Dynamic random coefficient based drop-out
models for longitudinal responses

Modelli a coefficienti casuali dinamici per risposte
longitudinali affette da drop-out non-ignorabile
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Abstract We propose a dynamic random coefficient based drop-out model for the
analysis of longitudinal data subject to potentially non-ignorable drop-out. The pres-
ence of a non-ignorable missingess may severely bias inference on the observed
data. In this framework, random coefficient based drop-out models represent an
flexible approach to jointly model both longitudinal responses and missingess. We
extend such an approach by allowing the random parameters in the longitudinal data
process to evolve over time according to a non-homogeneous hidden Markov chain.
The resulting model offers great flexibility and allows us to efficiently describe both
between-outcome and within-outcome dependence.

Abstract Gli studi longitudinali sono spesso caratterizzati dalla presenza di dati
mancati dovuti ad alcuni individui che lasciano lo studio anticipatamente. Quando
il meccanismo che conduce al dato mancante e non ignorabile, e possibile giungere
a conclusioni inferenziali valide solo modellando congiuntamente due outcome: il
processo longitudinale ed il processo generatore del dato mancate stesso. A questo
scopo, si propone un modello di regressione per dati longitudinali soggetti ad a
drop-out potenzialemente non ignorabile in cui coefficienti casuali tempo-constanti
e tempo-variabili vengono congiuntamente presi in considerazione. Questo perme-
tte di modellare in maniera opportuna sia la dipendenza esistente tra le misurazioni
di ripetute di uno stesso outcome per una stessa unit statistica, sia la dipendenza
esistente tra outcome diversi.
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1 Introduction

Longitudinal studies are frequently affected by drop-out. If the selection of individ-
ual staying in the study still depends on (future) unobserved responses once condi-
tioning on the observed data, the missingness mechanism is said to be non-ignorable
[9]. In this respect, to obtain valid inference, missingness should be taken in explicit
account.

Different alternatives are available in the literature to deal with non-ignorable
drop-outs [8]. Among them, random coefficient based drop-out model [RCBDM -
7] represent an interesting approach. They allow for the presence of two different
sets of individual-specific random parameters for the longitudinal and the missing
data process, respectively. These capture the dependence between repeated measure-
ments from the same individual (within-individual dependence). The corresponding
joint distribution provides instead a measure of dependence between the longitudi-
nal and the missingness process (between-outcomes dependence).

When dealing with longitudinal data, the assumption of time-constant, individual-
specific, sources of unobserved heterogeneity may be too restrictive [1]. Starting
from the proposal by [10], we introduce a dynamic random coefficient based drop-
out model, where time-varying random parameters are considered to model the lon-
gitudinal outcome. To explain our proposal, we assume that the dependence between
the longitudinal and the missing data process is captured by an individual-specific
upper-level mixture. Also, to describe the dependence within profiles, we consider
two further sets of random parameters. For the longitudinal outcome, individual-
specific, time-varying, random parameters that evolve over time according to a non-
homogeneous hidden Markov chain are exploited. On the other hand, for the missing
data outcome, we consider individual-specific, time-constant, random parameters
identifying non-homogeneous propensities to stay into the study.

The proposed model is applied to the Leiden 85+ dataset where the effect of
demographic and genetic factors on the evolution of cognitive functioning in elder
people is of main interest [3]. Due to poor health conditions or death, individuals
enrolled in the study may present incomplete sequences. We show how the pro-
posed model specification may be fruitfully exploited to derive valid inference on
the parameters of interest.

2 Motivating example: the Leiden 85+ study

The Leiden 85+ study is a longitudinal study conducted by the Leiden University
Medical Centre in the Netherlands, with the aim at analysing the evolution of cog-
nitive functioning in the elderly. The study entails Leiden inhabitants who turned
85 years old between September 1997 and September 1999. The sample is made by
541 elderly who were followed for six consecutive yearly visits until they reached
90 years of age. Patient conditions were assessed via the Mini Mental Status Exam-
ination [MMSE, 6] index taking values between 0 and 30 with higher values corre-
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sponding to better cognitive skills. The aim of the study is that of identifying demo-
graphic and genetic factors influencing the dynamics of cognitive functioning and
healthy aging. To this purpose, the following covariates were measured: age, gender,
educational status, and APOE genotype. The latter identifies the Apolipoprotein E
genotype of the patient; in particular, &4 allele is known to be linked to the risk of
dementia. Due to the design of the study, a number participants present incomplete
responses (i.e. drop-out), because of poor health conditions or death.

Preliminary analysis show that MMSE values generally reduce with time but
such a trend is more evident for subjects dropping out prematurely. Such a finding
poses the question on whether the process leading to missing data may be ignored.
In the next section, we will introduce a dynamic RCBDM to account for both the
potential dependence between the longitudinal data process and the drop-out mech-
anism and the within-profile dependence.

3 The dynamic RCBDM

Let us suppose a longitudinal study is designed to collect measures for a response
variable Y;,i=1,...,n,t =1,...,T, on a sample of n individuals at 7 time occa-
sions and let Y; = (Yj1,...,Y;r) denote the vector of individual response sequences.
As it it is frequent when dealing with longitudinal studies, some individuals in the
sample may drop-out prematurely and, thus, may present incomplete sequences. In
this framework, let R; = (R, ... ,R,»T[*)’ indicate the 7;*-dimensional missing data
vector, where ;" = min(7; + 1,T) and T; denotes the number of available measure-
ments for the i-individual. R;, is defined as a binary variable with R; = 0O if the
i-th individual drops-out from the study between occasion ¢t — 1 and t and R;; = 1
otherwise.

