) with an accuracy
of ∼ 5%, using an effective energy ratio

ē ' F
(
[1 + aξξ]

H
W

)
(4.12)

where aξ = −2.8 × 10−3. In the linear regime with Bmax . 2. × 1017 G, the parametrisation in
term of the magnetic field strength can be generalized as

ē = dB[1 + dξ ξ] B2
17. (4.13)

with dξ = 4.1 × 10−3.

The difference between the signs of aξ and dξ may appear contradictory. This discrepancy
is however only apparent since, for a fixed value of H/W, the configuration with ξ < 0 has a
larger value of Bmax than the configuration with ξ > 0. This is because subtractive currents
demagnetize to outer layer of the star and, in order to achieve higher value of H/W, one
has to increase the maximum strength of the magnetic field which in turn largely affects
the core. This holds also in the fully saturated regime where, however, it is not possible
to find a simple parametrization of the current distribution effects neither in term of energy
ratios or other global quantities such as the magnetic dipole moment. Interestingly however,
if parametrized in terms of H/W the deformation of the fully saturated regime ranges just
within a factor 2. This suggests that the morphology of the current distribution, rather than
its global magnetic energy content, may play a relevant role in affecting the structure of the
star.

4.3.3 Dependency from the gravitational mass

As expected, also for a purely poloidal field, the effect of magnetization and of rotation
depends on the compactness of the star. To generalize the trends found in the previous
sections, to different gravitational masses, we again make use of an effective energy ratio:[ H

W

]
eff

=
1.55M�

M
H
W
. (4.14)

By using this quantity the quadrupole deformation can be parametrized as in the Eq. 3.11,
where the coupling term is now given by

aē,eff = −

(
2.5 − 2.4

M
1.55M�

)
. (4.15)

and the functional form for F is

F (x) = 3.8x − 4.3x1.5. (4.16)
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This parametrization is able to describe the trends of the quadrupole deformation with an
accuracy less than 5% up to ē ∼ 0.15 as shown in the left panel of Fig. 4.20. Notice that
here, as in the toroidal field case, for a fixed value of H/W the coupling term aē,eff reduces
the absolute value of ē.
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Interestingly a more accurate parametrization of ē can be obtained including, as a pa-
rameter, the reciprocal of the circumferential radius in place of the gravitational mass. In
particular we obtain that, by using the relation

ē ' 3.2
T
W

∣∣∣∣∣
B=0

+ G

([
1 + cē,effΩ2

ms

] H
W

R14

)
, (4.17)

where R14 is the circumferential radius normalized to 14km, the coupling therm is given by

cē,eff = −3.6 + 3.0
M

1.55M�

(4.18)

and the functional form of G is
G = 4.8 x − 5.1 x1.3, (4.19)

we can fit with high accuracy the variation of ē for all the value of Ω and M even in the
strong magnetization regime as shown in Fig. 4.20.

Limited to the bilinear regime, the coefficients appearing in the Eqs. 4.8-4.11 are listed
in Tab. 4.4 as a function of the gravitational mass. Interestingly the coefficients dµ and sµ are
only weakly affected by the specific value of the gravitational mass and they remain almost
constant within ∼ 5%.

In the perturbative regime of H,T → 0 the relation in Eq. 3.11, with Eq. 4.15 and
Eq. 4.16, gives:

ē =
Cē

W0

[
T + 1.8

H
M/M�

]
, (4.20)
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Table 4.4: Mass dependency for the expansion coefficients for both ē and es in the case of purely poloidal
magnetic fields.

M dΩ dB dµ sΩ sB sµ
M� 10−1 10−3 10−1 10−1 10−3 10−1

1.40 4.2 9.8 1.4 6.0 8.0 1.2
1.45 3.8 8.1 1.4 5.1 7.1 1.2
1.50 3.4 6.7 1.4 4.6 5.6 1.2
1.55 3.0 5.4 1.4 3.8 4.0 1.2
1.60 2.6 4.4 1.4 3.5 3.6 1.2
1.65 2.2 3.2 1.4 3.1 3.0 1.2

which is the analogous of Eq. 3.13 for the toroidal magnetic field. The main difference
between the two relations is that in the poloidal field case the sign of the magnetic term
is positive. This reflects the fact that a poloidal field induces an oblate deformation. An
analogous relation is found also for the apparent ellipticity:

es =
Ces

W0

[
T + 1.1

H
M/M�

]
. (4.21)

4.4 Summary

In this chapter we have analyzed a large sample of axisymmetric equilibrium models
with purely poloidal magnetic field either rotating or static, and for the latter we have also
investigated different current distributions. For rotators we have assumed an outer vacuum
and shown how different prescriptions for the global charge translate into the properties of
the electrospheres.

Just as in the toroidal field case, along sequences of constant gravitational mass or con-
stant baryonic mass there exists a maximum strength that the magnetic field can reach inside
the star: a further increase of magnetization leads to a rapid drop in the central density in
conjunction with a rapid expansion of the equatorial radius and a contraction of the polar
radius. As in Cardall et al. (2001), this finally results in doughnut-like configurations where
the magnetic stresses move the maximum of the density off-center. Contrary to the toroidal
field case where rotation counterbalances the effects of the magnetic field here the centrifu-
gal effects act in the same direction of the magnetic field. On the other hand the non linear
coupling is analogous, with rotation enhancing the effectiveness of magnetic field in deform-
ing the star. As a consequence, the surface shape of star changes depending on the dominant
effect: strongly magnetized configurations appear as hyperellipsoids, while configurations
dominated by rotations appear as hypoellipsoids. Interestingly, since the poloidal magnetic
field does not produce an inflation of the outer layers of the star, where the density distri-
bution remains similar to the unmagnetized case, the mass-shedding limit is only weakly
affected by the presence of the magnetic field itself. In particular, in line with what has been
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found by Franzon and Schramm (2015), at fixed central density the Lorentz force induced
by the poloidal field stabilizes the star against mass shedding.

Since we are not interested in modeling the pulsar magnetospheres we obtain our models
under the electrovacuum assumption. We have however analyzed the structure of the elec-
trosphere arising in consequence of the rotation. Since the electric field outside the star is not
fully determined by ideal MHD inside the star but there is an additional degree of freedom
that corresponds to the net charge of the star, we have considered either configurations with
vanishing net electric charge or configurations where we neutralize the Lorentz force at the
pole. While the interior configuration is not influenced by this choice, differences emerge
in the surface distribution of the charge density and the associated Lorentz force. For glob-
ally uncharged star the electric field peaks in the polar caps, in the other case at the equator.
In both cases, depending on the alignment/counter-alignment between the rotation and the
magnetic dipole, the Lorentz force is able to extract negative charges from the surface of the
star (at polar cap for the uncharged star, at the equator in the other case) or to induce crustal
stresses that are directed toward the equator for globally uncharged star or toward the pole if
the polar Lorentz force is neutralized.

Analyzing different current distributions we have seen that: additive currents tend to
concentrate the field in the outer layer of the star, where in the most extreme cases the mag-
netic field assumes its maximum strength; instead subtractive currents confine the magnetic
field toward the axis, leaving in the the fully saturated non-linear regime a large unmagne-
tized region inside the star. These latter configurations appear similar to what has recently
been found in full time-dependent MHD simulations of proto-NS formation in supernovae
by Obergaulinger et al. (2014) (see the bottom panel of their Fig. 14). The reason is due to
the fact that turbulent eddies tend to expel magnetic field (Moffatt 1978) which concentrates
towards the axis, and becomes almost tangential at the proto-NS surface. Finally, the interior
distribution of currents reflects on the multipolar structure of the surface magnetic field: in
the case of subtractive currents the magnetic field is mainly concentrated along the axis and it
can be strongly suppressed at the equator; for additive currents located at the edge of the star,
the situation is reversed. Notice that, independently from the specific choice for currents, all
our configurations are dominated by the dipolar component of the magnetic field. Moreover
they retains the same equatorial simmetry of the density distribution. This is because, in
order to numerically solve the GS equation, we need to maintain a stabilizing term, propor-
tional to the density distribution, in the expression of the current function. Antisymmetric
solutions can be obtained only replacing this stabilizing term with a singular surface current.

As for purely toroidal field, it is possible to parametrize the deformation of the star in
terms of a balance between the rotational energy, the magnetic energy and the binding energy
(or analogously the gravitational mass). In particular it is possible to reabsorb the effects
related to the current distribution and the compactness in a unique functional form that is able
to fit the induced deformation in our parameter space up to the non linear regime of strong
magnetization and fast rotation. We have seen that the deformation of the star is mainly
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indicative of the energy content of the system rather than the distribution of the currents
inside the star. The latter becomes relevant only in the fully saturated regime.





5 Mixed magnetic field

It is well known that purely toroidal or purely poloidal magnetic fields are both unstable
on an Alfvén crossing time (Tayler 1973, Flowers and Ruderman 1977, Wright 1973, Lan-
der and Jones 2011a,b, Kiuchi et al. 2011, Ciolfi et al. 2011) and it has been suggested that
only a combination of the two is capable to stabilize the system on much longer timescales
(Braithwaite and Spruit 2006, Akgün et al. 2013, Mitchell et al. 2015). Axisymmetric con-
figurations with both poloidal and toroidal fields are generically referred as Twisted-Torus
(TT) configurations. The main characteristic of this morphology is that the toroidal fields
threads the closed field line region of the poloidal field, remaining confined to a torus like
region under the surface of the star. Such kinds of configurations have been investigated
by different authors (see Sec. 1.4) because previous dynamical studies (in particular Braith-
waite and Nordlund 2006, Braithwaite and Spruit 2006, Braithwaite 2009) have shown that
a magnetic field inside a fluid star tends to relax toward a TT geometry that, in turn, can be
considered ‘stable’ if the toroidal component is energetically dominant with respect to the
poloidal counterpart (see also Secs. 1.3 and 1.4 for a discussion). Despite several attempts in
various regimes (Ciolfi et al. 2009, Lander and Jones 2009), only equilibrium configurations
where the energetics was dominated by the poloidal component could be found. Recently
Ciolfi and Rezzolla (2013) and Fujisawa and Eriguchi (2015) have shown that very pecu-
liar current distributions might be required in order to obtain toroidally dominated systems.
This raises questions about the importance of the specific choice of the form of the free cur-
rents I andM. More precisely one would like to know if previous failure to get toroidally
dominated geometries is due to a limited sample of the parameter space, or if only very ad
hoc choices for the current distribution and/or boundary conditions satisfy this requirement.
Most of the efforts have focused on understanding how this magnetic field acts on the star
and the amount of deformation that it induces, using however only a limited set of models
and current distributions.

In this Chapter, that is based on Pili et al. (2014) and Bucciantini et al. (2015a), we will
consider simple ‘canonical’ TT models in order to discuss the effects of a mixed geometry
on the structure of the NS. Then in Sec 5.2 we extend our results to more general current
distributions, in order to check if and under which conditions equipartition of the toroidal
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and poloidal component can be achieved.

5.1 Twisted Torus models: the effects on the stellar struc-
ture

To generate mixed field configurations, we add to the current functionM, used in purely
poloidal models, i.e.

M(Ψ) = kpolΨ(1 + ξΨ ν), (5.1)

a current function I, with the following functional form:

I =
a

ζ + 1
Θ[Ψ − Ψsur](Ψ − Ψsur)ζ+1 (5.2)

where Θ[.] is the Heaviside function and Ψsur is the maximum the magnetic potential Ψ

reaches on the stellar surface. The above choice guarantees that the currents are all confined
within the star with components given by

Jr = α−1Bra Θ[Ψ − Ψsur](Ψ − Ψsur)ζ , (5.3)

Jθ = α−1Bθa Θ[Ψ − Ψsur](Ψ − Ψsur)ζ , (5.4)

Jφ = ρhkpol(1 + ξΨ ν) +
a2

(ζ + 1)α2R2 Θ[Ψ − Ψsur](Ψ − Ψsur)2ζ+1. (5.5)

Let us start with the simplest case, assuming ξ = 0 and ζ = 0. Notice that the presence of
the current term linked to I is actually equivalent to the existence of an effective non-linear
current term. In Fig. 5.1 we present a typical TT model, and in particular this configuration
corresponds to the one with the highest toroidal magnetic field among all our models. As
anticipated, the structure of the poloidal magnetic field closely resembles what was found
in the previous chapter, on purely poloidal models: it threads the entire star, reaches its
maximum value at the center, vanishing only in a ring-like region in the equatorial plane,
and crosses smoothly the stellar surface. The magnetic field outside the star is dominated by
its dipole component. The toroidal field distribution is reminiscent of purely toroidal field
cases with large m > 10: it does not fill completely the interior of the star, but it is confined
in a torus tangent to the stellar surface at the equator. It reaches its maximum exactly in the
ring-like region where the poloidal component vanishes. Of course this behaviour is related
to our choice of the poloidal current distribution, and to our requirement that they should be
confined within the star.

In the same Fig. 5.1 we also show the distribution of the baryonic density. It is evident that
the poloidal component of the magnetic field, which is also energetically dominant, is mostly
responsible for the deformation of the star in our TT configurations: the baryonic density
distribution in fact resembles closely what we obtained in the purely poloidal configurations,
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Figure 5.1: TT configuration with a gravitational mass M = 1.551M�, a baryonic mass M0 = 1.660, a maxi-
mum field strength Bmax = 5.857 × 1017 G. Left panel: baryonic density distribution. Right panel:
strength of the toroidal (left half) and poloidal (right half) magnetic field components, superim-
posed to magnetic field surfaces (isocontours of Ψ). The blue curve locates the stellar surface. The
other global physical quantities of this configuration are listed in the last line of Table 5.1.

the stellar shape is oblate and the external layers have a lenticular aspect, with only small
deviation ∼ 5% form the typical superellipsoidal shape.

Table 5.1: Global quantities for various TT models with the same gravitational mass M = 1.551M� but
different values of both Bmax and a (see Fig. 5.2). In the last three lines we present the models with
the highest maximum magnetic field that we could build, for each value of a.

a ρc M0 Rcirc re/rp ē H/W Bc Btor,max µ Htor/H
[1014g cm−3] [M�] [km] [10−1] [10−1] [1017G] [1017G] [1035 erg G−1] [10−2]

0.5 8.488 1.680 14.24 1.000 0.033 0.011 0.745 0.194 0.173 2.893
0.5 7.890 1.675 14.70 0.935 0.715 0.251 3.338 0.944 0.862 3.228
0.5 5.373 1.650 16.88 0.723 2.636 1.285 5.344 1.974 2.308 4.082
1.0 5.545 1.647 17.41 0.733 2.510 1.455 4.409 3.983 2.790 7.262
1.5 5.454 1.645 18.11 0.711 2.552 1.566 4.134 5.582 3.199 7.282
2.0 6.713 1.660 16.40 0.816 1.636 0.880 3.758 5.857 2.152 6.696

Fig. 5.2 shows a comparison between the strength of the toroidal and poloidal magnetic
field in the equatorial direction with different values of the magnetization constants kpol and
a. We found that, at a fixed value of a, the strength of both the toroidal and poloidal field
grows with kpol, while if one keeps fixed the maximum strength of the poloidal field, then the
region occupied by the torus shrinks as a grows.

In Fig.5.3 we show the relation between the magnetic dipole moment and the value of the
magnetic field strength in the centre Bc along equilibrium sequences where the gravitational
mass has been kept fixed, M = 1.551M�, for various values of a = {0.0, 0.5, 1.0, 1.5, 2.0}.
It is evident that at fixed magnetic dipole moment, the field strength decreases with a. This
can be understood if one recalls that at higher values of a there is an increasing contribution
to the magnetic dipole moment from currents associated to the toroidal field (the same value
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Figure 5.2: Profiles of the strength of the poloidal and toroidal components of the magnetic field, along the
equator. re is the equatorial radius. All models have the same gravitational mass M = 1.551M�.
Top panels show three models with a = 0.5 and kpol = 0.04 (left), kpol = 0.18 (center) or kpol = 0.31
(right). The left bottom panel shows a model with a = 1.0 and kpol = 0.23, the central bottom
panel with a = 1.5 and kpol = 0.22, and the right bottom panel with a = 2.0 and kpol = 0.19. The
global physical quantities of these configuration are listed in Table 5.1.

of µ corresponds to a lower value of kpol). As a result the value of the magnetic field at
the center, which is mostly determined by the current term ρhkpol, drops. This is the same
behaviour that we have already discussed for purely poloidal field in Sec. 4.1.1. Moreover,
it is also evident that there is a maximum asymptotic value that the central magnetic field Bc

can reach inside the star, and that it is smaller for higher values of a. As shown in Fig. 4.4
in the previous chapter, in the case a = 0 this asymptotic value is actually an inversion point
for the magnetic field. Even if we have not computed models with higher µ for a , 0, it is
reasonable to expect that this behaviour remains the same also at higher a.
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Figure 5.3: Magnetic dipole moment µ as a function of Bc for various values of the parameter a. All models
have the same gravitational mass M = 1.551M�.
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In Fig. 5.4 we display, along the same sequences, how selected global quantities change
as a function of the magnetic dipole moment µ. We stress here that this parametrization is
not equivalent to the one in terms of the strength of the magnetic field. We can notice that for
a fixed value of µ the deviation from the unmagnetized case is progressively less pronounced
at increasing values of a. This is related to the same behaviour discussed above for Bc.
Peripheral currents, that contribute to the magnetic dipole moment, have minor effects on the
magnetic field at the center. On the other hand it is the poloidal field that penetrates the core
and dominates the energetics which is mostly responsible for these deviations. Moving to
higher values of µ along the TT sequences in Fig. 5.4 the mean deformation rate ē and the
circumferential radius Rcirc increase whereas the central density ρc diminishes, just as in the
purely poloidal configurations.
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ē

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

µ [10
35

erg/G]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a=0.0
a=0.5
a=1.0
a=1.5
a=2.0

Figure 5.4: Behaviour of the baryonic central density ρc, of the baryonic mass M0, of the circumferential
radius Rcirc and the mean deformation rate for TT equilibrium sequences with a fixed gravitational
mass M = 1.551M�. All quantities are shown as a function of the magnetic dipole moment µ.
The models corresponding to the extreme cases for each sequence are presented in details in the
last four lines in Table 5.1.

