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ABSTRACT
Immunogold electron microscopy (EM) study of Arabidopsis root apices analyzed using specific IAA
antibody and high-pressure freeze fixation technique allowed, for the first time, vizualization of
subcellular localization of IAA in cells assembled intactly within plant tissues. Our quantitative
analysis reveals that there is considerable portion of IAA gold particles that clusters within vesicles
and membraneous compartments in all root apex cells. There are clear tissue-specific and
developmental differences of clustered IAA in root apices. These findings have significant
consequences for our understanding of this small molecule which is controlling plant growth,
development and behavior.
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Introduction

Indole-3-acetic acid (IAA or auxin) is considered for a
plant hormone, but it has also morphogen and signaling
transmitter features. IAA is involved in almost all plant
processes during the entire life span of higher plants.
After it was predicted by Charles and Francis Darwin in
1880,1 this small signaling molecule was discovered and
initially characterized by Went, K€ogl, Thimann and
others in the first half of the last century.2 Boysen-Jensen
confirmed that a mobile signal molecule is involved in
phototropism in 19133 and Went coined term auxin
(from Greek auxein) in 1926,4 which was then chemi-
cally identified as IAA in 1934.5 Finally, IAA was isolated
from immature maize seeds in 1946.6

Charles and Francis Darwin, in their experiments with
decapped maize roots, followed original experiments
accomplished by Theophil Ciesielski in 1872 who discov-
ered that decapped maize roots continue to grow but fail
to respond to gravistimulation.7 Julius Sachs heavily criti-
cized these experiments but they were confirmed later by
Francis Darwin as well as many other experimental
researchers.8-15 Currently, IAA and its transcellular trans-
port are well known to be essential for all kinds of plant
tropisms, both in roots and shoots. Especially root apices
are unique as almost all PIN proteins are known to be

expressed in root apex of Arabidopsis and drive the very
complex loops of transcellular auxin fluxes.

IAA is very small molecule (molar mass
175.19 g¢mol¡1), which can rapidly diffuse through the
cytoplasm as well as through plant cell walls, that affects
and controls almost every aspect of plant biology.16,17

Surprisingly, although auxin easily diffuse into nuclei
trough their nuclear pores to control gene expression, it
is not freely transported through larger plasmodes-
mata.18,19 Either plasmodesmal gating excludes auxin
from passing through plasmodesmata or there is some
active mechanism behind, which prevents IAA to enter
plasmodesmata. Obviously, this is an IAA specific pro-
cess as synthetic auxin 2,4-dichlorophenoxyacetic acid
(2,4-D)20 is passing through via plasmodesmata.21 One
possible scenario would be that putative plasma mem-
brane derived recycling vesicles, internalizing IAA via
activity of the PIN efflux transporters, patrol plasmodes-
mata orifices and actively prevent IAA molecules to enter
the plasmodesmata channels. 2,4-D molecules, which are
not transported via auxin efflux carriers,20,22 are allowed
to pass along plasmodesmata. In support of this concept,
IAA is known to accumulate within plasma membrane-
derived vesicles via an active electrogenic transport of
IAA.23 Moreover, immunolocalization of IAA using
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specific antibodies revealed IAA-enriched vesicles in
maize root apex cells, co-localizing with recycling auxin
efflux transporter PIN1 and with endosomal recycling
pectins.24,25 However, at low resolution of the light
immunofluorescence microscopy, it is not possible to
reach any conclusive evidence on auxin molecules accu-
mulating within the lumen of recycling vesicles. To local-
ize auxin molecules in cells of plant tissues, the only
possible method is immunogold electron microscopy
(EM) using specific antibodies. EM immunolocalization
of low molecular weight compounds (slightly below of
that of IAA’s 175,18 Da) have already been reported
using anti-GABA and L-glutamate antibodies applied on
fixed rat brain sections.26,27 Both GABA and L-
glutamate are localized in synaptic vesicles with higher
density (clusters) as in the adjacent cytoplasm.26,27

Results

Here, we have used immunogold electron microscopy
(EM) analysis of Arabidopsis root apices fixed using high-
pressure freeze fixation technique which preserves mem-
branes, organelles and ultrastucture of the fixed cells. Our
analysis revealed that all cells of Arabidopsis root apices
show auxin-labeled gold particles clustered within vesicu-
lar structures (Fig. 1, 2 and 3). Most of them were tightly
clustered, from 3 up to about 80 gold-particles within one
single compartment. Importantly, there are both tissue-
specific and developmental differences, with large auxin
clusters scored especially in root cap and root epidermis
cells (Fig. 3A). There were almost no auxin clusters scored
within quiescent center cells, and only small clusters in
the adjacent initial cells. Size of IAA clusters is increasing
along the root apex, reaching a peak in the transition
zone, and then decreasing in cells of the early elongation
zone (Figs. 1, 2). The number of clusters is high in the

root cap and the transition zone cells, while no or very
few IAA clusters are in the quiescent center and adjacent
initial cells (Figs. 1, 2). When the first antibody was omit-
ted then no gold particles were prewsent (Fig. 3B).

