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Abstract. In this paper, we prove that the L
p approximants naturally associated to a supremal

functional Γ-converge to it. This yields a lower semicontinuity result for supremal functionals whose
supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence
of minimizers for variational problems involving such functionals (together with a Dirichlet condition)
then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e.
local solution) among these minimizers. We provide two different proofs of this fact relying on different
assumptions and techniques.
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1. Introduction

The classical problems of Calculus of Variations are concerned with the minimization of integral functionals.
From the point of view of modelization, this usually corresponds to minimizing the mean of a certain pointwise
quantity which can be an energy density or a cost for unitary work. In other words, minimizing the functional is
equivalent to controlling the mean of some quantity. On the other hand there are situations in which a control
on the worst (or best) situation is needed, in the sense that one wants to control the maximum of a certain
quantity instead of its mean. This last type of problems can be easily formulated as a problem of Calculus of
Variations or Optimal Control Theory in L∞, and it received a lot of attention in the last ten years.

The problems of Calculus of Variations in L∞ that we will study in this paper are formulated as follows:

min
v∈W 1,∞

g (Ω,RM )

{

F (v) := ess.sup
x∈Ω

f(x, v(x), Dv(x))

}

, (1.1)

where Ω is a bounded open subset of R
N , f satisfies the natural assumption to have the measurability of

f(x, v(x), Dv(x)) for all v ∈ W 1,∞(Ω, RM ), g is a map in W 1,∞(Ω, RM )∩C(Ω, RM ) and W 1,∞
g (Ω, RM ) denotes

the space of functions such that (u− g) ∈ W 1,∞(Ω, RM )∩C0(Ω, RM ). According to part of the already existing
literature we will refer to functionals of that type as supremal functionals while we will refer to f as supremand.
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2 Dipartimento di Matematica Applicata, Universitá di Pisa, Via Bonanno Pisano 25/B, 56126 Pisa, Italy.
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Two relevant facts distinguish the classical integral problems of the Calculus of Variations from problems
involving a supremal functional. The first one is that when one works with a supremal functional, sets of
arbitrarily small measure can not be neglected. The second one is that the problem (1.1) is in some sense
non-local. By this last sentence we mean that modifying a function v on a set of positive measure may not
change the value of the functional F (v). The first fact plays a role in studying the semicontinuity and relaxation
of supremal functionals, while the second come into play in studying minimizers.

Both differences are due to the fact that integral functionals are additive while supremal functionals are only
subadditive with respect to the union of sets. The additivity property of integral functionals implies that a
minimizer u for an integral functional G defined on some space of measurable functions X by:

G(v) :=

∫

Ω

g(x, v(x), Dv(x))dx

is always a local minimizer, which means that for all subdomain V ⊂ Ω one has

∫

V

g(x, u(x), Du(x))dx ≤
∫

V

g(x, v(x), Dv(x))dx

whenever v ∈ X with v = u on ∂V . By analogy with the case of integral functionals, reference [2] defined the
following notion of local minimizers for supremal functionals.

Definition 1.1. A local minimizer for (1.1) is a minimizer u ∈ W 1,∞(Ω, RM )∩C(Ω, RM ) such that for all open
subset V ⊂ Ω one has

ess.sup
x∈V

f(x, u(x), Du(x)) ≤ ess.sup
x∈V

f(x, v(x), Dv(x))

for all v in W 1,∞(V, RM ) ∩ C(V , RM ) such that v = u on ∂V . In the following, a local minimizer will be called
an AML.

The name AML stands for Absolute Minimizing Lipschitz and it was originally referred to the scalar case
where f(x, s, A) = |A|. Before going further, we notice that a minimizer for a supremal functional is not
necessarily a local minimizer.

Example 1.2. Consider the following variational problem on Ω := ] − 2, 2[ :

min{ess.sup
x∈ ]−2,2[

f(x, v′(x)) : v(−2) = v(2) = 0} (1.2)

where the supremand f is given by

f(x, s) :=

{

1 + |s − 1| if x ∈ ] − 2,−1[∪ ]1, 2[ ,
|s|/2 if x ∈ [−1, 1].

The set of optimal solutions of (1.2) is the set of Lipschitz continuous functions u such that: u(x) = x + 2 for
x ∈ [−2,−1], u(x) = x − 2 for x ∈ [1, 2] and u has Lipschitz constant less that 2 on [−1, 1]. An AML of this
problem should be an optimal solution of the localized problem on V =] − 1, 1[, which then reads:

min

{

ess.sup
x∈ ]−1,1[

|v′(x)|/2 : v(−1) = 1, v(1) = −1, and v solution of (1.2)

}

· (1.3)

The optimal value of this problem is 1/2, and it is attained only for the minimizer ũ of (1.2) such that ũ(x) = −x
on [−1, 1]. As a consequence, no other minimizer is an AML (and it can also be shown that this function ũ is
indeed an AML of (1.2)).
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Local minimizers are in some sense more meaningful than generic minimizers: when the supremand f is
smooth enough, such minimizers are solution of an Euler equation, and under suitable hypoteses it can be
proven that they satisfy a maximum principle (we refer to [8]). For example, the model problem

min
v∈W 1,∞

g (Ω)
‖Dv‖L∞(Ω) = min

v∈W 1,∞
g (Ω)

ess.sup
x∈Ω

|Dv(x)|, (1.4)

admits a unique AML u which is the unique viscosity solution of −∆∞(u) = 0 in Ω.
The aim of this paper is twofold: we first prove an approximation theorem and a lower-semicontinuity result

for supremal functionals (Ths. 3.1 and 3.4) and then in the scalar case give two different existence theorems for
AML (Ths. 4.1 and 4.7). The lower-semicontinuity result improves some known results (e.g. [7]) and is based on
the Γ-convergence of the Lp approximation technique for supremal functionals and on a suitable rearrangement
technique. With this result, the existence of minimizers for problems of the type (1.1) follows by the direct
method of the Calculus of Variations. Then the problem of the existence of AML arises.

