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Abstract

Background: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) abnormalities in patients
with multiple sclerosis (MS) are currently measured by a complex combination of separate procedures. Therefore,
the purpose of this study was to provide a reliable method for reducing analysis complexity and obtaining
reproducible results.

Methods: We implemented a semi-automated measuring system in which different well-known software
components for magnetic resonance imaging (MRI) analysis are integrated to obtain reliable measurements of
DWI and PWI disturbances in MS.

Results: We generated the Diffusion/Perfusion Project (DPP) Suite, in which a series of external software programs are
managed and harmonically and hierarchically incorporated by in-house developed Matlab software to perform the
following processes: 1) image pre-processing, including imaging data anonymization and conversion from DICOM to
Nifti format; 2) co-registration of 2D and 3D non-enhanced and Gd-enhanced T1-weighted images in fluid-attenuated
inversion recovery (FLAIR) space; 3) lesion segmentation and classification, in which FLAIR lesions are at first segmented
and then categorized according to their presumed evolution; 4) co-registration of segmented FLAIR lesion in T1 space
to obtain the FLAIR lesion mask in the T1 space; 5) normal appearing tissue segmentation, in which T1 lesion mask is
used to segment basal ganglia/thalami, normal appearing grey matter (NAGM) and normal appearing white matter
(NAWM); 6) DWI and PWI map generation; 7) co-registration of basal ganglia/thalami, NAGM, NAWM, DWI and PWI
maps in previously segmented FLAIR space; 8) data analysis. All these steps are automatic, except for lesion segmentation
and classification.

Conclusion: We developed a promising method to limit misclassifications and user errors, providing clinical researchers
with a practical and reproducible tool to measure DWI and PWI changes in MS.
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Background
The role of diffusion-weighted imaging (DWI) and
perfusion-weighted imaging (PWI) modalities in mul-
tiple sclerosis (MS) has recently received increased at-
tention due to the potential of these two advanced
magnetic resonance imaging (MRI) techniques in detect-
ing the structural and hemodynamic characteristics of
MS-related focal [1–7] and diffuse [8–16] brain abnor-
malities in gray and white matter, which characterize the
well-known heterogeneity of the disease [17]. In fact,
although conventional MRI findings are currently con-
sidered a valid surrogate marker for MS diagnosis and
progression in treated and untreated patients, their diag-
nostic and prognostic value still remains very limited
given the inability of conventional MRI in identifying the
specific pathologic substrates of MS lesions [17]. Thus,
it could be crucial to understand whether the detection
and quantification of focal and diffuse DWI and PWI
changes may help in recognizing the different mecha-
nisms implicated in MS damage and, as a consequence,
in improving diagnostic accuracy, early outcome predic-
tion and response to treatment monitoring in MS. As
DWI and PWI can be easily integrated in the context of
MRI examination, this may have a large impact for rou-
tine clinical setting and patient quality of life. Therefore,
further studies are warranted to clarify the actual signifi-
cance of DWI and PWI disturbances in MS. However,
the evaluation of DWI and PWI alterations in MS is
generally restricted to the research field and is currently
performed by different software programs, used separ-
ately from each other with lack of standardization re-
garding the overall process [1–16, 18, 19]. This implies
several steps including various co-registration and tis-
sue/lesion segmentation tasks which make the analysis
rather laborious, time-consuming and prone to inaccur-
acies due to human intervention. These limitations
could explain why the results coming from previous
studies were not always concordant. In addition, there
are no large-scale studies investigating DWI and PWI
abnormalities in MS focal lesions categorized according
to different stages of their evolution (acute and chronic)
[20]. Thus, a more integrated analysis process incorpor-
ating all software packages employed in performing co-
registration and tissue/lesion segmentation steps would
be beneficial. This approach should be based on the
activation of the different software modules according to
a logical sequence leading to precise measurements of
DWI and PWI values in focal MS lesions, in normal
appearing grey matter (NAGM) and in normal appearing
white matter (NAWM). For these reasons, the pipeline
proposed in this work consists in an implementation of
already described algorithms [4, 6, 10, 13, 15] combined
according to a hierarchical order in a semi-automated
manner. Although many automated methods have recently

been developed for MS lesion detection [21–23], we chose
semi-automated operations for the identification of focal
damage to minimize potential biases due to lesion mis-
classification [18, 19], which could overcome operator-
dependent misinterpretations related to visual inspection.
On the other hand, the lack of clear standards renders it
difficult to judge the superiority of one approach over other
available choices [18, 19, 24]. Accordingly, we included
tools commonly used in the MS literature which have
been demonstrated to be both efficient and accurate in
co-registration and tissue/lesion segmentation proce-
dures. Moreover, the investigators of our group have
many combined years of experience using these tools
[18, 19, 24–26]. In this way, we sought to provide a
promising tool for reducing analysis complexity and
obtaining reproducible results.

