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A GENERALISATION OF A THEOREM OF WIELANDT

FRANCESCO FUMAGALLI AND GUNTER MALLE

Abstract. In 1974, Helmut Wielandt proved that in a finite group G, a subgroup A

is subnormal if and only if it is subnormal in every 〈A, g〉 for all g ∈ G. In this paper,
we prove that the subnormality of an odd order nilpotent subgroup A of G is already
guaranteed by a seemingly weaker condition: A is subnormal in G if for every conjugacy
class C of G there exists c ∈ C for which A is subnormal in 〈A, c〉. We also prove the
following property of finite non-abelian simple groups: if A is a subgroup of odd prime
order p in a finite almost simple group G, then there exists a cyclic p′-subgroup of F ∗(G)
which does not normalise any non-trivial p-subgroup of G that is generated by conjugates
of A.

1. Introduction

The main result of our paper is the following criterion for the existence of a non-trivial
normal p-subgroup in a finite group:

Theorem A. Let G be a finite group and p be an odd prime. Let A be a p-subgroup of G
such that

(∗) for every conjugacy class C of G there exists g ∈ C with A subnormal in 〈A, g〉.
Then A ≤ Op(G).

As an immediate consequence we have that

Corollary B. If A is an odd order nilpotent subgroup of a finite group G satisfying
condition (∗), then A is subnormal in G.

This can be considered a generalisation of the following result due to H. Wielandt (see
[14, 7.3.3]):

Theorem (Wielandt). Let A be a subgroup of a finite group G. Then the following
conditions are equivalent.

(i) A is subnormal in G;
(ii) A is subnormal in 〈A, g〉 for all g ∈ G;
(iii) A is subnormal in 〈A,Ag〉 for all g ∈ G;
(iv) A is subnormal in

〈
A,Aag

〉
for all a ∈ A, g ∈ G.

Our proof of Theorem A makes use of a reduction argument to arrive at a question
about finite almost simple groups and then prove a property of these groups which may
be of independent interest:
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Theorem C. Let G be a finite almost simple group with simple socle S and p > 2 be a
prime dividing |G|. Let A ≤ G be cyclic of order p. Then there exists a cyclic p′-subgroup
X ≤ S such that

I

A
G(X, p) = ∅.

Here, IA
G(X, p) denotes the set of non-trivial p-subgroups of G generated by conjugates

of A and normalised by X.
Our proof is therefore related to (and relies on) the classification of finite simple groups.

It should be noted that for p = 2 the conclusions of Theorem A and Theorem C are no
longer true. In particular condition (∗) does not imply that A ≤ O2(G). An easy example
is reported at the end of Section 3.

In Section 2 we give, after some preparations, the proof of Theorem C, and then in
Section 3 show the reduction of Theorem A to the case of almost simple group.
We end with Section 4, where we analyse similar variations related to the other criteria for
subnormality given by the original Theorem of Wielandt, namely conditions (iii), better
known as the Baer-Suzuki Theorem. We show that in general these generalisations fail to
guarantee the subnormality of odd p-subgroups. For other variations on the Baer–Suzuki
Theorem the interested reader may consult [17], [10], [6], [7], [8] and [9].

2. Almost simple groups

2.1. Notation and preliminary results. In this section we let S be a non-abelian finite
simple group and G any group such that S ≤ G ≤ Aut(S). For p a prime divisor of |G|
denote by Sp(G) the set of all (possibly trivial) p-subgroups of G. For a p′-subgroup X
of S we denote by IG(X, p) the set of p-subgroups of G normalised by X, namely

IG(X, p) = {Y ∈ Sp(G) | X ≤ NG(Y )} .
Also for A ∈ Sp(G) set

I

A
G(X, p) := {Y ∈ IG(X, p) | Y is generated by G-conjugates of A} .

Note that if A ≤ S, then IA
G(X, p) ⊆ IS(X, p), otherwise if A 6≤ S then no E ∈ IA

G(X, p)
lies in S.

We aim to prove Theorem C, which we restate:

Theorem 2.1. Let G be a finite almost simple group with simple socle S. Then with the
same notation as above, for every odd prime p dividing |G| and every A ≤ G of order p,
there exists a cyclic p′-subgroup X ≤ S such that IA

G(X, p) = ∅.

In [2], a similar condition is considered. The authors investigate finite groups G and
primes p that have the following property:

(R2) all nilpotent hyperelementary p′-subgroups X of F ∗(G) satisfy IG(X, p) 6= 1

where a hyperelementary group X is one for which Oq(X) is cyclic, for some prime q;
basically a nilpotent hyperelementary p′-group X is a direct product of a Sylow q-subgroup
for some prime q 6= p, and a cyclic p′-group. They show ([2, Thm. 2]) that the only almost
simple group G satisfying (R2) at a prime p is for S = L3(4), p = 2, and 4 dividing |G : S|.

Note that assumption (R2) implies our assumption. See also [3] for an analogous
condition and its related subnormality criteria.
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Lemma 2.2. In the situation of Theorem 2.1 assume that A 6≤ S. Let X be a non-trivial
p′-subgroup of S and E ∈ IA

G(X, p). Then X commutes with some non-trivial p-element
in G \ S.

Proof. By the coprime action of X on E, we have that E = [E,X ]CE(X). As E is
generated by conjugates of A and A 6≤ S, we necessarily have that CE(X) 6≤ S. �

Lemma 2.3. In the situation of Theorem 2.1 if IA
G(X, p) 6= ∅ then X normalises a

non-trivial elementary abelian p-subgroup of S or it centralises a non-trivial p-element
of G.

Proof. Let E be a non-trivial p-subgroup of G normalised by X. If X does not centralise
any non-trivial p-element, then A ≤ S by Lemma 2.2 and hence E ≤ S. Now X also
normalises Z(E), and then also Ω1(Z(E)), the largest elementary abelian subgroup of
Z(E). �

The following is a well-known consequence of the classification of finite simple groups
and can be found for example in [5, 2.5.12].

Proposition 2.4. Let S be non-abelian simple, S < G ≤ Aut(S) and assume that x ∈
G \ S has odd prime order p. Then S is of Lie type and one of the following occurs:

(1) x is a field automorphism of S;
(2) x is a diagonal automorphism of S and one of

(2.1) S = Ln(q) with p|(n, q − 1),
(2.2) S = Un(q) with p|(n, q + 1),
(2.3) p = 3, S = E6(q) with 3|(q − 1),
(2.4) p = 3, S = 2E6(q) with 3|(q + 1); or

(3) p = 3 and x is a graph or graph-field automorphism of S = O+
8 (q).

