Chapter 1
Overview: PCA models and issues

Roberto Fernandez, Pierre-Yves Louis and Francesca R. Nardi

Abstract Probabilistic cellular automata (PCA) are interacting discrete stochastic dynamical sys-
tems used as a modeling tool for a wide range of natural and societal phenomena. Their key features
are: (i) a stochastic component that distinguishes them from the well known cellular automata (CA)
algorithms, and (ii) an underlying parallelism that sets them apart from purely asynchronous simu-
lation dynamics in statistical mechanics, such as interacting particle systems and Glauber dynamics.
On the applied side, these features make PCA an attractive computational framework for high per-
formance computing, distributed computing and simulation. Indeed, PCA have been put to good
use as part of multiscale simulation frameworks for studying natural systems or large interconnected
network structures. On the mathematical side, PCA have a rich mathematical theory that leads
to a better understanding of the role of randomness and synchronicity in the evolution of large
systems. This book is an attempt to present a wide panorama of the current status of PCA theory
and applications. Contributions cover important issues and applications in probability, statistical
mechanics, computer science, natural sciences and dynamical systems. This initial chapter is in-
tended both as a guide and an introduction to the issues discussed in the book. The chapter starts
with a general overview of PCA modeling, followed by a presentation of conspicuous applications
in different contexts. It closes with a discussion of the links between approaches and perspectives
for future developments.

1.1 Introduction

Cellular Automata (CA) are lattices of interconnected finite-state automata (also called cells) which
evolve synchronously in discrete time steps according to deterministic rules involving the states of
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adjacent automata. That is, at each time-step each of the automata is updated independently of
the others to a new value which is a function of the value of the automata in a suitably defined
neighborhod. Their genesis is usually traced back to the 1948 paper by von Neumann and Ulam
[174, 208] who introduced them as computational devices. An earlier, 1946 paper by Wiener and
Rosenbluth [171] —modeling impulse conduction in cardiac systems— should also be considered a
precursor. These papers already setup the scene for two important areas of application: cybernetics
and excitable media. Interest in these systems was boosted in the 70s by Conway’s Game of Life —a
two-dimensional cellular automaton— and in the 80s by Wolfram’s classification of one-dimensional
automata.

CA are surprising computational tools whose dynamics, despite being defined through rather
simple local rules, lead to a rich zoo of patterns and structures that emerge without being designed
a priori. These structures can be transient, oscillating or stable, and can exhibit order at different
levels of complexity or downright chaotic features. This richness has been exploited in a number of
applications in different areas, of exact, natural and social sciences. They have even been proposed
as an alternative discrete way to express physical laws using present computational tools [223, 211].

Probabilistic Cellular Automata (PCA) are the extension obtained when the rules for updating
are allowed to be random: New values of each automaton are chosen according to probability dis-
tributions determined by the configuration of its neighborhood. Usually this updating is parallel
or synchronous —all cells are simultaneously updated independently of each other— and neigh-
borhoods are finite sets. At present, however, the notion of PCA is understood in a rather general
sense, that includes (partially) asynchronous dynamics and not necessarily finite neighborhoods
(see, e.g., Chapter 16 and Chapter 18 below). In this book we adopt this general point of view.

The probabilistic component turns PCA into flexible computing tools for complex numerical
constructions, and realistic simulation tools for phenomena driven by interactions among a large
number of neighboring structures. PCA are, therefore, useful for the study of key issues of sta-
tistical mechanical and mathematical physics, such as phase transitions, metastability, percolation
and transport theory. But they are also naturally adapted to the study of systems and processes
in life and social sciences involving systems characterized by high levels of complexity and low
level of reproducibility, even under extremely controlled conditions, due to inherent randomness or
experimental limitations.

Mathematically, PCA are systems of Markov chains interconnected through a network which
typically is a lattice or a finite sub-part of it. These Markov chains evolve in a parallel but cou-
pled fashion, in which the distribution of future states of each chain depend on present states of
neighboring chains. This coupling of transition probabilities is, however, local, and this makes PCA
appealing as algorithms for high performance computing, distributed computing and simulations.
Indeed, this locality makes the design of parallel implementations relatively straightforward, both
on distributed architectures (e.g., computing clusters) and on massively parallel architectures (e.g.,
GPUs).

It is difficult to establish priorities and summarize the history of PCA developments. Their
study was initiated by soviet mathematicians interested in artificial intelligence and cybernetics.
Initially, PCA were studied to determine the robustness of CA dynamics subject to noise pertur-
bation [203, 92]. In this setting, (non-)reliability is related to (non-)ergodicity [66]. The well-known
North-East-Center PCA rule (see sub-section 1.3.1 below) was introduced in 1978 by Toom [204,
for English translation] to provide a first PCA with a non-trivial instance of rigorously proven lack
of ergodicity. Early applications also included models of neuronal networks [197], biological sys-
tems [206] and large systems of interacting automata [209]. In a somewhat independent way, PCA
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1 Overview 3

were studied in the 70’s and 80’s by probabilists [53, 54, 89, 140, 141, 123] —interested in their
properties as stochastic processes— and by statistical physicists [214, 112, 146, 104, 102] interested
in the study of equilibrium and non-equilibrium statistical mechanical distributions on lattices. The
interdisciplinary nature of PCA studies has led to a convoluted history of independent rediscoveries
and alternative terminology. Initially, the automata were termed locally interacting Markov chains;
other names include stochastic CA or random CA. Some references on applications are presented
in Subsection 1.3.3. We refer to [185] and Part 1.4 in [159] for surveys on historical aspects.