It is also interesting to look at the same quantities as parametrized in terms of the strength
of the magnetic field and the associated energy content, either for the toroidal or the poloidal
component. In our models, for a < 1, the maximum magnetic field inside the star is asso-
ciated with the poloidal component, and it is coincident with the central value Bc, while for
a > 1 the maximum strength of the magnetic field is associated to the toroidal component.
This does not seem to depend on the overall strength of the magnetic field. For the high-
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Figure 5.5: Mean deformation rate ē (top) and ∆ρc (bottom) displayed as a function of Bc and Btor,max along
the same sequences shown in Fig. 5.4.

est values of a the strength of the poloidal component of the magnetic field might reach its
maximum in the torus region rather then at the centre of the star (see the trend in Fig. 5.2).

In Fig. 5.5 we show ∆ρc and ē as a function of Bc and Btor,max. We can notice that
for a fixed Bc the trend with a is exactly the opposite than the one shown previously for
fixed µ. This might seem counter-intuitive, given that both quantities are parametrizations of
the strength of the poloidal field. However, models with higher a, at fixed µ, have weaker
central fields, and smaller deviations, while models with higher a, at fixed Bc have higher
total magnetic energy, and as such larger deviations. The effects due to the tension of the
toroidal field (that would lead to a less deformed star), are dominated by the drop in the
central density due to the increase of magnetic energy. For the same reason, when shown as
a function of the maximum strength of the toroidal magnetic field, models show that higher
values of a imply smaller deviations from the unmagnetized case.

In Fig. 5.6 these same sequences are shown in terms of their energy content. We note
that, at fixed Bc, the equilibrium configurations with higher a are characterized by a higher
value of both the total toroidal magnetic field energy Htor, and the poloidal magnetic field
energy Hpol, as expected. It is also evident that the parameter a regulates the ratio of energy
between the toroidal and poloidal components of the magnetic field, Htor/H. We see that the
ratio Htor/H tends to a constant in the limit of a negligible magnetic field. In the last panel
in Fig. 5.6 we also show the relation between Bc and the maximum strength of the toroidal
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magnetic field Btor,max. The ratio Htor/H shows a clear maximum at ∼ 0.07 for a ' 1.5. For
smaller values of a this ratio increases because the strength of the toroidal field increases,
however, for a & 1, the volume taken by the torus, where the toroidal field is confined,
diminishes substantially, reducing the energy of the toroidal component. The net effect of
the torus shrinkage on Htor/H is also evident from Fig. 5.7 where the magnetic energy ratio
is shown as a function of the parameter a along a sequence with fixed Bc = 2 × 1017 G.
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Figure 5.6: Top left panel: toroidal magnetic energy Htor. Top right panel: poloidal magnetic energy Hpol.
Bottom left panel: ratio of the toroidal magnetic energy Htor to the total magnetic energy H. Right
bottom panel: maximum value of the toroidal magnetic field strength Btor,max. All quantities are
plotted as a function of the central magnetic field strength Bc along the same sequences shown in
Fig. 5.4.

Summarizing our results, in this section we have seen that while the magnetization con-
stant kpol regulates the strength of both the toroidal and poloidal magnetic field (up to the
inversion point, where Bc reaches its maximum value along the equilibrium sequence), the
parameter a controls the magnetic energy ratio Htor/Hpol, modifying the profiles of the mag-
netic distribution inside the star. As the parameter a grows the amplification of the toroidal
component is accompanied by a growth of the poloidal component in the outer layer of the
star and its morphology strictly resembles the one obtained with fully saturated additive cur-
rents discussed in Sec. 4.1.2 (compare Fig. 5.2 and Fig. 4.9). As a consequence, at a given
Hpol, configurations with higher a have a larger total magnetic energy, corresponding to a
larger toroidal field, but a smaller value of the central magnetic field strength. This not only
reflects on the peculiar trends observed for µ, but it has also important consequences on the
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Figure 5.7: Ratio of the toroidal magnetic energy Htor to the total magnetic energy H as a function of the
parameter a along a sequence with fixed gravitational mass M = 1.551M� and central magnetic
field strength Bc = 2 × 1017 G.

effects of mixed field on the stellar deformation: in our equilibrium models, the growth of
the toroidal field strength, requires a redistribution of the poloidal energy toward the stel-
lar surface that manifests as a reduction of the effectiveness of the poloidal field in affect-
ing the deformation of the star (see Sec. 4.3.2). This implies that our previous results in
Eqs. 3.13 and 4.20, obtained separately for a purely toroidal or a purely poloidal magnetic
field respectively, can not be used together to infer the induced deformation even in the lin-
ear regime, where differences are already of the order of 40% for the higher values of a.
Nevertheless, the previous parametrizations of ē can be generalized to

ē '
Cē

W0

[
−(1.3 + qtor a)

Htor

M/M�

+ (1.8 + qpol a)
Hpol

M/M�

]
, (5.6)

where qtor and qpol are corrective coefficients accounting for the current redistribution. Since
the contribution of the toroidal magnetic field energy Htor to ē is . 5% and since we expect
that the poloidal current redistribution is less efficient in deforming the star than fully sat-
urated toroidal currents (see Secs 3.5 and 4.3.2 ), we assume qtor = 0. For weak magnetic
fields B . 1017 G and a . 2 the linear trend of ē is fitted by Eq. 5.6 with an accuracy . 10%
assuming qpol = 0.33.

5.2 The role of the current distribution

Let us discuss in this section the role played by a different current distribution regulated
by the parameter ζ in the Eq. 5.2. As in Sec. 4.1.2 for the purely poloidal field case, we limit
our study to the weak magnetization regime adopting a different renormalization for the
current term I. Eq. 4.2 is used forM while for the current function I we use the following
prescription

I =
â

ζ + 1
Θ[Ψ − Ψsur]

(Ψ − Ψsur)ζ+1

(Ψsur)ζ
. (5.7)
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where â plays the same role of a. As discussed in Sec. 4.1.2, with these choices in the low
magnetization limit (H << M), the solution of the GS equation does not depend on the
magnetic field strength and our solution can be rescaled to any value of Bmax up to 1016G
(corresponding to Bpole ∼ 1015), when the influence by the magnetic field itself on fluid and
metric quantities becomes relevant.

The role of ζ is to regulate the shape of the current distribution inside the torus. For
ζ → −0.5 the current becomes uniformly distributed within the torus, while for ζ > 0 it
concentrates in the vicinity of the neutral line, where the poloidal field vanishes. As was
pointed out by Ciolfi and Rezzolla (2013) and Fujisawa and Eriguchi (2015) the role of
the current distribution inside the torus region plays an important role in establishing the
maximum allowed magnetic energy ratio Htor/H. In particular they both show that it is the
integrated current associated with I that prevents TT configurations to reach the toroidal
dominated regime: as the strength of this current increases the toroidal field rises, but the
torus-like region shrinks toward the surface of the star so that its volume diminishes.

Figure 5.8: Value of the ratio Htor/H for TT sequences characterized by different values for ζ as a function of
â. The dashed lines correspond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Btor

max, and the maximum strength of the poloidal component Bpol
max is

constant. From bottom to top Btor
max/Bpol

max = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

In Fig. 5.8 we show how the ratio of magnetic energy associated to the toroidal field
Htor over the total magnetic energy H changes with the parameters a and ζ. The maximum
value of this ratio is always ∼ 0.06, slightly higher for smaller values of ζ. In all cases we
verified that at high values of â the volume of the region containing the toroidal magnetic
field is strongly reduced. For ζ = 1 we could not find equilibrium models (solution of the
GS equation) all the way to the maximum (the algorithm failed to converge). Given that,
for Eq. 5.7, both the energy of toroidal magnetic field and the associated current scale with
I, one cannot increase the former without increasing the latter. The systems seem always
to self-regulate, with a maximum allowed current, implying a maximum allowed toroidal
magnetic energy. The value of ζ affects the local value and distribution of the magnetic field,
but does not play a relevant role for integrated quantities like currents and magnetic energy.
Indeed by looking at Fig. 5.8 and Fig. 5.11, it is evident that for ζ < 0 it is not possible
to have configurations where the maximum strength of the toroidal field exceeds the one
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of the poloidal field. For smaller ζ the same toroidal magnetic field energy, corresponds in
general to weaker toroidal magnetic fields. For ζ > 0 instead we could reach configurations
with a toroidal field stronger than the poloidal one. Interestingly the volume of the torus, for
configurations where the ratio Htor/H is maximal, does not depend on ζ.

One can also look at the magnetic field distribution on the surface of the star. Given our
previous results for purely poloidal configurations in Sec. 4.1.2, we expect strong deviations
from the standard dipole, where the strength of the magnetic field at the pole is twice the one
at the equator. In Fig. 5.11 we show the total strength of the magnetic field at the surface
(where the field is purely poloidal), for configurations where the ratio Htor/H is maximal.
The presence of a current torus, just underneath the surface, is evident in the peak of the field
strength at the equator. The peak is even narrower than what was found for purely poloidal
cases with ξ = 10 (compare with Fig. 4.9 in Sec. 4.1.2) and the strength of the equatorial
field can be more than twice the polar one. Again, there is little difference among cases with
different ζ. Higher values of ζ correspond to currents that are more concentrated around
the neutral line, located at ∼ 0.85RNS, and as such buried deeper within the star. Indeed the
strength of the magnetic field at the equator with respect to the value at the pole, is higher
for smaller ζ.

5.2.1 Twisted Ring Configurations

In the previous part of this section we have shown that in the case of TT geometry it is
not possible to reach toroidally dominated configurations. This result is also independent
on the particular shape of the current distribution I. The system always self-regulates. As
was pointed out by Ciolfi and Rezzolla (2013) this is due to the one to one correspondence
between integrated quantities, like the net current and magnetic field energy. Motivated by
this, we can look for different forms for the equation I that allow a larger toroidal field, with
a smaller net integrated current. The current given by Eq. 5.7 has always the same sign and,
as shown, acts as an additive term. On the other hand, we can adopt another form for I such
that the current associated with the new choice changes its sign within the toroidal region
where it is defined. In particular we set

I(Ψ) =
â

ζ + 1
Θ[Ψ − Ψsur]

(Ψ − Ψsur)ζ+1(Ψmax − Ψ)ζ+1

(ΨsurΨmax)2ζ+1/2 (5.8)

where Ψmax is the maximum value assumed by the magnetic potential inside the star. The
field in this case has a geometry reminiscent of a Twisted Ring (TR): its strength vanishes on
the neutral line, where also the poloidal field goes to zero, and reaches a maximum in a shell
around it. This can be clearly seen in Fig. 5.9. The net integrated currents in this case, is
much less than in the case of Eq. 5.2, and it is globally subtractive.

In Fig. 5.10 we show how the ratio of magnetic energy associated to the toroidal field
Htor over the total magnetic energy H changes with the parameter â and ζ. Again we find
that it is not possible to build models that are toroidally dominated. The maximum value of



Chapter 5. Mixed magnetic field 109

Figure 5.9: Magnetic field for a TR configuration with ζ = 0 and a = 12.6 (corresponding to a ratio
Btor

max/Bpol
max = 0.15 close to the maximum). Strength of the toroidal magnetic field (left) multiplied

times a factor 6 for convenience, and poloidal magnetic field (right) normalized to the surface
value at the pole. White contours represent magnetic field surfaces. The thick green line is the
stellar surface.

Figure 5.10: Value of the ratio Htor/H for TR sequences characterized by different values for ζ as a function of
â. The dashed lines correspond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Btor

max, and the maximum strength of the poloidal component Bpol
max

is constant. From bottom to top Btor
max/Bpol

max = 0.05, 0.075, 0.10, 0.125, 0.150. The dotted line
corresponds to configurations where Btor

max/Bpol
max = 0.14, indicating that the ratio of the magnetic

field component is not monotonic.
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the ratio Htor/H never exceeds 0.03 for all the values of ζ that we have investigated. The
reason now is exactly the opposite of the one for TT configurations. The current of TR
geometry, as anticipated, is subtractive. It acts like the nonlinear terms in the purely poloidal
configurations with ξ < 0 (see Sec. 4.1.2). Its effect is to remove current from the interior
of the star. This means that in the region where I , 0, the vector potential Ψ becomes
shallower: the quantity [Ψmax − Ψsur] diminishes. However, the strength of the toroidal
magnetic field itself scales as [Ψmax −Ψsur]. The nonlinearity of the problem manifests itself
again as a self-regulating mechanism. Increasing â, in principle, implies a higher subtractive
current, but this reduces the value of [Ψmax−Ψsur], and the net result is that subtractive current
saturates, and the same holds for the toroidal magnetic field. This saturation is reached at
small values of Htor/H. Indeed, in Fig. 5.10, a clear maximum is only visible for ζ < 0, while
for ζ ≥ 0 the curves seem to saturate to an asymptotic value. Again we find that the value
of ζ leads to small variations, with higher values of ζ leading to configurations with slightly
higher value of Htor/H.

In all the parameter space we have investigated the strength of the toroidal magnetic
field never exceeds the one of the poloidal component. At most, the toroidal magnetic field
reaches values that are ∼ 0.15 times the maximum value of the poloidal field. This is in sharp
contrast with what was found for TT cases. Moreover, while in the TT cases the maximum
strength of the toroidal field Btor

max was found to be a monotonically increasing function of
the parameter a, along sequences at fixed ζ, now Btor

max reaches a maximum ∼ 0.15Bpol
max, and

then slowly diminishes, as can be seen from Fig. 5.10. Interestingly, the region occupied
by the toroidal magnetic field does not shrink as a increases. The saturation of the toroidal
magnetic energy is not due to a reduction of the volume filled by the toroidal field, but to a
depletion of the currents.

As was done for the TT cases, we can also look at the distribution of magnetic field in-
side the star. In Fig. 5.12, we show the strength of the poloidal and toroidal components of
the magnetic field along an equatorial cut. The effect of subtractive currents is evident in
the suppression of the poloidal field in the TR region that extends from about half the star
radius to its outer edge. It is also evident that the value of ζ plays only a minor role, and
that differences are stronger at saturation than for intermediate values. Interestingly, there
are very marginal effects concerning the strength of the magnetic field at the surface, which
is essentially the same as the standard dipole. Again this can be partially understood recall-
ing the behaviour of purely poloidal configurations with ξ < 0. In those cases, substantial
deviations from the dipolar case were achieved only in the limit ξ → 1, when a large part
of the star was unmagnetized. Here the size of the unmagnetized ring region remains more
or less constant, and it does not affect the structure of the field at the surface. The global
effect of the subtractive currents is small, and this reflects in the trend of the magnetic dipole
moment, which diminishes only slightly by about 30-40%.
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Figure 5.13: Values of the ratio Htor/H for TT configurations with ζ = 0, in the presence of nonlinear terms in
the definition ofM. Left panel: cases with ν = 1. Middle panel: cases with ν = 4. Right panel:
cases with ν = 10.

5.2.2 Mixed nonlinear currents

It was suggested by Ciolfi and Rezzolla (2013) that a possible reason why TT configura-
tions, computed using ξ = 0 inM, could not achieve the toroidally dominated regime, was
due to the fact that the contribution to the azimuthal current from I soon dominates. As a
consequence, the resulting poloidal configuration enters the nonlinear regime in which the
size of the torus region, where the toroidal field is confined, shrinks. They show that, by
introducing a current term inM to compensate for I, it was possible to avoid this behaviour.
However they also stressed the fact that a very peculiar form forM was needed to achieve
significative results.

