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OPTIMAL TRANSPORT WITH COULOMB COST AND

THE SEMICLASSICAL LIMIT

OF DENSITY FUNCTIONAL THEORY

by Ugo Bindini & Luigi De Pascale

Abstract. — We present some progress in the direction of determining the semiclassical limit of
the Levy-Lieb or Hohenberg-Kohn universal functional in density functional theory for Coulomb
systems. In particular we give a proof of the fact that for Bosonic systems with an arbitrary
number of particles the limit is the multimarginal optimal transport problem with Coulomb
cost and that the same holds for Fermionic systems with two or three particles. Comparisons
with previous results are reported. The approach is based on some techniques from the optimal
transportation theory.

Résumé (Transport optimal avec coût coulombien et limite semi-classique de la théorie de la
fonctionnelle de la densité)

Nous présentons des progrès récents en vue de la détermination de la limite semi-classique de
la fonctionnelle universelle de Levy-Lieb ou Hohenberg-Kohn en théorie de la fonctionnelle de
la densité pour des systèmes coulombiens. Nous donnons en particulier une preuve du fait que,
pour des systèmes de bosons avec un nombre arbitraire de particules, la limite est le problème de
transport optimal multi-marginal à coût coulombien, de même que pour les systèmes de fermions
à deux ou trois particules. Nous établissons des comparaisons avec des résultats antérieurs. Nous
nous appuyons sur certaines techniques de la théorie du transport optimal.
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910 U. Bindini & L. De Pascale

1. Introduction and preliminary results

The ground state of a system of N electrons interacting through Coulomb forces
between each others and with M nuclei is described by one of the following minimal
values (ground values)

(1.1) ES~ = min
S

T~(ψ) + Vee(ψ)− Vne(ψ),

or

(1.2) EA~ = min
A

T~(ψ) + Vee(ψ)− Vne(ψ),

and by the corresponding minimizers (ground states).
The minimization domains are the following sets of wave functions

S =
{
ψ ∈ H1((Rd × Z2)N )

∣∣ ∫ |ψ|2 dz = 1, for all permutations σ of N points

ψ((xσ(1), ασ(1)), . . . , (xσ(N), ασ(N))) = ψ((x1, α1), . . . , (xN , αN ))
}
,

A =
{
ψ ∈ H1((Rd × Z2)N )

∣∣ ∫ |ψ|2 dz = 1, for all permutations σ of N points

ψ((xσ(1), ασ(1)), . . . , (xσ(N), ασ(N))) = sgn(σ)ψ((x1, α1), . . . , (xN , αN ))
}
,

where we adopted the common notation∫
f(z) dz :=

∫
f(z1, . . . , zN ) dz1 · · · dzN

:=
∑

α1,...,αN=0,1

∫
Rd
f(x1, α1; . . . ;xN , αN ) dx1 · · · dxN .

The three terms in the functionals are: the kinetic energy

T~(ψ) =
~2

2m

∫
|∇ψ|2(z) dz,

the electron-electron interaction energy

Vee(ψ) =

∫ ∑
16i<j6N

|ψ|2(z)

|xi − xj |
dz

and the nuclei-electrons interaction energy

Vne(ψ) =

∫ ∑
16i<j6N

M∑
k=1

|ψ|2(z)Zk
|xi −Nk|

dz.

The values ES~ and EA~ represents, respectively, the ground value for a Bosonic
and Fermionic system of particles with N electrons and M nuclei. The Nk are the
positions of the nuclei, while the ordered pair (xi, αi) is the position-spin of the i-th
electron. In the usual Born interpretation, |ψ|2 is the probability distribution of the
N electrons and, according with the indistinguishability principle, it is invariant with
respect to permutations of the N (xi, αi) variables.

J.É.P. — M., 2017, tome 4



Semiclassical Limit of DFT 911

Computing the ground values above amounts to solving a Schrödinger equation
in RdN and the numerical cost scales exponentially with N . The Density Functional
Theory (DFT from now on) is an alternative introduced in the late sixties by Ho-
henberg, Kohn and Sham. However the desire to describe the system in term of a
different variable is much older and we may consider the Thomas-Fermi model as a
precursor of this theory.

We associate to every wave function ψ a probability density on Rd defined as
follows:(1)

ρψ(x) :=
∑

α1,...,αN=0,1

∫
Rd(N−1)

|ψ|2(x, α1; . . . ;xN , αN ) dx2 · · · dxN .

The map which associates ρ to ψ will be denoted by ψ ↓ ρψ and ρ will be called single
electron density or electronic density. If we wish to describe the system in terms of ρ,
the problems above should be reformulated as a minimization of suitable energies
with respect to ρ which, no matter how big N is, is always a probability measure
in Rd. The exact image of the map ψ ↓ ρψ was characterized by Lieb [13] who proved
that the image of both S and A is

H =
{
ρ | 0 6 ρ,

∫
ρ = 1,

√
ρ ∈ H1(Rd)

}
.

For ρ ∈ H we introduce the Levy-Lieb functional [11, 13] also known as Hohenberg-
Kohn functional(2)

FS~ (ρ) = inf
ψ∈S, ψ↓ρ

{T~(ψ) + Vee(ψ)},(1.3)

FA~ (ρ) = inf
ψ∈A, ψ↓ρ

{T~(ψ) + Vee(ψ)}.(1.4)

Then the problems above can be reformulated as follows:

ES~ = min
ρ∈H

FS~ (ρ) +N

∫
v(x)ρ(x) dx,

and
EA~ = min

ρ∈H
FA~ (ρ) +N

∫
v(x)ρ(x) dx,

where we denoted

v(x) = −
M∑
k=1

Zk
|x−Nk|

.

This paper deals with the semiclassical limit of the two functionals FS~ (ρ) and
FA~ (ρ) and more precisely it concerns the relations of the multimarginal optimal trans-
port theory with these semiclassical limits. The ties between the DFT for Coulomb
systems and optimal transport appeared first in [5, 7] and by now have revealed to

(1)In the usual definition the integral in the definition of ρψ is also multiplied by a factor N , but
here we prefer to deal with probability measures.

(2)These functionals are sometimes denoted by FHK(ψ). For the sake of a lighter notation, here
we will not report the HK.
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912 U. Bindini & L. De Pascale

be a precious tool for the understanding. To detail better the results, let us shortly
introduce the multimarginal optimal transport problem of interest here.

For every ρ ∈ H consider the set

Π(ρ) := {P ∈ P(RdN ) | πi]P = ρ, i = 1, . . . , N},

and then the multimarginal optimal transport problem with Coulomb cost

(1.5) C(ρ) := min
P∈Π(ρ)

∫ ∑
16i<j6N

1

|xi − xj |
dP.

Duality for (1.5) and some properties of the functional C(ρ) have been studied in
[10, 4]. The structure of 1-dimensional minimizers has been investigated in [6].

The results on optimal transportation needed in this paper will be reported in the
next section.

In this paper we will prove the following results.

Theorem 1.1. — For all ρ ∈ H and d,N ∈ N,

FS~ (ρ)
~→0−→ C(ρ).

Theorem 1.2. — For all ρ ∈ H, d = 1, 2, 3, 4, N = 2, 3,

FA~ (ρ)
~→0−→ C(ρ).