Our first existence theorem (Th. 4.1) for AMLs is based on the same Lp approximation and rearrangement
arguments as in the proof of the lower-semicontinuity result. We notice that Lp approximations have been
already widely used for this problem in the literature [2, 8, 19]. Here we exploit the Γ-convergence character of
this approximation (see Th. 3.1): this allows us to give a semicontinuity result under weak assumptions and
also to distinguish which sequences of approximate minimizers converge to an AML and which a priori do not.

The second existence theorem (Th. 4.7) is based on a Perron-like method. It shows that the concept of
AML is very natural for supremal functional and it gives an intrinsic proof (without approximation) for their
existence. The method we use was introduced in [4] in the proof of the existence of an AML for the model
problem (1.4), and it has been recently adapted to the metric setting [20].

The paper is organized as follows: Section 2 contains preliminary results and definitions which shall be used
through the paper. The Lp approximation (Th. 3.1) and the lower semicontinuity result (Th. 3.4) are stated
and proven in Section 3. Finally, the two existence theorems for AMLs are stated and proven in Section 4.

2. Preliminary results

2.1. Γ-convergence

Let X be a metric space, a sequence of functionals Fn : X → R is said to Γ-converge to F at x if

Γ − lim inf Fn(x) = Γ − lim sup Fn(x), (2.1)

where
{

Γ − lim inf Fn(x) = inf
{

lim inf Fn(xn) : xn → x
}

Γ − lim sup Fn(x) = inf
{

lim sup Fn(xn) : xn → x
}

· (2.2)

The Γ-convergence was introduced in [16], for an introduction to this theory we refer to [14]. The following
classical theorem reports the characterizing properties of the Γ-convergence.

Theorem 2.1. Assume that Fn
Γ→ F then F is lower semicontinuous on X. Moreover if Fn are equi-coercive

on X then F is coercive too. In this last case, the following holds:

(1) the sequence (infX Fn)n converges to the minimum of F on X;
(2) if xn is such that Fn(xn) ≤ infX Fn + εn, εn → 0 and xnk

→ x for some subsequence (xnk
)k of (xn)n

then F (x) = minX F .

2.2. A lemma on Young measures

The Young measures are one of the basic tools of the Calculus of Variations (e.g. [21, 22]). The following
proposition states a property of these object we shall need (see [10] for a proof).
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Proposition 2.2. Suppose that a sequence of maps (zk)k generate a Young measure ν. Let f be a normal
integrand and assume that the negative part (f−(., zk(.)))k is weakly relatively compact in L1(E). Then

lim inf
k→∞

∫

E

f(x, zk(x))dx ≥
∫

E

∫

RN

f(x, λ)dνx(λ)dx.

We will use the following application of the previous proposition: let f : Ω×R
M ×R

M×N → R be a non-negative
function which is Borel measurable with respect to all variables and such that f(x, ·, ·) is lower semicontinuous for
almost every x in Ω (then a normal integrand). Suppose that uj ⇀ u in W 1,p(Ω, RM ) and that (Duj)j generates
the Young measures ν (such a Young measure is usually called a W 1,p gradient Young measure, see [24]). Then
the couple (uj , Duj) generates the Young measure x → δu(x) ⊗ νx, and by the previous proposition and remark

lim inf
j→∞

∫

Ω

f(x, uj(x), Duj(x))dx ≥
∫

Ω

∫

RM×N

f(x, u(x), λ)dνx(λ)dx.

2.3. Level convexity and Morrey quasiconvex functions

We now introduce briefly the notions of level-convexity and Morrey-quasiconvexity which are strongly related
to one of the main hypothesis of our results, namely that the supremand f satisfies a generalized Jensen
inequality in the third variable (see (3.1) in Th. 3.1).

Definition 2.3. Let f : R
M×N → R is a level convex function if all its sublevel sets are convex, that is if

Eγ = {x ∈ R
M×N : f(x) ≤ γ} is convex for every γ ∈ R.

If f : R
M×N → R is lower semicontinuous and level convex, then it satisfies the following generalized Jensen

inequality

f

(
∫

RM×N

φ(A)dµ(A)

)

≤ µ − ess.sup
A∈RM×N

f(φ(A)) (2.3)

for all probability measures µ on R
M×N and all φ ∈ L1

µ(RM×N ; RM×N ) (see Th. 1.2 in [7] for a proof, see
also [6]).