We prove Theorem 2.1 by treating separately the cases: S is alternating, sporadic or a
simple group of Lie type.

2.2. The case of alternating groups. Throughout the rest of this subsection we assume
S = An, with n ≥ 5 and G such that S ≤ G ≤ Aut(S). For X a cyclic p′-subgroup of
S we denote by E any element of IG(X, p). Also, we tacitly assume that any such E is
elementary abelian (see Lemma 2.3).

The following elementary result [2, Lemma 3] will be used several times.

Lemma 2.5. Let X ≤ G ≤ Sn and E ∈ IG(X, p). If E acts non-trivially on some
X-orbit O, then p divides |O|.
Proof. As X acts on fixO(E), fixO(E) = ∅ and |O| ≡ | fixO(E)| ≡ 0 (mod p). �

Proposition 2.6. If IG(X, p) 6= 1 for every cyclic p′-subgroup X of S, then S = A6

and (G, p) ∈ {(PGL2(9), 2), (Aut(A6), 2)}. In particular for every odd prime p and every
subgroup A of order p there exists a cyclic p′-subgroup X for which IA

G(X, p) = ∅.

Proof. The cases n = 5 and n = 6, with G ≤ S6, follow quite immediately by taking,
as subgroup X a Sylow 5-subgroup, if p = 2 or p = 3, and a cyclic subgroup of order
3 if p = 5. Assume that n = 6 and G 6≤ S6. As |G : A6| is either 2 or 4, if p is odd
then IG(X, p) = IA6

(X, p), for every X ≤ A6. Therefore, by what we have just proved,
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there is some cyclic p′-subgroup X of A6 for which IG(X, p) = 1. Let p = 2. The group
G = M10 contains no elements of order 10 (see [4]). We take X a cyclic subgroup of order
5 of G. Note that if E is any 2-subgroup of G normalised by X, then E = [E,X ] and so
E lies in A6, but then IG(X, 2) = IA6

(X, 2) = 1. Let now G = PGL2(9) or G = Aut(A6).
Then every element of odd order normalises a non-trivial 2-subgroup of G, basically the
elements of order 3 normalise a copy of A4 lying in A6, while the elements of order 5
centralise always an outer involution (see [4]). Therefore we have that IG(X, 2) 6= 1 for
every cyclic odd order subgroup X of G.
Assume for the rest of the proof that n ≥ 7 and argue by contradiction. We treat
separately the two cases: 1) n is even and 2) n is odd.

Case 1. n is even.
Assume first that p|(n − 1). In particular p is odd. We take as cyclic p′-subgroup X of
An the one generated by x = (12)(3 . . . n). Let E be a non-trivial element of IG(X, p).
Now the set {1, 2} cannot lie in fix(E), otherwise E acts non-trivially on {3, . . . , n}, and
by Lemma 2.5 we would have that p divides n− 2, which is not the case being a divisor
of n− 1. Also from the fact that E = Ex, it follows that none of 1 and 2 are fixed by E.
But then, as p > 2, EX is transitive on {1, 2, . . . , n}, and since p does not divide n we
have a contradiction.

Assume now that p ∤ (n− 1).
We choose first X = 〈x〉 with x = (2 . . . n) and let 1 6= E ∈ IG(X, p). By Lemma 2.5 we
have that E does not fix 1. Then EX is transitive on {1, 2, . . . , n}. In particular we have
that n is a power of p and since it is even p = 2. Say n = 2r ≥ 8.
We can now change our testing subgroup X = 〈x〉 and choose now x = (123)(4 . . . n).
This is of course a cyclic p′-subgroup of An. Let E be a non-trivial elementary abelian
2-subgroup lying in IG(X, 2). Note that E acts fixed-point-freely on {1, 2, . . . , n}. Indeed
if E fixes a point, then as X normalises E, we have that either {1, 2, 3} or {4, . . . , n} lie
in fix(E). In any case we reach a contradiction with Lemma 2.5. Now we claim that E is
transitive. Let O be the E-orbit containing 1. Then O cannot be contained in {1, 2, 3},
otherwise E being a 2-group, there will be a fixed point of E in {1, 2, 3}, which is not
the case. Let therefore e ∈ E be such that 1e = i ∈ {4, . . . , n}. The subgroup 〈x3〉 is
transitive on {4, . . . , n}, as 3 is coprime to n − 3 = 2r − 3, thus for every j ∈ {4, . . . , n}
we may take some y ∈ 〈x3〉 such that iy = j. But then

1(ey) = 1(y−1ey) = 1(ey) = i(y) = j

and since ey ∈ E the element j lies in O. In particular we have proved that {4, . . . , n} ⊆ O
and, since n − 2 = 2r − 2 is not a power of 2 as n ≥ 8, we have that O = {1, 2, . . . , n}
and E acts regularly on it. Now let e be the unique element of E that maps 1 to 2, then
ex maps 2 to 3. Now as [e, ex] = 1 we have that

1(eex) = 2(ex) = 3 = 1(exe)

which means that 1(ex) = 3(e−1), and so 1ex 6∈ {1, 2, 3}. If we set 1ex = j, for some
j ∈ {4, . . . , n}, we reach a contradiction, since

e = (12)(3, j) . . . and ex = (23)(1, j) . . .

but also as n ≥ 8, jx 6= j and so ex = (1x, 2x)(3x, jx) . . . = (23)(1, jx) . . ..
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Case 2. n is odd.
In this situation we have that p|n. Indeed if this is not the case, we take X the sub-
group generated by an n-cycle of An. Now any 1 6= E ∈ IG(X, p) acts non-trivially on
{1, 2, . . . , n}, and therefore we reach a contradiction to Lemma 2.5. Thus p|n; in partic-
ular p is odd.
We take now x the (n− 2)-cycle (3, 4, . . . , n) and X = 〈x〉. Then any 1 6= E ∈ IG(X, p)
does not fix both 1 and 2, otherwise by Lemma 2.5, p|(n − 2) which is not the case as
p|n and p is odd. Assume that 1 is not fixed by E (otherwise argue considering 2 in
place of 1) and let O1 be the E-orbit containing 1. Since p is odd there is some e ∈ E
such that 1e = i for some i ∈ {3, . . . , n}. Now as X is transitive on {3, . . . , n}, for every
j ∈ {3, . . . , n} there is some power m of x such ixm = j. But then