The same problem was previously studied in [7]. It is easy to see that the proof
presented in that paper adapts to prove Theorem 1.1 for any N . In this case our
contribution consists in a more direct use of optimal transport techniques with the
consequent simplifications. The convergence 1.2 was proved in [7] for N = 2. Here
we extend the result to N = 3 and we are able to enlarge the class of approximating
antisymmetric wave functions also for N = 2.

Remark 1.3. — Although the usual description is limited to the physical dimension
d = 3, here we explored also other dimensions in the hope to shed some light on the
problems which are still open.

Since the functionals appearing in Theorems 1.1 and 1.2 above are all expressed as
minimal values, the natural tool to deal with their convergence is the Γ-convergence
which also we shortly introduce in the next section.

Addendum. — After this paper was accepted, two new papers appeared [12, 8]. Both
papers contain a proof of the convergence for general N . The approach is different.

2. Tools: Γ-convergence and multimarginal optimal transport

2.1. Definition of Γ-convergence and basic results. — A crucial tool that we will
use throughout this paper is Γ-convergence. All the details can be found, for instance,
in Braides’ book [3] or in the classical book by Dal Maso [9]. In what follows, (X, d)

is a metric space or a topological space equipped with a convergence.

J.É.P. — M., 2017, tome 4



Semiclassical Limit of DFT 913

Definition 2.1. — Let (Fn)n be a sequence of functions X 7→ R. We say that (Fn)n

Γ-converges to F and we write Fn
Γ−→
n
F if for any x ∈ X we have

– for any sequence (xn)n of X converging to x

lim inf
n

Fn(xn) > F (x) (Γ-liminf inequality);

– there exists a sequence (xn)n converging to x and such that

lim sup
n

Fn(xn) 6 F (x) (Γ-limsup inequality).

This definition is actually equivalent to the following equalities for any x ∈ X:

F (x) = inf
{

lim inf
n

Fn(xn) : xn −→ x
}

= inf
{

lim sup
n

Fn(xn) | xn −→ x
}
.

The function x 7→ inf
{

lim inf
n

Fn(xn) : xn → x
}

is called Γ-liminf of the sequence
(Fn)n and the other one its Γ-limsup. A useful result is the following (which for
instance implies that a constant sequence of functions does not Γ-converge to itself in
general).

Proposition 2.2. — The Γ-liminf and the Γ-limsup of a sequence of functions (Fn)n
are both lower semi-continuous on X.

The main interest of Γ-convergence resides in its consequences in terms of conver-
gence of minima:

Theorem 2.3. — Let (Fn)n be a sequence of functions X → R and assume that
Fn

Γ−→
n
F . Assume moreover that there exists a compact and non-empty subset K of X

such that
∀n ∈ N, inf

X
Fn = inf

K
Fn

(we say that (Fn)n is equi-mildly coercive on X). Then F admits a minimum on X

and the sequence (infX Fn)n converges to minF . Moreover, if (xn)n is a sequence
of X such that

lim
n
Fn(xn) = lim

n
(inf
X
Fn)

and if (xφ(n))n is a subsequence of (xn)n having a limit x, then F (x) = infX F .

2.2. Multimarginal optimal transportation and composition of optimal transport
plans. — In this subsection we present some basic results about multimarginal opti-
mal transportation with Coulomb cost.

An element P of Π(ρ) is commonly called a transport plan for ρ. If ρ ∈ P(Rd),
define

µρ(t) = sup
x∈Rd

ρ(B(x, t)).

Definition 2.4. — The concentration of ρ is

µρ = lim
t→0

µρ(t).

J.É.P. — M., 2017, tome 4



914 U. Bindini & L. De Pascale

Note that ρ ∈ H implies µρ = 0, since √ρ ∈ H1 implies ρ ∈ L1. It is commonly
assumed that, if µρ < 1/N , then C(ρ) < +∞. Here we provide a simple argument
adapted to the particular case ρ ∈ H:

Proposition 2.5. — If p > 2d/(2d− 1) and ρ ∈ L1(Rd) ∩ Lp(Rd), then C(ρ) < +∞.

Proof. — Consider the transport plan P (x1, . . . , xN ) = ρ(x1) · · · ρ(xN ); then,

C(P ) =

∫
c(X) dP (X) =

∑
16i<j6N

∫
Rd×Rd

ρ(xi)ρ(xj)

|xi − xj |
dxi dxj 6 C(d, p)‖ρ‖2p,

where the last inequality follows from the Hardy-Littlewood-Sobolev and Hölder in-
equalities. �

Definition 2.6. — If α > 0, let

Dα =
{
X ∈ RNd | ∃ i 6= j with |xi − xj | < α

}
be an open strip around

D0 =
{
X ∈ RNd | ∃ i 6= j with xi = xj

}
,

which is the set where the cost function c is singular.

Note that if a transport plan P has the property that P (Dα) = 0 for some α > 0

then C(P ) is finite. The converse is not true in general, i.e., there may well be transport
plans of finite cost whose supports have distance 0 from the set D0.

However, this is not the case if P is optimal, as recently proved in [4]:

Theorem 2.7. — Let ρ ∈ P(Rd) with µρ < 1/N(N − 1)2, with C(ρ) < +∞, and let β
be such that

µρ(β) <
1

N(N − 1)2
.

If P ∈ Π(ρ) is an optimal plan for the problem (1.5), then P |Dα= 0 for every α
such that

α <
2β

N2(N − 1)
.

3. A Γ-convergence result and proofs of the main theorems

It is useful to reformulate the different variational problems so that they have
a common domain. For every ψ ∈ S or ψ ∈ A there is a natural transport plan
Pψ ∈ Π(ρψ) defined by

Pψ =
∑

α1,...,αN

|ψ|2(x1, α1; . . . ;xN , αN ).

Then for every ρ ∈ H define FS~ , FA~ : Π(ρ)→ R+ ∪ {+∞} as follows:

FS~ (P ) =

{
T~(ψ) + Vee(ψ) if P = Pψ for some ψ ∈ S,
+∞ otherwise,

J.É.P. — M., 2017, tome 4



Semiclassical Limit of DFT 915

and

FA~ (P ) =

{
T~(ψ) + Vee(ψ) if P = Pψ for some ψ ∈ A,
+∞ otherwise.

It follows that

(3.1) FS~ (ρ) = min
Π(ρ)
FS~ (P ),

and

(3.2) FA~ (ρ) = min
Π(ρ)
FA~ (P ).

Concerning the optimal transport problem we only need to incorporate the symmetry
constraint in the transport functional. For every σ ∈ SN permutation of {1, . . . , N}
and every P ∈ P(RNd) we consider σ]P the image measure via σ of the measure P ,
where with a little abuse of notations we have denoted by

σ(x1, . . . , xN ) := (xσ(1), . . . , xσ(N)).

For every P ∈ Π(ρ) we can consider the measure

P̃ :=
1

N !

∑
σ∈SN

σ]P.

We have that P̃ ∈ Π(ρ) and, since the cost is also permutation invariant the transport
cost of P̃ is the same as the cost of P . We say that P is symmetric if σ]P = P for
every σ ∈ SN . Then, for example, the measure P̃ above is symmetric. Define, then

Definition 3.1. — CS(P ) =

{∫
c dP if P is symmetric,

+∞ otherwise.
We will omit the S and only use C(P ) if symmetry is not required.