Here we investigate what happens to TT models, using for I the form of Eq. 5.7, if we
retains nonlinear terms in the definition of M, and what happens in cases where ξ , 0.
In Fig. 5.13 we show how Htor/H changes for TT configurations with ζ = 0 for various
values of the parameter ξ and for selected values of ν = 1, 4, 10. Naively, based on the idea
that compensating currents are needed to achieve toroidally dominated configurations, one
would expect that higher values of Htor/H should be reached for ξ < 0 (subtractive currents).
Fig. 5.13 shows instead that the trend is the opposite. In general, lower values of Htor/H are
found for ξ < 0 and higher for ξ > 0, even if this is just a minor difference. The value of ν
seems not to play a major role. Interestingly the effect is maximal for intermediate values of
ν = 4, and marginal for ν = 10. This counter-intuitive trend is due to the fact that both the
effects of the current term I and the contribution of nonlinear terms inM, become important
only in the fully nonlinear regime. For values of ξ ∼ 0 the effect of the nonlinear current
term inM is negligible. For higher values of ξ this nonlinear term becomes more important.
In the case ξ < 0 they give rise to a compensating current (the net dipole grows less) but, as
discussed, they also tend to suppress the vector potential and this effect is stronger, leading
to a overall decrease of the magnetic field. In the case ξ > 0, one would expect this additive
current to lead to an even more pronounced reduction in the torus volume, however, this is
not so. The net dipole increases but this additive currents enhance the vector potential and
the net result is a higher Htor/H (up to 30% higher for ν = 4 and ξ = 20). The highly non
trivial behaviour of the nonlinear regime is apparent. It is however possible that different



114 Chapter 5. Mixed magnetic field

Figure 5.14: Values of the ratio Htor/H for TR configurations with ζ = 0, in the presence of nonlinear terms
in the definition ofM, with ν = 4.

forms for the compensating current might lead to different results.

Interestingly, again we are not able to construct equilibrium model with current inversion.
It is possible, for higher values of ν, to build models with ξ < −1, but only as long as the
current in the domain is always of the same sign. Indeed, cases with ξ < −1 are allowed
by the presence of a current due to I, given by Eq. 5.7, that is always additive. There
appears to be a threshold value for a below which cases with ξ < −1 are not realized.
Solutions with subctractive currents can be built only as long as the nonlinear current term is
subdominant, and other currents enforce stability. Given the presence of an extra current due
to I, associated with the toroidal magnetic field, now it is possible to build solutions with
ξ < −1.

Similar results apply for the cases of TR configuration where I is given by Eq. 5.8. In
Fig. 5.14 we show these results. For values of ξ < 0 the ratio Htor/H is essentially unchanged
(it looks like the ratio is marginally smaller). For positive values of ξ we found a substantial
increase: Htor/H can be a factor 2 higher than in the simple TR case. In this case, the additive
non linear term inM compensates the subtractive current due to I, and stronger values for
the magnetic field are achieved. However, in the range of parameter investigated here, the
ratio Htor/H never exceeds 0.05. The energetics is still dominated by the poloidal magnetic
field.

Given the opposite behaviour of the currents associated with I, respectively from Eq. 5.7,
and Eq. 5.8, we also investigated configurations where the current associated with I, is given
by a combination of TT and TR configurations. Based on the results discussed above, we
expect that the additive term associated with the component of I from Eq. 5.7, should lead
to results similar to what we found for TR configurations with nonlinear terms in M with
ξ > 0. Indeed this is confirmed. In general we find that the ratio Htor/H is smaller than for
the TT case, but larger than for TR case, even by a factor 2. It seems that additive currents,
at least for the functional form adopted here, tend to dominate over subtractive ones.
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5.3 Dependence on the stellar model

In the previous sections we have investigated in detail the role of two families of currents
for I, that can be considered quite representative of a large class of current configurations.
Our results show that in neither case we could obtain magnetic field distributions where the
energetics was dominated by the toroidal component.

In this section we try to investigate the importance of the underlying stellar model. In
general, previous studies have mainly focused on the distribution of currents, assuming a
reference model for the NS with M = 1.4M� (Ciolfi et al. 2009, 2010, Ciolfi and Rezzolla
2013, Lander and Jones 2009). Only Glampedakis et al. (2012a) have partly investigated
how the stellar structure might affect the energetics properties of the magnetic field. In par-
ticular they focused on the role of stable stratification, and showed that this might change the
maximum amount of magnetic energy associated to the toroidal magnetic field, in standard
TT configurations.

In Fig. 5.15 we show how the ratio Htor/H changes as a function of a for standard TT
models with ζ = 0, but for NSs with different masses. For the EoS in Sec. 2.8 the maximum
mass for a NS is found to be ∼ 1.7M�. It is clear that models with a higher mass have a
higher value of the ratio Htor/H , for the same value of a. Interestingly, the maximum value
reached by Htor/H for a 1.7M� NS, is about 0.08, compared to 0.06 for a ∼ 1.4M� NS. This is
a substantial relative increase, even if the magnetic energy is still dominated by the poloidal
component. Moreover this increasing trend is stronger at higher masses.

Figure 5.15: Value of the ratio Htor/H for TT sequences with ζ = 0, characterized by different values
for the gravitational mass as a function of a. The dashed grey lines corresponds to config-
urations where the ratio between the maximum strength of the toroidal magnetic field Btor

max,
and the maximum strength of the poloidal component Bpol

max is constant. From bottom to top
Btor

max/Bpol
max = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25. The dotted red line corresponds to a con-

figuration with M = 2.0M�, and the same central rest mass density as the 1.7M� case. The
dot-dashed red line corresponds to a configuration with M = 1.7M�, but a lower central rest
mass density with respect to the Ka = 110 case.

We also investigated how much of this trend is related just to the total stellar mass (i.e.
the compactness of the system) and how much it depends on the value of rest mass density
in the core of the NS. Indeed it was previously found the NSs with higher masses can harbor
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in principle stronger magnetic fields (see Chaps. 3 and 4). On the other hand, the current
associated withM, responsible for the structure of the poloidal field, scales as the rest mass
density. For models built by keeping constant Ka = 110 , a higher mass implies a higher
central rest mass density, so that it is hard to disentangle them. In Fig. 5.15 we show also
two models with different EoS: one that has the same central rest mass density as the 1.7M�
NS, but different values of the adiabatic constant Ka, such that is total gravitational mass is
2.0M�; the other has the same mass of 1.7M�, but a lower central rest mass density (about
one third). It is evident that models with a smaller total mass, given the same central rest
mass density, correspond to lower maximum value for Htor/H . On the other hand, given
the same central rest mass density, the ratio Htor/H clearly increases with total mass. It
appears that the rest mass density stratification (how much concentrated is the rest mass
density distribution in the core and how much shallow is it in the outer layers), regulates the
relative importance of I andM, and the net outcome in terms of energetics of the toroidal
and poloidal components.

5.4 Summary

In this Chapter we have analyzed several equilibrium configurations for NSs endowed
with a mixed magnetic field. This allowed us to investigate general trends and to sample the
role of various current distributions both in the strong and weak field regime.

Our findings are in qualitative agreement with previous results (Lander and Jones 2009,
Ciolfi et al. 2009, 2010, Armaza et al. 2015), concerning the shape, the deformation, and the
expected distribution of the poloidal and toroidal components. In particular we confirm the
difficulties in finding TT models based on a simple choice for the current distribution. Even
if the toroidal component can reach a strength comparable with the poloidal one it remains
always energetically subdominant. The main reason for this is that to increase the toroidal
magnetic field, one needs to rise also the toroidal currents that in turn reduce the volume
occupied by the toroidal field itself. As a consequence the deformation of all our TT models
is always controlled by the poloidal component.

Recent results by Ciolfi and Rezzolla (2013) and Fujisawa and Eriguchi (2013, 2015)
have however shown that specific choices for the current distribution can lead to configura-
tions that are energetically dominated by the toroidal magnetic field, where the ratio Htor/H
can reach values close to unity. In particular Fujisawa and Eriguchi (2013, 2015) have shown,
through an analytic study, that a necessary condition to obtain such TT configuration is the
coexistence of oppositely flowing toroidal currents inside the NS. On the basis of these re-
sults we have investigated different current distribution, but we always find that the system
saturates to configurations where the energy of the toroidal component is at most 10% of the
total magnetic energy.

Unfortunately, a precise comparison with Ciolfi and Rezzolla (2013), is non trivial. For
example, using the definition of current in their Eq.3, does not lead to converged solutions
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in the purely poloidal case. This because their formulation of Eq.3, with a non-linear term
which introduces a subtractive currents with respect to the linear one, can lead to current
inversions inside the NS. As we pointed out in the previous chapter (see Sec. 4.1.2), our
algorithm fails (diverges) every time we attempt to model systems with current inversions,
and this might be related to uniqueness issues of the elliptical GS equation. If this is indeed an
issue with uniqueness then different numerical approaches might be more or less stable, and
the robustness of the solution becomes questionable. Moreover Ciolfi and Rezzolla (2013)
impose that the field at the surface is a pure dipole, setting all other multipoles to zero. This
might probably filter out and suppress the formation of localized currents at the edge of the
NS and any effect associated to small scale structures, like the increase of the value of Ψsur.
As we have shown above and in Sec. 4.1.2 for purely poloidal magnetic fields, the structure
of the magnetic field at the surface, can dramatically differ from a pure dipole, depending on
the current distribution. Even using the functional form by Ciolfi and Rezzolla (2013), in the
range where our code converges, we found that at the surface of the NS the magnetic field is
far from a pure dipole. Imposing a purely dipolar field outside the stellar surface may have
been determinant in the results of Ciolfi and Rezzolla (2013), but because our algorithm is
structured in such a way that it is not possible to specify such surface boundary condition,
further independent verification is needed to resolve this issue.

The failure to get toroidally dominated configurations, that are expected for stability in
barotropic stars, might even point to the possibility that barotropicity does not hold in NSs,
and the entire stability problem is just related to entropy stratification (Reisenegger 2009,
Akgün et al. 2013), and not to the current distribution. Indeed, as pointed out in Glampedakis
and Lasky (2016), axisymmetric MHD equilibria in non-barotropic or multifluid NSs can be
freely prescribed. It is worth to mention that stratification may also play a fundamental role in
stabilizing the equilibrium configuration as shown in Lander and Jones (2012) and Mitchell
et al. (2015). Finally, TT configurations may also be unstable on a spindown timescale
because of the spin-lag between the crust and core rotation induced by the presence of a
closed field-line region inside the core of the NS (Glampedakis and Lasky 2015).

In view of the results obtained in Chaps. 3 and 4, we have also verified that, in general,
the deformation induced by a mixed field can not be trivially described as a direct sum of
the deformations obtained for the toroidal magnetic field and for the poloidal magnetic field
separately. This is because the interplay between the toroidal field and the magnetic field
causes a rearrangement of the current distributions inside the star. In our particular case,
where the two components of the magnetic field are linked together by the integrability re-
quirement of the GS equation, the growth of the toroidal component implies that the toroidal
current distribution moves from the center of the star toward the stellar surface, resembling
the morphology presented for fully saturated additive current in Sec. 4.1.2. As a result even a
weakly energetic toroidal field (with Htor . 10%H) is able to induce, at a given total energy
H, a substantial reduction (of the order of 40%) of the oblateness of the star. The role of the
current distribution was already highlighted by Mastrano et al. (2015). Through the compu-
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tation of TT models for non-barotropic NSs, they show how, augmenting the weight of the
quadrupolar component of the poloidal magnetic field or enlarging the volume occupied by
the toroidal field, it is possible to reduce the effectiveness of the poloidal magnetic field or,
analogously, to increase the efficiency of the toroidal field in deforming the star. Hence, in
general, the condition ē = 0 is not reached at equipartition Hpol = Htor but it strongly depends
on the current distribution.



6 Twisted Magnetosphere models

The phenomenology and the spectral properties of SGRs and AXPs strongly support
the fact that magnetar magnetospheres are tightly twisted in the vicinity of the star. Previous
studies on equilibrium configurations have so far focused on either the internal or the external
magnetic field, without considering a real coupling between the two fields, apart from a few
very recent studies by Glampedakis et al. (2014), Fujisawa and Kisaka (2014), Ruiz et al.
(2014). Here, extending the TT models analyzed in the previous Chapter, we investigate
numerical equilibrium models of magnetized neutron stars endowed with a confined twisted
magnetosphere. Our approach is hence based on the solution of the relativistic GS equation
both in the interior and in the exterior of the compact object. A comprehensive study of the
parameters space is provided, to investigate the effects of different current distributions on
the overall magnetic field structure. This Chapter is based on Pili et al. (2015).

6.1 Generalizing TT models

Known magnetars show dipole spin down magnetic field below a few 1015G. For this
reason, and in view of the results shown in Chap. 5 we will mainly consider models obtained
in the weak magnetization regime (i.e. H << M). The strong field regime will be briefly
discussed in Sec. 6.2 in order to investigate how the magnetospheric distribution of currents
acts on the stellar deformation. Moreover, given the slow rotation rate of magnetars, in the
range ∼ 2 − 12s, we limit our study to static cases. Here ideal GRMHD is supposed to
hold not only in the interior of the star but also outside in the external magnetosphere, where
plasma inertia is certainly negligible (this actually corresponds to the so called force-free
regime, see again Sec. 2.5 for a detailed discussion).

We search for a solution of the GS equation (Eq. 2.125) allowing currents to flow outside
the star. This can be obtained generalizing the analytical form used for TT models to

I(Ψ) =
a

ζ + 1
Θ[Ψ − Ψext]

(Ψ − Ψext)ζ+1

(Ψmax)ζ+1/2 , (6.1)

where, here, Ψext is the maximum value the magnetic potential reaches at a distance r = λre
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from the star, while Ψmax is, as in the previous chapters, the maximum value assumed over
the entire domain. For the current functionM we retain the simplest form given by:

M(Aφ) = kpolAφ. (6.2)

Note that these choices are analogous to the ones made in Glampedakis et al. (2014). The
new parameter λ, that enters in the definition of Ψext, allows us to control the size of the
twisted magnetosphere outside the star. Results for TT models can be recovered assuming
λ = 1. On the other hand, for λ > 1 the toroidal magnetic field is not confined within the star
but extends smoothly outside the stellar surface, just like the poloidal component.

Given our choice for the free functions M and I, the components of the conduction
currents become

Jr = α−1Br aΘ[Ψ − Ψext]
(Ψ − Ψext)ζ

(Ψmax)ζ+1/2 , (6.3)

Jθ = α−1Bθ aΘ[Ψ − Ψmax]
(Ψ − Ψext)ζ

(Ψmax)ζ+1/2 , (6.4)

Jφ = ρh kpol +
a2

(ζ + 1)σ
Θ[Ψ − Ψext]

(Ψ − Ψext)2ζ+1

(Ψmax)2ζ+1 . (6.5)

Thanks to the renormalization by Ψmax, the φ component of the conduction current is inde-
pendent from the absolute value of the magnetic flux function (it does not depend on the
field strength), while it is directly controlled only by the magnetization parameter kpol and a.
This choice allows us to stabilize the convergence of our numerical scheme preventing the
non-linear term from diverging at the highest value for a and λ. This, in turn, allows us to
obtain also configurations with a complex magnetospheric field geometry.

We adopt the reference model of Sec. 2.8 and concentrate only on the magnetic properties
of the equilibrium configurations. In particular in the low magnetization limit, as discussed
also Secs. 4.1.2 and 5.2, with our choice for the current functions it is possible to recast
the current term in a self-similar way, such that the resulting magnetic field configuration
remains unchanged, modulo its strength. If Jφ is rescaled with a numerical factor η sending
kpol 7→ ηkpol and a 7→

√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self similar parameter can be thus defined in terms of the strength of
the magnetic field as

â = a
(

Bpole

1014G

)− 1
2

, (6.6)

where Bpole is the magnetic field at the pole, that we have decided to always normalize to
1014 G. Then the quantity â parametrizes the magnetic configurations, independently from
the strength of the magnetic field.
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Figure 6.1: Left: strength of the toroidal (left half) and poloidal (right half) magnetic field in units of Bpole.
Contours represent magnetic field surfaces. Right: same as the left panel for the toroidal (left
half) and poloidal (right half) current density . Current densities are expressed in units of
1018 statAmp cm−2. In both panels the blue curves represents the surface of the star. This con-
figuration has λ = 2 and â = 2.5, corresponding the highest value for the magnetic energy ratio
Htor/H = 11.29 × 10−2.