1(ex
m

) = 1(x−mexm) = 1(exm) = i(xm) = j,

and as ex
m ∈ E we have proved that {3, . . . , n} ⊆ O1. Since p ∤ n − 1 we conclude that

E is transitive on {1, . . . , n}. We show now that E is regular. The stabiliser StabE(1)
is normalised by X, and therefore if this is non-trivial, then by Lemma 2.5 we reach the
contradiction p|(n− 2). It follows that E is regular on {1, 2, . . . , n} and so n = |E| = pr,
and any non-trivial element σ of E is a product of exactly pr−1 cycles of length p. In
particular there exists a unique σ ∈ E which maps 1 to 2. We write

σ = σ1σ2 · · ·σpr−1

with σ1 = (12u3 . . . up), a p-cycle. Since σx ∈ E maps 1 to 2, we necessarily have that
σ = σx, but this is not the case as σx

1 = (12u3x . . . upx) 6= (12u3 . . . up) = σ1. �

2.3. The case of sporadic groups. We assume now that S is one of the 27 sporadic
simple groups (including the Tits simple group 2F4(2)

′), and S ≤ G ≤ Aut(S). As before
X will denote a cyclic p′-subgroup of S and E a non-trivial elementary abelian p-subgroup
of G normalised by X. Our basic reference for properties of sporadic groups is [4].

Proposition 2.7. Let S be a simple sporadic group, S ≤ G ≤ Aut(S) and p a prime.
Then there exists a cyclic p′-subgroup X of S such that IG(X, p) = 1. In particular, for
every odd prime p and every subgroup A of G of order p, there exists a cyclic p′-subgroup
X such that IA

G(X, p) = ∅.

Proof. We extend a little our notation. Given a prime p and a positive integer q coprime
to p, we write IG(q, p) for the set of p-subgroups of G that are normalised by some cyclic
q-subgroup of S.

Table 1 summarises the situation for the sporadic groups and their automorphism
groups. For every group S, we list a pair (q; r) of primes such that IG(q, p) = 1 for all
p 6= q, and IG(r, q) = 1. For four groups, IG(q, p) 6= 1 for another prime p 6= q, in which
case either IG(r, p) = 1, or we give a further integer s such that IG(s, p) = 1. Our choice
of (q; r), respectively (q; r; s) works for both S and Aut(S).

We prove the validity of Table 1 by considering the individual groups in turn.
The groups S = M11, J1, J2, M23, M24, Co3, Co2, Ru, Ly, J4, Fi23 have trivial outer

automorphism group. The validity of our claim is immediate from the known lists of
maximal subgroups [4].
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Table 1. The case of sporadic groups.

M11 (11; 3) Co3 (23; 7) B (47; 31)
M12 (11; 3) Co2 (23; 5) M (59; 71)
M22 (11; 3) Co1 (23 (p 6= 2); 33 (p = 2); 13) J1 (19; 11)
M23 (23; 5) He (17; 7) O′N (31; 19)
M24 (23; 5) Fi22 (13 (p 6= 3); 11) J3 (19; 17)
J2 (7; 5) Fi23 (23 (p 6= 2); 17) Ly (67; 37)
Suz (13; 11) Fi′24 (29; 23) Ru (29; 13)
HS (11; 3) HN (19; 11) J4 (43; 37)
M cL (11 (p 6= 2); 7) Th (31 (p 6= 2); 19) 2F4(2)

′ (13; 5)

For S = M12, M22, HS, He, J3, O
′N , HN , Th, 2F4(2)

′ we have |Out(S)| = 2. For
G = S we can argue as before, while for G = Aut(S) we invoke Lemma 2.2 for a suitable
subgroup X ≤ S of prime order as listed in Table 1. We deal with the remaining groups
in some more detail.

S = Suz. Here |Out(S)| = 2. The maximal subgroups of S of order divisible by
13 are isomorphic to G2(4), L3(3):2 or L2(25). As these have no elements of order 11,
we immediately obtain ISuz(5, 11) = 1. Moreover, for any of these groups, a Sylow 13-
subgroup does not normalise any other p-subgroup, for p 6= 13. Thus ISuz(13, p) = 1 for
every prime p 6= 13. Finally the outer involutions do not centralise any element of order
13, forcing the same conclusions for Aut(Suz).

S = M cL. Here |Out(S)| = 2. The maximal subgroups of S of order divisible by
11 are isomorphic to M11 and M12. Therefore IMcL(7, 11) = IMcL(11, p) = 1 for every
p 6= 11. Now consider G = Aut(M cL). Again, X of order 11 shows that there are no
examples except possibly when p = 2. In the latter case for X we take a cyclic subgroup
of order 7. The Atlas [4] shows that CG(X) ≤ S, and so there can be no example for G
by Lemma 2.2.

S = Co1. Here Out(S) = 1. The maximal subgroups of S of order divisible by 23
are isomorphic to Co2, 211:M24 or Co3. Since these groups have no elements of order
13, we obtain that ICo1(13, 23) = 1. Moreover if Y is any of these maximal subgroups
IY (23, p) = 1, for every p different from 23 and 2. Finally Co1 has elements of order 33
which are auto-centralising. As Co1 and Co2 do not contain elements of order 33, the
unique maximal subgroups of S that have such an element are: U6(2):S3, 3

6:2M12 and
3·Suz:2. Now, a cyclic subgroup of order 33 in U6(2):S3 does not lie completely in U6(2);
therefore, if such a subgroup normalises a non-trivial 2-subgroup, then, since S has no
elements of order 66, we should have that IU6(2)(11, 2) 6= 1. This is not the case as in
U6(2) the maximal subgroups of order divisible by 11 are M22 and U5(2). Consider now a
cyclic subgroup Y of order 33 inside 36:2M12. This is the direct product of a subgroup of
order 3 in 36 by a Sylow 11-subgroup of 2M12. Assume that X is a non-trivial 2-subgroup
of 36:2M12 normalised by Y . Then X ∈ I2M12