By the previous discussion

(3.3) C(ρ) = min
Π(ρ)

CS(P ).

Then the common domain of minimization of FS~ , FA~ and CS is Π(ρ) which we
consider embedded in the space of probability measures P equipped with the tight
convergence.

Definition 3.2. — A generalized sequence of wave functions {ψ~} converges to a
transport plan P if Pψ~ ⇀ P .

We will prove

Theorem 3.3. — For every ρ ∈ H the functionals FS~ are mildly equicoercive and

FS~
Γ−→ CS ,

with respect to the tight convergence of measures.

J.É.P. — M., 2017, tome 4



916 U. Bindini & L. De Pascale

Theorem 3.4. — For every ρ ∈ H the functionals FA~ are mildly equicoercive and for
d = 2, 3, 4 and N = 2, 3,

FA~
Γ−→ CS ,

with respect to the tight convergence of measures.

The proofs of Theorems 3.3 and 3.4 above coincide for a large part and will con-
stitute the rest of this section.

3.1. Equicoerciveness

Lemma 3.5. — Π(ρ) is compact with respect to the weak convergence.

Proof. — First we prove that Π(ρ) is tight. In fact, for ε > 0 let K ⊆ Rd compact
such that ∫

Kc

ρ(x) dx 6 ε.

Observe that(
KN

)c
=
(
Kc × Rd(N−1)

)
∪
(
Rd ×Kc × Rd(N−2)

)
∪ · · · ∪

(
Rd(N−1) ×Kc

)
,

and for every P ∈ Π(ρ) ∫
(KN )c

dP (X) 6 Nε

and KN is compact. By Prokhorov’s Theorem we deduce that Π(ρ) is relatively com-
pact. However, if Pn ⇀ P and Pn ∈ Π(ρ), for every function φ(xj) ∈ Cb(RNd)
depending only on the j-th variable one has∫

RNd
φ(xj) dPn(X) =

∫
Rd
φ(x)ρ(x) dx,

which implies∫
Rd
φ(x)ρ(x) dx =

∫
RNd

φ(xj) dP (X) =

∫
Rd
φ(x) dπj#(P )(x).

Since φ was arbitrary, πj#(P )(x) = ρ(x), and hence P ∈ Π(ρ). �

3.2. Γ-lim inf inequality

Proposition 3.6. — Let ρ ∈ H and let P a probability measure on RNd. If {ψ~}~ ⊆
S(ρ) (or A(ρ)) is a generalized sequence such that Pψ~ ⇀ P . Then

(i) P is symmetric,
(ii) lim inf~→0 FS~ (Pψ~) > CS(P ).

Proof. — It is easy to see that invariance with respect to permutations is a closed con-
dition in the space of probability measures. For the inequality: lim inf~→0 FS~ (Pψ~) =

lim inf~→0 T~(ψ~) + Vee(ψ~) > lim inf~→0 Vee(ψ~) > CS(P ). �

J.É.P. — M., 2017, tome 4



Semiclassical Limit of DFT 917

3.3. An approximation procedure for P ∈ Π(ρ)

Proposition 3.7. — Let ρ ∈ H, and P ∈ Π(ρ) be a transport plan such that

(3.4) P |Dα = 0

for some α > 0. Then there exists a family of plans {Pε}ε>0 such that:

(i) for every ε > 0, Pε ∈ Π(ρ) and is absolutely continuous with respect to the
Lebesgue measure, with density given by ϕ2

ε(X), where ϕε is a suitable H1 function;
(ii) Pε ⇀ P as ε→ 0;

(iii) lim supε→0 C(Pε) 6 C(P );

(iv) the kinetic energy of ϕε is explicitly controlled:∫
|∇ϕε(X)|2 dX 6 N

(
‖√ρ‖2H1 +

K

4ε2

)
for a suitable constant K > 0.

The proof is made of several steps. We start regularizing by convolution. The plans
we obtain are regular but do not have the same marginals as P . We use the standard
mollifiers η : Rd → R as

η(u) =

{
ke−1/(1−|u|2) |u| < 1

0 |u| > 1,

where k = k(d) > 0 is a suitable constant, which depends only on the dimension d,
such that

∫
Rd η(u)du = 1. Set also

ηε(u) =
1

εd
η (u/ε) .

The next Lemma is well known and it is a useful tool to estimate some L2 norms
which will appear later.

Lemma 3.8. — There exists a constant K = K(d) > 0, depending only on the dimen-
sion d, such that ∫

B(0,ε)

|∇ηε(u)|2

ηε(u)
du =

K

ε2
.

Proof. — Point out that

∇η(u) =


−2ku

(1− |u|2)2
e−1/(1−|u|2) |u| < 1

0 |u| > 1

and

∇ηε(u) =
1

εd+1
∇η (u/ε) .

J.É.P. — M., 2017, tome 4



918 U. Bindini & L. De Pascale

Now ∫
B(0,ε)

|∇ηε(u)|2

ηε(u)
du =

∫
B(0,ε)

1

εd+2

|∇η(u/ε)|2

η(u/ε)
du =

1

ε2

∫
B(0,1)

|∇η(v)|2

η(v)
dv

=
1

ε2

∫
B(0,1)

4k |v|2

(1− |v|2)4
e−1/(1−|v|2) dv =

K(d)

ε2
. �

Now we define the function

Hε(Y −X) =

N∏
i=1

ηε(yi − xi).

and use it as mollifier to regularize the transport plan P defining

P̃ε(Y ) =

∫
Hε(Y −X) dP (X).

Note that the marginals of P̃ε(3) are different from ρ, but may be written explicitly:

ρε(y) =

∫
R(N−1)d

P̃ε(y, y2, . . . , yN ) dy2 · · · dyN

=

∫
R(N−1)d

∫
ηε(y − x1)ηε(y2 − x2) · · · ηε(yN − xN ) dP (X) dy2 · · · dyN

=

∫
ηε(y − x1) dP (X) =

∫
Rd

ρ(x)ηε(y − x) dx = (ρ ∗ ηε)(y).

Lemma 3.9. — Let α be as in the statement of Proposition 3.7 and let Y ∈ RNd be
such that |yi − yj | < α/2 for some i 6= j, and ε < α/4, then P̃ε(Y ) = 0.

Proof. — Note that

P̃ε(Y ) =

∫
Hε(Y −X)

N∏
j=1

χB(yj ,ε)(xj) dP (X).

If Y and ε are as in the statement, and xi ∈ B(yi, ε), xj ∈ B(yj , ε), then

|xi − xj | 6 |xi − yi|+ |yi − yj |+ |yj − xj | 6 α.

The thesis follows from (3.4). �

Define now

ϕ̃ε(Y ) =

√
P̃ε(Y ).

Lemma 3.10. — For every ε > 0, ϕ̃ε ∈ H1(RNd).

(3)As usual we mean the marginals of P̃ε(Y ) dY .

J.É.P. — M., 2017, tome 4



Semiclassical Limit of DFT 919

Proof. — Fix ε > 0. Clearly ϕ̃ε is L2, since∫
ϕ̃2
ε(Y ) dY =

∫
P̃ε(Y ) dY =

∫∫
Hε(Y −X) dP (X) dY

=

∫∫
Hε(Y −X) dY dP (X) =

∫
dP (X) = 1.