This introductory chapter presents some general types of phenomena that have been represented
through PCA, emphasizing open issues and challenges that will be discussed in the remainder
of this book. Our goal here is to exhibit the main common ideas —that often traverse scientific
boundaries—, leaving specific analyses for relevant chapters. In doing so we have preferred to follow
our personal, hence subjective, viewpoints, avoiding exhaustiveness. We therefore apologize to the
many important actors of the field whose work we have failed to cite.

The rest of this chapter chapter is organized in four sections. They deal, respectively, with the
following aspects: (1) Paradigmatic examples of PCA and their mathematical issues. (2) The three
faces of the current interest in PCA: mathematical, computational and scientific modeling. (3)
Useful links and future directions of research. (4) Summary of the structure of this book.

1.2 Phenomena addressed by PCA modeling

PCA dynamics belong to the category of non-equilibrium lattice models. In modeling circles, a
lattice is a graph defined by a countable set of vertices (called sites or nodes) and a set of links. The
latter are pairs of vertices usually visualized as a segment joining them. A popular lattice is, for
instance, Z?. The cells or elementary components of the automata sit in the vertices and the links
are interpreted as vehicles for interactions or communications between cells. Informally, the lattice
is a network interconnecting the cells. The strength of an interaction between cells is expected to
decrease with the number of mediating links (graph distance). Thus, the definition of the PCA
usually involves a notion of neighborhood defined as vertices separated by a maximum prescribed
number of links. In particular, two vertices are nearest neighbors if they are the endpoint of a link.
The qualifier non-equilibrium refers to the type of questions addressed by the theory. To be sure, the
issues of the existence, number, nature and basin of attraction of invariant (equilibrium) measures
remain as important as in the theory of any stochastic process. Nevertheless, PCA theory focuses,
particularly, in phenomena taking place during the evolution towards equilibrium. See for instance
Chap 9 in this book.

In this section we describe three scenarios that lead to typical non-equilibrium issues addressed
through PCA. The first one —metastability— refers to the appearance of traps and barriers delaying
convergence. In some instances, these barriers are related to the emergence of non trivial collective
behavior manifested as phase transitions. These statistical mechanics phenomena are also related to
some highly challenging optimization issues [160, 1]. The second scenario (epidemiology) addresses
the issue of survival vs extinction in large interacting populations. The third scenario (wildfires)
illustrate the study of dynamic percolation phenomena. The mathematical treatment of the latter
present some differences with the better known theory of equilibrium percolation models [110, 134,
212].
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1.2.1 Metastability and traps

Phase transitions are one of nature’s more surprising phenomena. They refer to the sudden change
on physical properties upon alterations of one or a few key parameters, for instance temperature or
presence of a field: Liquids solidify at the freezing point, magnets acquire a non-zero magnetization
even when the field is removed. In particular, first-order phase transitions are characterized by the
presence of coexistence curves, that is manifolds of parameter values where the system presents
several possible stable phases, i.e., extremal equilibrium measures. Examples are water that at
the right combinations of pressure and (low) temperature can be either in liquid or solid form, and
magnets that at zero field and low enough temperature can be magnetized in different directions. In
such conditions, the actual state of the system depends on how it is prepared: Water will remain solid
if the coexistence curve is reached from the high pressure side and liquid if reached by increasing the
pressure; the remaining magnetization of a magnet at low temperature will remember the direction
the field had when turned off.

Phase transitions are equilibrium phenomena whose description involves no obvious reference to
any dynamics. In contrast, the more mysterious phenomenon of metastability can only be under-
stood through (stochastic) dynamical consideration. Physical systems exhibit metastable behavior
in the vicinity of first order phase transitions, for instance in supercooled vapors and liquids, in
supersaturated solutions and in ferromagnets undergoing hysteresis. The common feature is the
persistence of the systems in a state that resembles one of the coexistent states in the transition
curve, but is different from the true equilibrium associated to the actual value of the parameters: Su-
percooled water remains liquid at temperatures (slightly) below the freezing point; magnets during
hysteresis point in a direction different from that of the (small) field present.

Typically, such state of affairs results from small temperature or field changes, performed in an
extremely smooth fashion (by nature or by the lab technician). As a result the system finds that,
in order to achieve the equilibrium corresponding to the new parameter values, it must overcome a
“barrier” that is a remnant of the initial coexistence situation. The height of this “barrier” causes the
system to remain for extremely long times in an apparent equilibrium —the metastable state— from
which it will abruptly jump into the actual equilibrium as a result of some external perturbation or
some internal random fluctuation. The observation of these metastability phenomena extends well
beyond physics and includes processes in chemistry, biology, climatology, economics, etc.

A similar phenomenon takes place in numerical algorithms and simulation protocols whose con-
vergence is often impaired by “traps” that retain the system for very long times. This type of
metastability is of different nature than the one described above, as it is not due to a slight changes
in parameters. Rather, the “traps” are an inherent feature of the dynamics, and the resulting
evolution is closer to glassy transitions than to the neighbourhood of first-order ones.

All types of metastability manifestations share a number of attributes that point to the existence
of a general theory. Such a theory should elucidate the following questions:

1. Distribution of the exit time from the metastable to the stable state. Typically this time is expo-
nentially distributed with a rate that depends of the value of relevant parameters (temperature,
magnetic field, type of “trap”).

2. Determination of the nature of the “metastable trap”. In gases and magnetic systems —and
many asynchronous dynamics such as Metropolis or Glauber— the trap is associated to an
“energy well”. This is far from universal, however; in some instances the trap is of purely
entropic nature or, more generally, due to a “free-energy well”.
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1 Overview 5

3. Details of the typical trajectories that the system takes when exiting the metastable state. This
requires an understanding of the mechanisms behind this exit. In general, exit happens when a
large atypical fluctuation allows the system to overcome the probabilistic barrier protecting the
metastable situation. It is important to understand the nature of such a fluctuation. In many
physical systems exit is due to nucleation, that is the emergence of a sufficiently large region
looking as the stable state. In general processes, however, no such appealing mechanism seems
to be available.