(11, 2), and since IM12
(11, 2) = 1 we deduce

that X is centralised by a Sylow 11-subgroup of M12, and thus by the whole Y , which is
a contradiction since in S there are no elements of order 66. Finally, a similar argument
shows that if X is a non-trivial element of I3·Suz:2(33, 2), then X ∩ Suz is a non-trivial
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element of ISuz(11, 2). This is impossible since the maximal subgroups of Suz of order
divisible by 11 are: U5(2), 3

5:M11 and M12:2, forcing ISuz(11, 2) = 1.
S = Fi22. Here |Out(S)| = 2. The maximal subgroups of S of order divisible by 13

are isomorphic to 2F4(2) or O7(3). Since both these groups have orders not divisible by
11, we have that IS(11, 13) = 1. Now, I2F4(2)(13, p) = 1 for every p 6= 13, since the
maximal subgroups of 2F4(2) containing a Sylow 13-subgroup are L2(25) and L3(3):2 and
CS(13) = 13. In O7(3) there are three isomorphism classes of maximal subgroups of order
divisible by 13, namely G2(3),L4(3):2 and 33+3:L3(3). We have that IO7(3)(13, p) = 1 if
p 6= 3 (and p 6= 13), forcing IS(13, p) = 1 for every prime p different from 3 and 13. To
deal with the case p = 3, we look at the maximal subgroups of S of order divisible by 11.
These are isomorphic to one of the following: M12, 2

10:M22 and 2
.

U6(2). For any of these
groups Y we have IY (11, 3) = 1, thus the same happens in S. Since |Out(S)| = 2, we
only need to show that IAut(S)(q, 2) = 1 for some odd integer q. This is guaranteed by
the fact that IS(13, 2) = 1 and CAut(S)(13) = 13.

For the last three groups, the Atlas does not contain complete lists of maximal sub-
groups, so we need to give a different argument.

S = Fi′24. Here |S| = 221 · 316 · 52 · 11 · 13 · 17 · 23 · 29, |Out(S)| = 2. Here, a subgroup
of order 29 cannot act faithfully on an elementary abelian p-subgroup for p 6= 29, by the
order formula. On the other hand, subgroups of order 29 are not normalised by elements
of order 23.

S = B. Here |S| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47, Out(S) = 1. >From
the order formula it is clear that a subgroup of order 47 cannot act non-trivially on an
elementary abelian p-subgroup of S, except possibly for p = 2. Since elements of order 47
are self-centralising, and not normalised by an element of order 31, we must have p = 2.
But the 2-rank of S is 14 by [13], too small for an action of C47.

S = M . Here |S| = 246 · 320 · 59 · 76 · 112 · 132 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71,
Out(S) = 1. A subgroup of order 59 cannot act faithfully on an elementary abelian p-
subgroup for p 6= 59, by the order formula. On the other hand, subgroups of order 59 are
not normalised by elements of order 71. �

2.4. Classical groups of Lie type. We consider the following setup. Let S be a finite
simple group of Lie type. There exists a simple linear algebraic group H of adjoint
type defined over the algebraic closure of a finite field and a Steinberg endomorphism
F : H → H such that the finite group of fixed points H = H

F satisfies S = [H,H ].
We now make use of the fact that groups of Lie type possess elements of orders which

cannot occur in their Weyl group, and with small centraliser. These can be found, for
example, in the Coxeter tori. For this we need the existence of Zsigmondy primitive prime
divisors (see [11, Thm. 3.9]):

Lemma 2.8. Let q be a power of a prime and e > 2 an integer. Then unless (q, e) = (2, 6)
there exists a prime ℓ dividing qe−1, but not dividing qf −1 for any f < e, and ℓ ≥ e+1.

In Table 2 we have collected for each type of classical group two maximal tori T1, T2

of H (indicated by their orders). Then the order of Ti is divisible by a Zsigmondy prime
divisor ℓi of qei − 1, with ei given in the table (unless ei = 2 or (ei, q) = (6, 2)).
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Table 2. Two tori for classical groups.

H |T1| |T2| e1 e2
An−1 (n ≥ 2) (qn − 1)/(q − 1) qn−1 − 1 n n− 1
2An−1 (n ≥ 3 odd) (qn + 1)/(q + 1) qn−1 − 1 2n n− 1

(n ≥ 4 even) qn−1 + 1 (qn − 1)/(q + 1) 2n− 2 n
Bn, Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) 2n 2n− 2

(n ≥ 3 odd) qn + 1 qn − 1 2n n
Dn (n ≥ 4 even) (qn−1 + 1)(q + 1) (qn−1 − 1)(q − 1) 2n− 2 n− 1

(n ≥ 5 odd) (qn−1 + 1)(q + 1) qn − 1 2n− 2 n
2Dn (n ≥ 4) qn + 1 (qn−1 + 1)(q − 1) 2n 2n− 2

Proposition 2.9. Assume that S is of classical Lie type not in characteristic p. Then
Theorem 2.1 holds for all S ≤ G ≤ Aut(S).

Proof. Let H, H be as above so that S = [H,H ]. We distinguish three cases.

Case 1: A ≤ S.
The cases when ei ≤ 2, that is, H is of type A1, A2,

2A2 or B2, will be considered
in Proposition 2.10. For all other types, for X we choose a maximal cyclic subgroup of
Ti∩S for i = 1, 2, with Ti from Table 2. Note that the orders of T1∩S, T2∩S are coprime,
and Ti is the centraliser in H of any si ∈ Ti of order ℓi. Assume that IA

S (X, p) 6= ∅. By
Lemma 2.3 and the fact that A ≤ S, X normalises a non-trivial elementary abelian p-
subgroup E of S. Let π : H̃ → H be a simply-connected covering of H, and hence
ker(π) = Z(H̃). We let Ẽ be a (normal) Sylow p-subgroup of the full preimage of E in
H̃. Then Ẽ is normalised by the full preimage of X. First assume that |Z(H̃)| is prime

to p. Then Ẽ ∼= E is abelian. As H̃ is simply-connected, p > 2 is not a torsion prime
of H̃ (see [15, Tab. 14.1]), so an inductive application of [15, Thm. 14.16] to a sequence

of generators of the abelian group Ẽ shows that C := C
H̃
(Ẽ) contains a maximal torus

of H̃ and is connected reductive, hence a subsystem subgroup of H̃ of maximal rank.
Then N

H̃
(C) = CN

H̃
(T) for any maximal torus T of H̃, so N

H̃
(C)/C is isomorphic to

a section of the Weyl group W of H̃. As N
H̃
(Ẽ) ≤ N

H̃
(C

H̃
(Ẽ)) = N

H̃
(C) we see that

NH(E)/CH(E) is a section of W .
Now note that the order of the Weyl group of H is not divisible by any prime larger

than ei, except for H of type Dn, with n ≥ 4 even and e2 = n− 1. Here, ℓ2 ≥ e2 +1 = n,
but n is even so that in fact ℓ2 > n does not divide the order of the Weyl group either.
This shows that elements si ∈ X of order ℓi must centralise E, for i = 1, 2. So p divides
the order of CS(si) = Ti ∩ S for i = 1, 2, a contradiction as these orders are coprime.