Now we estimate |∇ϕ̃ε|2. Using the Cauchy-Schwarz inequality,∣∣∇P̃ε(Y )
∣∣ 6 ∫ |∇Hε(Y −X)| dP (X)

6

√∫
|∇Hε(Y −X)|2

Hε(Y −X)
dP (X)

√∫
Hε(Y −X) dP (X)

=

√∫
|∇Hε(Y −X)|2

Hε(Y −X)
dP (X)

√
P̃ε(Y ),

where the first integral is extended to the set where the integrand is defined, namely
|xj − yj | < ε ∀ j. Therefore, with the same convention,∫

|∇ϕ̃ε(Y )|2 dY =
1

4

∫
|∇P̃ε(Y )|2

P̃ε(Y )
dY 6

1

4

∫∫
|∇Hε(Y −X)|2

Hε(Y −X)
dP (X) dY

=
1

4

N∑
j=1

∫∫
|∇jHε(Y −X)|2

Hε(Y −X)
dY dP (X)

6
1

4

N∑
j=1

∫∫
|∇ηε(yj − xj)|2

ηε(yj − xj)
dyj dP (X)

=
N

4

∫
|∇ηε(u)|2

ηε(u)
du =

KN

4ε2
. �

In the next step we introduce a natural technique to get back the original
marginals ρ without losing too much regularity. This technique is original and
different from the one presented in [7]. We point out that, in a different context, this
construction may well be generalized to a plan with different marginals ρ1, . . . , ρN .

The construction fits in the general scheme of composition of transport plans as
presented in [1].

For x, y ∈ Rd define

γε(x, y) :=
ρ(x)ηε(y − x)

ρε(y)

with the convention that it is zero if ρε(y) = 0. The two variables function ρ(x)ηε(y−x)

is the key point of the construction, since it has the following property that links the
different marginals:∫

Rd
ρ(x)ηε(y − x) dx = ρε(y),

∫
Rd
ρ(x)ηε(y − x) dy = ρ(x).
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To simplify the notation we set

mε(X,Y ) =

N∏
i=1

γε(xi, yi), mj
ε(X,Y ) =

N∏
i=1
i6=j

γε(xi, yi).

Note that ∫
Rd

γε(x, y) dx = χρε>0(y).

Now set
Γε(X,Y ) := ϕ̃2

ε(Y )mε(X,Y )

and observe that∫
Γε(X,Y ) dX = ϕ̃2

ε(Y )

N∏
i=1

χρε>0(yi) = ϕ̃2
ε(Y ) = P̃ε(Y ),

where we used the following remark, which will be implicit from now on:

Remark 3.11. — If Y is such that ρε(yi) = 0, then

0 = ρε(yi) =

∫
R(N−1)d

ϕ̃ε(y1, y2, . . . , yn)2 dy1 · · · d̂yi · · · dyN

and hence ϕ̃ε(Y ) = 0.

Define
Pε(X) =

∫
Γε(X,Y ) dY

and calculate the marginals of Pε to get∫
R(N−1)d

Pε(X) dx2 · · · dxN =

∫
R(N−1)d

∫
Γε(X,Y ) dY dx2 · · · dxN

=

∫
ϕ̃2
ε(Y )γε(x1, y1) dY

=

∫
Rd

ρε(y1)γε(x1, y1) dy1 = ρ(x1)

and similarly also the other N − 1 marginals are equal to ρ.

Lemma 3.12. — Let α be as in the statement of Proposition 3.4. If |xi − xj | < α/4

for some i 6= j, and ε < α/8, then Pε(X) = 0.

Proof. — Fix X and ε as in the statement, and suppose mε(X,Y ) > 0. Then neces-
sarily |yi − xi| < ε and |yj − xj | < ε, so that

|yi − yj | 6 |yi − xi|+ |xi − xj |+ |xj − yj | 6 α/2.

From Lemma 3.9 it follows that ϕ̃2
ε(Y ) = 0. �

We now define the function ϕε(X) =
√
Pε(X), and proceed to estimate its kinetic

energy.
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Estimate for the kinetic energy. — Calculate first the gradient with respect to xj of Pε:

∇jPε(X) = ∇j
∫
ϕ̃2
ε(Y )mj

ε(X,Y )
ρ(xj)ηε(yj − xj)

ρε(yj)
dY

=

∫
ϕ̃2
ε(Y )mj

ε(X,Y )
∇ρ(xj)ηε(yj − xj)

ρε(yj)
dY

−
∫
ϕ̃2
ε(Y )mj

ε(X,Y )
ρ(xj)∇ηε(yj − xj)

ρε(yj)
dY

= A(X) +B(X).

We define for simplicity

J(X) =

∫
ϕ̃2
ε(Y )mj

ε(X,Y )
ηε(yj − xj)
ρε(yj)

dY

so that, for example,

Pε(X) = ρ(xj)J(X), A(X) = ∇ρ(xj)J(X).

Now
∇jϕε(X) = ∇j

√
Pε(X) =

∇jPε(X)

2
√
Pε(X)

=
1

2
√
Pε(X)

[A(X) +B(X)]

and we estimate the square of the L2 norm of every term.∫
|A(X)|2

Pε(X)
dX =

∫
|∇ρ(xj)|2

ρ(xj)
J(X) dX

=

∫∫
|∇ρ(xj)|2

ρ(xj)
ϕ̃2
ε(Y )mj

ε(X,Y )
ηε(yj − xj)
ρε(yj)

dY dX

=

∫
Rd

(∫
|∇ρ(xj)|2

ρ(xj)
ϕ̃2
ε(Y )

ηε(yj − xj)
ρε(yj)

dY

)
dxj

=

∫
Rd

∫
Rd

|∇ρ(xj)|2

ρ(xj)
ηε(yj − xj) dyj dxj =

∫
Rd

|∇ρ(xj)|2

ρ(xj)
dxj 6 4‖√ρ‖2H1 .

By Cauchy-Schwarz inequality,

|B(X)|2 6 ρ(xj)J(X) ·
∫
ϕ̃ε(Y )2mj

ε(X,Y )
ρ(xj) |∇ηε(yj − xj)|2

ρε(yj) ηε(yj − xj)
dY.

(Here the integral is extended to the region where ηε(yj − xj) > 0.) Therefore, with
the same convention,∫

|B(X)|2

Pε(X)
dX 6

∫∫
ϕ̃ε(Y )2mj

ε(X,Y )
ρ(xj) |∇ηε(yj − xj)|2

ρε(yj)ηε(yj − xj)
dY dX

=

∫
Rd

∫
ϕ̃ε(Y )2 ρ(xj) |∇ηε(yj − xj)|2

ρε(yj)ηε(yj − xj)
dY dxj

=

∫
Rd

∫
Rd

ρ(xj) |∇ηε(yj − xj)|2

ηε(yj − xj)
dyj dxj =

∫
Rd

|∇ηε(y)|2

ηε(y)
dy =

K

ε2
.
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Moreover,∫
A(X) ·B(X)

4Pε(X)
dX = −1

4

∫∫
∇ρ(xj) · ∇ηε(xj − yj)

ρε(yj)
ϕ̃2
ε(Y )mj

ε(X,Y ) dY dX

= −1

4

∫∫
Rd×Rd

∇ρ(xj) · ∇ηε(xj − yj) dxj dyj

= −1

4

(∫
Rd
∇ρ(x) dx

)
·
(∫

Rd
∇ηε(z) dz

)
and the second factor is equal to 0, as is easy to see integrating in spherical coordinates.
Thus ∫

|∇jϕε(X)|2 dX 6 1

4

∫
|A(X)|2 + |B(X)|2

Pε(X)
dX 6 ‖√ρ‖2H1 +

K

4ε2
,

and by summation over j∫
|∇ϕε(X)|2 dX 6 N

(
‖√ρ‖2H1 +

K

4ε2

)
.