Methods
Definition and general description of the DPP Suite
and modules
The process management system named Diffusion/
Perfusion Project (DPP) described in the paper is an
in-house developed suite written in Matlab (The Math-
Works, Natick, MA, USA) and requiring the Image Pro-
cessing Toolbox. The DPP is a collection of software
modules all related to MRI data management, sharing the
same GUI (Graphical User Interface) and exchanging data
with each other. DPP Suite integrates commonly used
software tools which are able to perform different types of
data analysis and management. The primary aim of DPP
Suite is to create a uniform environment where it can be
possible to assess a considerably larger number of data
from MS patients compared to the other current analysis
methods, reducing as much as possible analysis com-
plexity, time required and potential human errors. The
most relevant procedures manageable through DPP
Suite are schematically presented in Fig. 1, where data
and operations are shown as a flowchart. In summary,
DPP Suite operations include: 1) image pre-processing;
2) registration of T1-weighted images; 3) lesion segmenta-
tion and classification; 4) registration of lesion masks; 5)
normal appearing tissue segmentation; 6) PWI and DWI
map generation; 7) registration of tissue segmentation and
quantitative MRI maps; 8) data analysis.

Pre-processing
Image pre-processing starts with the automatic anonymi-
zation of MRI sequences for each patient which are
exported from a PACS database and copied in a local re-
pository dynamically linked with the DPP Suite. This
process aims at protecting patient identity during the
whole procedure. Furthermore, demographic data, result-
ing analysis and patient identity are stored as a protected
file controlled by the DPP Suite. The anonymization
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procedure is performed by Image Processing Toolbox
Matlab function with some adaptations. The original em-
bedded task for data anonymization, called dicomanon,
was modified generating a function called dpp_dicomanon
that can strengthen the patient data confidentiality level if
needed. After anonymization, DICOM format [27] files
are converted in NIFTI format [28] using the Statistical
Parametric Mapping (SPM) 8 toolbox (http://www.fil.ion.
ucl.ac.uk/spm/) [29]. Notably, pre-processing is performed
on a limited dataset that includes the following MRI se-
quences: axial fluid-attenuated inversion recovery (FLAIR);
two-dimensional (2D) axial non-enhanced T1-weighted
spin-echo or three-dimensional (3D) non-enhanced T1
gradient-echo; axial Gadolinium (Gd)-enhanced T1-
weighted spin-echo; axial DWI and axial PWI. Therefore,
before data conversion, a DPP function selects patients
having all MRI sequences requested for analysis, excluding
those with incomplete radiological data. Concurrently, a
set of report files containing a checklist of unavailable

sequences for each non-conforming patient is generated.
In addition, all MRI data are reorganized in a storage
structure aimed at making a uniform data format, in-
cluding sequences names, filenames or data storing and
other details, that is independent of that given by different
MRI scanners (e.g. Philips, Siemens or GE), without modi-
fications in information content.

Registration of T1-weighted images
In this first step (Fig. 2), both axial 2D non-enhanced
T1-weighted spin-echo or 3D non-enhanced T1 gradient-
echo and axial Gd-enhanced T1-weighted spin-echo are
registered in FLAIR space using an automated process
based on the employment of a DPP module invoking one
of the two following external software packages: SPM or
FMRIB’s Linear Image Registration Tool (FLIRT) from
FMRIB Software Library (FSL) suite (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/flirt) [30, 31]. Although T2-weighted images
are generally considered the most sensitive in detecting

Fig. 1 Flowchart of Diffusion/Perfusion Project (DPP) Suite. The DPP Suite is used for diffusion-weighted imaging (DWI) and perfusion-weighted
imaging (PWI) measurements in focal and diffuse abnormalities in multiple sclerosis (MS) patients. OspFE = Ferrara Hospital; MRI = magnetic
resonance imaging; FLAIR = axial fluid-attenuated inversion recovery MRI images; T1 = 2D axial non-enhanced T1-weighted spin-Echo or 3D
non-enhanced T1-weighted gradient-Echo MRI images; Gd T1 = Gadolinium-enhanced T1-weighted spin-Echo MRI images; r_T1 = registered
2D axial non-enhanced T1-weighted spin-Echo or 3D non-enhanced T1-weighted gradient-Echo MRI images; r_Gd T1 = registered Gadolinium-
enhanced T1-weighted spin-Echo MRI images; ROI = regions of interest; NAWM = normal appearing white matter; NAGM = normal appearing
grey matter; ADC = apparent diffusion coefficient; CBF = cerebral blood flow; CBV = cerebral blood volume; MTT = mean transit time
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infratentorial lesions [32], FLAIR images serve for the
following lesion segmentation since they improve lesion/
brain contrast due to the suppression of cerebrospinal
fluid signal [33]. On the other hand, T1-weighted images
allow the identification of MS T1 hypointense (black
holes) and T1 Gd-enhancing lesions as well as the evalu-
ation of brain atrophy [17]. In this regard, it is well-
accepted that 3D are superior to 2D T1 images in the
determination of brain volume [34]. However, we chose to
process also 2D T1 images since, in clinical practice, not
all centers are equipped to routinely perform 3D T1 se-
quences in MS patients. The choice between SPM and
FSL FLIRT is user selectable.