These three questions have been largely elucidated for many ferromagnetic systems — see [173,
23, 32] for finite-volume models (i.e. finite-size systems) and [190, 22] for models in infinite volume.
Superheated water and supersaturated gas have been described through lattice-gas models subjected
to Kawasaki dynamics —see [119, 100, 118, 172] in finite-volume and [119, 98, 99] for infinite volume.
General overviews of these types of metastability phenomena are presented, for instance, in [176,
Chapter 7] and [21].

Parallel dynamics open tantalizing perspectives for the understanding of metastability, because
they exhibit metastable traps and exit mechanisms that differ from those of asynchronous dynamics
and processes. In PCA these differences stem from the observation that a large number of cells
may change in a single time step, leading to metastability mechanisms different from those of
asynchronous dynamics. These facts make PCA metastability studies both a challenging [112, 61]
and revealing component of the quest for a general theory of metastability. Comparative studies
with asynchronous dynamics are particularly interesting, as they may lead to faster convergent
simulation algorithms. See Chap. 3 in this book. For some pioneer studies on PCA metastability
we refer to [40, 42, 45, 44, 41, 173]. A more general theory, that applies also to PCA, has been
developed in [43].

1.2.2 Epidemics and extinction

A natural model in the epidemiology context is to consider a population of susceptible individuals
sitting in the vertices of a lattice whose links determine the possibility of direct communication
(interaction). The definition of the model includes:

e A set of possible states for each individual. Simple models assume three possibilities: sane/sus-
ceptible, ill/infecting and recovered with or without immunity.

e A neighborhood of individuals that can pass the infection to a given one. Often, but not always,
only nearest-neighbors are considered.

e A rule deciding when an infection is passed to an individual from his/hers neighbors.

e A rule specifying how one individual can recover and either become susceptible again or stay
healthy forever due to acquired immunity.

The infection rule is stochastic in nature —exposition does not imply automatic contagion—, and
S0 is the recovery rule. Furthermore, both rules should act on all individuals at the same time. PCA
are, therefore, the model par excellence for epidemiological processes.

The rules depend on parameters that can be empirically estimated. For instance the probability
that the individual at site k gets the infection at the n-th time-step can be of the form 1—(1—p)~Nx(™),
where Ny (n) is the number of neighbors of k that are infected at time n. Here p € [0, 1] is a parameter
that measures susceptibility to infection. The capacity to overcome the infection is, on the other
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6 Roberto Ferndndez, Pierre-Yves Louis and Francesca R. Nardi

hand, an attribute of each individual. Hence, the probability of recovery of each individual at a
given step is often assumed to be equal to another parameter ¢ € [0, 1] independent of the rest of
the population.

The main questions addressed to each epidemiology model refer to the range of parameters
that will prevent the illness to become an epidemic. This is a risk management strategic question
involving a number of measures: vaccines decrease p, isolation decrease Ny, general health situation
increases ¢, etc. In relation to this, the order of magnitude of the spreading time is an important
piece of information, as it determines optimal vaccination strategies or, if there is no time, the need
for quarantine.

Whole families of individual-based lattice models have been introduced in the last decades. They
are known by their acronyms, e.g. SIR (Susceptible, Infectious and Recovered), SIS (Susceptible,
Infectious and Susceptible) (see for instance [19, 213, 188]). The propagation of computer viruses
through technological networks is, of course, another natural area of application of epidemiological
models [182]. This issue is also analyzed in Chap. 12 below.

1.2.3 Wildfire and percolation phenomena

Mathematical models can be an important aid in establishing policies to limit the damage caused
by wildfires in forests. The model should answer, for a given spatial distribution of trees, questions
such as “Will the whole tree population eventually burn?” or “What will be the shape of the front
line of burning trees?” More generally the model should gauge the influence of the network structure
and, hopefully, lead to the design of tree distributions for which the propagation to the whole forest
is unlikely.

Wildfire models seem, conceptually, related to epidemiological models. Nevertheless, there is
an important mathematical difference. Models in epidemiology deal with a finite population and
focus on the persistence of the pathology in time. Wildfire models, on the other hand, consider
a potentially infinite forest and study the spatial extension of the fire. The latter is, therefore,
directly related to percolation models, as mentioned above. See [120] for recent related work as well
as Chap. 5 and Chap. 14 in this book.

The mathematical ingredients of a wildfire model are the following. As usual, there is a lattice,
for instance Z2, with trees (potentially) sitting at its sites. The model is defined by the following
choices.

e The possible states of each tree. In its simplest version it must include three possibilities: non-
burning tree, burning tree and no tree (e.g. because it has burnt)

e Rule for the beginning of the fire. Possibilities are: the fire starts at a uniformly chosen tree
(finite lattice), to simulate accidents, or ignition instances are (space-time) Poisson distributed
to simulate lightning.

e Rule for the fire to pass from tree to tree. This should be a stochastic rule involving neighborhoods
whose shape depends on actual conditions in the terrain. Examples include, but are not limited
to, the nearest-neighbor CA. In general neighborhoods are assumed to be uniformly finite.