A second class of functions (introduced and studied in [7]) is the following:

Definition 2.4. f : R
M×N → R is (strong) Morrey-quasiconvex if for any ε > 0, for any A ∈ R

M×N and any
K > 0 there exists a δ = δ(ε, K, A) > 0 such that if ϕ ∈ W 1,∞(Y, RM ) satisfies

‖Dϕ‖L∞(Y ) ≤ K, max
∂Y

|ϕ(x)| ≤ δ,

where Y =]0, 1[N , then
f(A) ≤ ess.sup

Y
f(A + Dϕ).

It is not clear (and this was already pointed out in [7]) whether this last class of functions can be characterized
in terms of some Jensen inequality. However thanks to the results of [7] this class of functions should be the
natural setting for the semicontinuity of supremal functionals in the vectorial case M > 1.

3. Γ-convergence and a semicontinuity result

In this part, we first prove a Γ-convergence result and then derive from this result a lower semicontinuity for
supremal functionals.

The following theorem is one of the main results of the paper. We stress the variational character of the Lp

approximation, since it is the essential tool for the proof of Theorem 4.1 in Section 4.1. Notice that Theorem 3.1
is stated under a strong coercivity assumption, namely superlinearity of the integrand, that we shall drop in
the lower semicontinuity result (Th. 3.4).
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Some of the arguments in the proof of this theorem are now rather classical (see [8, 9]), however we make
here a sharp use of the generalized Jensen inequality (3.1).

Theorem 3.1. Let f : Ω×R
M ×R

M×N → [0, +∞[ be a normal integrand. Assume that f satisfies the following
generalized Jensen inequality

∀(x, s), f

(

x, s,

∫

RM×N

Adνx(A)

)

≤ νx − ess.sup
A∈RM×N

f(x, s, A) (3.1)

whenever (νx)x∈Ω is an W 1,p gradient Young measure for all p ∈ (1,∞). Assume further that f has linear
growth in its third varible, i.e. there exists a positive constant c such that

∀(x, s, A) f(x, s, A) ≥ c‖A‖. (3.2)

For any p > N , we define the functional Fp : C(Ω, RM ) → [0, +∞] by

Fp(v) =







(
∫

Ω

f(x, v(x), Dv(x))pdx

)1/p

if v ∈ W 1,p(Ω, RM ) ∩ C(Ω, RM ),

+∞ otherwise.

Then the family (Fp)p>N Γ-converges to the functional F given by

F (v) :=







‖f(., v(.), Dv(.))‖L∞(Ω) if v ∈ W 1,∞(Ω, RM ) ∩ C(Ω, RM ),

+∞ elsewhere,
(3.3)

in C(Ω, RM ) as p goes to +∞.

Proof. We first notice that for any v in C(Ω; RM ), one has

lim sup
p→∞

Fp(v) ≤ F (v). (3.4)

Indeed, if F (v) = +∞, there is nothing to prove, and if F (v) < +∞, then f(·, v(·), Dv(·)) belongs to Lp(Ω) for
every p ≥ 1 and

lim
p→∞

‖f(·, v(·), Dv(·))‖Lp(Ω) = ||f(·, v(·), Dv(·))||L∞(Ω),

so that (3.4) follows from (3.3). As a consequence, Γ − lim sup Fp ≤ F .

It remains to prove that Γ− lim inf Fp ≥ F . Let (vp)p>N be a family in C(Ω, RM ) converging uniformly on Ω
to some function v, we must check that

lim inf
p→∞

Fp(vp) ≥ F (v). (3.5)

We may assume without loss of generality that there exists C in R such that Fp(vp) ≤ C for any p > N . Then
for any real numbers p, q with p > q > N , one has

(
∫

Ω

|Dvp(x)|qdx

)1/q

≤ 1

c

(
∫

Ω

f(x, vp(x), Dvp(x))qdx

)1/q

≤ 1

c

[

|Ω|1−q/pFp(vp)
q
]1/q

≤ C

c
|Ω|1/q−1/p. (3.6)
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Thus (Dvp)p>q is bounded in Lq(Ω, RN×M ) for all q > N , so that vp ⇀ v w−W 1,q for all q > N . In particular
there is a W 1,p-gradient Young measure {νx}x∈Ω generated by (Dvp)p>N that satisfies

Dv(x) =

∫

RM×N

Adνx(A)

for almost every x in Ω. We infer from the discussion following Proposition 2.2 that for any fixed q > r > N
one has

lim inf
p→∞

Fq(vp) = lim inf
p→∞

(
∫

Ω

f(x, vp(x), Dvp(x))qdx

)1/q

≥
[
∫

Ω

∫

RM×N

f(x, v(x), A)qdνx(A)dx

]1/q

≥
[

∫

Ω

(
∫

RM×N

f(x, v(x), A)rdνx(A)

)q/r

dx

]1/q

,

where the last inequality follows from the convexity of t 7→ tq/r on R+. As q → ∞ we get

lim inf
q→∞

lim inf
p→∞

Fq(vp) ≥ ess.sup
x∈Ω

[

(
∫

RM×N

f(x, v(x), A)rdνx(A)

)1/r
]

.

Letting now r tend to +∞ yields

lim inf
q→∞

lim inf
p→∞

Fq(vp) ≥ ess.sup
x∈Ω

[

νx − ess.sup
A∈RM×N

f(x, v(x), A)

]

.