Here we prove (ii). First we give the following lemma, which specifies that, for
ε→ 0, the mass of P̃ε is concentrated near the mass of P .

Lemma 3.13. — Suppose R, δ > 0 are such that∫
|X|>R

dP (X) 6 δ;

then, if ε
√
N < R, ∫

|Y |>2R

P̃ε(Y ) dY 6 δ.

Proof ∫
Y >2R

P̃ε(Y ) dY =

∫∫
|Y |>2R

Hε(Y −X) dP (X) dY

=

∫∫
|Y |>2R∩|X|>R

Hε(Y −X) dP (X) dY

6
∫∫
|X|>R

Hε(Y −X) dY dP (X) =

∫
|X|>R

dP (X) 6 δ

since, where |X| 6 R, one has |Y −X| > R > ε
√
N , and hence there exists i such

that |xi − yi| > ε. �

Next, to prove that Pε ⇀ P , we interpolate by P̃ε in between.

Lemma 3.14. — P̃ε ⇀ P .
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Proof. — Let φ ∈ Cb(RNd);∣∣∣∣∫ φ(Y )dP̃ε(Y )−
∫
φ(X) dP (X)

∣∣∣∣ =

∣∣∣∣∫∫ [φ(Y )− φ(X)]Hε(Y −X) dP (X) dY

∣∣∣∣
6
∫∫
|φ(Y )− φ(X)|Hε(Y −X) dP (X) dY.

Given δ > 0, let R be such that the hypothesis of Lemma 3.13 holds. We divide
RNd × RNd in three disjoint regions:

E1 = {|X| > R} , E2 = {|X| 6 R, |Y | 6 2R} , E3 = {|X| 6 R, |Y | > 2R} .

As before, if ε
√
N < R, on E3 one has Hε(X − Y ) ≡ 0.∫∫

E1

|φ(Y )− φ(X)|Hε(Y −X) dP (X) dY 6 2‖φ‖∞
∫∫
E1

Hε(Y −X) dP (X) dY

6 2δ‖φ‖∞.

On the other hand, E2 is compact; take ε0 such that |X − Y | 6 ε0 implies
|φ(X)− φ(Y )| 6 δ. If ε

√
N 6 ε0 we get∫∫

E2

|φ(Y )− φ(X)|Hε(Y −X) dP (X) dY 6 δ
∫∫
E2

Hε(Y −X) dP (X) dY

6 δ
∫∫

Hε(Y −X) dP (X) dY = δ. �

Lemma 3.15. — Pε ⇀ P .

Proof. — Let φ ∈ Cb(RNd). Using the fact that P̃ε ⇀ P (Lemma 3.14), it is left to
estimate∣∣∣∣∫ φ(X)Pε(X) dX −

∫
φ(Y )P̃ε(Y ) dY

∣∣∣∣ =

∣∣∣∣∫∫ [φ(X)− φ(Y )]Γε(X,Y ) dX dY

∣∣∣∣
6
∫∫
|φ(X)− φ(Y )|Γε(X,Y ) dX dY.

As in the proof of Lemma 3.14, given δ > 0 let R be such that the hypothesis of
Lemma 3.13 holds. We divide RNd × RNd in three disjoint regions:

E1 = {|Y | > 2R} , E2 = {|Y | 6 2R, |X| 6 3R} , E3 = {|Y | 6 2R, |X| > 3R} .

If ε
√
N < R, as before, on E3 the integral is zero since Γε(X,Y ) ≡ 0 there. Thanks

to Lemma 3.13,∫∫
E1

|φ(X)− φ(Y )|Γε(X,Y ) dX dY 6 2‖φ‖∞
∫∫
E1

Γε(X,Y ) dX dY

= 2‖φ‖∞
∫

{|Y |>2R}

P̃ε(Y ) dY 6 2δ‖φ‖∞.

Exactly as before, using that E2 is compact and φ is absolutely continuous the
thesis follows. �
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It is left to prove (iii). The cost function c is not continuous neither bounded.
However, recall Lemma 3.12, it is bounded on the complement of Dα/4. With this in
mind, consider the function v : R2d → R defined as

v(x, y) =


1

|x− y|
if |x− y| > α/4,

4/α elsewhere.

and set
c(X) =

∑
16i<j6N

v(xi, xj).

Clearly c(X) 6 c(X), and c is continuous (sum of continuous functions), bounded
by
(
N
2

)
4/α; moreover, thanks to the property (3.4) and Lemma 3.12,∫
c(X) dP (X) =

∫
c(X) dP (X),

∫
c(X)Pε(X) dX =

∫
c(X)Pε(X) dX.

We can conclude the estimate as follows:

lim sup
ε→0

C(Pε) = lim sup
ε→0

∫
c(X)Pε(X) dX =

∫
c(X) dP (X) =

∫
c(X) dP (X). �

Proposition 3.7 can be extended to all plans. Since we will make use of Theorem 2.7
we limit ourself to the case of symmetric transport plans. The same proof for non
symmetric plans requires a version of Theorem 2.7 for plans with different marginals.
The extension is contained, for example, in [2].

Proposition 3.16. — Let P ∈ Π(ρ) a symmetric plan (not necessarily satisfying the
property (3.4)). Then there exists a family of plans {Pε}ε>0 such that:

(i) for every ε > 0, Pε ∈ Π(ρ) and is absolutely continuous with respect to the
Lebesgue measure, with density given by ϕ2

ε(X), where ϕε is a suitable H1 function;
(ii) Pε ⇀ P as ε→ 0;

(iii) lim supε→0 CS(Pε) 6 CS(P );

(iv) the kinetic energy of ϕε is explicitly controlled:∫
|∇ϕε(X)|2 dX 6 N

(
‖√ρ‖2H1 +

K

4ε2

)
for a suitable constant K > 0.

Proof. — The proof of (i), (ii) and (iv) holds in general since it does not require (3.4).
And, in fact, carefully following the constructions in Propositions 3.7 one may observe
that if P is permutations invariant then the approximating Pε have the same property.
Then we only need to prove (iii) and so if CS(P ) = ∞ there is nothing to prove.
Suppose CS(P ) = K <∞. Let r > 0 be a parameter, and split

P = Qr + P |Dr .

Let σr be the marginals of Qr, and ρ̃r those of P |Dr ; clearly σr + ρ̃r = ρ. Since ρ ∈
L1∩Ld/(d−2) by Sobolev embedding, and ρ̃r 6 ρ pointwise, we have ρ̃r ∈ L1∩Ld/(d−2)
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Although ρ̃r needs not to be a probability measure on Rd, we can suppose there exists
λr > 0 such that ∫

Rd
ρ̃r(x) dx =

1

λr
< 1,

otherwise P |Dr = 0 and we get the result directly by Proposition 3.7. Let now P̃r be
a symmetric optimal transport plan in Π(λrρ̃r), and define

Pr = Qr +
P̃r
λr
,

which lies in Π(ρ). On the one hand we have the following

Lemma 3.17. — Pr ⇀ P .