Let us, as example, detail the rules for the Drossel-Schwabl model. The situation at each site is
represented by three possibilities: 0 (no tree), 1 (burning tree) and 2 (non-burning tree). All the
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1 Overview 7

trees are simultaneously updated according to the following rules. Let us denote o (n) the state of
the site k at time-step n.

e A burning tree disappears at the next time step:
or(n) =1+ ox(n+1)=0 with probability 1 .

e The growth of a new tree by chance at an empty node k is tuned through a parameter p € [0, 1]
ox(n) =0 — op(n+1)=2 with probability p .

e A tree starts to burn at node k, either by ignition from another burning neighboring tree, or by
chance. The later probability is given by a parameter f:

opg(n) =2 — or(n+1)=1
. . 1 if at least one neighboring tree is burning;
with probability { f if no neighboring tree is burning.
Main general references on this specific model are [70, 69, 106]. An up-to-date reference for
practitioners is [221]. Different critical behaviors have been studied in [107] through simulations
and numerical analysis. Some theoretical results are given, for instance, in [48, 88]; see also [5].

1.3 The multiple faces of the PCA paradigm

CA and PCA were initially introduced both as theoretical models for decentralized systems and as
computational tools. Eventually, however, they were seized by different scientific communities which
exploited them in a number of directions, ranging from purely mathematical studies to practical
modeling of natural structures. At present, PCA can be considered a code word for a “parallelization
paradigm” that allows to clarify and deepen the understanding of fundamental issues in mathematics
and physics while, at the same time, leading to efficient computational procedures and simulation
algorithms. In Section 1.2 we discussed how the PCA paradigm contributes to the understanding of
some key non-equilibrium phenomena. Here we focus, instead, on issues and features pertaining to
the PCA dynamics in itself. These aspects are crucial for the design and trust of PCA as modeling
and computational tools.

1.3.1 Mathematical issues

1.3.1.1 The mathematical setup

Unlike asynchronous dynamics —e.g. coupled differential equations, spin-flip dynamics or interact-
ing particle systems— CA and PCA can be directly defined for infinite lattices of cells. Indeed,
its parallel character ensures existence of the corresponding process without involving some finite-
region limit or otherwise conditions on the parameters. We present in this section the main aspects
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of the mathematical definition of the automata, starting with a list of the main ingredients of the
setup:

The network G: This is a graph G = (V(G), E(G)) in which the set of vertices V(G) marks
the location of the automata (cells) and the set of edges E(G) corresponds to interaction (or
communication) channels between pairs of automata.

The alphabet S: Also called local space or spin space, describes the possible settings each automata
may take. In most CA (for instance in this book) S is a finite set and hence it is endowed with the
discrete o-algebra and topology, and the uniform measure.

The configuration space S¥ (%) : It represents the situation of the whole network of automata. It is
endowed with the product topological and measure structure. Below we denote configurations as
o = {0y : k € V(G)}, where oy, is the configuration of the automaton at k.

The neighborhoods Vi.: Each Vi, C V(G) represents the automata that can interact with the au-
tomaton sitting at k € V(G). For instance, a popular choice in G = Z? is Vj, = {k,k £ 1,k + €2}
where (e1,e3) is the canonical basis of Z? (north/south, east/west and center neighbors). This is
the so-called von Neumann neighborhood.

CA are discrete-time dynamical systems

Deterministic cellular automata are defined by the iteration of a transformation (global update) of

the form
FiSV©) s sv(©@)

(F(U))k = fk(UVk)

for some single-updating functions fi : S¥* — S. In many CA V(G) admits the action of the group
Z%. These actions are called translations and special emphasis is placed in translation-invariant CA,
that is those whose updating rules commute with these translations.

As an illustration, let us consider the already mathematically rich CA in which G = Z (one-
dimensional PCA). In this network translations are generated by the shift map

T:8% — §Z
T(o)r = Ok41

Translation invariance amounts, then, to homogeneity of neighborhood’s Vi, = Vi + k and single-
updating functions fi(c) = fo(T~%0) for some function f: SVo s S.

The Curtis-Hedlund-Lyndon theorem [115, Th. 3.1], characterizes translation-invariant CA trans-
formations within the framework of dynamical systems. It states that a map F from SZ to itself
is a translation-invariant CA if and only if it is continuous (in the sense of the product topology)
and commutes with the shift map. Moreover, if S has only two values, the map F' is surjective
if and only if it leaves invariant the uniform Bernoulli measure ®gezB(1/2). We refer the reader
to [155] for additional developments, to [130, 156] for recent results and to [142] for a recent survey
of one-dimensional CA in the framework of topological dynamics. Readers interested in general
introductions to CA are referred, for instance, to [129, 131]. See the Chap. 11 and Chap. 6 in this
book.
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1 Overview 9

PCA are interacting families of Markov stochastic processes

Stochastic updating rules are defined by Markovian transition-probability kernels. If V(G) and the
alphabet S are finite sets, these kernels are defined by functions of the form P(o | n), interpreted as
the probability that a configuration 1 at time step ¢ (¢ € N) will be updated into the configuration o
at time step t + 1. These functions must, therefore, satisfy the normalization condition

d Pln=1. (1.1)

The Markovianness stems from the fact that the distribution of the new configuration o is indepen-
dent of preceding configurations other than immediately preceding 7. In this finite setting, a PCA
corresponds to transitions of the form

P(o|n) =[] pr(on | nv,) (1.2)
keG

where {px(- | mv,), k € G, ny, € SY¢} is a family of probabilities on S. The product (1.2)
corresponds to a family of Markov processes, one at each site. Nevertheless, the processes interact
with each other because they share a common past configuration 7.

PCA, however, can be directly defined on infinite (but countable!) graphs G. In these CA,
transition probabilities are defined by probability kernels on SV (%) x SV(&) These are functions P(- |
-) whose two arguments are of a different nature. Indeed, the kernel is a probability measure with
respect to the first argument and a measurable function with respect to the second one. Explicitly,
the requirements are:

(i) P(- | n) is a probability measure on SV(&) for each n € SV().
(ii) P(A | ) is a measurable function for each measurable A ¢ SV(%),

PCA stochastic dynamics correspond to kernels of the form

P(do [ ) = ] pr(dow | nvi) (1.3)
kEG

where each pj, is a probability kernel on S x SV*. These product measures exist and are uniquely
defined due to Kolmogorov existence theorem. CA correspond to the particular CA in which the
measures pi (- | v, ) are delta-like.