We now apply the extended Jensen inequality (3.1) with the gradient Young measures (νx)x∈Ω to obtain

f(x, v(x), Dv(x)) = f

(

x, v(x),

∫

RM×N

Adνx

)

≤ νx − ess.sup
A∈RM×N

f(x, v(x), A)

for almost every x in Ω. Hence we infer

ess.sup
Ω

f(x, v(x), Dv(x)) ≤ ess.sup
Ω

[

νx − ess.sup
A∈RM×N

f(x, v(x), A)

]

≤ lim inf
q→∞

lim inf
p→∞

Fq(vp)

≤ lim inf
q→∞

lim inf
p→∞

|Ω|1/q−1/pFp(vp).

The right hand side of this inequality is equal to lim infp→∞ Fp(vp), while the left hand side is equal to F (v)

since v ∈ W 1,∞(Ω, RM ) ∩ C(Ω, RM ) (this last fact holding true by vp → v uniformly and ‖Dvp‖q ≤ C ′ for all
p > q, see (3.6)). �

Remark 3.2. Since no hypothesis is made on the regularity of the boundary of Ω, the functions in W 1,∞(Ω, RM )
may not be continuous on Ω. One may thus think of studyingthe Γ-convergence of the family (Fp)p in L1(Ω, RM )
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rather than in C(Ω, RM ), where Fp is now given by

Fp(v) =







∫

Ω

f(x, v(x), Dv(x))pdx)1/p if u ∈ W 1,p(Ω, RM ),

+∞ if u ∈ L1(Ω, RM ) \ W 1,p(Ω, RM ).

The same arguments as in the proof of Theorem 3.1 then yield the Γ-convergence of Fp.

Remark 3.3 (Fixing Boundary data). Notice that the previous result and proof also hold if we add boundary
data by defining Fp : C(Ω, RM ) → R+ as follows

Fp(v) =







∫

Ω

f(x, v(x), Dv(x))pdx)1/p if u ∈ W 1,p
g (Ω, RM ) ∩ C(Ω, RM ),

+∞ otherwise

where g belongs to W 1,∞(Ω, RM ) ∩ C(Ω, RM ).

We now infer from Theorem 3.1 the following semicontinuity result for supremal functionals. Notice that the
growth assumptions made on the supremand f are weakened in that result.

Theorem 3.4. Let f : Ω × R
M × R

M×N → R be a normal integrand. Assume that f satisfies the generalized
Jensen inequality (3.1) and that is uniformly coercive in the third variable, i.e.

∀t ∈ R, ∃R, s.t. ∀(x, s), {A : f(x, s, A) ≤ t} ⊂ B(0, R). (3.7)

Then the functional

F (v) :=











ess.sup
x∈Ω

f(x, v(x), Dv(x)) if v ∈ W 1,∞(Ω; RM ) ∩ C(Ω; RM ),

+∞ elsewhere,

(3.8)

is lower semicontinuous in C(Ω; RM ) and then in W 1,∞(Ω; RM ) with respect to the w∗-convergence.

Proof.
Step 1. We first reduce to the case where the supremand f is non negative over Ω × R

M × R
M×N . To this

end, we notice that it is sufficient to check that for any real number α, the functional Fα := max{F, α} is
lower semicontinuous in C(Ω; RM ). Indeed if by contradiction we assume that there exists a sequence (un)n

converging to u uniformly such that
lim inf
n→∞

F (un) < F (u)

then there exists 0 < ε and a subsequence still denoted by (un) such that F (un) ≤ F (u)− ε for n large enough.
Let α := F (u) − ε, then

lim inf
n→∞

Fα(un) ≤ F (u) − ε < F (u) = Fα(u),

which contradicts the lower-semicontinuity of Fα.
Notice that the functional Fα is associated to the supremand max{f, α}, and that this supremand obviously

satisfies (3.7) and (3.1) whenever f does. We may thus assume that the supremand f is bounded from below
by some real constant α. Since the functional associated to the supremand f − α is F − α, we may assume
that α = 0. From now on, we thus assume that f is non-negative on Ω × R

M × R
M×N , so that F may also be

rewritten as follows

F (v) :=







‖f(., v(.), Dv(.))‖L∞(Ω) if v ∈ W 1,∞(Ω; RM ) ∩ C(Ω; RM ),

+∞ elsewhere.
(3.9)
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Step 2. We now prove that there exists an increasing continuous function h : [−1, +∞) → [0, +∞[ such that
for all (x, s, A) one has (h ◦ f)(x, s, A) ≥ ‖A‖. For any r ≥ 0, we set

H(r) := inf
{

f(x, s, A) : x ∈ Ω, s ∈ R
M , ‖A‖ ≥ r

}

·

Then for all (x, s, A) one has f(x, s, A) ≥ H(‖A‖). Moreover, we notice that H is nondecreasing and that
H(r) → +∞ as r goes to infinity since f is uniformly coercive. Therefore there exists an increasing sequence
(rn)n∈N of real numbers such that: r0 = 0, and rn ≥ rn−1 + 1 as well as H(rn) ≥ H(rn−1) + 1 for any n ≥ 1.
We define H∗ to be the only piecewise affine function on R+ with value k + n − 1 at each point rn with n ≥ 1
and with value −1 at r0 = 0. Notice that H∗ is increasing, continuous, one-to-one from R+ to [−1,∞) and that
H ≥ H∗. Let h : [−1,∞) 7→ R+ be its inverse, then h has the desired properties since

∀(x, s, A) (h ◦ f)(x, s, A) ≥ (h ◦ H)(‖A‖) ≥ (h ◦ H∗)(‖A‖) = ‖A‖.