Interestingly, this pattern of clustered IAA, shown
here for both IAA antibodies, closely mimicks rates of
endoctic vesicle recycling in the root apex zone, being
the highest in the transition zone cells, both in maize
and Arabidopsis.24,28 Clusters of IAA were scored from 3
up to 80 gold particles with both IAA antibodies (Figs 1,
2). Interestingly, exposure of Arabidopsis roots to inhibi-
tor of exocytosis and endocytic vesicle recycling
Brefeldin A (BFA) resulted in loss of IAA clusters in all
root cap and elongation region cells, whereas the size of
clusters decreased in meristem and transition zone cells
(Figs. 1, 2)

Discussion

Current models of transcellular auxin transport are based
on membrane transporters of PIN and ABC families
which are considered to be active as transporters only
when inserted in the plasma membrane. However, these
auxin transporters are actively recycling between the
plasma membrane and endosomes via recycling
vesicles.29-31 Importantly, there is no evidence available,
whatsoever, that these transporters stop to transport
IAA when localized within the vesicle membrane. In
fact, some authors insert PIN arrows (indicating their
auxin transport activities) also into the vesicle and endo-
somal membranes in their schemes.32-35 Our present
data strongly support this scenario and PINs represent
the best candidate for vesicular auxin transporters.

There are several features of the polar auxin transport
(PAT) implicating exocytic secretion of auxin.28,36,37

First of all, there is tight correlation between exo/

Figure 1. Quantification of gold particle distributions in root apex
zones using the polyclonal IAA antibody.

Figure 2. Quantification of gold particle distributions in root apex
zones using the monoclonal IAA antibody.
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endocytic vesicle recycling and rate of the PAT. Second,
inhibitors of PAT inhibit endocytic vesicle recycling
whereas exocytosis inhibitor brefeldin A (BFA) inhibits
endocytic vesicle recycling and PAT.38-41 Third, amounts
of PINs inserted within plasma membrane do not corre-
late with rates of PAT.36 Importantly, BFA mimicking
PAT transport inhibitors also similarly affects gravisti-
mulation-induced calcium spikes in Arabidopsis
seedlings.42

Recently, vesicular secretion of IAA via single exocytic
vesicle fusion was even experimentally confirmed with
in situ core-shell titanium-carbide carbon (TiC&C) quasi-
aligned nanofiber arrays (QANFAs). Quantal secretion of
IAA using this amperometric monitoring system of IAA
release allows real time quantification of IAA release.43

Importantly, the quantal size of IAA secretion events was
increased by pre-loading of plant cells with IAA mole-
cules.43 The same system was used also for quatification of
GABA and L-glutamate release at brain synapses.44-46

This depolarization-induced IAA secretion release from
plant protoplasts (Fig. 4)43 closely resembles neurotrans-
mitter vesicular release of GABA and L-glutamate at the
neuronal synapses. As IAA is well-known to induce elec-
trical responses, and even plant action potentials, all this
strongly supports the neurotransmitter-like concept of
auxin actions in plants.24,28,36,37

Interestingly, there is a clear negative corelation
between vesicular auxin and auxin-mediated gene expres-
sion47 as well as auxin response maximum mediated via
synthetic auxin-response reporter DR5,48 and PLETH-
ORA transcription factor gradient in Arabidopsis root
apex.49,50 Our data suggest that auxin-accumulating
vesicles control how much IAA molecules are free, avail-
able to enter nuclei for the auxin induced gene expression.

IAA enriched vesicles and/or endosomes may correspond
to the mysterious compartment X proposed by Markus
Grebe51 to explain role of intracellular proton pump
AVP1 in control of PAT and cell wall acidification.52,53

AVP1 belongs to pyrophosphatases which localize to
trans-Golgi networks and multivesicular bodies,54,55 both
being part of the plant endosomal system. Importantly,
AVPs are localized within the BFA-induced compart-
ments55 in which also IAA and PINs are enriched.24,25

More recently, the possible input of AVP1 into PAT was

Figure 3. (A) Three IAA clusters in a transition zone epidermis cell labeled with the polyclonal IAA antibody. (B) Negative control of simi-
lar cell using only the secondary antibody results in no gold particles.

Figure 4. Plasma membrane depolarization-induces quantal IAA
exocytosis from plant protoplasts probed with auxin-specific
micro-electrochemical sensor.43
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toned down due to a second T-DNA insertion close to the
ARF-GEF GNOM gene in the avp1–1 mutant line.56,57 It
is relevant, however, that GNOM is plant-
specific ARF-GEF which is mediating BFA-mediated
endosomal recycling-based PAT.58-60 Both GNOM and
AVP1 localize to BFA-sensitive endosomal compartments
accumulating within the BFA-induced compartments.