Proof. — Recall that C(P ) is finite to get

K = C(P ) > C(P |Dr ) >
1

r
P (Dr),

and a fortiori for P̃r/λr due to the optimality. Hence

lim
r→0

P (Dr) = lim
r→0

P̃r(Dr)

λr
= 0.

Take f ∈ Cb(RNd), and estimate∣∣∣∣∫ f(X) dPr(X)−
∫
f(X) dP (X)

∣∣∣∣ =

∣∣∣∣∫ f(X) dP |Dr (X)− 1

λr

∫
f(X) dP̃r(X)

∣∣∣∣
6 ‖f‖∞

(
P (Dr) +

P̃r(Dr)

λr

)
−→ 0 as r −→ 0. �

On the other hand,

CS(Pr) = CS(Qr) +
CS(P̃r)

λr
6 CS(Qr) + CS(P |Dr ) = CS(P ),

thus
lim sup
r→0

CS(Pr) 6 CS(P ).

Thanks to Proposition 2.5 CS(P̃r) is finite, and by Theorem 2.7 there exists
α = α(r) > 0 such that P̃r is supported outside Dα.(4) Recall now Proposition 3.7 to
find ϕε,r weakly converging to Pr as ε→ 0, with∫

|∇ϕε,r(X)|2 dX 6 N
(
‖√ρ‖2H1 +

K

4ε2

)
and

lim sup
ε→0

CS(|ϕε,r|2) = CS(Pr).

It suffices now to take {ϕr,r}r>0 to conclude. In fact, given δ > 0, let R be such that∫
{|X|>R}

dPr(X) 6 δ.

(4)Observe that α(r) may be chose decreasing as r → 0, as follows from Theorem 2.7.
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Note that R may be chose independent from r, since the marginals of Pr are all equal
to ρ, and we may choose K ⊆ Rd compact such that∫

K

ρ(x) dx 6
δ

N
,

and R sufficiently large such that KN ⊆ B(0, R)RNd .
Now to prove weak convergence take φ ∈ Cb(RNd) and proceed as in the previous

paragraph to estimate∣∣∣∣∫ φ(X)ϕ2
r,r(X) dX −

∫
φ(X) dPr(X)

∣∣∣∣ ,
using in addition Lemma 3.17 to estimate∣∣∣∣∫ φ(X) dPr(X)−

∫
φ(X) dP (X)

∣∣∣∣ . �

3.4. Constructing wave-functions. — A wave-function depends on N space-spin
variables. In the previous subsections we worked mainly in RNd, since we were con-
sidering transport plans in Π(ρ). To introduce the spin we will separate the spin
dependence as follows: for every s binary string of length N we consider the func-
tion ψs(x1, . . . , xN ) = ψ(x1, s1, . . . , xN , sN ), then we describe ψ as a 2N -dimensional
vector

ψ(z1, . . . , zN ) = (ψs(X))s∈S .

As an example, if N = 2 we would have

ψ(z1, z2) =


ψ00(x1, x2)

ψ01(x1, x2)

ψ10(x1, x2)

ψ11(x1, x2)

 ,

and for N = 3 a wave-function would be represented as

ψ(z1, z2, z3) =



ψ000(x1, x2, x3)

ψ001(x1, x2, x3)

ψ010(x1, x2, x3)

ψ011(x1, x2, x3)

ψ100(x1, x2, x3)

ψ101(x1, x2, x3)

ψ110(x1, x2, x3)

ψ111(x1, x2, x3)


.

Note that now the density |ψ(X)|2 is simply the square of the Euclidean norm of
the vector ψ, and the same holds for ∇ψ, once we set

∇ψ(z1, . . . , zN ) = (∇ψs(X))s∈S .

Let us take now a fermionic (i.e., antisymmetric) wave-function ψ, and consider a
spin state s = (s1, . . . , sN ). If i < j are such that si = sj , consider σ = (i j) ∈ SN to
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get

ψs(x1, . . . , xN ) = sgn(σ)ψσ(s)(xσ(1), . . . , xσ(N))

= −ψs(x1, . . . , xj , . . . , xi, . . . , xN ).

Hence we get the following

Remark 3.18. — If ψ is fermionic and s is a spin state, ψs is separately antisymmetric
with respect to the spatial variables such that sj = 0, and with respect to the spatial
variables such that sj = 1.

Consider now two spin states s and s′ with the same number of ones and zeroes.
Then ψs and ψs′ are related: taking σ ∈ SN such that σ(s) = s′, we get

ψs′(xσ(1), . . . , xσ(N)) = sgn(σ)ψs(x1, . . . , xN ).

These observations will be used in the following.

3.5. Fermionic wave-functions with given density. — Suppose we have α > 0 and
a symmetric function ψ(x1, . . . , xN ) > 0 of H1 with the property that

(3.5) ψ(X) = 0 if |xi − xj | < α for some i 6= j.

We wonder if there exists a fermionic wave-function ψ such that∑
s∈S
|ψ(x1, s1, . . . , xN , sN )|2 = ψ2(X),

and
‖ψ‖H1 6 C‖ψ‖H1

for a suitable constant C. In fact, we managed to prove the following

Proposition 3.19. — For N = 2, 3, d = 3, 4, given ψ ∈ H1 symmetric, with ψ|Dα = 0

for some α > 0, there exists ψ fermionic such that∑
s∈S
|ψs(X)|2 = ψ2(X) and

∑
s∈S
|∇ψs(X)|2 6 |∇ψ(X)|2 +

C

α2
ψ2(X).

In [7], the following ψ is given as a wave-function:

ψ00 = 0, ψ01 = ψ(x1, x2), ψ10 = −ψ(x1, x2), ψ11 = 0,

which is in fact fermionic with bounded kinetic energy. Note, however, that this con-
struction cannot work for a larger number of particles. Indeed, if a binary string s has
length N > 3, then there are at least two ones, or two zeros, on places i 6= j – thus
the corresponding function ψs must change sign for a suitable flip of the variables
(namely, xi 7→ xj , xj 7→ xi). We will exhibit a wave-function ψ (with square den-
sity ψ2) such that ψ10 = ψ01 = 0. This forces ψ00 and ψ11 to be different from zero
and antisymmetric. We remark also that, for this kind of construction, the condition
(3.5) is “morally necessary”.
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3.6. Construction for N = 2, d = 3. — The variable X will be expanded as X =

(x, y) = (x1, x2, x3; y1, y2, y3). Set r = α/
√

3, and take ξ = − 1
2 + i

√
3

2 a primitive cubic
root of 1. The key point is to choose two auxiliary C∞ functions a, b : R → R such
that

(i) a2 + b2 = 1;
(ii) b is symmetric, b(t) = 0 if |t| > r;
(iii) a is antisymmetric, a(t) = −1 if t 6 −r, a(t) = 1 if t > r;
(iv) |a′| , |b′| 6 k/r.
Note that the constant k > 1 may be chosen arbitrarily close to 1. To shorten the

notation we set aj = a(xj − yj), bj = b(xj − yj) for j = 1, 2, 3. Now define

g1(x, y) =
1√
3

(a1 + b1a2 + b1b2a3), gξ(x, y) =

√
2√
3

(a1 + ξb1a2 + ξ2b1b2a3).