Lesion segmentation and classification
The development of automated techniques for lesion
detection is one of the most central challenges in MS re-
search. Therefore, a number of approaches have recently
been proposed [21–23]. However, it is generally accepted
that there are no automatic lesion segmentation methods
with 100 % reliability [18, 19]. This is the reason why a
series of semi-automated algorithms were designed and

tested in order to support and simplify lesion segmenta-
tion and classification. This step is one of the most critical
and complex because it involves both human operation
and automated processes. In fact, two basic operations are
implemented: a) semi-automatic lesion segmentation; b)
semi-automatic lesion classification.

Semi-automatic lesion segmentation
As depicted in Fig. 3, this step is performed on FLAIR
images using Jim (Jim 6.0, Xinapse Systems, Leicester,
UK; http://www.xinapse.com) [34] as an external soft-
ware package. After visual identification, each lesion is
semi-automatically segmented by a local threshold-based
technique. In addition, a region of interest (ROI) of the
NAWM is manually outlined. The output of this process
is an ROI file corresponding to the delineated areas.

Semi-automatic lesion classification
Using the FLAIR-derived lesion ROI file, DDP Suite
automatically masks the non-enhanced and Gd-enhanced
T1-weighted images (Fig. 4). The DPP Suite then calcu-
lates the intensity of each lesion in both non-enhanced

Fig. 2 An illustrative example of registration of T1-weighted images. SPM= Statistical Parametric Mapping; FSL = FMRIB Software Library; FLIRT = FMRIB’s
Linear Image Registration Tool; FLAIR = axial fluid-attenuated inversion recovery MRI images; T1 = 2D axial non-enhanced T1-weighted spin-Echo or 3D
non-enhanced T1-weighted gradient-Echo MRI images; Gd T1 = Gadolinium-enhanced T1-weighted spin-Echo MRI images; r_T1 = registered 2D axial
non-enhanced T1-weighted spin-Echo or 3D non-enhanced T1-weighted gradient-Echo MRI images; r_Gd T1 = registered Gadolinium-enhanced T1-
weighted spin-Echo MRI images

Fig. 3 A descriptive example of semi-automated lesion segmentation process on fluid-attenuated inversion recovery (FLAIR) images. Segmented
hyperintense lesions in red; area used for NAWM mean intensity estimation in green
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and Gd-enhanced T1-weighted sequence. Based on the
recently proposed classification [20], the algorithm cat-
egorizes each T2-weighted hyperintense lesion, based
on its intensity in four classes: 1) Gd-enhancing and
T1-weighted isointense (C1); 2) Gd-enhancing and T1-
weighted hypointense (C2); 3) non Gd-enhancing and
T1-weighted isointense (C3); 4) non Gd-enhancing and
T1-weighted hypointense, i.e. black holes (C4). As, in
absence of serial MRI examinations, lesion activity is
demonstrable only by Gd enhancement [35], C1 and C2
type lesions are considered as acute, whereas C3 and
C4 lesions are judged as chronic [36, 37]. The output of
the process is a recombined ROI file enriched with
classification of each lesion given by a different color
code for each lesion type and a descriptive text label
where the type and characteristics of the single lesion
are briefly reported (Fig. 4). Lesion classification is ac-
complished using a DPP algorithm based on a lesion in-
tensity comparison to the NAWM ROI intensity level.
The thresholds to identify the lesion classes are defined
as a configurable multiplier of the standard deviation of
the intensity values in the NAWM ROI.

ThreHigh ¼ �I default þMf ⋅St�dev INAWMð Þ ð1Þ
ThreLow ¼ �I default−Mf ⋅St�dev INAWMð Þ ð2Þ

Where Ī is the mean intensity of the NAWM and Mf
is the multiplier factor and St_dev is the standard devi-
ation calculation function. The mean intensity of ach le-
sion is then calculated and compared with the two
thresholds referred to in formulas (1) and (2) that are
calculated for both non-enhanced and Gd-enhanced T1-

weighted images. The automatic lesion classification al-
gorithm performance is briefly presented in Fig. 5 to
document the accuracy of the procedure. The error per-
centage of automatic classification was less than 1 % for
C1 and C2 lesion classes and about 21 % and 23 % for
C3 and C4 lesion classes, respectively. It is important to
underline that the low error percentage found for C1
and C2 lesion classes could be related to the small num-
ber of this type of lesions occurred in the selected pa-
tients, as well as in all patients analyzed. Therefore,
these results support the need of a visual correction for
automatic lesion classification. The output of the auto-
matic lesion classification process is a text file in Jim
ROI Analysis Tool format, containing all the ROI defini-
tions and classifications. Automatic lesion classifications
are visually checked and revised by the operator. The
new checked file is then automatically reloaded and con-
verted by DDP Suite into different revised ROI files, in-
cluding the lesions categorized as total lesions, lesion
classes (C1, C2, C3 and C4) and single lesion, which are
then used in the following steps.