It is important to distinguish PCA from interacting particle systems (IPS) [196, 149, 150, 62].
Both, PCA and IPS are Markovian processes defined by families of interacting stochastic processes.
The difference lies in the level of (a)synchronism. IPSs update one spin per time step (or a few
per unit time in the continuous-time version). Furthermore, the interactions in IPS models are not
only due to a common past but also to constraints and penalties imposed at the arrival time. These
aspects lead to delicate construction processes, involving limits of dynamics in finite parts of the
graph, that may be feasible only under supplementary conditions on transition probabilities and
rates. The study of processes on infinite graphs is not just mathematical entertaining, but it is made
necessary by the huge number of entities composing real-life systems (102> molecules in a cubic inch
of fluid, 10*! neurons in the human brain).
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10 Roberto Ferndndez, Pierre-Yves Louis and Francesca R. Nardi

Despite their differences, often PCA and IPSs offer alternative approaches to the study of the
same type of phenomena. One instance is the transport mechanisms and phenomena studied through
the Totally Asymmetric Exclusion Process that have similar manifestations in some PCA dynamics;
see [139, 55, 147], [155, part 4.3] and Chapter 16 in this book.

The degree of synchronism also distinguishes PCA from Glauber-like spin-flip dynamics such as
the ones used to simulate equilibrium spin models. PCA are specially suited for models in complete
graphs, such as mean-field (e.g. Curie-Weiss) models, but can also provide efficient alternatives to
study, with a controllable margin of error, the Ising and similar models [51, 143, 52, 179]. This issue
is discussed in Chap. 7 below.

Let us also mention the results in [64, 162] where the cardinality of directed animals on the lattice
is related to properties of some PCA dynamics. Exact solutions —that is, solutions determined by a
closed system of a few analytic equations— have been found for some PCA. See, for instance, [127]
for an exactly solvable non-reversible PCA.

1.3.1.2 Ergodicity and phase transitions

PCA in infinite graphs exhibit a rich taxonomy of invariant measures. These include product mea-
sures [156] and Markov random chains or fields [31, 49]. Further insight is achieved by studying
space-time distributions [146, 151, 156] which, not surprisingly, are found to be related to statistical
mechanical distributions in one further dimension [104, 146]. This relation is particularly fruitful for
reversible PCA, that is for stochastic dynamics invariant under time reversal [137, 112, 61, 141, 151].
The connection between PCA and space-time statistical mechanics links the lack of ergodicity in
the former with phase transitions in the latter. A PCA is ergodic if whichever its initial condition, it
asymptotically converges in distribution to a unique invariant measure. In space-time picture, lack
of ergodicity can often be related to a statistical mechanical phase transition triggered by boundary
conditions on the initial space boundary of the space-time domain. Such lack of ergodicity was first
rigorously exhibited in the simple (“toy”) models presented below. Let us point out that, for in-
stance if all transition probabilities are strictly positive, the dynamics is ergodic for a finite number
of automata but looses this property when the number of automata becomes infinite. This is a
remarkable example of global effect emerging when infinitely-many sites interact.

Phase transitions are associated to multiple invariant measures. It is natural to wonder whether
when the invariant measure is unique the automata is necessarily ergodic (that is, this measure
is attained for all initial configurations). The answer is negative [36, 125]. Transition probabilities
usually depend on one or several parameters. The catalog of invariant measures for different values
of those is called a phase diagram, in analogy with the statistical mechanical nomenclature. The
rigorous determination of phase diagrams is often a difficult task and numerical studies are the only
available option. See [195] for a numerical analysis of the phase diagram of some majority voter
PCA. See also Chap. 15 below.

The Stavskaja model

This is the first model in which lack of ergodicity was rigorously proven. The model, to be considered
in Chap. 13, depends on a noise parameter € > 0. Its definition is as follows:

(S1) Graph G = Z.
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1 Overview 11

(S2) Alphabet S = {0,1}.
(S3) Neighborhoods Vi, = {k — 1, k}.
(S4) Updating rule: For ¢ € [0, 1] fixed

o 1if77k:7]k_1:1
pe(1 | npp—1,ky) = {5 otherwise (1.4)
For € = 0, this is the elementary CA with rule 192 (Wolfram’s denomination [214]) —see Table 1.1.
Such rule is not symmetric under the interchange 0 <» 1 but has both configurations 1 (“all ones”)
and 0 (“all 07) as fixed points. If 0 < ¢ < 1 the dynamics can be thought as Rule 192 followed by a

Vi.’s pattern at time n — 1|111 110 101 100 011 010 001 000
ncwstateinkattimcnll 1 0 0 0 O O O

Table 1.1 Elementary Cellular Automata rule 192.

non-symmetric noise —error mechanism— which flips “0” into “1” independently with probability &
while leaving “1” unaltered. The resulting PCA has the following properties:

(SN1) The configuration 1 is absorbing, already in finite volume.
(SN2) The rates are not all (strictly) positive.
(SN3) The dynamics is not reversible.

The Stavskaja PCA is ergodic in its finite-graph version, but the ergodicity is lost for the full
lattice for small values of €. The precise result is as follows.

Theorem 1. For the PCA defined by (S1)-(S4) above there exists a critical value e* > 0 such that:

(i)If € > €* the dynamics is ergodic with lim, o P,(o(n) =) = 641(-) for any initial distribution

p-
(1) If 0 < e < &* there is a second invariant measure in which the value 0 survives:

lim Ps,(0(n) =-) = pe(-) # 041 - (1.5)
n—oo
Furthermore, every translation-invariant stationary distribution is a conver combination of u.
and d41.