Interestingly in this respect, our data show that the
BFA exposure induces loss of almost all vesicular IAA in
root cap cells as well as elongating root cells, which are
rather inactive in the endosomal vesicle recycling and
PAT; but only decrease in cells of meristem and transi-
tion zone which are active in the endosomal vesicle recy-
cling and PAT.24,28,36,37,61-63 Several aspects of the
aluminum (Al) toxicity of the root apex transition zone
support the emerging concept that the recycling auxin-
accumulating vesicles control how much auxin is avail-
able for nuclear transport to control gene expression.
Similarly as BFA, Al toxicity inhibits endocytic vesicle
recycling and PAT in the transition zone of both maize
and Arabidopsis root apices.64-67 Moreover, Al induces
IAA accumulation within nuclei of the Arabidopsis root
apex transition zone, as visualized with the DNA tran-
scription-based IAA reporter DR5.68,69

Conclusions

In conclusion, the EM immunogold visualization of IAA
in Arabidopsis root apex cells is incompatible with the
currently popular models of PAT considering auxin to
be diffusely distributed within the cytoplasm and ignor-
ing endosomes / vesicles in the PAT. Together with the
recent discovery of vesicular secretion of IAA from pro-
toplasts, our data implicate vesicular secretion of IAA in
the PAT. This feature has far-reaching consequences not
only for auxin biology but also, as IAA affects all aspects
of plant biology,16,17 for our understanding of plants in
their sensory and behavioral complexity. PAT is essential
for all kinds of plant movements and tropisms,15,28-37 as
well as for integrating plant bodies via long-range IAA
fluxes via vascular systems70 and short-range IAA
fluxes.71 Ability to actively enrich IAA within vesicles
and larger compartments is important for plant growth,
polarity and development as it allows plant cells to con-
trol precisely when and how much IAA molecules are
reaching their signaling targets and receptors, controling
plant signaling at the plasma membrane and gene expre-
sion levels witin the nucleus. Quantal release of IAA
from cells is also critical for IAA acting as transmitter
molecule controlling cell-cell communication via neuro-
nal-like processes.72,73 Last but not least, the secretion of
auxin via recycling vesicles can solve the mystery of the

elusive flux sensor which is required for the PAT models
based on IAA canalization.35,74 All published models of
PAT ignore IAA enriched vesicles and endosomes. This
is a serious drawback of these models, limiting their reli-
ability and predictability. If the neurotransmitter-like
recycling of the IAA-enriched vesicles24,72,73 will be con-
firmed in future, this will represent significant break-
through not only in auxin biology and physiology, but
also in plant sensory and behavioral biology. Relevantly
in this respect, recent support for roles of vesicles in PAT
emerges from studies of large algal cells of Chara,75

plant-specific myosins,76,77,78,79 and ER-dependent endo-
some streaming via RHD3 protein80 expressed highly in
the root apex transition zone.81

Materials and methods

Root apices of 7 d old control and BFA-treated (50 mM
BFA for 2 hours) Arabidopsis seedlings were used. Immu-
nogold labeling was performed as previously reported.82-84

Three root apices were placed in gold platelet carriers pre-
filled with 1-hexadecene and immediately frozen in a
high-pressure freezing apparatus (HPM100; Bal-Tec).
Subsequently, samples were chemically fixed with 0,1%
uranyl acetate and 0, 25% glutaraldehyde in dry acetone.
Then, samples were cryosubstituted at¡80�C and embed-
ded in Lowicryl HM20 (Polysciences, Warrington PA).
Ultrathin sections were blocked and incubated in a moist
chamber with primary antibodies (1:200) diluted over-
night at 4�C. Ultrathin sections were blocked against bind-
ing to unspecific proteins, post-fixed with 2%
glutaraldehyde, and post-stained with 2% uranyl acetate.
Ultrathin sections were incubated primary IAA antibodies
diluted 1:200 (affinity purified anti-N1-IAA; poly-
clonal)24,85 or 1:200 (anti-IAA monoclonal 1E11-C11,
Sigma-Aldrich) overnight at 4�C. This step was followed
by rinsing and incubation with secondary antibodies con-
jugated to 10 nm gold particles. Secondary antibodies
were diluted 1:50 with PBS and incubated for 2 h at room
temperature. Controls were performed using only the sec-
ondary antibodies conjugated to 10 nm gold particles.
Labeled sections were examined with an Leo 912ab trans-
mission electron microscope (Zeiss) operated at 80 keV.
For BFA treatments, the roots were incubated with 35.6
mM BFA at room temperature for 60 min. Clusters of
auxin-labeled gold particles were quantified across the
examined root apex tissues/zones and were not calculated
at the cellular level.
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