Registration of lesion masks
This stage requires the creation of a lesion mask in the
T1 space and is performed by SPM or FSL FLIRT exter-
nal software packages invoked by a DPP module. Briefly,
FLAIR images previously segmented are used to auto-
matically produce a lesion mask that is coregistered in
the non-enhanced T1-weighted space to obtain a regis-
tered lesion mask. When FLIRT is chosen, coregistration
is done applying to the lesion mask in the FLAIR space
the transformation matrix generated by the registration

Fig. 4 A demonstrative example showing the automatic lesion classification process. FLAIR = axial fluid-attenuated inversion recovery MRI images;
r_T1 = registered 2D axial non-enhanced T1-weighted spin-Echo or 3D non-enhanced T1-weighted gradient-Echo MRI images; r_Gd T1 = registered
Gadolinium-enhanced T1-weighted spin-Echo MRI images. ROI = Region Of Interest; area used for NAWM mean intensity estimation in red
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of FLAIR and T1. If SPM is selected, T1 is set as the
reference image, FLAIR as source and the lesion mask
as other. The result is a black and white lesion mask that
is a binarization of the brain lesion area where lesions
are white and the remaining brain tissue is black (Fig. 6).

Normal appearing tissue segmentation
As depicted in Fig. 7, DPP Suite invokes automatic seg-
mentation of the basal ganglia and thalami via the external
FSL tool FMRIB’s Integrated Registration and Segmenta-
tion Tool (FIRST) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/first)

Fig. 5 Automatic lesion classification algorithm performance for a group of 15 randomly selected patients. The automatic classification algorithm
is compared with classification of the same lesions performed visually by an expert. Vertical axis shows the error percentage over total number of
lesions. Group 1 (>40) = patient group 1 was composed by 5 patients with more than 40 lesions; Group 2 (>20 ≤ 40) = patient group 2 was composed
by 5 patients with more than 20 and less than 40 lesions; Group 3 (≤20) = patient group 3 was composed by 5 patients with less than 20 lesions;
Total =mean values between group 1, 2 and 3; C1 = lesion class 1; C2 = lesion class 2; C3 = lesion class 3; C4 = lesion class 4

Fig. 6 A graphic example of registration of lesion masks. FLAIR = axial fluid-attenuated inversion recovery MRI images; T1 = 2D axial non-enhanced T1-
weighted spin-Echo or 3D non-enhanced T1-weighted gradient-Echo MRI images; SPM= Statistical Parametric Mapping; FSL = FMRIB Software Library;
FLIRT = FMRIB’s Linear Image Registration Tool; r_T1 = registered 2D axial non-enhanced T1-weighted spin-Echo or 3D non-enhanced T1-weighted
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[38]. The input is the non-enhanced T1-weighted se-
quence. The segmented basal ganglia structures include
the right and left caudate, putamen and globus pallidus.
The following step is represented by the automatic seg-
mentation of grey and white matter for which DPP Suite
invokes FSL SIENAX (Structural Image Evaluation
using Normalization of Atrophy) (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/SIENA) [39]. In this case, the inputs are
non-enhanced T1-weighted sequence and registered T1
lesion mask, whereas the output are two files including
NAGM and NAWM images obtained after subtracting
registered T1 lesion mask from non-enhanced T1-
weighted. In addition, FSL SIENAX generates a report
file including total brain tissue volume, as a whole and
normalized according to skull size, and normalized NAGM
and NAWM volumes.

PWI map generation
PWI studies are performed with a dynamic susceptibil-
ity contrast (DSC) MRI first-pass bolus-tracking tech-
nique using echo-planar gradient-echo T2* sequences.
PWI analysis provides relative measurements of brain
hemodynamic parameters such as Cerebral Blood Flow
(CBF), Cerebral Blood Volume (CBV) and Mean Transit
Time (MTT). CBF, CBV and MTT maps are generated by
a singular value decomposition (SVD) deconvolution op-
eration based on the measurement of an arterial input
function (AIF) [40]. The calculation of PWI maps is auto-
matically performed by Jim Perfusion Analysis tool in-
voked by DPP Suite. DSC images consist of a time-series
of sequences, one volume for each time point, which
monitor the concentration of an injected paramagnetic
contrast agent transiting from the blood vessels to the

brain tissue. Therefore, AIF determination implies the
knowledge of the exact volume where the contrast agent
is perceptible in the brain (Contrast Arrival Point). For
that reason, the DPP Suite implements an algorithm that
identifies the contrast arrival volume number using Jim
Stats. This algorithm evaluates the mean intensity in
volumes, using in subsequent steps the average intensity
of the previous analyzed volumes, in order to reduce the
noise affecting the images. It detects when the difference
of mean intensity between two subsequent volumes is
more than an adjustable threshold. The threshold is not
an absolute value or an absolute percent, but is a fraction
of the difference between maximum and minimum inten-
sity value measured in all volumes of the sequence. Thus,
the threshold is less dependent from the volume intensity
absolute level.