The proof was first described in [191] and spelled out in [210]. More recent developments are
given in [164, 59, 200] and Chap. 13. The exact value * is still unknown. Numerical simulations
and estimation give €* ~ 0.29450. Figure 1.1 shows a sample of a space-time diagram for ¢ slightly
subcritical.

The North-East-Centre PCA model and the erosion property

This very celebrated PCA is defined as follows:

(N1) Graph G = Z2.
(N2) Alphabet S = {0, 1}.
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12 Roberto Ferndndez, Pierre-Yves Louis and Francesca R. Nardi

Fig. 1.1 Sample of a space-time configuration of the Stavskaja model. The parameter value is ¢ = 0.28. Boundary
conditions were chosen periodic. The initial configuration is a central activated site (1) and the other sites are
inactivated (0). Black (resp. white) squares represent activated (resp. inactivated) sites. Time is running downwards.
Simulated using FiatLux software [77].

(N3) Neighborhoods Vi, := {k,k —e1,k + ea}.
(N4) Updating rule: For ¢ € [0, 1] fixed

(0 | m,) = (1 — &) (1 — Maj(nv,)) (1.6)
where Maj(o,,0y,0.) is the value adopted by the majority of the three arguments.

For ¢ €]0, 1[, the NEC PCA is a noisy perturbation of the majority CA, defined by

fk(O'Vk) = Maj(ovk). (17)

The error mechanism is, in fact, identical to that of the Stavskaja PCA and, as a consequence, the
NEC shares with the latter the features (SN1)—(SN2) listed above. The NEC PCA, however, has
many more absorbing configurations, for instance those formed by an arbitrary number of vertical
and/or horizontal lines filled with “17.

The NEC PCA has, however, two additional properties that act in opposed direction and which
are responsible for very eventful space-time diagrams:

The erosion property: The associated CA (1.7) is such that finite sets of “1” sites in an otherwise
all “0” configuration disappear in a finite time, and similarly for islands of “0” inside a “1” sea.

Alignment-suppression property: There exist “spiders” formed by a few segments of sites such that,
once they are filled with “1”, the dynamics propagates these “1” to the interior of a sphere. As
discussed in [84] this means that presence of a sphere of “1” is penalized by the invariant measures
only as a sub-volume exponential. This contradicts well known Gibbsian properties and implies
that all invariant measures for the NEC are non-Gibbsian.
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1 Overview 13

The loss of ergodicity for small € was proven by Toom [203] introducing carefully defined space-
time contours and has since become a model argument to prove non-ergodicity in PCA. There has
been a number of rewriting, reinterpretation, refining and extensions of this pioneer proof. Interested
readers can consult, for instance, Chap. 13 and [153, 178, 15, 65, 111].

The Positive Rate Conjecture

There exist different sets of sufficient conditions ensuring ergodicity of PCA [154, 85, 152, 46]. Many
of those require local updating with positive rates:

pr(s|nv,) > 0, VEE€ G, s€S ny €8V, (1.8)

This property implies that all pair of configurations have positive probabilities of being mutually
reachable. In particular no absorbing states are possible. The long standing positive-rates conjecture
stated that all positive-rate PCA on G = Z are ergodic. This conjecture was proved to be false
through a complicated example in [93, 108]. The design of an understandable counterexample with
S = {0,1} is still an open problem.

1.3.1.3 Random perturbations of CA

One of the motivations of introducing PCA was to study the stability of CA under random pertur-
bations. In this regard, the non-ergodicity results of the Stavskaja and NEC PCA reported above
point in the direction of stability of the Rule 192 (Table 1.1) and majority [rates (1.7)] CA under
an asymmetric noise that flips “0” into “1” with probability €. Indeed, the perturbation is proven
to preserve both CA fixed points —d; and dp— though the latter becomes a non-trivial probability
measure supported in configurations that include infinitely many “1” (due to the erosion property).
The question arises as to how dense these “1” are.

Kinzel [136] studied this question for stochastic perturbations of the CA defined by rule 90 in
Wolfram’s denomination [214] (Table 1.2). Performing a non-rigorous extrapolation from finite-size

Vi.’s pattern at time n — 1|111 110 101 100 011 010 001 000
ncwstateinkattimcnlo 1 0 1 1 0 1 O

Table 1.2 Elementary Cellular Automata rule 90.

scaling, Kinzel concluded that the invariant measure obtained by perturbing dp has zero density
of “1” for small noise. This conclusion was shown to be false in [24], for arbitrarily small asymmetric
noise. As soon as € > 0, the probability of survival of “1” is strictly positive uniformly in the size
of the system. This shows that even a very small noise can change properties drastically and,
incidentally, that to formalize arguments based on finite-size scaling is a delicate task.

The proof in [24] is based on a connection with a process of oriented percolation. This type
of connections has been later exploited, for instance, in [67]. The connection of PCA long-time
behavior with processes of directed percolation is part of the epidemiolgy scenario discussed above
and has been developed in [71, 132, 181, 165, 175, 133].
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14 Roberto Ferndndez, Pierre-Yves Louis and Francesca R. Nardi

1.3.2 Computational issues

Synchronous, or quasi-synchronous updating turn PCA into natural tools for efficient parallel com-
puting algorithms [56, 57, 217]. Here we present the main issues addressed by the theory of CA and
PCA as computational tools.

CA as universal computational systems

A computational system is said universal if it can run any program or, equivalently, execute any al-
gorithm. Such attribute can be exhibited, for instance, by proving that the system can run programs
equivalent to any program run by a Turing machine. The first CA proven to be computationally
universal was Rule 110 (Table 1.3), analyzed in [47]. Recently, there have been exhaustive stud-
ies [198, 161] on the computational properties of all the elementary cellular automata (ECA) in
Wolfram’s classification [214].