The cases when (q, ei) = (2, 6), that is, S = L6(2),L7(2),U6(2), O7(2),O
±
8 (2),O9(2)

will be handled in Proposition 2.11, while S = U4(2) ∼= S4(3) will be treated in Proposi-
tion 2.10.

Now assume that Ẽ is non-abelian. Then p divides |Z(H̃)| and thus S = Ln(q) or
S = Un(q). Let E1 be a minimal non-cyclic characteristic subgroup of Ẽ. Then E1

is of symplectic type, hence extra-special (see [1, (23.9)]) and normalised by X. Write
|E1| = p2a+1, then pa ≤ n as E1 ≤ SLn(q) or SUn(q). Now the outer automorphism group
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of E1 is Sp2a(p), and all prime divisors of its order are at most (pa + 1)/2 < n. But our
Zsigmondy prime divisors ℓi of |X| satisfy ℓi ≥ n, so again we conclude that X must
centralise an element of order p. We conclude as before.

Case 2: A 6≤ S contains diagonal automorphisms.
In this case by Proposition 2.4 we have S = Ln(q) or S = Un(q). Here let X be generated
by a regular unipotent element. By Lemma 2.2, if X normalises a non-trivial p-subgroup
generated by conjugates of A, X must centralise some non-trivial element of order p. But
the centraliser of a regular unipotent element in the group PGLn(q) resp. PGUn(q) of
inner-diagonal automorphisms is obviously unipotent, hence this case does not occur, as
by assumption p is not the defining characteristic.

Case 3: A 6≤ S does not contain diagonal automorphisms.
By Proposition 2.4, A contains field, graph or graph-field automorphisms. Now in all
cases, a maximal cyclic subgroup X of T1 ∩ S can be identified to a subgroup of the
multiplicative group of Fqe1 by viewing some isogeny version of H as a classical matrix
group. The normaliser in S of X then acts by field automorphisms of Fqe1/Fq. Using the
embedding into a matrix group one sees that the field automorphisms of S act on X as the
field automorphisms of Fq/Fr, where r is the characteristic of H. In particular they induce
automorphisms of X different from those induced by NS(X). So with this choice of X
field automorphisms cannot lead to examples by Lemma 2.2. Finally, if S = O+

8 (q) and A
contains graph or graph-field automorphisms of order 3 then we choose X to be generated
by an element x of order (q2+1)/d in a maximal torus T ≤ S of order (q2+1)2/d2, where
d = gcd(q−1, 2). The normaliser NS(T ) acts by the complex reflection group G(4, 2, 2) of
2-power order, while in the extension by a graph or graph-field automorphism it acts by
the primitive reflection group G5. These automorphisms hence induce further non-trivial
elements normalising X, and not centralising x. �

We now complete the proof for the small rank cases.

Proposition 2.10. Assume that S = L2(q) (q ≥ 8), L3(q), U3(q) (q > 2), or S4(q)
(q > 2), and p ∤ q. Then Theorem 2.1 holds for all S ≤ G ≤ Aut(S).

Proof. We just need to deal with the case that G = S, since the other possibilities were
already discussed in the proof of Proposition 2.9. First assume that S = L2(q). If q ≥ 8
is even, then elements of order q + 1 do not normalise any non-trivial p-subgroup with
p dividing q − 1, while elements of order q − 1 do not normalise any with p|(q + 1). If
q = rf ≥ 9 is odd, elements of order r do not normalise non-trivial p-subgroups for
2 < p|(q2 − 1).

Next let S = L3(q). Elements of order (q2 + q + 1)/ gcd(3, q − 1) do not normalise
non-trivial p-subgroups for p dividing q2 − 1, while elements of order 2 do not normalise
non-trivial p-subgroups for p dividing (q2 + q+1)/ gcd(3, q− 1). Similarly for S = U3(q),
q > 2, we can argue using elements of order (q2 − q + 1)/ gcd(3, q + 1), respectively of
order 2.

Finally assume that S = S4(q). Using X of order q2 + 1 we see that we must have
p|(q2 + 1). In this case, take X of order 3. �

Proposition 2.11. Assume that S is one of L6(2),L7(2),U6(2),O7(2),O
±
8 (2) or O9(2).

Then Theorem 2.1 holds for all S ≤ G ≤ Aut(S).
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Table 3. Some groups over F2.

L6(2) (2; 7) U6(2) (11; 3) O+
8 (2) (7; 5)

L7(2) (127; 31) O7(2) (7; 5) O−
8 (2) (17; 3)

O9(2) (17; 5)

Proof. In all of these groups, just one of the two Zsigmondy primes ℓi exists. By the
argument given in the proof of Proposition 2.9, we still obtain that either elements of
order ℓi centralise a p-element or that S 6= G. We may then conclude as in the proof of
Proposition 2.7, using an additional prime as in Table 3, except in the two cases when
|Out(S)| > 2:

Let S = U6(2). Here ℓ1 = 11 shows that p = 11 if G = S, and since a subgroup of
order 7 does not normalise one of order 11, we reach a contradiction in this case. We
assume therefore that p = 3 and A 6≤ S. Let first X be a subgroup of S of order 11
and Y a maximal subgroup of S containing X. Then Y ≃ U5(2) or M22, and therefore
IY (X, 3) = IS(X, 3) = 1. Now if E ∈ IA

G(X, 3) we have that E ∩ S ∈ IS(X, 3) = 1 and
so E = CE(X) has order 3, and, E being generated by conjugates of A, we have that E
is a conjugate of A. Now the group S has four classes of outer elements of order three,
denoted 3D, 3E, 3F and 3G in [4]. Amongst these just 3D has centraliser in S divisible
by 11, namely CS(3D) ≃ U5(2). We have therefore that A = 〈x〉 for some x in 3D. Now
take X a subgroup of S of order 7. We may argue as before. Since a maximal subgroup
Y of S containing X is isomorphic to one of

M22, 2
9.L3(4), U4(3):2, S6(2), L3(4):2,

we have that IY (X, 3) = IS(X, 3) = 1, and therefore any element E ∈ IA
G(X, 3) is a

cyclic subgroup conjugate to A and centralised by X. This is a contradiction since 7 does
not divide |U5(2)|.