Step 3. Since h is non decreasing and lower semicontinuous continuous, one has

ess.sup
x∈Ω

(h ◦ g(x)) = h(ess.sup
x∈Ω

g(x))

for all measurable function g on Ω. As a consequence, the functional associated to h ◦ f is simply h ◦F (where,
of course, we set h(+∞) = +∞), and since h is continuous the lower semicontinuity of F is equivalent to that
of h ◦ F . We now conclude: the supremand h ◦ f satisfies the hypotheses of Theorem 3.1 so that the functional
h ◦ F is a Γ-limit and is thus lower semicontinuous (see Prop. 6.8 in [14]). �

As already said, the above result applies to any level-convex supremand which satisfies the uniform coercivity
condition (3.7). Notice in particular that convex functions are level-convex and then satisfy (3.1).

Remark 3.5. In the scalar case (M = 1), the hypothesis (3.1) characterizes the level-convexity, so that level-
convexity seems to be the good assumption in this setting. In the vectorial case (M > 1), it is proven in [7]
that under regularity assumptions on f stronger than that of Corollary 3.4 (strong) Morrey quasiconvexity is a
necessary condition for lower semicontinuity. It is still an open problem to investigate the relationship between
inequality (3.1) and (strong) Morrey quasi-convexity.

Let’s make a short comparison with the other semicontinuity theorems existing in literature:

• in [7] the authors prove that the functional (3.3) is lower semicontinuous with respect to the w∗−W 1,∞

convergence under the following assumptions on the supremand f :
(1) f is (strong) Morrey quasiconvex (see Def. 2.4) in the last variable;
(2) there exists a function ω : R+×R+ → R+ which is continuous in its first variable and non decreasing

in the second such that

|f(x1, s1, A) − f(x2, s2, A)| ≤ ω(|x1 − x2| + |s1 − s2|, |A|).

Notice that in this result, no coercivity assumption is made on the supremand f , whereas our coercivity
assumption (3.7) is a cornerstone of our proof of Theorem 3.4. However, the hypothesis (2) above rules
out supremands such as

f(x, A) :=







1

|x| |A| if x 6= 0,

0 if x = 0,

to which our theorem applies (for Ω = B(0, 1) for example). This difference is interesting only in the
vectorial case since in the scalar case only level convexity is assumed in [7];
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• in [18] the authors consider a Serrin-type semicontinuity theorem (i.e. without coercivity assumptions)
in the scalar case for the functional (3.3). The main results states that if f is level-convex and for all
K ⊂⊂ Ω × R × R

N there exists a modulus of continuity ωK such that

|f(x1, s1, A) − f(x2, s2, A)| ≤ ωK(|x1 − x2| + |s1 − s2|),

then (3.3) is lower semicontinuous with respect to the convergence defined by: un → u if and only if
un, u ∈ W 1,∞ and un → u uniformly;

• the semicontinuity for supremal functionals whose supremand do not depend on the gradient is studied
in [1].

4. Existence of local minimizers

We now turn to the existence of local minimizers for the variational problem P (g, Ω) given by

P (g, Ω) inf
{

F (v, Ω) : v ∈ W 1,∞(Ω) ∩ C(Ω), v = g on ∂Ω
}

where g is in W 1,∞(Ω) ∩ C(Ω) and F is the supremal functional given by

F (v, V ) :=











ess.sup
x∈V

f(x, v(x), Dv(x)) if v ∈ W 1,∞(V ) ∩ C(V ),

+∞ if v ∈ C(V ) \ W 1,∞(V ),

where V is an open subset of Ω. Notice that in this last part, we restrict ourselves to the scalar case M = 1.
Under the assumptions of Theorem 3.4, the functional F satisfies the following property:

(H0) F (·, Ω) is l.s.c. and coercive on Cg(Ω) := {v ∈ C(Ω) : v = g on ∂Ω}·

In (H0), coercive means that the sublevel sets {F ≤ t} (for t in R) are relatively compact in Cg(Ω) for the
topology of the uniform convergence. Under hypothesis (H0), problem P (g, Ω) admits at least one solution.
We shall denote by S(P (g, Ω)) the set of optimal solutions to P (g, Ω). With these notations, a function u is an
AML of P (g, Ω) if and only if u belongs to S(P (g, Ω)) and to S(P (u, V )) for any open subset V of Ω. In this
section, we show that, under mild assumptions on the supremand f or on the supremal funtional F , at least one
of these solutions is a local solution of P (g, Ω). This result will be achieved in two different ways, and under
two different sets of hypotheses.

4.1. Existence by approximation

In this section, we use the Lp approximation method to prove the existence of an AML. The proof mainly
relies on Proposition 4.3 which is very similar to that of Lemma 2.4 in [8] and is given here for the sake
of completeness. For this method to work, some continuity assumption on the supremand f is necessary in
addition to the hypotheses of Theorem 3.4.