6.1.1 Models with ζ = 0

We begin by discussing the simple case with ζ = 0 in Eq. 6.1. In Fig. 6.1 we show
a typical example of an equilibrium model with a twisted magnetosphere. This specific
configuration corresponds to λ = 2 and â = 2.5 . The poloidal magnetic field extends
through the whole domain and reaches its maximum strength Bpol

max = 4.422 Bpole at the centre
of the star. The toroidal component of the magnetic field is, by construction, confined inside
a closed region that extends in the radial direction from the interior of the star up to twice the
stellar radius, and in latitude it is contained within a wedge about ±π/6 around the equator.
The maximum value of the toroidal magnetic field Bpol

max = 1.256 Bpole is reached inside the
star in correspondence to the neutral line where the poloidal magnetic field vanishes. The
right panel of Fig. 6.1 shows that the poloidal current density peaks inside the star, and
extends smoothly outside the stellar surface along the magnetic field surfaces. The toroidal
current, on the other hand, results from the sum of the linear current term inM, Jφ = ρhkpol,
fully confined within the star, and of the non-linear term in I, that extends outside the star
over the same region where the poloidal currents are confined. The magnetospheric equilibria
of the type shown in Fig. 6.1, and discussed above, are qualitatively similar to previous results
(Mikic and Linker 1994, Viganò et al. 2011, Parfrey et al. 2013). However, in those cases
the equilibria were obtained by the relaxation of an initially sheared dipolar configuration,
while here we directly solve the GS equation. Such configurations, for a moderate shear of
the magnetic footpoints, are expected to be stable. On the other hand, our approach based on
the GS equation allows us to derive equilibrium models but, of course, it does not provide
any hint about their stability. A more direct comparison can be made with Glampedakis et al.
(2014): in spite of a different value ζ = 0.5 employed, our solutions qualitatively agree with
the ones presented in more detail in the cited work.
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Figure 6.2: TT magnetosphere configurations: strength of the toroidal (left half of each panel) and poloidal
(right half of each panel) magnetic field. The left column shows models with λ = 2, the central
column those with λ = 3, and the right column those with λ = 6. Contours represent magnetic field
surfaces. From top to bottom each row corresponds to increasing values of â, given in Tab. 6.1. For
each panel the colour code is normalized to the maximum value of the magnetic field components
that are listed in Tab. 6.1. The blue line represents the surface of the star. The red line locates the
boundary of the region where the toroidal component of the magnetic field is present.
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Table 6.1: Values of the maximum strength of the toroidal and poloidal components of the magnetic field for
the configuration shown in Fig. 6.2. Magnetic fields are expressed in unity of Bpole.

λ â Btor
max Bpol

max

[10−3]

2 0.4 0.359 5.629
2.5 1.256 4.422
5.6 0.938 4.576
10 1.087 4.373

3 0.4 0.435 5.581
1.5 1.004 4.577
3.3 0.676 4.767
4.2 1.170 4.618

6 0.4 0.491 5.352
0.9 0.782 4.874
1.3 0.822 4.842
2.7 0.753 4.277

In Fig. 6.2 we present sequences of models computed for various values of the parameters
λ and â. The main characteristics of those configurations are stated in Table 6.1. These results
illustrate the key features and trends of the equilibrium configurations that we were able to
obtain. For small values of the parameter â (first row of Fig. 6.2), all configurations share
the same overall topology and a similar magnetic field distribution. The toroidal magnetic
field fills a region that smoothly extends from the interior of the star to the maximum allowed
radius λre. As it can be seen also from Fig. 6.3, the toroidal field component reaches, in this
case, a maximum inside the star and then decreases monotonically in the magnetosphere.
For small values of â, the non-linear current terms associated to I outside the star are still
too weak to significantly alter the magnetic field structure below the surface.

As the contribution of the non-linear currents becomes more important, with increasing
â, the toroidal field increases and its peak moves toward the stellar surface together with the
poloidal neutral line. This is the same behaviour that we have discussed in the case of TT
models in Chap. 5. As the toroidal magnetic field increases, the ratio of the magnetic energy
associated to the toroidal field Htor with respect to the total magnetic energy H increases too,
until it reaches a maximum. These maximal configurations are shown in the second row of
Fig. 6.2. The structure and topology of the magnetic field is analogous to the small â cases
(see also Fig. 6.3), however the presence of stronger magnetospheric currents now affects
the field geometry outside the star. While the outer magnetic field in the small â regime
still resembles closely a dipole, this is no longer true for the maximal energy configurations,
where magnetic surfaces appear to be stretched, especially for high values of λ. Note, more-
over, that for higher λ, the configurations of maximum energy ratio are reached for smaller
values of â. This because the energy is an integrated quantity that depends not just on the
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Figure 6.3: Profiles of the toroidal magnetic field strength (in units of Bpole) for selected models (â is expressed
in units of 10−3) along the equilibrium sequences with λ = 2 (left), λ = 3 (centre) and λ = 6 (right).
The dashed lines represent models where the value of Htor/H reaches a maximum.

strength of the currents but also on the volume they fill.
After the maximum value of Htor/H has been reached, solutions react differently to a

further increase of â, depending on the value of the parameter λ. This can be seen in the
third row in Fig. 6.2 and in Fig. 6.3. In the case of λ ≤ 2 the toroidal magnetic field migrates
completely outside the star and the final outcome strictly resembles that of the TT case
with λ = 1 discussed in Sec. 5.1: the toroidal magnetic field strength grows but its support
progressively shrinks toward the maximum allowed radius. Here the toroidal magnetic field
shows a single maximum. On the other hand, for λ ≥ 3, as the neutral line approaches the
stellar surface, a second peak in the strength of the toroidal magnetic field develops. This
second peak moves with increasing â at larger radii in the magnetosphere, while the first
peak remains inside the star, approximately at the same position, independently of â. The
formation of a second peak indicates a topological change in the structure of the magnetic
field, where an X-point arises, usually in the vicinity of the stellar surface, and where there
are magnetic regions (surfaces) in the magnetosphere disconnected from the star. A further
increase in the value of â leads to solutions that show two completely disconnected magnetic
regions, one inside the star, and the other outside (see the fourth row of Fig. 6.2). Note also
that the maximum value of the strength of the toroidal magnetic field Btor

max does not grow
monotonically with â.

These types of equilibria, with disconnected magnetic regions, are likely to be highly
unstable. Indeed, those kind of equilibria resemble the solutions find in time-dependent
numerical simulation by Mikic and Linker (1994) in the context of magnetic field arcades in
the solar corona, and plasmoid formation: our disconnected regions in the NS magnetosphere
could be seen as the equivalent of the plasmoids in the solar case.

While a full 3D study of the stability and/or evolution, of the various topological con-
figurations, is beyond the scope of the present work, it is possible to roughly evaluate the
magnetospheric conditions, in relation to known stability criteria. We need also to recall
here that the physical regime, to which our models apply, is typical of the late phases of the
proto-NS evolution. Indeed, after ∼ 100 s since the formation of the NS the neutrino wind
ceases (Pons et al. 1999), a force free magnetosphere can be established and a crust begin to
form freezing the poloidal magnetic field lines on the surface of the NS.
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In each of our models the energy of the external toroidal magnetic field is, at most, 25%
of the total magnetic energy in the magnetosphere which is, thus, dominated by the poloidal
field. It is important, at this point, to distinguish between those configurations, where all field
lines thread the crust, and those with disconnected regions. In the first case, if the poloidal
component can be stabilized by the crust (which can be the case for weak fields ∼ 1014G),
then it is unlikely that the toroidal one, being subdominant, could drive major changes in
the magnetospheric structure. It is possible to compare our results to those by Parfrey et al.
(2013), where a study of the magnetospheric stability was done using a time dependent
shearing algorithm. We find in our models (those with no disconnected regions) that the twist
amplitude, defined as the azimuthal angular displacement of the magnetospheric footpoints,
does not exceed 2 radians. This value is below the critical value of 3.65 radians estimated in
Parfrey et al. (2013) as a stability limit for the magnetosphere.

In the other cases, when a disconnected toroidal current loop develops in the magneto-
sphere around the neutral line, since some of the magnetic field lines do not cross the crust,
the twist amplitude is not an indicative parameter for the stability, and one cannot invoke for
this disconnected region a stabilizing effect of the crust. However the stability of this flux
rope, can be determined from the Kruskal-Shafranov condition for the development of kink
instability (Shafranov 1956, Kruskal and Tuck 1958). The application of this condition im-
plies that only small detached flux ropes contained inside 1.3re are marginally stable, while
disconnected regions that extends further out from the star are unstable.

The reason why the GS equation, for large â, admits solutions with multiple peaks can
be easily understood. The solution of the GS equation can be seen as an eigenvalue problem
for a second order non-linear PDE. For small values of â the source terms in the currents are
dominated by M: they are fully confined within the star and have a single peak. Thus the
solution reflects the properties of the source, and only single-peak eigenmodes are selected.
However, for higher values of â, non-linear terms dominates, and other possible eigenmodes
can be selected. Eigenmodes that, in principle, for a second order non-linear PDE will admit
multiple radial nodes (this is the reason why two peaks develop). Indeed, as can be seen
from Fig. 6.2 and 6.3, there is some hint that the more extreme case at λ = 6 might develop
into a third peak. Unfortunately, we could not investigate higher values of â because the
convergence of the GS solver becomes highly oscillatory, and ultimately fails.

In Fig. 6.4 we show the profiles of the poloidal and toroidal components of the magnetic
field along the stellar surface. In the small â regime, the poloidal field at the surface is
essentially dipolar. The toroidal magnetic field extends over a region ±45◦ in latitude around
the equator, slightly bigger for larger values of λ. Trends are different depending if the
structure evolves to a single peak or double peak. For λ ≤ 2 (single peak), as â increases, the
magnetic field becomes slightly higher in the polar region but decreases substantially at the
equator. As the peak moves outwards, so does the poloidal neutral line (where the poloidal
field vanishes). This is the reason why the equatorial field drops. The magnetic field at
the surface becomes closer to a split monopole: the curvature of magnetic field surfaces
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Figure 6.4: Profiles of the strength (expressed in units of Bpole) of the poloidal (top panel) and toroidal (bottom
panel) magnetic field on the stellar surface for selected models (â is expressed in units of 10−3)
along the equilibrium sequences with λ = 2 (left), λ = 3 (centre) and λ = 6 (right). The dashed
lines represent models where the value of Htor/H reaches a maximum.
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selected models shown in the upper left panel of Fig. 6.4.
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Figure 6.6: Profiles of the twist angle ∆ϕ at the equator as a function of distance (normalized to the stellar
radius re) (upper panels), and as a function of latitude on the stellar surface (bottom panels), for
selected models (â is expressed in units of 10−3) along the equilibrium sequences with λ = 2
(left), λ = 3 (centre) and λ = 6 (right). The dashed lines represent models with maximum value of
Htor/H along the same sequences.

diminishes, the radial component becomes more uniform, except very close to the equator.
The portion of the surface where Btor , 0 instead shrinks, and vanishes completely once the
twisted region gets out of the star. In Fig. 6.5 we show the harmonic content Cl/C1 of the
surface magnetic field for different models, in the case λ = 2. As expected the dipole term
is always the dominant one. Multipole terms become more important in correspondence to
configurations with the highest Htor/H, when the toroidal field is stronger and the neutral
line is located just underneath the stellar surface. Finally, as the twisted magnetospheric
torus moves away from the star, the multipolar content of the surface field drops.

For higher values of λ ≥ 3 the appearance of multiple peaks and disconnected magnetic
regions leads to a more complex behaviour of the magnetic field at the surface. In the polar
regions at high latitude > 45◦ the value of the poloidal field does not change much with
increasing â. What changes is the poloidal magnetic field at the equator that drops with â.
In this case, however, this is not due to the neutral line moving outwards, but because an
X-point forms in the vicinity of the surface. Indeed, as can be seen in Fig.s 6.4 and 6.2,
in the λ = 3 case the values of â for which the poloidal field vanishes at the equator is the
same at which a second peak forms. For higher values of â, the equatorial poloidal field rises
again. The portion of the surface where Btor , 0 shrinks again, though for these cases it
never vanishes completely. In all cases we find that the strength of the toroidal component of
the magnetic field at the surface tends to grow becoming comparable to, or even exceeding,
the strength of the poloidal one.

Another parameter that it is useful to show is the angle between the magnetic field and
the meridional plane, to which we refer as twist angle ∆ϕ. For convenience it can be defined
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as the complementary of the angle that the magnetic field forms with respect to the azimuthal
direction

∆ϕ = arcsin
[(

BφBφ/BiBi
)1/2

]
. (6.7)

The value of ∆ϕ ranges from 0 to π/2, assuming the latter when the magnetic field is purely
azimuthal, and 0 when the magnetic field lies in the meridional plane. In Fig. 6.6 we show
this angle, measured at the equator, as a function of radial distance r. Since our models are
not rotating, all the magnetic field lines are eventually closed. The location where ∆ϕ = π/2
corresponds to the location of either the neutral line (O-point) or the X-point, where the
poloidal component of the magnetic field vanishes. For cases with λ ≤ 2 the profile of ∆ϕ

shows a unique peak where the θ-component of the poloidal field reverses sign in the twisted
region. Again we see that at higher values of â the toroidal field is completely outside the
star.

As expected, in the case λ ≥ 3 the behavior is more complex. For the smallest value of â
the trend of ∆ϕ resembles that of the analogous configuration at λ = 2: the twist is prominent
in the vicinity of the neutral line and extends outside the star remaining well below ∼ π/4.
Moving at higher â, the presence of two peaks in the toroidal magnetic field strength inside
the twisted region means that ∆ϕ reaches π/2 in three locations. In particular the first and the
third of those locations are always associated with O-points, the second one with an X-point.
At the higher value of â, the formation of two detached twisted regions is also evident. In
this cases, however, the trend of ∆ϕ reveals only the position of the two O-point because
the φ-component of the magnetic field vanishes in correspondence with the X-point. Here
we note that in the most extreme case at λ = 6 the trend of ∆ϕ strengthen the hypothesis
concerning the development of a third peak in the toroidal magnetic field strength. Indeed
the second peak in ∆ϕ corresponds to an O-point and an unresolved X-point.

The bottom row of Fig. 6.6 displays the profile of ∆ϕ along the stellar surface. As pointed
out before, in the limit of small â the twist at the surface increases. However, for higher
values of â the trend is not uniform, depending on the formation of a second peak, and the
related location of the X-point.

In Fig. 6.7 we plot the maximum value of the strength of the toroidal magnetic field Btor
max,

and the poloidal one Bpol
max, for different values of λ, as a function of â. In all our models the

poloidal field reaches its maximum at the centre. Initially, in the small â regime, Btor
max grows,

while Bpol
max decreases. This happens because the strength of the magnetic field at the pole

is always kept fixed in all models. As one enhances the contribution to the total current by
increasing I, one must decrease the contribution fromM, causing a drop in the strength of
the field at the centre of the star. This effect depends also on the location of the current, as
this term moves to larger radii the poloidal field begins to grow again. Configurations with
λ ≥ 3 show several inversions of this trend, which again are a manifestation of the change in
the field topology.

Analogously to the TT case, all the equilibrium models we obtain are energetically dom-
inated by the poloidal magnetic field. In Fig. 6.8 we show the same equilibrium sequences
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Figure 6.7: Maximum value of the toroidal (left) poloidal (right) magnetic field along equilibrium sequences
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Figure 6.8: Profiles of the ratio of total magnetic energy of the toroidal component Htor, external one Hext
tor

and internal one Hin
tor, with respect to the total magnetic energy H. Curves show sequences as a

function of â for various values of λ. Dots and squares as in Fig. 6.7.

in terms of the ratio of magnetic energy of the toroidal magnetic field Htor over the total
magnetic energy H. Generally the magnetic energy ratio initially grows with â reaching a
first maximum that corresponds to a configuration still characterized by a single peak (see
the first rows of fig 6.1). Again the trend for higher values of â depends on the value of
λ. While sequences with λ ≤ 2 show a decreasing monotonic trend, sequences with λ ≥ 3
reach a minimum and then the magnetic energy ratio begin to grow again. For configurations
with λ & 6 we could reach a second local maximum. It is possible in principle that other
maxima and minima could be reached at higher values of â, but we could not compute those
models. The magnetic energy is an integrated quantity, as such it also depends on the size of
the twisted region. The formation of an X-point, followed by the formation of two detached
magnetic twisted domains, is associated to a decrease of the net volume taken by the toroidal
field, and to the drop of Htor after the first maximum. In Fig. 6.8 we also compare the toroidal
magnetic energy confined inside Hin

tor and outside Hext
tor the star. The two are in general com-

parable except for cases with λ ≤ 2 where the interior toroidal field vanishes at high â. Note
also that the ratio Htor/H is at most 8-10%. The net poloidal and toroidal currents follow a
similar behavior.

Finally in Fig. 6.9 we show the variation of the magnetic dipole moment µ as a function
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Figure 6.9: Left panel: ratio between the toroidal current density outside the star Jext
e and the toroidal current
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e , as a function of â along equilibrium sequences with different value of λ. Right:

magnetic dipole moment µ along the same sequences expressed in units of the magnetic dipole
moment of the fiducial configuration µ = 1.114 × 1032 erg/G. Dots and squares as in Fig. 6.7.

of â. We see that the magnetic dipole, for fixed values of â, grows with λ. This is because
the total integrated toroidal current, defined as

Je =

∫ √
JφJφψ6r2 sin θdrdθdφ (6.8)

is bigger for larger magnetospheres with higher values of λ. Very interestingly, for large
values of λ the net magnetic dipole moment can be even 4-5 times higher, given the same
strength of the field at the pole. External currents contribute to the net dipole without affect-
ing too much the strength of the magnetic field at the surface. This is a known property of
twisted magnetospheres (Thompson et al. 2002).