Let S = O+
8 (2). The prime ℓ2 = 7 shows that p = 7 if A ≤ S. Since a subgroup of

order 5 does not normalise any non-trivial 7-subgroup, we reach a contradiction if A ≤ S.
Let p = 3 and A 6≤ S. In G there are three classes of outer 3-elements, two of order 3 and
one of order 9. In all cases 5 does not divide the order of their centralisers in S. Thus if
X is a cyclic subgroup of order 5 we reach a contradiction with Lemma 2.2. �

2.5. Groups of exceptional type. In this section we prove Theorem 2.1 when S is one of
the exceptional groups of Lie type. We keep the setting from the beginning of the previous
subsection. Note that we need not treat 2B2(2) (which is solvable), G2(2) ≃ U3(3).2,
2G2(3) ≃ L2(8).3 and 2F4(2)

′ (see Section 2.3).
As in the case of classical groups we provide in Table 4 for each type of group two

maximal tori of H , indicated by their orders. Here, we denote by Φn the n-th rational
cyclotomic polynomial evaluated at q, and moreover we let Φ′

8 = q2 +
√
2q + 1, Φ′′

8 =
q2−

√
2q+1,Φ′

24 = q4+
√
2q3+q2+

√
2q+1, Φ′′

24 = q4−
√
2q3+q2−

√
2q+1 for q2 = 22f+1,

and Φ′
12 = q2+

√
3q+1, Φ′′

12 = q2−
√
3q+1 for q2 = 32f+1. We then have gcd(|T1|, |T2|) = d,

where d = (3, q− 1), (3, q+1) and d = (2, q− 1) for S = E6(q),
2E6(q), E7(q) respectively,

and d = 1 otherwise. Furthermore, |H : S| = |Ti : Ti ∩ S| = d in all cases.
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Table 4. Two tori for exceptional groups.

H |T1| |T2| H |T1| |T2| d
2B2(q

2) (q2 ≥ 8) Φ′
8 Φ′′

8 F4(q) Φ8 Φ12 1
2G2(q

2) (q2 ≥ 27) Φ′
12 Φ′′

12 E6(q) Φ3Φ12 Φ9 (3, q − 1)
G2(q) (q ≥ 3) Φ3 Φ6

2E6(q) Φ6Φ12 Φ18 (3, q + 1)
3D4(q) Φ2

3 Φ12 E7(q) Φ2Φ14 Φ1Φ7 (2, q − 1)
2F4(q

2) (q2 ≥ 8) Φ′
24 Φ′′

24 E8(q) Φ15 Φ30 1

Proposition 2.12. Assume that S is of exceptional Lie type not in characteristic p. Then
Theorem 2.1 holds for all S ≤ G ≤ Aut(S).

Proof. First assume that A ≤ S. Using for X maximal cyclic subgroups of S ∩ Ti, for Ti

as listed in Table 4, we conclude by the same arguments as in the proof of Proposition 2.9
that in a possible counterexample to Theorem 2.1 the prime p would divide the orders of
both S ∩ Ti, i = 1, 2, which is a contradiction as their orders are coprime, unless possibly
if p is a torsion prime for H . The torsion primes for groups of exceptional Lie type are
just the bad primes (see [15, Tab. 14.1]); in particular p ≤ 5, and even p = 3 unless
S = E8(q). The maximal rank of an elementary abelian p-subgroup of H , for p odd, is at
most the rank m of H , see e.g. [5, Thm. 4.10.3]. It is easy to check that for all bad primes
p ∤ q and s ≤ m, ps − 1 is not divisible by ℓi for i ∈ {1, 2}, so again Ti must centralise
a non-trivial p-element, which contradicts the fact that gcd(|T1|, |T2|) = 1, except for the
groups F4(2), E6(2) and 2E6(2) (each with p = 3). In all of the latter cases, at least one
of the ℓi does not divide 3s − 1 for s ≤ 4, and does not divide the centraliser order of an
element of order 3 either, so again we are done.

Now assume that A 6≤ S. Then either A contains field automorphisms, in which case
taking for X a maximal cyclic subgroup of T1 shows that no example arises by Lemma 2.2
as field automorphisms induce proper non-inner automorphisms on this torus. Or, we have
that S = E6(q) or 2E6(q), p = 3, and A contains diagonal automorphisms. In this case we
take for X the subgroup generated by a regular unipotent element; this has a unipotent
centraliser in the group of inner-diagonal automorphisms and thus we are done. �

2.6. Groups of Lie type in defining characteristic. If p is the defining prime for S,
we can again make use of the two tori T1, T2 introduced before.

Proposition 2.13. Assume that S is of Lie type in characteristic p. Then Theorem 2.1
holds for all S ≤ G ≤ Aut(S).

Proof. Let A ≤ H be cyclic of order p and 1 6= P ≤ H be a p-subgroup generated by
conjugates of A. First assume that A ≤ S. Then P is a non-trivial unipotent subgroup of
S, hence its normaliser NS(P ) is contained in some proper parabolic subgroup of S (see
[15, Thm. 26.5]). Let s be a regular semisimple element of S in the torus T1 as given in
Table 2 when S is classical, or in Table 4 in case S is exceptional. Then the centraliser
CS(s) is contained in T1, in particular s does not centralise any non-trivial split torus of
H and so is not contained in a proper parabolic subgroup of S. Thus IA

S (X, p) = ∅.
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If A 6≤ S, then by Proposition 2.4 either A contains a field automorphism of S, or
p = 3 and A contains a graph or graph-field automorphism. According to Lemma 2.2, X
is centralised by an outer p-element. Now as pointed out in the proof of Propositions 2.9
and 2.12, field automorphisms do not enlarge the centraliser of X as defined above, so we
may assume that S = O+

8 (q), p = 3 and H involves a graph or graph-field automorphism.
In this case take X generated by a semisimple element of order (q2+1)/ gcd(2, q−1) and
conclude as in the proof of Proposition 2.9. �

3. Proof of Theorem A

In this section we complete the proof of Theorem A. We need the following result,
whose proof can be found in [12, Thm. 4.2].