Theorem 4.1. Let f : Ω×R×R
N → R be a normal integrand continuous in the second variable. Assume that

f is uniformly coercive in the third variable (see (3.7)), that it satisfies the generalized Jensen inequality (3.1)
and that f is bounded from below by a constant α, then problem P (g, Ω) admits at least one AML.

The same rearrangement technique used for the semicontinuity allows to reduce the problem to the case in
which f is non-negative and has linear growth at infinity. The approximating functionals we consider are that
introduced in Remark 3.3 and given by
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Fp(v, V ) =







(
∫

V

f(x, v(x), Dv(x))pdx

)1/p

if v ∈ W 1,p(V ) ∩ C(V ),

+∞ if v ∈ C(V ) \ W 1,p(V ),

where V is an open subset of Ω. We now notice that the minima and approximate minimizers converge.

Proposition 4.2. The family of functionals (Fp(., Ω))p≥N+1 is equicoercive in Cg(Ω) with respect to the uniform
convergence of functions. Let εp be a sequence of positive numbers such that εp → 0 and let u∞ be a cluster

point in Cg(Ω) of a sequence up such that Fp(up, Ω) ≤ inf Fp(., Ω) + εp for all p. Then u∞ is a minimizer for
problem P (g, Ω) (in particular u∞ ∈ W 1,∞).

Proof. The equicoercivity follows from the inequality (3.6) and of the compact imbeddings of Sobolev spaces.
Indeed as we are working with fixed boundary data no regularity assumption is needed on the boundary of
Ω (see for example [13] first remark on p. 26). The second part of the proposition follows from Theorem 3.1,
Remark 3.3 and Theorem 2.1. �

The problem is now to understand if the minimizers obtained in Proposition 4.2 are AML or not. In the next
theorem and in the following example we will see that a quantitative argument is needed in order to guarantee
that a sequence of approximate minimizers tends to an AML. This is due to the fact that the functionals we
are considering are only subadditive with respect to the union of sets instead of being additive as the usual
functionals of the Calculus of Variations.

Proposition 4.3. Let (up)p be a sequence of functions such that F p
p (up, Ω) ≤ inf F p

p (., Ω)+εp where the sequence
(εp)p is chosen so that limp→∞ p

√
εp = 0. Let (upi

)i be a subsequence of (up)p converging uniformly on Ω to
some function u∞.

Then u∞ is an AML for problem P (g, Ω).

Proof. From Proposition 4.2 we already know that u∞ is a minimizer of problem P (g, Ω). Let V ⊂ Ω be open
and let ϕ ∈ W 1,∞(V ) ∩ C0(V ), so that we have u∞ + ϕ = u∞ on ∂V .

We first notice that we can assume that ϕ > 0 in V . Indeed, if this is not the case

F (u∞ + ϕ, V ) = max{F (u∞ + ϕ, {ϕ > 0}), F (u∞ + ϕ, {ϕ < 0}), F (u∞ + ϕ, {ϕ = 0})}, (4.1)

and then our next arguments will apply to the first two elements of the set on the right side of (4.1) while the
third does not really matter in the comparison with F (u∞, V ). Fix δ > 0 such that |{x ∈ V : ϕ > δ}| > 0. Since
(up)p converges uniformly to u∞, there exists pδ such that for every p ≥ pδ we have up + δ

2 > u∞ > up− δ
2 in Ω.

In particular Vδ := {x ∈ V : ϕ > δ} is included in Vp,δ := {x ∈ V : up + δ
2 < u∞ + ϕ} for such real numbers p.

Notice that Vp,δ is an open set and that on its boundary one has up = − δ
2 + u∞ + ϕ. Thus, for every p ≥ pδ ,

we have

F p
p (up, Vp,δ) ≤ F p

p

(

u∞ + ϕ − δ

2
, Vp,δ

)

+ εp

and then

Fp(up, Vδ) ≤ Fp

(

u∞ + ϕ − δ

2
, Vp,δ

)

+ p
√

εp ≤ F

(

u∞ + ϕ − δ

2
, V

)

|V |1/p + p
√

εp.

By Remark 3.3,

F (u∞, Vδ) ≤ lim inf
p→+∞

Fp(up, Vδ) ≤ F

(

u∞ + ϕ − δ

2
, V

)

.

Passing to the limit for δ → 0+ and using the continuity of f with respect to the second variable, we obtain

F (u∞, V ) ≤ F (u∞ + ϕ, V )

which concludes the proof. �
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The next example shows that the control on the behaviour of εp when p → 0 is necessary.

Example 4.4. Let v∞ be a minimizer of F which is not an AML. Then as Fp(v∞) → F (v∞) the sequence
vp = v∞ for all p is a sequence of approximate minimizers, indeed if we denote by Mp the infimum of Fp and
by M the infimum of F we have that

|Fp(v∞) − Mp| ≤ |Fp(v∞) − M | + |M − Mp|

and the right hand term tends to 0. On the other hand it is clear that the sequence converges to v∞ which is a
minimizer but not an AML by assumption.

Corollary 4.5. If for any p the functional Fp admits a least one minimizer and if those minimizers converge
(up to subsequences) as p → ∞ to some function u, then u is an AML.