Vi.’s pattern at time n — 1|111 110 101 100 011 010 001 000
new state in k at time n| o 1 1 o0 1 1 1 0

Table 1.3 Transition’s rules of elementary Cellular Automata rule 110.

CA and PCA as decentralized computational systems

Both CA and PCA are archetypical models of decentralized computing. Each cell has its own re-
sources and operates at each time step exchanging information and results only with neighboring
units. Global features of the system emerge as collective results of these local interactions, without
being driven by any external rule (or only partially ruled by external factors, as could be argued for
global magnetic fields in Ising-like systems). The attributes of the computational approach offered
by cellular automata are appropriately summarized in the “formula” stated in [193]:

simple + parallel 4+ local = cellular computing .

Outputs of CA and PCA provide instances of self-organizing behavior, and constitute a natural
framework to relate this with the theory of formal languages and measures of algorithmic complexity.
These issues are discussed in [216]. See also [34] for an introduction to algorithmic complexity.

PCA as stochastic algorithms
Stochastic algorithms tend to have better convergence properties than deterministic ones. Perhaps
the main reason is that the former incorporate mechanisms to avoid or escape the drift towards local

minima that constitute terminal traps for the latter. Nevertheless, in the presence of randomness
these traps become metastable states from which escape times, though always finite, can become
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1 Overview 15

excruciatingly long. At this point the mathematical issue of ergodicity, discussed above, has a direct
relevance.

In finite networks, most PCA dynamics can be proven to be ergodic, guaranteeing the eventual
convergence of the associated algorithm to a well defined final law. This is a consequence of general
results in the theory of Markov chains, which apply for instance to positive rates PCA dynamics.
Nevertheless, finite systems are expected to exhibit metastable behavior if the associated infinite
system undergoes a phase transition/loss of ergodicity phenomenon. This is a well-known fact for
MCMC practitioners [74, 128]. The issue was rigorously studied for a parallel implementation of
the Gibbs sampler associated to the Ising Hamiltonian [112, 61, 40, 49] and in connection with the
simulated annealing approach for stochastic algorithms [86].

PCA and robustness with respect to errors

PCA constitute, on the one hand, the natural framework to study sensitivity to round off and
other sources of errors in CA computations and, on the other hand, an excellent laboratory for the
design of robust and trustworthy computational approaches. This perspective has been analyzed
in [92, 111] and, more recently, in [183, 83, 16].

Ergodicity, in particular, corresponds to (extreme) robustness with respect to the initial condi-
tions. The ergodicity for a PCA dynamics on G = Z is proven to be undecidable from an algorithmic
point of view. See [205, 28] and [155, subsection 3.1]. In a complementary way, the sensitivity to
starting conditions implied by the absence of ergodicity has also been put to good use through PCA
computations. A conspicuous example are the PCA dynamics that solve the majority or density-
classification problem, namely to determine, on the basis of large-time outputs, whether there was
a majority of some spin value in the starting condition [90, 163, 80, 4]; see Chap. 10 below.

Synchronicity and updating schemes

While parallel (synchronous) updating has obvious mathematical and computational advantages,
sequential (asynchronous) updating has also important favorable features. For instance, the latter
is well adapted to simulations of short-range spin models and, on the practical front, does not
require the existence of a universal clock to which all the automata must synchronize. Furthermore
sequential sampling can be fine-tuned by adopting an appropriate updating scheme (e.g. uniformly
at random, random with respect to the last updated node or deterministic).

The question arises whether efficiency can ultimately be improved by adjusting both the degree
of synchronicity and the updating scheme. This issue has been actively investigated in the last
two decades [18, 2, 184, 35, 82, 58]. A promising alternative are the so-called a-asynchronous PCA
in which, when updating time arrives, the node is updated with probability a and otherwise left
invariant. See the survey paper [79] and the references therein for more details.
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1.3.3 Applications of PCA

PCA models have found applications in a diversity of fields from exact, natural and social sciences.
We offer in this section an overview of the reach of these applications.

PCA as a flexible modeling and simulation framework in a variety of applied contexts

The seminal work of Vichniac [211] placed CA as an ezact modeling alternative to differential equa-
tions and not only as an approximation scheme [201, 159]. See for instance [124] for a comprehensive
development. Here is a comparative list of advantages of cellular automata approaches:

e PCA models are simple to define if rules are given on a context-dependent basis. They provide a
complete description of the evolution of the system even at the level of individual agents (cells)
or of clusters of few individuals (“low-level” description).

e Models based on differential equations are suitable, in general, only for large space and time
scales and if there is some level of homogeneity or some “steering global influence” that justifies
a description in terms of densities.

e PCA belong to so-called individual-based models, that is:

— They are based on information given at the individual level and, therefore, have a number of
variables proportional to the number of individual cells.

— Simple low-level rules are the only source of the complex global phenomena or collective
behavior that may eventually emerge at the level of the whole population or of a high fraction
of its individuals (“high-level” phenomena).

e Unlike differential equations, PCA can incorporate specific individual attributes. The framework
is particularly appropriated for systems which can be decomposed into interconnected elementary
entities and where there is lack of homogeneity like in biological systems.

e PCA approaches can describe fluctuations which integro-differential approaches in general
smooth out, average or neglect.

e PCA modeling applies at scales where no averaging is reasonable and therefore not amenable to
analysis through differential equations.

Some general references on the connection between low- and high-level scales are [192, 60, 177],
and [12, 187] for modeling considerations. Of particular interest is the recent development of hybrid
models involving different time or space scales. We cite for instance [167] where a CA approach is
used with an environment governed by a partial differential equation. Another original contribution
is the reverse engineering approach developed in [122] to find out PCA rules able to generate some
fixed experimental patterns.