Lemma 3.1. Let G be a finite group and V a faithful irreducible G-module. Assume that
p is an odd prime number different from the characteristic of V and that A is a subgroup
of G of order p that lies in Op(G). Then there exists an element v ∈ V such that

A 6⊆
⋃

g∈G

CG(v)
g.

Given a finite group G and a subgroup A ≤ G we say that the pair (G,A) satisfies (∗)
if for every conjugacy class C of G there exists g ∈ C such that A is subnormal in 〈A, g〉.
Proof of Theorem A. We argue by contradiction: assume that G is a finite group, A an
odd p-subgroup of G, A 6≤ Op(G), and the pair (G,A) satisfies the condition (∗). Moreover
we assume that that |G| + |A| is minimal with respect to these conditions. We proceed
by steps.

Step 1. We have Op(G) = 1.
Indeed, note that (G/Op(G), AOp(G)/Op(G)) satisfies (∗), therefore if Op(G) 6= 1 by

our minimal assumption, we would have that AOp(G)/Op(G) ≤ Op(G/Op(G)) = 1, which
is a contradiction.

Step 2. We have |A| = p.
Let B be a proper subgroup of A and note that (G,B) satisfies (∗). By the minimal

choice, every proper non-trivial subgroup of A lies in Op(G). Since Op(G) = 1, we conclude
that B = 1, i.e., A has order p.
>From now on we set A = 〈a〉.
Step 3. G has a unique minimal normal subgroup M .

Assume that M and N are two distinct minimal normal subgroups of G and assume
also that A 6≤ N . Then (G/N,AN/N) satisfies (∗) and so, by our minimal choice we have
that AN/N ≤ Op(G/N). In particular, AN ⊳⊳G. Then also AN ∩M ⊳⊳G. If A ≤ M ,
then A = A(N ∩M) = AN ∩M , and we have that A⊳⊳G. Since A is a p-subgroup, then
A ≤ Op(G), which is not the case. Therefore A 6≤ M and by the same arguments as for N
above, we conclude that AM , and thus also AM ∩ AN , is subnormal in G. Finally note
that M ∩AN = 1. Indeed, otherwise we have that A ≤ MN , as |A| = p and M ∩N = 1.
Now MN/N is a minimal normal subgroup of G/N and, being isomorphic to M , it is not
a p-subgroup by Step 1. Then MN/N∩Op(G/N) = 1, forcing AN/N = 1 a contradiction.
Thus M ∩AN = 1 and A = A(M ∩AN) = AM ∩AN , therefore is subnormal in G, which
again contradicts Step 1.
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Step 4. M is non-abelian.
Assume that M is an elementary abelian q-group, with q a prime different from p,

by Step 1. Let Y/M = Op(G/M), then by our minimal assumption A ≤ Y . We take
P ∈ Sylp(Y ) such that A ≤ P . By the Frattini argument G = Y N = MN , with
N = NG(P ). Now [NM(P ), P ] ≤ M ∩ P = 1, thus NM(P ) = CM(P ). Also, M being
normal and abelian, CM(P ) is normalised by both M and NG(P ), thus CM(P ) E G.
As M is the unique minimal normal subgroup of G, we have that either CM(P ) = 1 or
CM(P ) = M . Note that in the latter case P is normal in G, which contradicts Step 1.
Therefore we have that G is a split extension G = M ⋊ N . Moreover, since M is the
unique minimal normal subgroup of G, CN(M) = 1, i.e., N acts faithfully on M . Let m
be an arbitrary non-trivial element of M . By condition (∗) there exists some n ∈ N such
that A⊳⊳ 〈A,mn〉. In particular the subgroup V :=

〈
a, am

n
〉

is a p-group. As mn ∈ M ,
MV = MA, and therefore

V = MA ∩ V = (M ∩ V )A = A,

as M and V have coprime orders. Therefore 〈a〉 =
〈
am

n〉
, i.e., mn normalises A. In

particular, as M is a normal q-subgroup, we have that

[a,mn] ∈ A ∩M = 1,

which means that A ⊆ CN(m)n. By the arbitrary choice of m in M we have reached a
contradiction with Lemma 3.1.

Step 5.

Let M = S1 × S2 × . . .× Sn be the unique minimal normal subgroup of G, with all the
Si’s isomorphic to a finite non-abelian simple group S. Denote by πi the projection map
of M onto Si, for every i = 1, 2, . . . n. Let also 1 = x1, x2, . . . , xn be elements of G such
that Sxi

1 = Si, for i = 1, 2, . . . , n. Let K be the kernel of the permutation action of G on
the set S := {S1, S2, . . . , Sn}, i.e.,

K :=

n⋂

i=1

NG(Si).

We treat separately the two cases: A 6≤ K and A ≤ K.

Case 1. A 6≤ K.

Set G := G/K and use the “bar” notation to denote subgroups and elements of G. By
induction, we have that A ≤ Op(G). Since p is odd, by Gluck’s Theorem ([16, Cor. 5.7])
there exists a proper non-empty subset R ⊂ S such that

GR ∩ Op(G) = 1,

where GR denotes the stabiliser in G of the set R. Without loss of generality, we may
assume R = {S1, . . . , Sr} for some r < n. Let q be any prime different from p dividing
|S1|, and let s1 ∈ S1 be any non-trivial q-element. Set

sR := s1s
x2

1 . . . sxr

1 ∈ M.

By assumption, there exists a G-conjugate of sR, say y := sgR, such that A is subnormal
in 〈a, y〉, in particular 〈a, ay〉 is a p-subgroup. Thus [a, y] = a−1ay is a p-element. Also,

[a, y] is G-conjugate to [ag
−1

, sR]. Since ag−1 is a non-trivial element of Op(G), ag
−1

does
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not stabilise R, therefore there exists some i ∈ R such that (Si)
ag

−1

= Sj for some j 6∈ R,

this forces that πj([a
g−1

, sR]) is a non-trivial q-element of Sj, and since p 6= q, [ag
−1

, sR]
cannot be a non-trivial p-element of M . So we have [a, y] = 1, but then 〈a〉 stabilises R,
which is in contradiction with GR ∩Op(G) = 1.