Remark 4.6. The need to specify the behaviour of εp → 0 in Proposition 4.3 reflects the instability when
p → ∞ of the so called fundamental estimates which are the foundamental tools to prove the convergence of
local minimizers (see [15]).

4.2. An intrinsic approach to existence of AML

Here we show the existence of an AML without making use of the approximation process of the last section,
but by applying a Perron-like method. This proof relies on rather natural hypotheses on the functional F
and on a connectedness assumption on the optimal set of problem P (g, Ω). Let us detail the assumptions of
Theorem 4.7 below. We first need to make more precise hypothesis (H0) and set

(H1)
F (., V ) is l.s.c. and coercive on Cw(V ) := {v ∈ C(V ) : v = w on ∂V }
for any open subset V of Ω and w ∈ W 1,∞(V ) ∩ C(V ).

Of course F satisfies (H1) as soon as the hypotheses of Theorem 3.4 are fullfilled. We shall also need the
following additional hypothesis on the structure of the optimal sets of S(P (g, Ω)):

(H2)
for any open subset V of Ω, w ∈ W 1,∞(V ) ∩ C(V ) and y ∈ V ,
the image set {u(y) : u ∈ S(P (w, V ))} is connected.

The hypothesis (H2) is automatically satisfied if the functional F is for example convex, or level-convex in the
variable v (which means that the supremand f is level-convex in (s, A)). Notice that in the case when the
supremand (x, s, A) 7→ f(x, s, A) does not depend on the variable s, the hypothesis (3.1) of Theorem 3.4 implies
that f is level-convex in A, so that (H2) is fullfilled.

The main result of this section thus reads:

Theorem 4.7. Assume that the functional F is such that (H1) and (H2) hold. Then the problem P (g, Ω)
admits at least one AML.

The rest of this section is devoted to the proof of Theorem 4.7.

Lemma 4.8. If u and v are two solutions of P (g, Ω), then max(u, v) and min(u, v) are also solutions of P (g, Ω).

Proof. It is sufficient to notice that if V denotes the open set where u > v, then

F (max(u, v), Ω) = max

(

ess.sup
V

f(x, u(x), Du(x)); ess.sup
Ω\V

f(x, v(x), Dv(x))

)

≤ max (F (u, Ω), F (v, Ω)) = inf(P (g, Ω))

so that max(u, v) belongs to S(P (g, Ω)). The proof is analogous for min(u, v). �
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Proposition 4.9. Assume that (H1) holds. The functions S−(g, Ω) : x 7→ infu∈S(P (g,Ω)) u(x) and S+(g, Ω) :
x 7→ supu∈S(P (g,Ω)) u(x) are solutions of P (g, Ω).

Proof. We only prove that S+(g, Ω) belongs to S(P (g, Ω)). Let (xn)n∈N be a denumerable family which is dense
in Ω. For any integers n and i ≤ n, there exists a solution ui

n of P (g, Ω) such that

ui
n(xi) ≥ S+(g, Ω)(xi) −

1

n
·

Then Lemma 4.8 implies that the function un := max(u1
n, . . . , un

n) is a solution of P (g, Ω). It results that

∀i ≤ n S+(g, Ω)(xi) ≥ un(xi) ≥ S+(g, Ω)(xi) −
1

n
(4.2)

so that un → S+(g, Ω) on a dense subset of Ω. This implies that un → S+(g, Ω) uniformly on Ω since, by
coercivity, the sequence (un)n of minimizers is relatively compact in C(Ω). By lower semicontinuity of F ,
S+(g, Ω) is a solution of P (g, Ω). �

Definition 4.10. We say that u ∈ C(Ω) is a local subsolution of P (g, Ω) if u is a solution of P (g, Ω) and for
all open subset V of Ω, u ≤ S+(u, V ) on V .

Analogously, u ∈ C(Ω) is a local supersolution of P (g, Ω) if u is a solution of P (g, Ω) and for all open
subset V of Ω, u ≥ S−(u, V ) on V .

We shall denote S+loc(P (g, Ω)) (resp. S−loc(P (g, Ω))) the set of all local supersolutions (resp. subsolutions)
of P (g, Ω).

Lemma 4.11. Assume that (H1) holds. The function S+(g, Ω) is a local supersolution of P (g, Ω), and S−(g, Ω)
is a local subsolution of P (g, Ω).

Proof. It is sufficient to verify that S+(g, Ω) is a local supersolution of P (g, Ω). Let V be an open subset of Ω,
we define a function u on Ω by

u :=

{

max{S−(S+(g, Ω), V ); S+(g, Ω)} on V
S+(g, Ω) on Ω \ V.

Since F (S−(S+(g, Ω), V ), V )) ≤ F (S+(g, Ω), V ) and u = S+(g, Ω) on Ω \ V , u is a solution of P (g, Ω). By
definition, u is thus lower than S+(g, Ω) on Ω, so that S+(g, Ω) ≥ S−(S+(g, Ω), V ) on V . �

Remark 4.12. Arguing as in the proof of the above lemma, we also have the stronger property S+(g, Ω) ≥
S+(S+(g, Ω), V ), for every open subset V of Ω.

Proposition 4.13. Assume that (H1) and (H2) hold. A function u is an AML of P (g, Ω) if and only if it is
both a local supersolution and a local subsolution of P (g, Ω).