DWI map generation
DWI studies are often performed with a single-shot
echo-planar T2 spin-echo sequence according to the
Stejskal-Tanner method [41]. The diffusion gradients are
applied in three orthogonal directions (x, y, z) with two
b-values (0 and 1000 s/mm2) to form the isotropic DWI
images at b 1000 s/mm2. DWI analysis takes as input T2
images and extracts from these images apparent Diffu-
sion Coefficient (ADC) maps, related to each Cartesian
axis. More precisely, as reported elsewhere [42], ADC maps
are generated using T2-weighted images at b 0s/mm2 and
isotropic DWI images at b 1000 s/mm2 obtained in all three
orthogonal directions. All calculations are automatically
performed by Jim Image Algebra tool invoked by DPP Suite
controlling the entire process. The process output is an
average ADC map, obtained calculating the mean of the

Fig. 7 An illustrative example of normal appearing tissue segmentation. T1 = 2D axial non-enhanced T1-weighted spin-Echo or 3D non-enhanced
T1-weighted gradient-Echo MRI images; FSL = FMRIB Software Library; FIRST = FMRIB’s Integrated Registration and Segmentation Tool; SIENAX = Structural
Image Evaluation using Normalization of Atrophy; r_T1 = registered 2D axial non-enhanced T1-weighted spin-Echo or 3D non-enhanced T1-weighted
gradient-Echo MRI images; NAGM=normal appearing grey matter; NAWM= normal appearing white matter
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previously calculated ADC on the three Cartesian axes.
After this process, previously generated ADC maps and
PWI maps are ready to be registered in the next step
(Fig. 8).

Registration of tissue segmentation and quantitative
MRI maps
This step is aimed at automatically translating the results
of all intermediate processes previously described in the
FLAIR space to allow the final data analysis in which
DWI and PWI values are measured in every lesion as
well as in the basal ganglia and thalami, NAGM and
NAWM. DPP Suite invokes SPM or FSL FLIRT exter-
nal software tools which generate the following regis-
tered maps:
From T1 space:

1. Basal ganglia and thalami maps;
2. NAGM map;
3. NAWM map;

from DWI space:
4. Average ADC map;

from PWI space:
5. CBV, CBF and MTT maps.

The different maps are registered into the FLAIR
space and used in the next data analysis (Fig. 9). The
coregistration is performed using a similar method as
in registration of lesion masks.

Data analysis
The final step represents the key advance performed by
the DPP Suite compared to existing semi-automated
methods. Measurements are obtained by the integration
of the entire set of images and maps previously generated.
This result is obtained using distinct software modules. In

this stage, two groups of automatic analysis are developed.
In the first one (Fig. 10, panel a), NAGM, NAWM and
basal ganglia maps are used to mask ADC and PWI maps
owing to Jim Masker invoked by DPP Suite. At this point,
DPP Suite activates the Jim Stats tool that is able to calcu-
late ADC, CBF, CBV and MTT values in these brain areas.
In addition, the Jim Stats tool also measures NAGM,
NAWM and basal ganglia/thalami volumes and voxel
number and DPP Suite parses previously saved FSL SIE-
NAX report file including whole and normalized total
brain tissue volume and normalized NAGM and NAWM
volumes. In the second group of data analysis (Fig. 10,
panel b), DPP Suite invokes Jim Masker to mask DWI and
PWI maps with FLAIR segmented lesions which DPP
Suite has previously saved and stored as total, single class
(C1, C2, C3 and C4) and single lesion maps. In this way, it
is possible to obtain ADC, CBF, CBV and MTT values in
all types of lesions where, in addition, also volume and
voxel number are measured. All of these data are stored
in a comma separated values (csv) file.

Graphical User Interface
The Graphical user Interface (GUI) is shown in Fig. 11.
The GUI keeps hidden all configuration parameters.
Thus, the user is unable to modify the system paramet-
rization and has a limited number of operations to per-
form. The configuration parameters are collected in a
text configuration file. However, the configuration can
be modified as needed by an expert operator, based on
the needs of the study. These parameters are not shown
in the GUI to facilitate the use of DPP suite by non-
expert operators. The GUI configuration presents two
sections: the first area in which all the process steps are
singularly selectable and the second area where only
three process macro steps can be activated. All these
steps are performed automatically by DPP Suite, except

Fig. 8 A descriptive example of generated apparent diffusion coefficient (ADC) and perfusion-weighted imaging (PWI) maps. CBF = Cerebral Blood
Flow; CBV = Cerebral Blood Volume; MTT =Mean Transit Time; DWI = Diffusion Weighted Imaging
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Fig. 9 A graphic example of registration of tissue segmentation and quantitative MRI maps. NAGM=normal appearing grey matter; NAWM=normal
appearing white matter; ADC = apparent diffusion coefficient; CBF = cerebral blood flow; CBV = cerebral blood volume; MTT =mean transit time; SPM=
Statistical Parametric Mapping; FSL = FMRIB Software Library; FLIRT = FMRIB’s Linear Image Registration Tool; FLAIR = axial fluid-attenuated inversion
recovery MRI images