By direct computation one sees that |g1|2 + |gξ|2 = a2
1 + b21a

2
2 + b21b

2
2a

2
3, since clearly∣∣a1 + ξb1a2 + ξ

2
b1b2a3

∣∣ =
∣∣a1 + ξb1a2 + ξ2b1b2a3

∣∣. Next we define the wave-function

ψ00(x, y) = g1(x, y)ψ(x, y), ψ01(x, y) = 0, ψ10(x, y) = 0, ψ11(x, y) = gξ(x, y)ψ(x, y).

The following equality is crucial in the construction

(3.6) ψ2(x, y)b21b
2
2a

2
3 = ψ2(x, y)b21b

2
2.

This holds because where |a3|2 = 1, i.e., where |x3 − y3| > r, the equality holds. It
also holds where b1 = 0 or b2 = 0, i.e., where |x1 − y1| > r or |x2 − y2| > r. The
region where |xj − yj | 6 r for every j = 1, 2, 3 is left, but there it holds

|x− y| =
√
|x1 − y1|2 + |x2 − y2|2 + |x3 − y3|2 6 r

√
3 = α,

and hence the equality holds because ψ2(x, y) = 0.
Now one can compute

|ψ00|
2

+ |ψ11|
2

=
(
|g1(x, y)|2 + |gξ(x, y)|2

)
ψ2(x, y)

=
(
a2

1 + b21a
2
2 + b21b

2
2a

2
3

)
ψ2(x, y)

=
(
a2

1 + b21a
2
2 + b21b

2
2

)
ψ2(x, y)

=
(
a2

1 + b21
)
ψ2(x, y) = ψ2(x, y).

Next come the estimates for the derivatives. Since

∇ψ00(x, y) = ψ(x, y)∇g1(x, y) + g1(x, y)∇ψ(x, y)

∇ψ11(x, y) = ψ(x, y)∇gξ(x, y) + gξ(x, y)∇ψ(x, y),

it follows

|∇ψ(x, y)|2 = |∇ψ(x, y)|2 +
(
|∇g1(x, y)|2 + |∇gξ(x, y)|2

)
ψ2(x, y)

+ ψ(x, y)∇ψ(x, y) · v(x, y),
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where

v(x, y) = 2g1(x, y)∇g1(x, y) + gξ(x, y)∇gξ(x, y) + gξ(x, y)∇gξ(x, y).

We claim that ψ(x, y)v(x, y) = 0. Again by direct computation one gets

v = 6[a1∇a1 + b1a2∇(b1a2) + b1b2a3∇(b1b2a3)].

Since the next steps work for general d, we group the result in the following

Lemma 3.20. — Let aj , bj be defined as before and evaluated in the point x− y. Then

[a1∇a1 + (b1a2)∇(b1a2) + · · ·+ (b1b2 · · · bd−1ad)∇(b1b2 · · · bd−1ad)]ψ(x, y) = 0.

Proof. — Observe that
∇a1(x, y) = (a′(x− y), 0, . . . , 0,−a′(x− y), 0, . . . , 0)

∇b1(x, y) = (b′(x− y), 0, . . . , 0,−b′(x− y), 0, . . . , 0)
(3.7)

and similarly for the other gradients. Moreover, from a2+b2 = 1 it follows aa′+bb′ = 0,
while ψb1b2 · · · bd−1∇ad = 0 and ψb1b2 · · · bd−1a

2
d = ψb1b2 · · · bd for the same reason

as in claim 3.6. Hence we have

[a1∇a1 + (b1a2)∇(b1a2) + · · ·+ (b1b2 · · · bd−1ad)∇(b1b2 · · · bd−1ad)]ψ

= [a1∇a1 + (b1a2)∇(b1a2) + · · ·+ (b1b2 · · · bd−1)∇(b1b2 · · · bd−1)]ψ.

A “chain reaction” is now generated by the following formula, valid for every k > 1:

(b1 · · · bkak+1)∇(b1 · · · bkak+1) + (b1 · · · bkbk+1)∇(b1 · · · bkbk+1)

= (b1 · · · bka2
k+1)∇(b1 · · · bk) + (b21 · · · b2k)ak+1∇ak+1

+ (b1 · · · bkb2k+1)∇(b1 · · · bk) + (b21 · · · b2k)bk+1∇bk+1

= (b1 · · · bk)∇(b1 · · · bk). �

It is left to estimate
(
|∇g1(x, y)|2 +|∇gξ(x, y)|2

)
ψ(x, y). Again we compute directly

|∇g1(x, y)|2 + |∇gξ(x, y)|2 = 3
(
|∇a1|2 + |∇(b1a2)|2 + |∇(b1b2a3)|2

)
.

Note, however, that because of (3.7) we have ∇ai ·∇bj = 0 and ∇bi ·∇bj = 0 if i 6= j.
Therefore,

|∇g1(x, y)|2 + |∇gξ(x, y)|2 = |∇a1|2 + b21 |∇a2|2 + a2
2 |∇b1|

2
+ b22a

2
3 |∇b1|

2

+ b21a
2
3 |∇b2|

2
+ b21b

2
2 |∇a3|2 .

and, using again the idea of claim (3.6),(
|∇g1(x, y)|2 + |∇gξ(x, y)|2

)
ψ2(x, y)

=
(
|∇a1|2 + b21 |∇a2|2 + a2

2 |∇b1|
2

+ b22 |∇b1|
2

+ b21 |∇b2|
2)
ψ2(x, y)

=
(
|∇a1|2 + |∇b1|2 + b21(|∇a2|2 + |∇b2|2)

)
ψ2(x, y)

6
8k2

r2
ψ2(x, y) =

24k2

α2
ψ2(x, y).
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3.7. Construction for N = 3, d = 3. — In this case, let the variable be

X = (x, y, z) = (x1, x2, x3; y1, y2, y3; z1, z2, z3),

and define as before

aj(x, y) = a(xj − yj) b1(x, y) = b(x1 − y1)

for j = 2, 3. As in the case N = 2, define also

g1(x, y) = a1(x, y) + b1(x, y)a2(x, y) + b1(x, y)b2(x, y)a3(x, y)

gξ(x, y) = a1(x, y) + ξb1(x, y)a2(x, y) + ξb1(x, y)b2(x, y)a3(x, y).

Now comes the definition of the wave-function:

ψ000(x, y, z) = 0

ψ001(x, y, z) =
1

3
g1(x, y)ψ(x, y, z)

ψ010(x, y, z) = −1

3
g1(x, z)ψ(x, y, z)

ψ011(x, y, z) =

√
2

3
gξ(y, z)ψ(x, y, z)

ψ100(x, y, z) =
1

3
g1(y, z)ψ(x, y, z)

ψ101(x, y, z) = −
√

2

3
gξ(x, z)ψ(x, y, z)

ψ110(x, y, z) =

√
2

3
gξ(x, y)ψ(x, y, z)

ψ111(x, y, z) = 0.

It is quite easy to see that ψ is indeed fermionic. The fact that∑
s∈S
|ψs(x, y, z)|

2
= ψ2(x, y, z)

is proved exactly in the same way as forN = 2, and also the gradient estimates, consid-
ering the pairs ψ001-ψ110, ψ010-ψ101 and ψ100-ψ011. Hence we proved the Proposition
3.19, with C = 24k2 for k > 1 arbitrary.