Proof. We first notice that if u is an AML of P (g, Ω), then for every open subset V of Ω, u is a solution of
P (u, V ) so by definition, S−(u, V ) ≤ u ≤ S+(u, V ). As a consequence, u is both a local supersolution and a
local subsolution of P (g, Ω), which concludes the proof of the if part.

Now suppose that a function u is both a local supersolution and a local subsolution of P (g, Ω). Then in
particular it is a solution of P (g, Ω).

Let now V be an open subset of Ω, we must check that u is a solution of P (u, V ). Let (xn)n∈N be a
denumerable family which is dense in V . We construct by induction on n a family (un)n∈N of solutions of
P (u, V ) such that for any integers n and i ≤ n one has un(xi) = u(xi). To this end, we notice that since
u is both a local supersolution and a local subsolution of P (g, Ω), we have S−(u, V ) ≤ u ≤ S+(u, V ) on V .
Then thanks to hypothesis (H2), there exists a solution u1 of P (u, V ) such that u1(x1) = u(x1). Now we
assume that un has been constructed and we define un+1. To this end, we consider the problem P (u, Vn) where
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Vn := V \{x1, . . . , xn}: since the function un is a solution of P (u, V ) which is equal to u on the set {x1, . . . , xn},
we infer that it is an admissible function for P (u, Vn). As a consequence, the value of the infimum of the problem
P (u, Vn) is equal to that of P (u, V ), and the optimal set S(P (u, Vn)) is included in S(P (u, V )). Once again,
since u is both a local supersolution and a local subsolution of P (g, Ω), we have S−(u, Vn) ≤ u ≤ S+(u, Vn) on
Vn. Therefore, (H2) yields the existence of a solution un+1 of P (u, Vn) which is equal to u at the point xn+1.
This function un+1 has the desired properties: it is a solution of P (u, Vn) and thus of P (u, V ), it is equal to u
at xn+1, and since it is admissible for P (u, Vn), it is also equal to u on {x1, . . . , xn}. As a family of solutions of
P (u, V ), the family (un)n∈N is equilipschitzian on V , and since (xn)n∈N is dense in V , it converges uniformly
to u on V . We then infer from (H1) that u is a solution of P (u, V ), which concludes the only if part of the
proof. �

Proposition 4.14. Assume that (H1) holds. The function U+ : x 7→ sup{u(x) : u ∈ S−loc(P (g, Ω))} is both a
local supersolution and a local subsolution of P (g, Ω).

Proof. The same argument as in the proof of Proposition 4.9 shows that the function U+ may be obtained as
a uniform limit of local subsolutions of P (g, Ω), so it is a solution of P (g, Ω).

Let us check that U+ is a local subsolution of P (g, Ω). Let V be an open subset of Ω, and assume that for
some x0 in V , one has U+(x0) > S+(U+, V )(x0). Then by definition of U+, there exists a local subsolution u
of P (g, Ω) such that u(x0) > S+(U+, V )(x0). Since u is lower than U+, it is also lower than S+(U+, V ) on ∂V .
Let us set A := {x : u(x) > S+(U+, V )(x)}, then we must have u ≤ S+(u, A) = S+(S+(U+, V ), A) on A since
u is a local subsolution of P (g, Ω). By Remark 4.12 we have that S+(S+(U+, V ), A) is lower than S+(U+, V )
on A. As a consequence, we have u ≤ S+(U+, V ) on A, which is a contradiction.

To check that U+ is a local supersolution of P (g, Ω), we have to prove that the set A = {x ∈ V : U+(x) <
S−(U+, V )(x)} is empty for any open subset V of Ω. This is equivalent to prove that the function u defined by

u :=

{

S−(U+, V ) on A
U+ on Ω \ A,

is a local subsolution of P (g, Ω). Thus we fix an open subset B of Ω and prove that u ≤ S+(u, B) on B. Let us
define C := B ∩ {u > S+(u, B)}, we want C to be empty. Assume the contrary, and consider D := B ∩ {U+ >
S+(u, B)}; thus C ∩ (B \ D) ⊂ A. If D is empty then C ⊂ A and so

u = S−(U+, V ) ≤ S+(S−(U+, V ), C) = S+(u, C) = S+(S+(u, B), C)

≤ S+(u, B) < u on C.

The set C being non empty, this is a contradiction, and we thus infer that D is non empty. On the other hand,
U+ = S+(u, B) on ∂D by definition of D, hence as U+ is a subsolution we have

U+ ≤ S+(S+(u, B), D) ≤ S+(u, B) on D,

which contradicts the definition of D. As a consequence: since U+ is a subsolution, D is empty, and so is C
and the proof is complete. �

Theorem 4.7 is now a direct consequence of the above serie of results. Indeed, U+ is an AML thanks to
Propositions 4.13 and 4.14.

Remark 4.15. The same proof as in Proposition 4.14 yields that the function U− : x 7→ inf{u(x) : u ∈
S+loc(P (g, Ω))} is both a local supersolution and a local subsolution of P (g, Ω). It is thus also an AML of
P (g, Ω), and one has that for every AML u of P (g, Ω): U− ≤ u ≤ U+.

Remark 4.16. Note that the hypothesis (H2) is only necessary in our proof of the caracterization of AMLs as
local sub- and supersolutions (Prop. 4.13).
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