Fig. 10 Two diagrams describing DPP data analysis. Panel a: measurements of total, brain normal appearing grey matter (NAGM) and normal
appearing white matter (NAWM) volume and voxel number, both as a whole and normalized according to skull size, and measurements of apparent
diffusion coefficient (ADC), cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in basal ganglia, NAGM and NAWM.
Panel b: measurements of apparent diffusion coefficient (ADC), cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in
previously saved and stored FLAIR lesion categorized as total, class C1, C2, C3, C4 and single. norm = normalized; C1 = enhancing T2-weighted
hyperintense and T1-weighted isointense; C2 = enhancing T2-weighted hyperintense and T1-weighted ipointense ; C3 = non-enhancing T2-
weighted hyperintense and T1-weighted isointense; C4 = non-enhancing T2-weighted hyperintense and T1-weighted ipointense, black holes
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lesion segmentation and classification which requires
human intervention. The GUI presents also two direc-
tory browsing selection buttons for a more user friendly
and flexible selection of input and output data director-
ies. In order to control the process status and evolution,
three status bars are also present in the lower part of the
GUI window: a) a status bar defining the step under exe-
cution or the process execution status; b) a status-sub
bar describing the sub-module under execution; c) a
status-info bar indicating the patient number whose data
are under analysis. The lower button is the step/process
activation button, which starts the selected operations to
be executed in an automated way by the DPP Suite.

Process safety and data security
All process steps, such as utilized parameters, the final
results and the intermediate data are logged, saved and
stored in the DPP Suite. This ensures complete environ-
ment preservation. For example, when an external tool
is invoked by the DPP Suite both images and results and
the tool’s standard output/error data log is read and

saved. This approach allows post processing visual verifi-
cation of e.g. co-registration (SPM or FSL FLIRT), tissue
segmentation (SIENAX or FSL FIRST) or automatic de-
tection of AIF-like voxels (Jim Perfusion tool). In Fig. 12
is presented an example of coregistration check per-
formed using the Check Reg tool part of SPM module
for functional MRI. Although processing parameters
were tuned and optimized for every single step in DPP
suite, in case of failure, configuration can be modified to
correct processing errors. In this way, a clinician can
check the results and make sure that they are accurate.
Other security measures are integrated in DPP suite as
well. For example, if a set of data represent both an out-
put for the (n-1)th step and the input for the (n)th step,
the entire data are copied before being modified by the
(n)th step. Moreover, execution times and software
version are preserved for every run of the suite (e.g. pre-
processing data structure). This approach allows data
reconstruction, process verification and software debug-
ging, making it possible to reproduce every single step
or the entire process and, thus, future validation of the
DPP Suite.

Results
Software metrics
In order to evaluate the DPP Suite performance, the
hardware and software configurations are listed in
Table 1. It is important to note that the entire suite is
carried out by a Linux Virtual Machine running in a
Windows based PC. The execution time for all modules
in a single patient (woman; 33 year old; clinically and MRI
inactive with Relapsing-Remitting MS; disease duration =
84 months; Expanded Disability Status Scale = 2.5) and in
five patients (4 women and 1 men; mean age = 46.4 ± 3.7
years; 2 clinically and MRI active and 3 clinically and MRI
inactive with Relapsing-Remitting MS; median disease
duration = 1 months; median Expanded Disability Status
Scale = 1.5) were evaluated to test the DPP Suite perform-
ance. This analysis resulted linear regarding the number
of patients, while the execution time varied as a function
of number of lesions of patients (Fig. 13). Typical execu-
tion time for a single patient can vary from 30 to 55 min
depending on the patient characteristics (number of le-
sions and MRI quality). The key information derived
from this analysis is that the most time-consuming
process is the anonymization with dpp_dicomanon.
Interestingly, the typical execution time of the entire
suite analysis is relatively short (45 min), which seems
to be acceptable for a research use. It is important to
note that the DPP Suite is able to work with different
equipment since it can run on all hardware supporting
VMware player (https://www.vmware.com/) or compat-
ible virtualization software.

Fig. 11 A picture illustrating the Graphical User Interface (GUI)
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Reproducibility of results
The repeatability of data coming from DPP Suite was
tested with the analysis of lesion number and ADC, CBF,
CBV and MTT values obtained from 38 patients with
Relapsing-Remitting MS (31 women and 7 men; mean
age = 45.8 ± 9.1 years; 8 clinically active and 30 clinically
inactive; median disease duration = 9 months; median
Expanded Disability Status Scale = 2.0) by two different
readers (EG with 2 years of experience; EF with 15 years
of experience) who performed a double blinded, independ-
ent semi-automatic lesion segmentation and classification
of T2-weighted hyperintense lesions. After checking data
for normality by using the Kolmogorov-Smirnov test, con-
tinuous variables were compared using Mann-Whitney U
test or independent-samples t test when appropriate. In
addition, kappa inter-observer agreement was calculated.