Case 2. A ≤ K.

We consider first the case in which A ≤ CG(Si), for every i = 1, . . . , n. Then

A ≤
n⋂

i=1

CG(Si) = (CG(S1))G,

the normal core of S1 in G. Since M is the unique minimal normal subgroup of G and
M 6≤ (CG(S1))G, we necessarily have that (CG(S1))G = 1, and so A = 1, which is a
contradiction.
Assume now that A does not centralise some Si, say S1. Let 1 6= s1 ∈ S1 and let
m = s1s

x2

1 . . . sxn

1 ∈ M . Let g ∈ G be such that A ⊳⊳ 〈A,mg〉. Writing mg = h1k, with
h1 = sxig

1 ∈ S1 for some i = 1, . . . , n, and k =
∏

j 6=i s
xjg

1 ∈ S2 × . . .× Sn we have that for
every u, v ∈ N

[au, (mg)v] = [au, hv
1k

v] = [au, kv][au, hv
1]

kv = [au, hv
1][a

u, kv],

since A normalises each Si and S1 is centralised by Sj , for every j 6= 1. In particular we
have that

[A, 〈mg〉] = [A, 〈h1〉]× [A, 〈k〉].
Therefore π1([A, 〈mg〉]) = [A, 〈h1〉] is a p-subgroup of S1. Finally note that h1 = sxig

1 , and
so for the arbitrary element s1 ∈ S1 there exists xig ∈ NG(S1) such that A⊳⊳ 〈A, sxig

1 〉. In
particular if s1 is chosen to be a p′-element of S we have that s1 normalises a non-trivial
p-subgroup of G which is generated by G-conjugates of A. Therefore, as A 6≤ CG(S1),
we have proved that the almost simple group G̃ := NG(S1)/CG(S1) contains a non-trivial

subgroup of order p, namely Ã := ACG(S1)/CG(S1), such that for every cyclic p′-subgroup

X̃ of F ∗(G̃) we have that IÃ

G̃
(X̃, p) 6= ∅. This is in contradiction to Theorem 2.1. �

We end this section by showing with an easy example that for p = 2 Theorem A is no
more true.

Example 3.2. Let H be a Sylow 2-subgroup of GL2(3), namely H is a semidihedral group
of order 16, acting, in the natural way, on the natural module M ≃ C3×C3. Let G be the
semidirect product M ⋊H , and a a non-central involution of H . Since O2(G) = 1, 〈a〉 is
not subnormal in G. We show that 〈a〉 satisfies (∗). A non-trivial element of G has order
either a 2-power, or 3, or 6. In the first case, it is conjugate to an element g of H and
so 〈a〉 is subnormal in the 2-group 〈a, g〉. In the second case, the element lies in M , but
note that every element of M centralises a conjugate in H of a, i.e., M =

⋃
x∈H CM(ax),

thus there exists an x ∈ H such that 〈a〉 is subnormal in 〈a, gx〉 ≃ C6. In the latter case,
up to conjugation, we have 〈a, g〉 = 〈g〉.

4. Other conditions for subnormality

As stated in the Introduction, in this Section we briefly analyse similar variations related
to the other criteria for subnormality given by the original Theorem of Wielandt (namely
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conditions (iii) and (iv)). We see that in general these generalisations fail to guarantee
the subnormality of odd p- subgroups.

Given a finite group G and an odd p-subgroup A of G, we consider the following
condition:

(∗∗) for every conjugacy class C of G there exists g ∈ C such that A⊳⊳ 〈A,Ag〉.
It is trivial that condition (∗) implies (∗∗).
The next result shows that (∗∗) is enough to guarantee the subnormality of A in the class
of finite solvable groups.

Theorem 4.1. Let G be a finite solvable group and p a prime. If there exists a p-subgroup
A of G satisfying (∗∗) then A ≤ Op(G).

Proof. As A is nilpotent, every subgroup of A also satisfies (∗∗). Therefore we can assume
that A is cyclic, say A = 〈a〉.
We argue by induction on the order of G.
Note that if M is a minimal normal subgroup of G the assumption holds for the group
G/M . Thus in particular, we may assume that G admits a unique minimal normal
subgroup, say M , and that aM ∈ Op(G/M) := Y/M . Now if M is a p-group we are done.
Let M be an elementary abelian q-group, with q 6= p. Take P a Sylow p-subgroup of Y
containing a, so that by the Frattini argument G = Y N = MN , with N = NG(P ). Being
M minimal normal in G, we have that CM(P ) = M ∩NG(P ) = 1 (otherwise Y = M ×P
and a ∈ Op(G)). Thus G = M⋊N . Since also M is the unique minimal normal subgroup
of G we have CN(M) = 1. Let m be a non-trivial element of M . By assumption there
exists n ∈ N such that the subgroup V :=

〈
a, am

n
〉

is nilpotent. In particular, as mn ∈ M ,
MV = M 〈a〉, and therefore

V = M 〈a〉 ∩ V = (M ∩ V )× 〈a〉 ,
forcing 〈a〉 =

〈
am

n〉
. So

[a,mn] ∈ A ∩M = 1,

which means that A ⊆ CN(m)n. By the arbitrary choice of m in M we have reached a
contradiction with Lemma 3.1. �

For non-solvable groups the situation is completely different and the following example
shows that there are almost simple groups with non-trivial p-subgroups satisfying (∗∗).
Example 4.2. Every subgroup of S8 generated by a 3-cycle satisfies (∗∗). Indeed, let
A = 〈(123)〉 and C a conjugacy class of S8. If every element of C is the product of at
least three disjoint cycles of length > 1, then C contains g = (14...)(25...)(36...)... and
so A is subnormal in the abelian subgroup 〈A,Ag〉. If C contains a k-cycle, then k ≥ 6
otherwise there exists g in C fixing pointwise {1, 2, 3} and so 〈A,Ag〉 = A. But then take
g = (142536...) ∈ C and argue as before. The remaining case is when the elements of C
are products of two disjoint cycles and fix at most two points. If one of these cycle is a
3-cycle, then g = (123)... ∈ C, forcing again Ag = A. We can then assume that one cycle
is at least a 2-cycle and the other a 4-cycle, but then take g = (14...)(2536...) ∈ C and
conclude as before.

A similar behaviour can be noticed for every prime p, if n is big enough.
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