For all the configurations computed here the internal linear current J in
e is always greater

than the external one Jext
e , reaching similar values only for configurations where the energy

ratio reaches a maximum. At first, as expected, the external current, due only to the term
I, grows linearly with â2, while the internal one dominated by M remains more or less
constant. For higher values of â the ratio decreases exactly for the same volume effect that
was discussed for the trend of Htor/H.

6.1.2 Models with ζ = 1

The toroidal magnetization index ζ controls the shape of the current distribution inside
the torus-like region of the twisted field. With respect to the ζ = 0 case, choosing higher
value for ζ entails stronger currents mostly concentrated in the proximity of the neutral line.
In this subsection we will consider the ζ = 1 case in order to show which are the possible
qualitative and quantitative differences that can arise if a different value of ζ is chosen.

In order to compare the results with those at ζ = 0, let us focus to those configurations
where Htor/H is maximal. In Fig. 6.10 we show the strength of the magnetic field, both at
the surface and along the equator, in the cases λ = 2, 3 and 6, compared with that of the
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Figure 6.10: The left panel shows the profile of the toroidal magnetic field strength (in units of Bpole) for the
configuration with the first maximum value of the magnetic energy ratio Htor/H along sequences
with fixed λ =2,3 and 6. Solid lines refer to configurations with ζ = 1, while dashed ones refer
to the equivalent configurations with ζ = 0. The thin vertical lines indicate the location of the
stellar surface for each λ. The remaining panels show, for the same configurations, the profile of
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toroidal component (right) as a function of latitude.
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Solid lines (dashed lines) refer to configurations with ζ = 1 (ζ = 0).

equivalent configurations at ζ = 0. In the ζ = 1 case the toroidal magnetic field reaches
higher values than in the ζ = 0 case. However, even though the geometry and shape of
the twisted region remains almost the same, the distribution of the magnetic field is more
concentrated around the peak and the magnetic field decays more rapidly to zero in the
magnetosphere.

Looking at the distribution of the poloidal and toroidal field at the surface of the star
(central and right panel in Fig. 6.10) it is evident that the multipolar terms of the magnetic
field become more important in the ζ = 1 cases: while the strength of the poloidal magnetic
field at the equator decreases marginally, it increases in the neighboring region where it can
also exceed the value of Bpole within a wedge of about ±π/4 around the equator. While the
portion of the surface where Btor , 0 remains approximately the same the toroidal field is
now more concentrated around the equator where its strength can be a factor ∼ 2 higher than
for ζ = 0.

The effects of the new current distribution on the twist angle ∆ϕ are shown in Fig. 6.11
where we plot the trend of ∆φ for the same equilibria discussed above. While the growth of
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Figure 6.12: Profiles of the toroidal energy ratio Htor/H (left) and of the current ratio Jext
e /J in

e as a function
of â along equilibrium sequences with constant λ. Dots and squares as in Fig. 6.7.

the surface ∆φ is a direct consequence of the stronger toroidal field obtained for the ζ = 1
configurations, the analysis of trends in the magnetosphere deserves more attention. In fact,
even though the toroidal field in the new configurations is stronger in the proximity of the
stellar surface, the twist angle in the magnetosphere decreases monotonically and it is highly
suppressed with respect to that obtained in the ζ = 0 models. This is due, on the one hand,
to the fact that Btor goes more rapidly to zero in the magnetosphere but, on the other hand,
also to the presence of a stronger equatorial poloidal field in the vicinity of the star.

The structure of the magnetic field is however only slightly affected by the value of the
magnetic index ζ. This is also evident from Fig. 6.12 where we plot the profile of both the
magnetic energy ratio Htor/H and the current ratioJext

e /J in
e as a function of â for the various

sequences. The trends strictly reflect those obtained in the ζ = 0 case (see Fig. 6.8 and 6.9)
and it is interesting to notice that sequences with equal λ behave, from the point of view
of the field topology, in the same way: for sequences with λ . 2 the twisted region moves
outside the star; for sequences with λ & 2.5 the configuration at higher â are characterized by
a more complex topology and part of the toroidal field remains always confined in the star.
Also a more quantitative comparison shows little differences. In the ζ = 1 case the maximum
allowed Htor/H is lower if λ . 2.5 and higher if λ > 2.5. The major differences regard the
sequences with λ = 6 and 8 where the higher value of Btor and a more regular topology of
the solution (i.e. there is no formation of an X-point) allow one to reach higher value for the
magnetic energy ratio. Finally in both cases, when Jext

e ∼ 0.7J in
e , the system self regulates

inducing a change in the topology of the distribution of the magnetic field and the associated
external current.

6.2 Strong field regime

Newly born magnetars, with their fast rotation (with period of the order of ∼ 1 s) and
their strong magnetic deformation, can power a significant emission of gravitational waves
and, during the first few seconds of their life, they could be a promising target for the next
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Figure 6.13: Profiles of the maximum value of the poloidal magnetic field Bpol
max along sequences with λ = 1.5

and constant value of Bpole. Solid lines from top to bottom Bpole = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4×
1017 G. The black dashed line corresponds to the weak field limit.

generation of ground-based GW-interferometers (Mastrano et al. 2011). After this lapse of
time, because of the spin-down induced by the strong poloidal field (∼ 1014 G) the strain
amplitude reduces considerably and the GW emission is hardly detectable. However, even
though our assumption of a force-free magnetosphere only applies to the late phases of a
proto-NS, when GW emission will be quenched, it is still interesting to consider the strong
field regime and how a magnetospheric distribution of currents acts on the stellar deforma-
tion. In the following we will limit our discussion to sequences with λ = 1.5, considering
only configurations with a simple topology with no detached magnetic flux rope outside the
star. As discussed in Sec. 6.1.1 this kind of configurations, whose properties are weakly
affected by λ, are possibly the only stable ones.

In the strong field regime the solutions of the GS Eq. 2.125 depend on the specific value
of the magnetic field strength and they do not rescale as in the weak-field limit. This is
evident from Fig. 6.13 where we show the value of the ratio Bpol

max/Bpole as a function of â
along sequences with constant value of Bpole (from the weak field limit to ∼ 1017 G) and fixed
gravitational mass M = 1.551M�. Just like in the weak-field regime, along each sequence
the trend of Bpol

max is not monotonic. Here, however, the ratio Bpol
max/Bpole is smaller for stronger

magnetic fields. This can be explained in term of the deformation of the star: as in the weak-
field limit our equilibrium configurations are energetically dominated by the poloidal field
(the magnetic energy ratio Htor/H depends weakly on the strength of the field) and they show
an oblate deformation. Therefore, if the star is more magnetized, the deformation is stronger
and the pole is closer to the center of the star implying a smaller Bpol

max/Bpole.

Fig. 6.14 shows the deformation rate ē (Kiuchi and Yoshida 2008, Pili et al. 2014) as
a function of Bpol

max. Here the black lines trace the configurations with constant â. Moving
from the purely poloidal case with â = 0 to higher value of â the toroidal magnetic field
strengthen up to ∼ 2 × 1017 G and the deformation rate increases by a factor ∼ 2. The
presence of a toroidal field in the system, seems to increase, rather then reduce, the oblate
deformation. However, as discussed in Chaps. 4 and 5, neither the maximum strength of the
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magnetic field nor the magnetic energy alone are, in general, good indicators of the possible
deformations of the NS in the case of poloidal fields. The distribution of the currents play an
important role and the effects of magnetic field located in the outer layers of the star are less
important than those of comparable strength situated in the core region. Therefore the trend
of ē can be explained in terms of the strength of the poloidal magnetic field, which resides
deeper inside the star. Moving along sequences with fixed kpol (without constraints on Bpole)
from the purely poloidal configurations to higher â, both the poloidal and the toroidal field
grow in strength while the neutral line moves toward the surface of the star. Finally, as soon
as the radius of the neutral line reaches a value of ∼ 0.8re, the poloidal field begins to drop
leading to an inversion point in the sequences and a reduction of the deformation rate ē.

6.3 Summary

We have computed numerical equilibrium models of general relativistic magnetized NSs
with twisted magnetospheres, allowing for electric currents extending smoothly from the
interior of the star to the exterior. The work presented in this Chapter extends the study by
Glampedakis et al. (2012a) limited to the Newtonian regime. Our models, indeed, represent
a straightforward generalization of typical Twisted-Torus configurations, where the twist is
allowed to extend also outside the NS. In particular, we focused on the low-magnetization
non-rotating limit, since this limit is appropriate for real physical systems like AXPs and
SGRs. In this case the morphology of the magnetic field can be fully parametrized in terms
of a single quantity â, independently of the strength of the magnetic field. We have shown
that the extent of the magnetosphere (our parameter λ) plays an important role and defines
the possible existence of different topological classes of solutions.

In the low â regime, when the non-linear current terms are weak, the magnetic field lines
are inflated outward by the toroidal magnetic field pressure and the twist of the field lines
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extends also to higher latitude. The result is a single magnetically connected region. As
â increases, the effects of the non-linearity of the equation appears. This not only reduces
the twist of the near-surface magnetic field but also leads to the formation of a disconnected
magnetic island, reminiscent of the so-called plasmoids often found in simulations of the
solar corona. This regime and these topologies are very likely to be unstable.

Regarding the current distribution, for all the configurations that we have computed, the
internal linear current is always greater than the external one reaching similar values only
for configurations where the energy ratio reaches a maximum. Apparently, as one tries to
rise the external currents, the system self-regulates inducing a change in the topology of
the distribution of the magnetic field and the associated external current. As a consequence
there is a maximum twist that can be imposed to the magnetosphere, before re-connection
and plasmoid formation sets in. We found moreover that the external currents contribute to
the net dipole without affecting too much the strength of the magnetic field at the surface.
Similar results have been recently obtained by Fujisawa and Kisaka (2014), which consider
also the effects of a crust (requiring MHD equilibrium in the core and Hall equilibrium in
the crust), and Akgün et al. (2016). In the latter case, even if they do not find disconnected
morphology, they find a critical twist amplitude ∼ 1.2−1.5 beyond which they can not obtain
solutions. This is compatible with our estimation ∼ 2 rad for the maximum twist amplitude
before the developments of X-points.

Our approach to NS magnetospheric equilibrium has allowed us to obtain complex mag-
netic field morphologies. However with our choice for I we have focused our analysis on
configurations with a magnetospheric confined twist, which is in turn located around the
equatorial plane. Even though, as pointed out in Beloborodov (2011), the observations of
shrinking hotspots on magnetar transient (Rea et al. 2009) seem to suggest that the twist is
more probably located near the pole, similar magnetospheric geometries have been recently
used to model SGR giant flares as flux rope eruptions (Huang and Yu 2014b,a).

Apart from a rough estimate based on known criteria, it is difficult to establish the stabil-
ity of our models, especially with respect to non azimuthal perturbations. Moreover, since
we treat the magnetosphere as force-free plasma, the physical regime to which our mod-
els apply, is characteristic of the late phases of a proto-NS, when a crust begins to form.
Therefore, a meaningful modellization of the evolution of the system can not disregard the
possible stabilizing role played by the crust, relaxing the ideal MHD hypothesis in order to
include Hall evolution and Ohmic dissipation of the magnetic field (as in recent numerical
simulations by Gourgouliatos et al. 2016), and considering the effects of strong magnetic
field on the structure and the properties of the crystalline crust (Chamel and Haensel 2008,
Chamel et al. 2015, Fantina et al. 2016). This is just indicative of the great complexity of the
physics involved, and correspondingly of the extreme difficulties in the realistic modelling
of NS structure.





7 Quark deconfinement in the
proto-magnetar model of Long

Gamma-Ray Bursts

The late time activity observed after the prompt emission of several GRBs can be inter-
preted, in the context of the millisecond magnetar model, as due to the continuous energy
injection from a newly born magnetar (Usov 1992, Bucciantini et al. 2009, Metzger et al.
2011). Within this picture it is however difficult to explain late time bursts that are often ob-
served in the light curve of many GRBs. Indeed, while the canonical millisecond magnetar
model predicts a steady smooth energy injection in the form of a relativistic magnetically
driven wind, bursts require a sudden reactivation of the central engine that may be due to
fall-back accretion (Proga and Zhang 2006, Rosswog 2007, Bernardini et al. 2013, 2014,
Bernardini 2015, Dall’Osso et al. 2017) or magnetic reconnection-driven explosions (Dai
et al. 2006, Gao and Fan 2006). Other possibilities, that do not require a reactivation of the
central engine, link late-time flares and rebrightening to the interactions between the outflows
and the circumburst medium (Giannios 2006, Giannios et al. 2008, Shen et al. 2011).

In this chapter we investigate the possible implications of quark deconfinement on the
phenomenology of LGRBs focusing, in particular, on the occurrence of multiple prompt
emission phases in the context of the proto-magnetar model. Starting from numerical mod-
els of rotating Hadron Stars and Quark Stars we track the electromagnetic spin-down evo-
lution in both the hadronic and quark phase, linking the two families through conservation
of baryon number and angular momentum. We will give estimates of the timescales and the
energetic involved in the spindown process deriving, in the relevant spin range, the relation
between the initial and the final masses and rotational energies, whenever hadron-quark con-
version is possible. We will show how these results can be used in relevant astrophysical
cases such as the double burst GRB 110709B. This Chapter is based on Pili et al. (2016).

7.1 The two families scenario

The nature of the inner engine of Long Gamma-Ray Bursts (LGRBs) is still one of the
most interesting and unsolved problems in astrophysics. While there is a compelling evi-
dence that these events are associated with the core collapse of massive stars, it is not yet
established whether the burst is produced by a disk accreting onto a black hole (within the
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so-called Collapsar model, Woosley 1993) or by the outflow emerging from a fast rotat-
ing and highly magnetized proto-neutron star (within the so-called proto-magnetar model,
Metzger et al. 2011). It is also possible that both these systems contribute in producing
LGRBs, depending on the initial conditions of the progenitor (in particular its mass, spin
frequency and magnetic field). The discovery by Swift of a late time activity, lasting up
to 104 s and present in a sizable fraction of LGRBs, is more naturally interpreted within
the proto-magnetar model as due to the pulsar-like energy injection powered by the residual
rotational energy left after the prompt emission (Dall’Osso et al. 2011).

Within the proto-magnetar model, an important ingredient which regulates the temporal
evolution of the jet and its gamma-ray luminosity is the neutrino signal released by the star
due to deleptonization (the gradual neutronization of matter) and cooling. In particular,
neutrinos ablate baryonic matter from the surface and provide a tiny amount of baryonic
load which is crucial for an efficient internal dissipation of the kinetic energy of the jet into
gamma emission. When the neutrino luminosity drops below ∼ 1050 erg/s (after a few tens of
seconds), the magnetization (or the Lorentz factor) is too large and the prompt emission ends.
It is not easy within the proto-magnetar model to reactivate the inner engine and therefore to
describe multi-episodes of the prompt emission of LGRBs (e.g. Zhang et al. 2012) or X-ray
flares occurring during the afterglow (Zhang et al. 2006).

The proto-magnetar model has been developed assuming that the newly born Compact
Star (CS) is and remains a nucleonic star. Motivated by the measurements of very massive
CSs (Demorest et al. 2010, Antoniadis et al. 2013) and the hints of the existence of very
compact stellar objects (with radii close to 10km, Guillot et al. 2013, Ozel and Freire 2016),
a two-families scenario has been recently proposed where both Hadronic Stars (HSs) and
Quark Stars (QSs) exist in nature (Drago et al. 2014, 2016b, Drago and Pagliara 2016).
Within this picture, a conversion of a HS into a QS can take place. In the following sections
we will discuss how this transition modifies the proto-magnetar model, revitalizing the inner
engine. In particular, we will investigate the following scenario: i) a proto-magnetar is
formed after a successful supernova explosion and its spinning down, which is responsible
for the emission of a LGRB, leads to a gradual increase of the central density; ii) the increase
of the density allows the formation of heavy hadrons such as ∆ resonances and hyperons; iii)
once a critical amount of strangeness is formed through hyperons at a density ρcrit, the HS
converts (on a time-scale . 10 s) into a QS. This picture has been qualitatively discussed
in Drago et al. (2014) for the case of non-rotating stars. Here we will improve that work
by including rotation and spin-down evolution along the line of Haensel et al. 2016, and
references therein.