Kappa values were interpreted according to the pro-
posed standards of Landis and Koch: 0–0.20 (slight
agreement); 0.21–0.40 (fair agreement); 0.41–0.60
(moderate agreement); 0.61–0.80 (substantial agreement);
0.81–1.00 (almost perfect agreement) [43]. Tables 2 and 3
show that there were not statistically significant differ-
ences between the two readers in the evaluation of lesion
number and ADC, CBF, CBV and MTT values detected in
the four classes of T2-weighted hyperintense lesions.
Inter-observer agreement between the two readers was
substantial for lesion number and ADC, CBF, CBV and
MTT values in C1 lesion class and for lesion number and
ADC and MTT values in C2 lesion class, almost perfect
for all parameters assessed in C3 and C4 lesion classes,
and only moderate for CBF and CBV values in C2 lesion
class. These findings argue for a good reproducibility of
results provided by DPP Suite. On the other hand, the
discrepancies observed between the two readers could be
mainly attributable to differences in how the users have
outlined and categorized the lesions, even if the selection
of co-registration (FSL FLIRT versus SPM) and decision of
whether an automated analysis passes quality control or
not could represent other potential explanations. The
modest inter-observer agreement between the two readers
found for CBF and CBV values in C2 lesion class could be
also affected by the current limitations in discriminating
between acute active and chronic active Gd-enhancing
and T1-weighted hypointense T2-weighted hyperintense
lesions [44]. In any case, such differences can be mini-
mized based on having some type of training between the

Fig. 12 A visual coregistration check example using Check Reg tool in SPM. Left to right are presented three panels showing the output of Check Reg in
case of a T1 (lower images) to FLAIR (higher images) sequences coregistration. Three relevant points were selected in order to check coregistration visually

Table 1 Test Bench Hardware and Software

Hardware Host PC

CPU Intel Core i7-4770

Ram 8 Gb

Hard Disk SSD + Raid 1 disk

Software Host PC

Operating System Windows 7 professional

Virtualization VMware player 6.0.3

Software Guest PC

Operating System Scientific Linux 5.5

CPU Central Processing Unit, SSD Solid State Drive, Raid Redundant array of
independent disks
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users (i.e. which option should be selected and how to as-
sess the quality of the analysis).
Written informed consent was given by all patients

before inclusion and the study design was approved by
the Research Ethics Board of Azienda Ospedaliero-
Universitaria di Ferrara (Italy) that is our Local Com-
mittee for Medical Ethics in Research

Discussion and conclusions
In this work we implemented an alternative system to
analyze DWI and PWI abnormalities in various classes
of lesions and in normal appearing brain tissues from
patients with MS. The novelty of our approach is repre-
sented by a semi-automated integration of several previ-
ously validated software packages which are sequentially
activated instead of separately utilized. This has the ef-
fect of significantly reducing human intervention that
can be a source of bias and improper tissue and/or le-
sion classification. This approach makes the analysis
quicker, simpler and provides reliable results. In fact,

except for two checkpoints represented by lesion seg-
mentation and classification, DPP Suite procedures offer
a highly automatic elaboration of a large amount of MRI
data in which the different algorithms are harmonically
and hierarchically incorporated. The main objective of
the development of our DPP Suite is to provide clinical
researchers with a practical and reproducible tool to
clarify the actual significance of DWI and PWI distur-
bances in MS. On the other hand, the coherent inte-
gration process obtained with the DPP Suite offers an
intuitive time improvement compared to manually
performing the individual steps. Finally, the DPP Suite
provides a “best of breed” approach for the external
tool choice and usage for each specific operation, a
software modularity leading to a better management
of method complexity and reusability in the setting of
process safety. However, the evaluation of the DPP
Suite in terms of usability, sustainability and main-
tainability by using different target users remains to
be addressed.

Fig. 13 Execution time benchmark in a single patient (yellow/left) and 5 patients (blue/right). Vertical axis shows the execution times in the
hours:minutes:seconds format. Matlab R2010a, Xinapse Jim 6.0, FMRIB Software library (FSL) 4.1.9 and Statistical Parametric Mapping (SPM) 8 were
the software systems employed. coreg_1 = registration of T1-weighted images; lesion_class = lesion classification; coreg_2 = registration of lesion
masks; auto_segment = normal appearing tissue segmentation; coreg_3 = registration of tissue segmentation and quantitative MRI maps
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Table 2 Number of focal lesions and ADC, CBF, CBV and MTT values in C1 and C2

C1 lesions C2 lesions

First reader Second reader p value* Kappa value First reader Second reader p value* Kappa value

Lesion number
(sum, median, IQR, mean ± SD, range)

4, 0, 0-0, 0.1 ± 0.3, 0-1 7, 0, 0-0, 0.2 ± 0.5, 0-2 p = 0.242 0.692 9, 0, 0-0, 0.3 ± 0.6, 0-2 12, 0, 0-0, 0.2 ± 0.7, 0-3 p = 0.148 0.614