Furthermore, let Z; € {1,...,G} and U; € {1,...,K} be two individual-specific,
discrete, latent variables influencing the longitudinal and the missing data process,
respectively. As it is clear, while the latter variable is assumed to depend on the
individual i only, the former variable is individual- and time-specific. This allows
us to capture sources of unobserved dynamics that influence Y¥;; and that would be
barely captured by a time-constant latent variable.

We assume that the longitudinal outcome Yj; only depends on the corresponding
latent variable Z; and, conditional on the vector Z; = (Z;,...,Zir), the elements of
Y, are independent, with joint (conditional) density given by

T

il Zi=2) =]/ Oie | Zie = zi)-

t=1

Similarly, we assume that conditional on the latent variable U;, missingness indica-
tors are independent and the corresponding joint (conditional) density is
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T*

fxi|Ui=u;) = Hf(riz | Ui =w).
=

To describe the effect of the observed covariates on the outcomes (¥, R;), the
following regression models are also defined:

g[E(Yi | Zis = )] = Cg + X, B,
logit[Pr(R; = 0 | U; = k)] = & + W, 7.

In the expressions above, g(-) represents an appropriate link function, while the
parameters 3 and 7y describe the effects of observed covariates, x;; and w;;, on ¥;; and
Rj;, respectively. Also, {,,g = 1,...,G, denotes the value of the random intercept
in the longitudinal data model when Z;; = g. To simplify the interpretation of such
parameters, we introduce the following ordinal constraint:

H <& << (1)

so that lower values of Z;; correspond to lower values for the longitudinal response.
Last, &,k =1,...,K, denotes the discrete random intercept associated to the miss-
ing data process when U; = k.

Following an approach similar to that suggested by [10], we model the depen-
dence between Z; and U; and, therefore, between the longitudinal and the missing
data process, by considering a discrete upper-level latent variable, V;, defined on the
support set {1,...,H}, with 7, = Pr(V; = h),h = 1,...,H. In particular, we assume
that, conditional on V; = h, the latent variables Z; and U; are independent with joint
distribution described by the following (association) model:

H
f(Z,',U[) = Z Th [PI'(Z,' =1Z; | V, = h) Pr(Ui = U; | V, = h)] .
h=1

With the aim of accounting for time-varying sources of unobserved heterogeneity
influencing the longitudinal data process, we assume that, conditional on the h-
th component of the upper-level mixture, that is conditional on V; = A, the latent
variables Z; evolve over time according to a first order hidden Markov chain with
initial probability vector 8, and transition probability matrix Q,, withh=1,... H.

3.1 Reducing model complexity

As it can be noticed, the adopted parameterization is quite complex. This could
lead to numerical difficulties when deriving the corresponding maximum likelihood
estimates. In order to reduce the number of parameters, we follow an approach sim-
ilar to that by [4] and specify 8;, and Q,, via a global logit parameterization. This
choice is motivated by the constraints specified in equation (1) which, in turn, lead
to considering the latent variable Z; having as ordinal. In this framework, initial
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probabilities of the hidden Markov chain are defined according to the model

6g|h+ . ..5(;‘;1

log ————
Sijp+ -+ B

= g + Won, 2
withh=1,...,H and g =2,...,G. For identifiability purposes, we set yp; = 0, so
that the number of parameters to be estimated reduces to (G— 1)+ (H —1). On the

other hand, transition probabilities are modelled according to the following ordinal
logit:

Qgg’\h+" : +QGg’\h

log
dig'|n + dg—1¢'|h

= Uygg + Vin, (3)

withh=1,... H,g=1,...,G, and ¢ =2,...,G. As above, to ensure parameter
identifiability, we set y1; = 0, so that G(G — 1) + (H — 1) parameters need to be
estimated.

4 Model inference

Let 6 denote the vector of all model parameters. Estimation of such parameters can
be carried out via a maximum likelihood approach. Due to the local independence
assumption within and between the longitudinal and the missing data responses, Y;
and R;, inference may be based on the following observed data likelihood:

n H T; T
L(6) = HZTh Z [Hf(yi’ | Zis = zir) 61:‘1\/! quit—lzit‘h) x
i=1 h =2

Zil"'Z[Tl- =1

. [Hzfm = >|] }

=1 u;

To avoid multiple summations over all possible realisations of the hidden chain,
Zi1,...,Z;;, we may rely on the EM algorithm [5].

In this framework, two separated steps need to be alternated. In the E-step, we
need to compute expected value of the complete data log-likelihood, conditional
on the observed data and the current value of parameter estimates. Such a compu-
tation can be consistently simplified by extending the standard forward-backward
algorithm [2] which is typically used in the hidden Markov model framework. In
the M-step, we need to maximize the expected value of the complete data log-
likelihood with respect to model parameters. The E- and the M-steps are iterated
until convergence. As it is frequent when dealing with discrete latent variables, to
avoid local maxima or spurious solutions, we may consider a multi-start strategy
based on both deterministic and random solutions. Also, the number of upper- and
lower-level components/states is treated as fixed and known. The algorithm is run
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for varying choices of (G,K,H) and the best model is chosen via standard model
selection techniques.
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