A distinctive feature of the two-families model is that the formation of a QS is accom-
panied by a rather large amount of energy released in the conversion, of the order of 1053

erg. Moreover, we will show that since the final QS configuration has a larger radius than
the initial HS configuration, the conversion is accompanied by a significant increase of the
moment of inertia with a corresponding decrease of the rotational frequency. We will discuss
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possible phenomenological implications of the two-families scenario for the light curves of
LGRBs in connection with late time activity. For the case of QSs there are two possible
ways to produce a jet with the appropriate Lorentz factor. The first mechanism is based on
the ablation of baryonic material from the surface of the star as long as the conversion front
has not yet reached the surface (Drago and Pagliara 2016). A second mechanism is based
on the rather large emission of electron-positron pairs from the surface of the bare quark star
(Usov 1997, 2001, Page and Usov 2002). Both mechanisms can be at work to produce late
time activities.

7.2 The quasi-stationary evolution

In order to investigate the possible implications of the two-families scenario for the phe-
nomenology of GRBs we have computed a large set of rigidly rotating equilibrium models
for both HSs and QSs. Given the typical cooling evolution of newly formed proto-neutron
stars (Pons et al. 1999), the assumption of a cold star is justified at times larger than & 10 s af-
ter formation (the radius is relaxed to its final value). These numerical models are then linked
together to describe the quasi-stationary evolution of CSs under the effect of the magnetic
braking. With this simple approach we can give a preliminary estimate of both the timescales
and the energetics involved in the spin-down before and after quark deconfinement, which
we assume to happen when the central baryon density ρc reaches a critical value of the order
of 1015 g/cm3 (Drago et al. 2014). Here we set ρcrit = 1.34 × 1015 g/cm3. We also derive the
range of initial masses for which a delayed HS to QS conversion is possible.

Numerical models have been obtained using the EoSs discussed in Drago et al. (2016b).
Since the typical surface magnetic field invoked by the magnetar model for GRBs are of
the order of 1015 G our models are computed neglecting the deformation due to magnetic
field. Indeed, as discussed in Sub. 4.1.2, only central magnetic fields stronger than ∼ 1016

G, corresponding to surface magnetic fields stronger than a few 1015 G, are able to modify
the stellar global properties to a level appreciable with respect to the overall accuracy of
our numerical scheme (. 10−3). Hence we can safely assume that the stellar structure and
the associated global quantities such as the gravitational mass M, the baryonic mass M0 (a
proxy for the total baryon number), the circumferential radius Rcirc and the Komar angular
momentum J do not depend on the magnetic field strength.

In the millisecond magnetar model for GRBs the typical rotation periods invoked in the
literature (Metzger et al. 2011, Bucciantini et al. 2012) can be as high as ∼ 1 ms. The max-
imum rotation rate of compact stars at the end of deleptonization has been investigated in
several papers (Goussard et al. 1998, Villain et al. 2004, Camelio et al. 2016). Its value de-
pends on the initial physical conditions of the proto-neutron star (e.g. the entropy profile and
a possible differential rotation) and on the compactness of the final cold and deleptonized
configuration. If one adopts rather stiff EoS, the maximum rotational frequency ranges be-
tween 300 and 600 Hz (Goussard et al. 1998, Villain et al. 2004, Camelio et al. 2016). In
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Figure 7.1: Gravitational mass against baryon central density for sequences of HSs (left panel) and QSs (right
panel) with constant spin frequency. In both cases the green solid lines represent the non-rotating
sequences while the black solid lines are sequences rotating at the maximum spin frequency con-
sidered in this work: 1000Hz for HSs and 600Hz for QSs. Dashed black lines are sequences with
intermediate values of f while blue lines are equilibrium sequences at constant baryon mass M0.
The red solid line locates HSs with ρc = ρcrit while the red dashed line locates QSs originating
from the conversion of HSs lying on the red solid line. Detailed results on the configurations
labeled A and Bs are listed in Tab. 7.1.

our analysis we use a rather soft hadronic EoS due to the formation of Delta resonances and
hyperons and the maximum rotation frequency is expected to be larger. In the following we
limit the rotation of our HSs to a maximum frequency f = 103 Hz. On the other hand, for
those QSs resulting from the conversion of a HS it is sufficient to limit the spin frequency to
600 Hz.

Models are shown in Fig. 7.1 in terms of central baryon density ρc and gravitational mass
M for both HSs (left panel) and QSs (right panel). Here blue lines are sequences of equilibria
for given baryonic mass and therefore they represent the evolutionary path of HSs and QSs
undergoing spin-down. The same configurations are also shown in Fig. 7.2 where we plot
the mass-radius relation for different sequences of CSs at constant spin frequency. There
are two limiting configurations: the non-rotating configuration A with M(A) = 1.45M�,
M0(A) = 1.67M� and R = 10.9 km; the 1 ms rotating configuration B with M(B) = 1.58M�,
M0(B) = 1.82M� and R = 12 km. These define the mass range of interest for delayed quark
deconfinement. The value of the critical mass of the configuration A cannot be determined
with high precision not even in the scheme of the two families. The main uncertainties are
due to the dynamics regulating the appearance of baryonic resonances and on the estimate of
the nucleation time of the first droplet of quark matter (Bombaci et al. 2016).

Massive HSs, that after their initial cooling (lasting for at most ∼ 10 s after core collapse)
end above the red line in Fig. 7.2, have ρc ≥ ρcrit and they will decay immediately to a QS. On
the other hand those HSs having M0 < M0(A) will never experience this transition1. Since

1For simplicity, we are not considering here the process of nucleation of quark matter (Bombaci et al. 2016).
In a more realistic case the red lines connecting the configurations A and B would transform in a strip whose
width is connected to the nucleation time.
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Figure 7.2: Gravitational mass as a function of the circumferential radius for both HSs and QSs. Thin dashed
lines are sequences of stars at a fixed frequency from the non-rotating configurations (thick solid
blue and green lines) to the configurations rotating at the maximum frequency (thin solid blue and
green lines) and spaced by 200 Hz. The yellow region shows hadronic configurations centrifugally
supported against deconfinement. Red lines and labels are the same as in Fig. 7.1.

for isolated CSs the baryonic mass is a conserved quantity, only those HSs having baryonic
mass between M0(A) and M0(B) can migrate into the QS branch when their baryon central
density rises to ρcrit as a consequence of spin-down. The yellow shaded region of Fig. 7.2
shows these configurations. All the configurations having the same baryonic mass as A (for
example the 1 ms rotator configuration C) take an infinite time to deconfine (deconfinement
takes place at zero frequency). Notice that along the evolutionary paths the variation of the
gravitational mass, and hence of the total energy, is at most of the order of ∼ 1%.

As soon as the central density reaches the critical value the HS decays into a QS in . 10 s.
Given the typical spin-down timescales we assume that this transition is instantaneous and
both the baryon number (baryonic mass) and the angular momentum J are conserved. The
red dashed line in the right panel of Fig. 7.1 and in Fig. 7.2 maps upon the QS sequences
the configurations which originate from quark deconfinement of HSs. With reference to
our limiting configurations, the HS labeled with A migrates to the configuration Â with
gravitational mass M(Â) = 1.32M� , while the HS B migrates to the configuration B̂ with
M(B̂) = 1.44M�. In both cases the total energy released in the transition is of the order of
∼ 0.1M�. Finally, after the formation, QSs can spin-down following the evolutionary path of
constant M0 shown in the right panel of Fig. 7.1. Detailed results are presented in Tab. 7.1
where we list the variation of the spin frequency ∆ fd, of the gravitational mass ∆Md and of
the rotational kinetic energy ∆Kd (where K := 1

2JΩ ) during the phase transition for a set
of selected models. Since QSs have larger radii and hence also a larger moment of inertia,
conservation of the angular momentum implies a drop in spin frequency. Interestingly we
found that the variation of the stellar radius is slightly larger (∼ 10% between cases A and B)
at higher M0. Hence transitions at higher M0 are characterized by a bigger percent variation
of the spin frequency and of the rotational energy. ∆Kd only accounts for the variation of the
kinetic energy while the total change of energy is given by the variation of the gravitational
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Table 7.1: Global quantities at the phase transition for the configurations labeled in Fig. 7.1: gravitational
mass M and spin frequency f of the hadronic configuration at deconfinement; difference between
the spin frequency ∆ fd, the gravitational mass ∆Md, and the rotational energy ∆Kd before and after
deconfinement.

Label M0 f ∆ fd M ∆Md ∆Kd

[M�] [Hz] [Hz] [M�] [M�] [1052 erg]

A 1.666 0.00 0.00 1.452 0.132 0.00
B1 1.677 300 130 1.462 0.132 0.20
B2 1.687 400 177 1.470 0.133 0.35
B3 1.698 500 224 1.480 0.133 0.57
B4 1.733 700 317 1.520 0.136 1.18
B5 1.785 900 413 1.555 0.139 2.14
B 1.820 1000 462 1.585 0.142 2.80

mass ∆Md and it will produce a reheating of the star. In the range of interest, ∆Md ' 1053 erg
and ∆Kd ' 1051−52 erg. This significant amount of energy released by quark deconfinement
can be associated with a late time activity as we will discuss in the following.

In the magnetar GRB model the spin-down evolution is governed by magnetic torques.
Therefore in order to evaluate the evolutionary timescales of our models we solve, for sim-
plicity, the spin-down formula for an aligned dipole rotator (Spitkovsky 2006):

dJ
dt

= −
B2R6Ω3

4
, (7.1)

where B is the magnetic field strength at the pole and we assume that the magnetic flux
Φ = BR2 is constant during the evolution. This choice gives only an upper limit to the
timescale for deconfinement: oblique rotators or mass loaded winds can have higher torques
(Metzger et al. 2011) that can lead to faster spin-down (up to a factor 10) in the first tens
of seconds. Furthermore we neglect the possibility of late time mass accretion (Bernardini
et al. 2014), because it introduces extra degree of freedom that cannot be easily constrained.
We also neglect gravitational waves emission which is relevant only if the star owns a very
strong internal toroidal field larger than ∼ 1016 G (Dall’Osso et al. 2009). In the mass
range of interest we have evaluated the spin-down timescale up to deconfinement, which is
shown in Fig. 7.3 and Tab. 7.2, for each equilibrium sequence of constant M0 , assuming
an initial surface magnetic field B0 = 1015 G. Note that the spin-down age scales with B−2

0 .
Conservation of the magnetic flux Φ is also assumed to hold during the phase transition.
The resulting magnetic field strength is of the order of 0.5B0 due to the change of the stellar
radius.

The time evolution of the spin frequency f and of the rotational energy K is shown in
Fig. 7.3 for the HS configurations labelled B1 − B5. It is evident that HSs with higher mass
have a shorter lifetime before deconfinement, since they reach the critical density at higher
spin frequencies. In Tab. 7.2 we list the time it takes to start deconfinement and the associated
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Figure 7.3: Time evolution of the spin-frequency (left panel) and of the rotational energy (right panel) for
dipole magnetic field losses along sequences of constant baryonic mass M0. Details about these
sequences are listed in Tabs. 7.1 and 7.2.

Table 7.2: Spin-down timescales to start quark deconfinement ∆tsd together with the associated variation of the
rotational kinetic energy ∆Ksd starting from an initial spin period Pi for the equilibrium sequences
shown in Fig. 7.3. We also show the spin-down timescales ∆tq (defined as the time needed to half
the rotational frequency of the QS) and the corresponding rotational energy loss ∆Kq after quark
deconfinement. The initial magnetic field is 1015 G.

M0 Pi → Pd ∆tsd ∆Ksd ∆tq ∆Kq

[M�] [ms] [1052 erg] [1052erg]

1.666 1.0→ ∞ ∞ 5.91 - -
1.677 1.0→ 3.3 2.7 hr 5.48 37 hr 0.19

2.0→ 3.3 1.8 hr 0.82
3.0→ 3.3 37 min 0.13

1.687 1.0→ 2.5 1.5 hr 5.13 21 hr 0.33
2.0→ 2.5 36 min 0.46

1.698 1.0→ 2.0 55 min 4.68 14 hr 0.53
1.733 1.0→ 1.4 23 min 3.37 8.2 hr 1.20
1.785 1.0→ 1.1 6 min 1.37 5.4 hr 1.95
1.820 1.0→ 1.0 0 0 4.6 hr 2.41
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rotational spin-down energy loss ∆Ksd for different values for the initial spin period.

7.3 Discussion and conclusions

Let us consider now the phenomenological implications of our scenario for the evolution
of proto-magnetars. The variation of the rotational energy ∆Ksd displayed in Tab. 7.2 gives
an estimate of the energy reservoir available to the HS before deconfinement which occurs
after a spin-down time scale ∆tsd that ranges from several minutes to hours. Comparing ∆Ksd

with the typical energetics of the millisecond magnetar model for GRBs (Fig. 19 of Metzger
et al. 2011) one notices that the values shown in Tab. 7.2 are compatible with the requirement
for classical GRBs, being ∆Ksd much larger than 1050−51 erg, i.e. the typical energy emitted
in X-rays and in gamma-rays during GRB events. We also remark that since ∆tsd is much
larger than the typical duration of the prompt phase of LGRBs, deconfinement does not spoil
the nice description of the prompt emission of LGRBs within the proto-magnetar model.

However, as discussed before, also the HS to QS transition is characterized by a huge
release of energy (Tab. 7.1) that in principle could manifest itself as a second transient.
Hence the time for deconfinement ∆tsd is indicative of the delay between the prompt GRB
emission due to the HS and the possible flare or second prompt emission associated to quark
deconfinement. Let us summarize how the deconfinement process proceeds and how is the
energy released. As studied in Drago and Pagliara (2015), deconfinement can be described
as a combustion process which can be separated in two phases. The first phase is very rapid
due to turbulence and it converts the bulk of the star in a time scale of few ms (Drago et al.
2007, Herzog and Röpke 2011). The second phase is dominated by diffusion of strangeness
and it is therefore much slower, typically lasting a few tens of seconds (Drago and Pagliara
2015). The huge energy associated to deconfinement is released via thermal neutrinos whose
luminosity can similarly be divided into an initial peak associated with the deconfinement
of the bulk of the star and a lower quasi-plateau emission associated with the burning of the
external layer of the star. The interaction of neutrinos with the material of the crust of the
star causes the ablation of baryons which plays a crucial role in the proto-magnetar model of
GRBs. A distinctive feature of the formation of a QS is the rapid suppression of the baryonic
flux once the conversion front reaches the surface of the star. This poses an upper limit to the
duration of an event of the prompt emission if described within the proto-magnetar model
and if associated with the baryonic emission from the surface of a star undergoing quark
deconfinement. However, also the lepton emission from the surface of the bare QS (Usov
1997, 2001, Page and Usov 2002) can be used to produce a jet.

As an example we discuss the case of GRB 110709B characterized by two sub-bursts
of observed duration respectively ∆t(1) ∼ 80 s and ∆t(2) ∼ 300 s, separated by a delay
∆tdelay ∼ 600 s (Zhang et al. 2012, Penacchioni et al. 2013). Neither the cosmological
redshift nor the energetics of the event are well determined and in the following we adopt
values compatible with the analysis by Penacchioni et al. (2013), being in agreement with
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the pulse-wise Amati relation (Basak and Rao 2013). In particular we assume an isotropic
energy E(1)

iso = 2.6 × 1053 erg for the first burst and E(2)
iso = 4.4 × 1052 erg for the second one

at redshift z = 1. We further assume a beaming correction of ∼ 10−2 in line with average
jet opening angle of LGRB (Guidorzi et al. 2014). Requiring that during the bursting events
(radiatively-efficient phases) the mass loading enhances the spin-down by a factor 3− 4 with
respect to the force-free case (Metzger et al. 2011), we find that, assuming an initial magnetic
field B = 2 × 1015 G, HSs with initial spin period in the range 1 − 1.6 ms and baryon masses
in M0 = 1.72 − 1.70M� have enough rotational energy to power the first event in a time
∆t(1), deconfine with a delay ∆tdelay and originate a QS rotating fast enough to power also
the second event on the required time ∆t(2). Notice that the requirements of short delays and
fast rotating QS select for configurations with high baryon mass. On the contrary HSs with
lower M0 take longer to decay and form a slowly rotating QS that at most could power weak
flaring events in the afterglows, on timescales of few hours (see Tab. 7.2), similarly to what
is seen in GRB 050916 (Chincarini et al. 2007).

Finally, let us clarify how deconfinement can be responsible of rather long gamma emis-
sions, as in the case of GRB 110709B, and also of the prompt phase of short GRBs, as
discussed in Drago and Pagliara (2016), Drago et al. (2016a). The main differences are re-
lated to the neutrinos flux and energy which determine the baryonic mass ejection rate. In
the case of short GRBs, the neutrino flux is significantly larger (of at least one order of mag-
nitude) mainly because of the larger mass of the forming QS. Also the neutrino energy is
larger roughly by a factor of three. This implies that the phase during which the QS forms
cannot produce a large enough Lorentz factor in the case of short GRBs. At variance, in
the case of LGRBs, the mass ejection rate is not too large and the prompt emission can start
almost immediately at the beginning of deconfinement.