ADC x 10-3 s/mm2
(median, IQR, mean ± SD, range)

0, 0-0, 0.1 ± 0.3, 0-0.9 0, 0-0, 0.1 ± 0.3, 0-0.9 p = 0.256 0.792 0, 0-0, 0.2 ± 0.4, 0-1.1 0, 0-0, 0.1 ± 0.3, 0-1.2 p = 0.146 0.721

CBF ml/100g/min
(median, IQR, mean ± SD, range)

0, 0-0, 15.8 ± 50.2, 0-244.9 0, 0-0, 24 ± 59.3, 0-244.9 p = 0.2400 0.686 0, 0-0, 35.3 ± 76.2, 0-342.2 0, 0-0, 14.5 ± 39, 0-136.6 p = 0.108 0.450

CBV 100g/min
(median, IQR, mean ± SD, range)

0, 0-0, 0 ± 0, 0-0.2 0, 0-0, 0 ± 0.1, 0-0.2 p = 0.248 0.742 0, 0-0, 0 ± 0.1, 0-0.4 0, 0-0, 0 ± 0.1, 0-0.3 p = 0.114 0.464

MTT seconds
(median, IQR, mean ± SD, range)

0, 0-0, 0.8 ± 2.8, 0-15.3 0, 0-0, 1.1 ± 2.7, 0-11.2 p = 0.251 0.719 0, 0-0, 2 ± 3.8, 0-13.5 0, 0-0, 1.2 ± 3.3, 0-13.5 p = 0.136 0.673

Values obtained by two different readers in Gd-enhancing and T1-weighted isointense (C1) and Gd-enhancing and T1-weighted hypointense (C2) T2-weighted hyperintense lesions from 38 patients with Relapsing-
Remitting Multiple Sclerosis. ADC Apparent Diffusion Coefficient, CBF Cerebral Blood Flow, CBV Cerebral Blood Volume, MTT Mean Transit Time, First reader EG, Second reader EF, SD Standard deviation, IQR Interquartile
range, *Mann-Whitney
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Table 3 Number of focal lesions and ADC, CBF, CBV and MTT values in C3 and C4

C3 lesions C4 lesions

First reader Second reader p value Kappa value First reader Second reader p value Kappa value

Lesion number
(sum, median, IQR, mean ± SD, range)

1075, 18, 5.5-33.8,
28.3 ± 30.8, 0-129

1138, 19, 5.5-38.8,
29.9 ± 32.6, 0-132

p = 0.446* 0.921 689, 11, 3-21.5, 18.1 ± 22.8, 0-99 623, 8, 2-20, 16.4 ± 20.3,
0-87

p = 0.420* 0.904

ADC x 10-3 s/mm2
(median, IQR, mean ± SD, range)

0.9, 0.9-1, 0.9 ± 0.2,
0-1.2

0.9, 0.9-1, 0.9 ± 0.2,
0-1.2

p = 0.350* 0.872 1, 0.9-1.1, 1 ± 0.2, 0-1.2 1, 0.9-1.1, 1 ± 0.2, 0-1.3 p = 0.448* 0.812

CBF ml/100g/min
(median, IQR, mean ± SD, range)

131.6, 88.6-183.8,
137.5 ± 60.2, 0-295.9

139.3, 99.9-191.1,
141.8 ± 58.8, 0-295.9

p = 0.376** 0.844 124.3, 84.8-165.9, 124.6 ± 58.5,
0-263

105.5, 76.5-150,
115.1 ± 59.6, 0-270.8

p = 0.243** 0.848

CBV 100g/min
(median, IQR, mean ± SD, range)

0.1, 0.1-0.2,
0.1 ± 0, 0-0.3

0.1, 0.1-0.2, 0.1 ± 0,
0-0.3

p = 0.500** 0.824 0.1, 0.1-0.2, 0.1 ± 0.1, 0-0.3 0.1, 0.1-0.1, 0.1 ± 0.1, 0-0.3 p = 0.181** 0.769

MTT seconds
(median, IQR, mean ± SD, range)

8.3, 6.9-9, 8 ± 2.2,
0-12.1

8.1, 6.6-8.6, 7.8 ± 2.2,
0-12.1

p = 0.384** 0.836 8.4, 6.8-9.7, 8.2 ± 2.6, 0-15 8.4, 6.8-9.7, 81. ± 2.9, 0-15 p = 0.463** 0.828

Values obtained by two different readers in non Gd-enhancing and T1-weighted isointense (C3) and non Gd-enhancing and T1-weighted hypointense (C4) T2-weighted hyperintense lesions from 38 patients with
Relapsing-Remitting Multiple Sclerosis. ADC Apparent Diffusion Coefficient, CBF Cerebral Blood Flow, CBV Cerebral Blood Volume, MTT Mean Transit Time, First reader EG, Second reader EF; SD Standard deviation, IQR
Interquartile range, *Mann-Whitney; **t-test
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