3.8. The case d = 4. — A very similar construction may be done for d = 4. In the
case N = 2 one simply chooses

g1(x, y) =
1√
2

(a1 + ib1a2 + b1b2a3 + ib1b2b3a4)

g2(x, y) =
1√
2

(a1 + ib1a2 − b1b2a3 − ib1b2b3a4).
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and

ψ00(x, y) = g1(x, y)ψ(x, y)

ψ01(x, y) = 0

ψ10(x, y) = 0

ψ11(x, y) = g2(x, y)ψ(x, y).

It is easy to verify that |g1(x, y)|2 + |g2(x, y)|2 = a2
1 + b21a

2
2 + b21b

2
2a

2
3 + b21b

2
2b

2
3a

2
4, and

proceeding as before(
|g1(x, y)|2 + |g2(x, y)|2

)
ψ2(x, y) = ψ2(x, y).

To estimate the derivatives, note that

2Re (g1∇g1) = a1∇a1 + a1∇(b1b2a3) + b1a2∇(b1a2) + b1a2∇(b1b2b3a4)

+ b1b2a3∇a1 + b1b2a3∇b1b2a3 + b1b2b3a4∇(b1a2)

+ b1b2b3a4∇(b1b2b3a4)

2Re (g2∇g2) = a1∇a1 − a1∇(b1b2a3) + b1a2∇(b1a2)− b1a2∇(b1b2b3a4)

− b1b2a3∇a1 + b1b2a3∇b1b2a3 − b1b2b3a4∇(b1a2)

+ b1b2b3a4∇(b1b2b3a4).

This yelds, using Lemma 3.20,(
2Re(g1∇g1) + 2Re(g2∇g2)

)
ψ

= 2[a1∇a1 + b1a2∇(b1a2) + b1b2a3∇(b1b2a3) + b1b2b3a4∇(b1b2b3a4)]ψ

= 0.

Therefore,

|∇ψ00(x, y)|2 + |∇ψ00(x, y)|2 = |∇ψ|2 +
(
|∇g1(x, y)|2 + |∇g2(x, y)|2

)
ψ2

and we conclude with the estimate(
|∇g1|2 + |∇g2|2

)
ψ2

=
(
|∇a1|2 + b21 |∇a2|2 + a2

2 |∇b1|
2

+ b22a
2
3 |∇b1|

2
+ b21a

2
3 |∇b2|

2

+ b21b
2
2 |∇a3|2 + b22b

2
3 |∇b1|

2
+ b21b

2
3 |∇b2|

2
+ b21b

2
2 |∇b3|

2
)
ψ2

=
[
|∇a1|2 + |∇b1|2 + b21

(
|∇a2|2 + |∇b2|2

)
+ b21b

2
2

(
|∇a3|2 + |∇b3|2

)]
ψ2

6
12k2

α2
ψ2 =

36k2

α2
ψ2,

which shows that in this case C can be chosen 36k2 for k > 1 arbitrary.
For 3 particles it suffices to repeat the construction of Subsection 4.5 in order to

obtain Proposition 3.19 with C = 36k2.
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3.9. Γ-lim sup inequality. — Finally we get the Γ-lim sup inequality, and thus the
entire proof, both in the symmetric and the antisymmetric case.

Bosonic case. — We can complete the proof of Theorem 3.3.
Proof of Theorem 3.3. — We proved equicoerciveness in Section 3.1 and, for all
P ∈ Π(ρ), in Section 3.2 we already proved the Γ-lim inf inequality. Thus it is left to
find a family of bosonic wave-functions ψ~ such that Pψ~ ⇀ P and

lim sup
~→0

{T~(ψ~) + Vee(ψ~)} 6 CS(P ).

Define ε(~) =
√
~, and set

ψ~(x1, s1, . . . , xN , sN ) =

{
ψε(~)(x1, . . . , xN ) if s1 = · · · = sN = 0

0 otherwise

=


ψε(~)(x1, . . . , xN )

0
...
0

 ,

where ψε are given by Proposition 3.7.
These wave-functions are clearly bosonic, and satisfy |ψ~(X)|2 = ψ2

ε(~)(X),
|∇ψ~(X)|2 =

∣∣∇ψε(~)(X)
∣∣2, so that

T~(ψ~) =
~2

2

∫ ∣∣∇ψε(~)(X)
∣∣2 dX 6 N~2

2

(
‖ρ‖2H2 +

K

4ε(~)2

)
=
N~2

2
‖ρ‖2H2 +

KN~
8

,

while
Vee(ψ~) =

∫
c(X)ψ2

ε(~)(X) dX = CS(Pε(~)).

Now the thesis follows from Proposition 3.7, since

lim sup
~→0

{T~(ψ~) + Vee(ψ~)} = lim sup
~→0

Vee(ψ~) 6 CS(P ). �

Fermionic case. — We can complete the proof of Theorem 3.4.
Proof of Theorem 3.4. — We proved equicoerciveness in Section 3.1 and, for all
P ∈ Π(ρ), in Section 3.2, we already proved the Γ-lim inf inequality. Thus it is left to
find a family of fermionic wave-functions ψ~ such that Pψ~ ⇀ P and

lim sup
~→0

{T~(ψ~) + Vee(ψ~)} 6 CS(P ).

Consider a sequence of functions {ψε} as in the thesis of Proposition 3.7. Recall
that ψε is supported outside Dα(ε), where α(ε)↘ 0 as ε→ 0 – hence there exists α−1

in a right neighbourhood of 0. We may then consider a corresponding family of wave-
functions {ψε} given by Proposition 3.19. Define

ε(~) = max
{
α−1(

√
~),
√
~
}
,
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and observe that ε(~)→ 0 as ~→ 0. We take ψ~ = ψε(~) as a recovery sequence.
It is easy to estimate the kinetic energy:

T~(ψε(~)) =
~2

2

∫ ∣∣∣∇ψε(~)(X)
∣∣∣2 dX

6
~2

2

{∫ ∣∣∇ψε(~)(X)
∣∣2 dX +

C

α2(ε(~))

∫
ψ2
ε(X) dX

}
6

~2

2

{
N‖√ρ‖2H1 +

K

4ε2(~)
+
C

~

}
6

~2

2

{
N‖√ρ‖2H1 +

K

4~
+
C

~

}
,

which tends to 0 as ~→ 0. On the other hand, with the notation of Proposition 3.7,

Vee(ψ~) =

∫
c(X)ψ2

ε(~)(X) dX = CS(Pε(~)).

Now the thesis follows, since

lim sup
~→0

{T~(ψ~) + Vee(ψ~)} = lim sup
~→0

Vee(ψ~) 6 CS(P ). �

3.10. Conclusions. — The Γ-convergence result of the previous section allow us to
prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. — Thanks to the formulations (3.1) and (3.3) the thesis follows
from Theorem 2.3, applied to the functionals FS~ and CS . We proved the Γ-convergence
and equicoercivity in Theorem 3.3. �

Proof of Theorem 1.2. — Thanks to the formulations (3.2) and (3.3) the thesis fol-
lows from Theorem 2.3, applied to the functionals FA~ and CS . We proved the
Γ-convergence and equicoercivity in Theorem 3.4. �
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