Although our model requires further investigation for a detailed assessment, our simple
analysis of the spin-down evolution of CSs provides us with a new characterization, in terms
of energetics and timescales, of the possible observational signatures associated with the
two-families scenario. In particular we have shown, with reference to double GRBs, how,
once the EoS of HSs and QSs are chosen, the associated phenomenology is constrained by
the initial magnetic field strength, initial rotational period and the stellar mass. This implies
that, in principle, new observations could validate the two-families hypothesis, gaining new
insights in the physics of dense matter.





Conclusions

The simultaneous presence of high density, strong gravity, fast rotation and strong mag-
netic fields makes NSs a unique environment, where theories from different branches of
physics can be tested under extreme conditions not achievable on Earth. Nevertheless, in
order to investigate the physics of NSs, it is necessary to deeply understand their observa-
tional properties. These, in turn, depend dramatically on the structure and the properties of
the magnetic field which plays a key role in the phenomenology of the emission of NSs.
Even small differences in the morphology of the magnetic field can lead to changes in the
physical processes that might be important for the way NSs manifest. Therefore, an accurate
and detailed description of the morphology of the magnetic field is a necessary ingredient to
develop a realistic physical model able to shed light on NSs phenomenology.

This thesis focuses on the development of a comprehensive numerical study of magne-
tized configurations, derived in full GR, taking into account different magnetic field geome-
tries as well as the effects of rapid rotation. Equilibrium models have been obtained through
the XNS code, which has been updated during this Ph.D. program to model barotropic NSs
endowed with a general magnetic field configuration, including also rotation and realistic
EoSs. Our code solves simultaneously, by means of semi-spectral methods, Einstein’s equa-
tion for the metric, and Maxwell’s equations for the electromagnetic potential, together with
the Bernoulli integral to set the equilibrium. The main difficulties in solving for magne-
tized equilibrium models in GR are due to the complexity and the non-linearity of Einstein’s
equation. While in the case of purely toroidal or purely poloidal magnetic fields the exact
metric has a simple form because of the circularity of spacetime, for a mixed magnetic field
many metric terms must be retained and a large set of coupled elliptic partial differential
equations has to be solved. Here we have chosen a different approach with respect to pre-
vious studies: instead of solving the exact equations or resorting to a perturbative approach,
we approximate the spacetime metric to be conformally flat, using the recently developed
XCFC formalism, which is indeed at the base of the XNS code. We have shown that differ-
ences with respect to the exact solutions are negligible (well within the typical discretization
errors of numerical codes even under extreme conditions), with the benefit of a far more nu-
merically stable and well conditioned system of equations. This has allowed us to sample a
wide and general class of current distributions performing a vast parameter study (up to the
fully non-linear regime), necessary to establish general trends and expectations regarding
how different current distributions affect the structure of the star and the morphology of the
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associated magnetic field, considering also the coupling with centrifugal and compactness
effects. The analysis of this large set of equilibria has provided us the opportunity to extend
previous results presented in literature (assessing their robustness and generality) but also to
derive new quantitative and qualitative relations between different stellar quantities (such as
the induced deformation, the gravitational mass and the stellar radii), the energy content of
the system and the multipolar structure of the magnetic field.

In this work we have analized purely toroidal, purely poloidal and mixed magnetic fields.
In general we have seen that the effect of the magnetic field is more pronounced in less com-
pact NSs. More massive configurations of higher central density, instead, show smaller
deformations even if they can host a stronger magnetic field. Moreover at fixed gravita-
tional/baryonic mass, and excluding supramassive configurations, there is always a max-
imum magnetic field strength that can be placed inside the star. This corresponds to the
development of a highly non-linear regime, where the magnetic energy increases as a con-
sequence of the expansion of the star, rather than a growth in the magnetic field strength. In
principle, we might expect that the magnetic energy stored inside the star can be increased
to be almost comparable with the gravitational mass of the NS. However we have verified
that this is not the case: the inflation of the star (in the purely toroidal field case) or the topo-
logical change of the density distribution (in the poloidal field case) leads to a saturation of
the magnetic field energy. Considering also rotation we have seen that, since it reduces the
compactness of the star, it enhances the effectiveness of the magnetic field in changing the
structure of the star itself. Interestingly, we have found that while a toroidal magnetic field
reduces the maximum rotational rate below which the mass shedding occurs, the poloidal
field does the opposite stabilizing the system against mass-shedding.

In our analysis we gave a particular emphasis to the parametrization of the induced de-
formation, which is the relevant quantity in the context of GWs astronomy. Previous studies
have already provided such parametrizations both in terms of the magnetic field strength and
the rotational frequency, or in terms of the associated energetics. In the majority of cases,
however, such analyses were limited to the perturbative regime especially when considering
complex magnetic field morphologies. Here, instead the analysis is always performed up to
the fully non linear regime extrapolating then to a more realistic regime. This has allowed
us to compare the interplay between different current distributions, even in the most extreme
cases, in order to understand if the deformation of the star can be explained exclusively in
terms of the energetics of the system or if one should also consider the specific profile of
the magnetic field distribution inside the star. In general we have seen that, in the case of
distributed currents, a parametrization in terms of the energetic allows us to obtain general
scaling laws that take into account also the dependency on the compactness of the star, the
current distribution and the coupling between the magnetic field and the rotation. This is
indicative of the fact that the deformation of the star can be viewed as the result of the bal-
ance between the magnetic energy and the kinetic rotational energy versus the gravitational
binding energy. However, while distributed currents have minor effects on the stellar de-
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formation, the situation is reversed in the case of fully saturated and highly concentrated
currents especially for poloidal magnetic fields: we noticed that, being the energetics equal,
currents located in the outer layers of the stars are less important than currents located in the
deeper interior. This is particularly evident in the case of TT configurations where, because
of the equilibrium requirements in the GS equation, to increase the toroidal magnetic field
it is also needed to rise the toroidal current in the outer layers of the star. This implies that
at a given magnetic energy, even considering a configuration where the toroidal magnetic
energy is sub-dominant, the rearrangement of the internal current causes a reduction of the
efficiency of the poloidal magnetic field in the deformation of the star. This underlines the
importance of the current distribution as a key parameter which, in turn, strongly depends of
the details of the NS formation (the stratification of differential rotation, the location of the
convective region, etc, ...). We stress here that in our mixed field configurations the deforma-
tion is indeed completely due to the poloidal magnetic field, since it is always energetically
dominant. Even using several functional forms for the current, we have found that the sys-
tem always saturates to configurations where the energy of the toroidal field is at most 10%
of the total magnetic energy. Again, the reason is that the growth of the peripheral toroidal
currents acts to change the structure of the poloidal field reducing the volume occupied by
the toroidal one. A possible solution to this problem it to relax the equilibrium condition,
at least in the outer layers of the star, or to consider non-barotropic NSs. Indeed, it seems
that the energy ratio depends more on the stratification of the star rather than on the current
distribution.

Investigating how the NS reacts to different current distributions, we have also analyzed
how the external magnetic field reorganizes in response to strongly concentrated currents.
Indeed, the choice of the current profile leads to different configurations where the magnetic
field can be concentrated either toward the center or toward the edge of the star. It is possible
to obtain configurations where the magnetic field at the surface can differ substantially from a
simple dipole: by adopting different prescriptions, we can make it either higher at the equator,
or concentrated toward the axis, in configurations where the bulk of the star is demagnetized.
This means that the surface field can be easily dominated by multipoles higher than the
dipole. It also implies that local processes, at or near the surface, might differ substantially
in their signatures from the expectations of dipole dominated models. On the other hand,
processes related to the large-scale field, as spin-down, will not.

In the last years there was a growth of observational evidences supporting the idea that the
magnetospheres of magnetars are tightly twisted in the vicinity of the star. Investigating how
this twisted magnetosphere is arranged, and what could be its equilibrium structure, is thus
an important step for a more realistic description of these astrophysical sources. Extend-
ing previous results in literature, we have generalized TT configurations to model twisted
magnetospheres allowing for electric currents to flow from the interior of the star to the mag-
netosphere. The resulting morphology of the magnetic field is then characterized by toroidal
fields (and hence a twist) extending also in the exterior of the star. All the equilibrium models
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that we have obtained are energetically dominated by the poloidal component, which stores
almost 75% of the total magnetic energy of the magnetosphere. This result is in line with
what we have obtained for TT configurations. The amount of twist in the magnetosphere can
be regulated modulating the poloidal non-linear current injected outside. When this current
is weak the magnetic field is inflated outward by the toroidal magnetic field pressure and the
twist extends also to higher latitudes. In this case the toroidal field is organized in a single
magnetically connected region, where all the poloidal field lines are connected to the surface
of the star. As the exterior current increases and reaches values similar to the ones buried
inside the star, the system starts to self-regulate inducing a dramatic change in the topology
of the magnetic field distribution. The resulting topologies are very likely to be unstable
suggesting that there is a maximum twist that can be imposed to the magnetosphere, before
reconnection and plasmoid formation sets in.

Newly born rapidly rotating magnetars have been suggested as engine candidates for
GRBs. The energy losses due to the emission of a relativistic magnetically driven wind can
explain the bulk of known events, but it requires in general a high efficiency to convert the
rotational energy of the proto-neutron star into wind kinetic energy. The presence of strong
magnetic fields ≥ 1015 G is however expected to induce deformations able to trigger such
an intense GWs emission that can compete with the electromagnetic emission of the wind.
Indeed if, as expected from stability requirements and evolutionary scenarios, the toroidal
field is energetically dominant, it would induce a prolate deformation that enhances the effi-
ciency of GWs production. As discussed above, a detailed investigation of the deformation
due to mixed magnetic fields requires a precise analysis of the current distribution. However,
a rough comparison between the results obtained separately for purely toroidal and poloidal
fields suggests that, for a typical millisecond magnetar with a poloidal magnetic field of the
order of 1016 G, a toroidal component of the magnetic field of about one order of magnitude
stronger than the poloidal one is necessary to achieve a prolate deformation.

During the last years, the proto-magnetar model is gaining popularity because of the ob-
servations of the extended emission of GRBs that can be interpreted as the imprint of an
ongoing energy injection from the rapidly spinning magnetar. Within this picture, it is how-
ever difficult to explain late time bursts often present in the light-curve of many long GRBs,
since the standard picture predicts a steady smooth energy injection in the form of a rela-
tivistic magnetically driven wind. Among all the possible explanations, it has been proposed
that late time bursts can be associated with quark deconfinement. As an application of the
results and the numerical tools developed during this Ph.D. research, we have explored the
possible implication of quark deconfinement on the phenomenology of GRBs. In particular,
in the last part of this work we have shown that, on the basis of energetical arguments and
timescale evaluations, the transition from a neutron star into a quark star can take place giv-
ing rise to peculiar observable features in long GRBs as demonstrated through an application
to the double-burst GRB 110709B.

In the future we hope that our models can be used as a starting point toward a more
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realistic and accurate modelization of NSs. Indeed, our equilibrium models can serve as an
initial condition to study the evolution of the magnetic field after the formation of the NS.
This is an important task, necessary to constrain the stability and morphological properties
of the magnetic field inside the star. In addition future possible observations of GWs from a
newly-born magnetar can be used to obtain important information about the geometry of the
magnetic field. Even though a precise comparison with the GW signal requires a detailed
modelization of the initial evolution of the system to obtain realistic GW templates, our
presents results (in particular Eqs. 3.11, 4.17 and 5.6 ) can be used to roughly evaluate how
the magnetic energy is shared between the toroidal and poloidal component of the magnetic
field, since the GW strain amplitude is directly proportional to the quadrupolar deformation
of the NS.

In the future we hope to be able to include also the effects of superfluidity/superconductivity
and the presence of a crust. Adding these effects will allow us to study the long-term evo-
lution of the magnetic and thermal properties of the NS and to link the reactions of the
magnetosphere to rearrangements of the internal magnetic field. As an example our models,
and in particular those endowed with a twisted magnetosphere (see Chap. 6), can be used to
compute the synthetic electromagnetic emission of magnetars (including light-curves, spec-
tra and polarization patterns) to be compared with observations. In particular, future data
collected with X-ray polarimeters, such as XIPE (X-ray Imaging Polarimetry Explorer, Sof-
fitta et al. 2013) and IXPE (Imaging X-ray Polarimeter Explorer, Weisskopf et al. 2013,
Jahoda et al. 2014), would be crucial to unveil the magnetic structure of such kind of stars.





A The XNS code

The XNS code solves for axisymmetric equilibria of magnetized and rotating NSs in
GR. The code is based on the metric module and routines developed for the X-ECHO code
for GRMHD in dynamical spacetimes (Bucciantini and Del Zanna 2011), which in turn is
an upgrade of the Eulerian Conservative High-Order code (ECHO Del Zanna et al. 2007),
During this Ph.D. program, XNS has been updated to account for various magnetic field
topologies (purely poloidal, mixed) for both static and rotating NSs. It is now also possible
to build rotating models using realistic tabulated EoSs.

In this Appendix we will describe the numerical work-flow of XNS (Sec. A.1) together
with the numerical techniques used to solve the equations (Sec. A.2). Finally in Sec. A.3 we
will provide some tests of the performances and the accuracy of XNS.

A.1 The numerical scheme

The XNS code solves self-consistently the coupled Einstein-Maxwell equations in spher-
ical coordinates for an axisymmetric and stationary spacetime under the so-called XCFC
approximation (see Sec. 2.3). For the magnetic field configurations it is possible to chose
among different morphologies, i.e. purely toroidal, purely poloidal or mixed field configu-
rations, arising from different currents distributions that can be either totally confined inside
the star or extended outside in the magnetosphere. For rotating NSs, we have considered
only rigid rotation with Ω = cost and we do not solve for differential rotation or meridional
flows (i.e. vr = vθ , 0). However the code can solve also for differential rotation with a
toroidal magnetic field.

Once the central density ρc, the rotational frequency of the rigid rotation and the free
parameters associated with the current distribution have been chosen XNS performs the fol-
lowing iterative algorithm:

1. the numerical domain is initialized with a guess for the metric terms, the fluid quan-
tities and the electromagnetic field; in the first iteration, the initial guess is provided
by solving the TOV equation in isotropic coordinates (Tolman 1939) for a NS with
central density ρc through a shooting method;
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2. the XCFC equations 2.60 - 2.63 are hierarchically solved for the metric functions Wφ,
ψ, α and βφ using a semi-spectral method;

3. the 3-velocity vφ (Eq. 2.81) and the Lorentz factor Γ are obtained on top of the metric
function;

4. depending on the morphology of the magnetic field the Lorentz force contribution to
the Bernoulli integralM is evaluated throughout different approaches:

• if the magnetic field configuration is purely toroidal the potentialM is given by
Eq. (3.1);

• in the case of a static configuration endowed with a poloidal magnetic field (and
hence also mixed magnetic field configuration), the magnetic potential Ψ is ob-
tained from Eq. 2.78 and Eq.2.99, finally determiningM;

• if the magnetic field is purely poloidal but the star is rotating we iteratively
solve together both the Maxwell-Gauss equation (2.77) and the Ampère equation
Eq. 2.78 (respectively for the potential Φ and Ψ), initializing the source terms
using Eq. (2.100) and assuming vacuum outside the star;

5. the Bernoulli integral is finally solved via a Newton method and the fluid quantities
are updated in order to start a new iterative cycle;

6. the previous steps, from 2 to 5 ,are repeated until convergence to a desired tolerance is
achieved.

A.2 Solving equations

As discussed in Sec. 2.3, in the XCFC-formulation the Einstein’s equation is turned into
a system of two scalar Poisson-like PDEs, one for the conformal factor φ and the other for the
lapse function α, and two vector Poisson-like equations, one for the shift vector βi and one
for W i. These are fully decoupled and can be solved hierarchically (in the order: first the one
for W i, then ψ, α and finally βi). Moreover they can be cast into a form that guarantees local
uniqueness of the solution. In the case of purely rotating star only Wφ, and βφ are different
from zero.

The elliptic PDEs related to the vector quantities like Wφ and βφ have the general form:

∆Xφ̂ = Hφ̂, (A.1)

where the Xφ̂ = Xφ̂(r, θ) is the generic φ-component of the unknown vector field, while Hφ̂

is the associated source term. In the case of Wϕ, the source term depends only on S φ. While
for ω = −βφ (the last equation solved), it depends also on the terms computed previously.
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The elliptic PDEs for scalar quantities like ψ and α can be generally written as:

∆q = sqp; (A.2)

here again q = q(r, θ) is the generic unknown scalar function, and s is the scalar source term,
which in turn depends on and the stress-energy content of the space-time, and on previously
computed metric terms (recall that the metric solver has a hyerarchical structure).

Remarkably Maxwell Eqs. 2.77- 2.78 and the Grad Shafranov Eq. 2.125 share the same
mathematical structure of the XCFC Einstein equations, in particular: the scalar equation
for the electric potential Φ (Eq. 2.77) is a Poisson-like equation equivalent to Eq. A.2; the
equation for Ψ (Eqs. 2.78 for rotating stars with purely poloidal field or Eq. 2.125 in the
static case) are vector Poisson-like equation analogous to Eq. A.1 where H = H(Ψ,∂Ψ).
The solutions of these elliptic PDEs are obtained through a semi-spectral method. The scalar
functions ψ, αψ and Φ are expanded as a linear combination of spherical harmonics Y`(θ)

q(r, θ) =

∞∑
`=0

K`(r)Y`(θ), (A.3)

while the vector quantities Wϕ, βϕ and Ψ are expressed in terms of the φ-component of vector
spherical harmonics

Xφ̂(r, θ) =

∞∑
`=0

C`(r)Y ′`(θ), (A.4)

where ′ stands for the derivative with respect to θ (notice that the assumption of axisymmetry
excludes the harmonic degree m , 0). The harmonic expansion reduces each PDE to a set of
radial ordinary differential equations, one for each coefficient K` (or analogously C` ), with
the form

d2K`

dr2 +
2
r

dK`

dr
−
`(` + 1)

r2 K` = q` (A.5)

where the source term is

ql(r) := 2π
∫

q(r, θ)Y`(θ) sin θdθ. (A.6)

Adopting a second order radial discretization the equation for each harmonic can be solved
via a direct tridiagonal matrix inversion. The harmonics decomposition ensures also the
correct behavior of the solution on the symmetry axis, at the centre and at the outer boundary
of the domain which, in our case, is at a finite distance from the stellar surface. At the centre
of the star the coefficients C` and K` go to zero with parity respectively (−1)` and (−1)`−1,
while at the outer radius the coefficients scale as r−(`+1).

In general, apart for rotating stars endowed with a poloidal magnetic field (see next
Sec. A.2.1), we do not impose any condition at the surface of the star. Ideed, we solve
all PDEs on the full numerical domain instead of using an interior grid, inside the star, and
an exterior one, outside. This automatically guarantees that all solutions are continuous and
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smooth at the stellar surface, avoiding the onset of spurious surface currents. It also allows
the stellar surface to adjust freely, and not to any imposed shape that is not known in advance
in the case of strong field or rapid rotation.

A.2.1 Numerical resolution of Maxwell equation

In the case of rotating NSs with a purely poloidal field, we solve separately Eqs. 2.78-2.77
for the potentials Ψ and Φ respectively. These equations are solved iteratively computing
the source terms from Eqs. 2.99-2.98 exploiting, at each step, the potential found from the
previous one. Accordingly with the vacuum assumption, the current density Jφ and the
charge density ρe are set to zero outside the star.

Since Eqs. 2.78-2.77 are solved, at once, on the entire numerical grid, both Ψ and Φ cross
smoothly the the stellar surface. This is not consistent with the fact that a rotating perfect
conductor, endowed with a poloidal magnetic field, naturally acquires a surface charge den-
sity, which in turn manifests as discontinuity of the component of the electric field and hence
of the derivatives of Φ. Indeed, the obtained potential Φ does not satisfy the perfect conduct-
ing relation Eq. 2.89 inside the star, but differs from the MHD solution ΦMHD = −ΩΨ +C by
an harmonic function Φa:

Φ = ΦMHD + Φa with ∆Φa = 0. (A.7)

This harmonic function Φa is set by requiring Eq. 2.89 to hold at the stellar surface SNS:

Φa|SNS = (Φ − ΦMHD)|SNS . (A.8)

Being an harmonic function, it can be expanded in spherical harmonics inside and outside
the star as

Φa =

N∑̀
l=0

Y`(θ) ×

a`r` inside the star,

b`r−(`+1) outside the star,
(A.9)

The coefficient a` and b` are found by solving a system of N` + 1 equations that one
obtains evaluating Eq. A.8 on N` + 1 collocation points located along the surface SNS. The
spacing between these collocation points is chosen in order to improve the convergence and
avoid aliasing effects. For highly oblate stars, it is important to redistribute differently the
collocations points used to compute the interior solution and those used to compute the
exterior one: while the collocations points for the interior solution are mainly distributed in
the vicinity of the stellar equator (at larger radii), in the other case they are clustered near the
pole. Moreover, if the collocation points are chosen to coincide with the grid-points locating
SNS, the development of high-frequency numerical noise can compromise the accuracy with
which high-` coefficients are computed. Given the iterative nature of the algorithm, this
might compromise the overall convergence. To avoid this problem, collocation points are
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selected on top of the super-ellipse, with equation

r =

[(
cos θ

rp

)ns

+

(
sin θ
req

)ns
]− 1

ns

, (A.10)

that best fits the discretized stellar surface (see Eq. 2.118). Interestingly, in almost all cases
the stellar surface can be approximated by a super-ellipse with 1.5 . ns . 3, within at most
one grid point. Once Φa has been obtained, the potential Φ can be corrected to Φnew = Φ−Φa,
that satisfies ideal MHD inside the star. The new function Φnew is now continuous but not
differentiable across the surface as expected.

Note that the ideal MHD condition Eq. 2.89, does not completely set the scalar potential
Φ, which inside the star is still defined minus an arbitrary constant C. As pointed out by
Bocquet et al. (1995) this constant corresponds to an arbitrary charge, that can be added to
the star. A common choice is to require the net charge Qe = 0 (see discussion is Sec. 4.2.1).
This can be achieved by minimizing iteratively the monopolar content of Φnew, with the same
procedure discussed in Bocquet et al. (1995). The other possibility that we have considered
is to assume a net global charge in order to minimize the Lorentz force at the pole. This can
be done by simply minimizing the discontinuity of the electric field at the pole.

A.2.2 The numerical setup

The equilibrium models that we present in this thesis are computed on top of differ-
ent numerical grids depending on the specific magnetic field morphology that we have in-
vestigated. The spherical grid typical adopted is uniformly spaced and covers the range
r = [0,Rmax = 40] (in geometrized units) and θ = [0,π] with 600 points in the radial direc-
tion and 300 in the azimuthal one (the star is typically resolved with ∼ 200 radial points).
The radial domain has been chosen such that its outer boundary Rmax is far enough from the
stellar surface, so that the higher order multipoles in the various quantities (i.e. in the metric
terms) become negligible and the asymptotic trend ∝ r−(l+1) can be imposed properly. We
have verified that solutions do not depend on the position of the outer boundary.

In the particular case of twisted magnetosphere, where the toroidal field can extend up
to eight times the stellar radius, we have increased the radial domain up to Rmax = 150 and
we have used a non uniform grid in order to reduce the computational time: in the range
r = [0, 40] the grid is uniformly spaced with 600 zones, while a geometrically stretched grid
covers the domain r = [40, 150] with 200 grid points and with the following spacing

∆ri = (1 + 5.962 × 10−3)∆ri−1. (A.11)

This allows us to resolve the star together with the extended magnetosphere always with the
same accuracy, without resorting to huge numerical grids.

The surface of the star (needed to compute apparent ellipticity and to locate the collo-
cation points to solve Eq. A.8) is defined as the locus of points where the baryon density
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Figure A.1: Radial profiles of the norm of the C`(r) coefficients in the harmonic decomposition of the magnetic
potential Ψ (see Eq. A.4), in the weak field limit. Values are normalized to the maximum of the
C1(r), for convenience. Left panel: a = 0.1. Right panel: a = 2.5.

drops below ∼ 10−5 − 10−7 the value of the baryon density at the center of the star ρc. For
numerical reasons, the value of the baryon density in the magnetosphere is set to a fiducial
small value (typically ∼ 10−6 − 10−8 times ρc). The threshold value for the rest mass density
is chosen such that lowering it further produces negligible changes (much smaller than the
overall accuracy of our scheme).

In all these cases, the convergence tolerance for the iterative scheme and for the solution
of the PDEs has been fixed to 10−7 − 10−8 (convergence is checked looking at the maximum
deviation between successive solutions for the various quantities), however the overall accu-
racy of our solutions is 10−3 because of the discretization errors. This accuracy is typically
achieved using 20 spherical harmonics. However for mixed field models or purely poloidal
models with saturated currents (see Sec.4.1.2), the number of spherical harmonics has been
increased up to 60 in some cases. In these cases, indeed, the magnetic field can be charac-
terized by narrow features, corresponding to concentrated currents, that can be resolved only
with an higher number of harmonics. This is shown in Fig. A.1. Here we compare the rela-
tive strength of the coefficients C` of the potential Ψ for two TT configurations characterized
by different values of the parameter a (see Sec.5.1), in the regime of weak magnetization1. In
the case a = 0.1, where the toroidal magnetic field is defined in a large torus extending in the
outer half of the star (see Fig.A.2), the various multipoles are more than three to four orders
of magnitude smaller than the dipole term, and in general each multipole of order ` is about
one order of magnitude smaller than the preceding one of order ` − 1 (for smaller values of
a the various multipoles are so small that they are essentially compatible with being due to
numerical noise). In the case a = 2.5, where the toroidal field is localized in a narrow torus
under the surface of the star (see again Fig.A.2), the multipolar content of the magnetic field

1 As discussed in Sec. 4.1.2 in the weak field regime, the metric terms are essentially independent of the
magnetic field strength and we can directly compare the various multipole terms by looking at the relative
strength of the C` terms in the expansion in Eq. A.4. This is not possible for stronger magnetic fields, because
the metric is no longer just a function of r, and the C` will also contain a geometrical contribution from the
metric, which we can not separate since spherical harmonics are not eigenfunctions of the angular part of the
Laplacian in a generically curved spacetime.
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Figure A.2: The strength of the poloidal (left) and toroidal (right) magnetic field at the equator for various
values of the parameter a (see Eq. 2.101).

is much higher: the ` = 3 term is only a factor ∼ 10 (at peak) smaller than the dipole term,
and in general the ratio between two successive multipoles is only of the order of a few.

In the low magnetic field limit we have verified that in order to get converged solutions
of the GS equation, we need to extend our decomposition of the vector potential Ψ into
spherical harmonic, in Eq. A.4, up to `max such that all the neglected multipoles have at least
an amplitude C`>`max/C1 < 10−5. Please note that, as said above, while the overall accuracy
of our models is ∼ 10−3, the accuracy of elliptic solvers is 10−8. In fact, multipoles with
amplitude less than 10−7 times the leading dipole term are dominated by numerical noise
(see e.g. the behaviour of the C`=9 term in the left panel of Fig. A.1).

A.3 Accuracy of XCFC approximation

In this section we compare the results obtained with XNS with those of other codes
presented in the literature in order to provide not only a test of the performances of our code,
but also of the accuracy of the XCFC approximation.

A comparison between unmagnetized rotating equilibria is performed with reference to
the RNS code (Stergioulas and Friedman 1995), which solves for equilibrium configurations
of unmagnetized rotating NSs in the correct regime for the spacetime metric described by a
quasi-isotropic form, for which we recall that R , ψ4r2 sin2 θ. We have selected two classes
of models presented in Dimmelmeier et al. (2006), which are computed using a polytropic
EoS with Ka = 100 and n = 1 for different rotational rates: the AU models are charac-
terized by fixed baryonic mass M0 = 1.506M�; the BU models have fixed central density
ρc = 1.280 × 10−3 (in geometrized unit). We have computed these models in XNS on top of
a computational grid defined in r = [0, 20] and θ = [0,π] with 250 points in the radial direc-
tion and 100 in the angular one, and with 10 harmonics. As shown in Tab. A.1, the results
obtained with the two codes agree within ∼ 5 × 10−3 even for the BU9 model, which repre-
sents a configuration at the mass-shedding limit. In Fig. A.3 we compare in detail the models
BU8 obtained with XNS and RNS, in terms of the radial profiles of the baryon density and
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Table A.1: Comparison between the XNS code and RNS for rigidly rotating stars. AU models have fixed
baryonic mass while BU equilibria are computed at fixed central density ρc = 1.280 × 10−3. The
rotational rate is in unity of 10−2 while the central density is listed in unity of 10−3. All quantities
are expressed in geometrized units.

ρc Ω M re rp/re

XNS RNS XNS RNS XNS RNS

AU0 1.280 0.000 1.403 1.400 8.12 8.13 1.000 1.000
AU1 1.164 1.293 1.407 1.404 8.68 8.71 0.917 0.919
AU2 1.072 1.656 1.411 1.407 9.25 9.30 0.853 0.852
AU3 0.978 1.888 1.414 1.411 10.04 10.06 0.777 0.780
AU4 0.883 2.029 1.419 1.415 11.80 11.14 0.697 0.698
AU5 0.799 2.084 1.427 1.420 13.35 13.43 0.573 0.575

BU0 1.280 0.000 1.403 1.400 8.12 8.13 1.000 1.000
BU1 1.280 1.075 1.435 1.432 8.29 8.33 0.952 0.950
BU2 1.280 1.509 1.469 1.466 8.52 8.58 0.898 0.900
BU3 1.280 1.829 1.507 1.503 8.76 8.82 0.854 0.850
BU4 1.280 2.084 1.547 1.543 9.08 9.13 0.797 0.800
BU5 1.280 2.290 1.590 1.585 9.48 9.50 0.747 0.750
BU6 1.280 2.452 1.631 1.627 9.88 9.95 0.700 0.700
BU7 1.280 2.569 1.669 1.666 10.44 10.51 0.648 0.650
BU8 1.280 2.633 1.695 1.692 11.24 11.26 0.594 0.600
BU9 1.280 2.642 1.699 1.695 11.56 11.63 0.578 0.580

of the metric functions. It is evident that XNS reproduces the matter distribution inside the
star with a discrepancy of the order of 10−3 with respect to the RNS code. Analogously the
metric terms are in agreement within the same accuracy of 10−3, which is in turn comparable
with the level of approximation introduced with the CFC assumption (see the green line in
Fig. A.3).

In the case of non-rotating magnetized star with a purely toroidal magnetic field we com-
pare our results with those obtained by Kiuchi and Yoshida (2008) and Frieben and Rezzolla
(2012). They both solve for equilibrium in quasi-isotropic coordinates. Despite this, their
results are significatively different. In particular they both compute a sequence of magne-
tized equilibrium models with fixed gravitational mass M0 = 1.680M�, using a polytropic
EoS with Ka = 110 and n = 1. Therefore we have realized this same sequence with XNS
adopting the same numerical grid as for the unmagnetized rotating models discussed previ-
ously. As shown in Fig. A.4 our results are in complete agreement with those of Frieben and
Rezzolla (2012) (within again ∼ 5 × 10−3), confirming the latter against Kiuchi and Yoshida
(2008).

For purely poloidal magnetic field we refer to Bocquet et al. (1995). The polytropic
index that they use is n = 1 while the polytropic constant is Ka = 372. For the model that
we could reproduce, we found an agreement with deviations . 1% for all quantities, except
the magnetic dipole moment, where the error is about a few per cent. We want, however,
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Figure A.3: Comparison between RNS and XNS solutions for model BU8. Left panels: density profiles de-
rived with XNS (solid lines) and RNS (dotted lines) along the equatorial direction (solid-red and
dotted-blue) and the polar direction (solid-orange and dotted-green). The bottom panel shows the
residuals in the equatorial (red) and polar (orange) direction. Right panel: the orange line shows
the relative error between the lapse computed with XNS and RNS. The blue and red curves are
respectively the relative error between the conformal factor ψ of the CFC metric to the one in
quasi-isotropic coordinates, and the quantity [R/ sin θ]−2. Finally the green line traces the dif-
ference between ψ and [R/ sin θ]−2 in quasi-isotropic coordinate, which can be considered as a
measure of the non-conformal flatness of the RNS solution.
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Figure A.4: Variation with respect to the unmagnetized equilibrium model of the central baryon density ρc,
of the gravitational mass M, of the circumferential radius Rcirc and of the deformation ratio along
the equilibrium sequence of magnetized configuration with constant M0 = 1.680M� and m = 1.
Lines represent the result from Frieben and Rezzolla (2012) (FR) and Kiuchi and Yoshida (2008)
(KY); points are our results.
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to point out that our operative definition of magnetic dipole moment (Eq. 2.116) is different
than the one given by Bocquet et al. (1995), which is valid only in the asymptotically flat
limit, where magnetic field vanishes.

Given that Dimmelmeier et al. (2006), Bocquet et al. (1995) and Frieben and Rezzolla
(2012) solve in the correct quasi-isotropic metric, these comparisons are also a check on
the accuracy of the XCFC approximation. It is evident that the XCFC approximation gives
results that are in agreement with what is found in the correct full GR regime even in the
magnetized case.

Finally, the XNS code has also been extensively validated in the Newtonian-limit (Das
and Mukhopadhyay 2015, 2016, Subramanian and Mukhopadhyay 2015, Mukhopadhyay
2015). In particular, Bera and Bhattacharya (2015) have verified that our numerical scheme
provides solutions that are indistinguishable, within the numerical accuracy, from those ob-
tained with the LORENE code (http://www.lorene.obspm.fr/).

http://www.lorene.obspm.fr/
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