As a preliminary glimpse for interested readers here is a (very incomplete!) overview of modeling
applications of PCA in different scientific and technological areas.

PCA as models for complex systems

PCA dynamics have two distinctive features:
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1 Overview 17

e FEmergence: Complex collective behavior appears solely as a result of local rules. We refer to [145,
109] for a general presentation of the emergence concept in physics, life sciences and economical
and other social phenomena.

e Multiscale behavior: This emergence acts at different scales with different levels of complexity.
This multiscale feature is, in fact, a trademark of complex phenomena. See, for instance, [158]
and the recent book [116] for a discussion of this aspect of the automata.

These attributes make PCA one of the most used class of models to analyze complex systems [215,
38, 13, 11]. PCA simulations are useful to understand complex behavior and to make predictive
analysis. These predictions can often be rather surprising and counter-intutitive, as illustrated in
Chap. 18 of this book.

PCA as models for life sciences

PCA systems are of great value in biological modeling, due to their sensitivity to space heterogeneity
and their capacity to give rise to self-organized global structures. See [95] for a survey of life science
applications and [116, 166, 10] for general modeling considerations. More specifially, PCA have been
successful tools to describe pattern formation in cell development (morphogenesis) [63, 206] and cell
biology [39, 96], specially in relation to multiscale phenomena [189, 3, 114, 60]. Other applications
include immunology [202, 219, 26, 222]; neurosciences [105, 138, 135, 157, 94] and Chap. 17 of this
book; oncology [126, 60, 199], and epidemiology [148, 19, 91, 168, 194, 213, 75].

In ecology, PCA models have long being proposed both as a paradigm [117] and to describe or
simulate concrete issues. These include, for instance, evolution [180] and population dynamics [87,
29]. Most of the studies were of numerical character, but some rigorous results are also available [73,
169]

To conclude, let us mention, as part of the life sciences applications, a stochastic extension of the
famous game of life (deterministic) CA, which was studied through computer simulations [170].

PCA as models for social sciences

Opinion dynamics have been modeled through PCA in which spin values correspond to voting
opinions [8]. The use of PCA systems has been advocated [14, 76] to model the evolution of markets
driven by economic or financial agents. Such models have been applied to study crisis propagation in
a network of companies, discriminating among different regimes that range from almost independent
entities to strongly interconnected markets [14, 121, 103, 50]. See Chap. 4 below.

PCA as models for exact sciences

PCA have been proposed as a general model for physical phenomena [37]. At present, the literature
involving PCA in physics and chemistry is immense. Readers can consult the proceedings of the
2014 International Conference on Cellular Automata for Research and Industry [113] to have an
idea of the state of the art. Recent notorious contributions range from an analogy with chemical
reactions [186] and traffic models [220]. See also Chap. 16 of this book for a study of transport in
lattice gases.
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18 Roberto Ferndndez, Pierre-Yves Louis and Francesca R. Nardi

PCA as models for art

Perhaps not surprisingly given the plethora of patterns cellular automata can produce, PCA have
also found applications in the visual arts. See [81] and Chap. 1.5 of this book.

1.4 Future perspectives

As a result of the intense activity in PCA modeling, both theory and applications are moving into
new directions that require extensions and refinement of the present conceptual framework and
available techniques. Here are some pressing issues.

General alphabets

All the automata studied so far have finite discrete alphabets. The need to consider more general
alphabets —-including, perhaps, some global constraints— relies both on mathematical [30] and
modeling reasons (see e.g. Chapters 18 and 19 of this book). Here are further examples that justify
the development of a more general theory:

Cellular Potts models for biological tissues require very large alphabets.

e The swarming model considered in Chap. 16 is a fully synchronous PCA with some conserved
quantities.
Countable spin spaces are considered in an ecological context in [17].

e In Chap. 8, the interacting Pélya urn model is seen as a PCA with S = [0, 1]. Automata with
continuous alphabets are sometimes called continuous automata [33].

General interactions

Historically, the interactions among automata have been of finite range. This is consistent with the
interest in computer science to settle questions relating local and global transfer of information.
Nevertheless, the modeling of dynamics of complex systems or the simulation of non-equilibrium
statistical mechanical systems require more general types of interactions. A few examples:

e Models with global constraints [78], Chapters 16, 18 in this book and [7] (swarming models;
silicon cells as in the CPM model, and models for glioma cell migration).

e Mean-field interactions, modeled in versions used for equilibrium spin models [25, 9, 144].

e Theoretical generalizations of PCA for simulation purposes [6].

Disorder
The architecture and the parameters of real-life networks are themselves subject to errors and

fluctuations. Appropriate models require, then, the introduction of disorder either in interaction
parameters —like in random field Ising models [20]— or in the underlying graph where the automata
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1 Overview 19

sits —like the power-law random graphs describing social and electronic networks [68, 218]. Yet
another type of disorder of interest is the one characterizing the stochastic spatial models [72], in
which sites can “mutate” their state. Updating rules can also change in a disorderly fashion. This
possibility can be related to the issue of using observed data to statistically infer updating rules as
in Chap. 20 of this book.

Implementation as computational schemes

The exceptional potential of PCA for high performance computations has not yet been fully ex-
ploited for research-oriented simulations and computations. Some pioneer examples that point the
way for future developments are the following.

e The implementation [143] (and Chap. 7) of a toy PCA on parallel architectures (like GPU units)
for theoretical research purposes.

e The implementation on parallel architecture of classical stochastic algorithms (MCMC, Gibbs
sampling, stochastic approximation). It can be done in a synchronous or quasi-synchronous
way [97].

e The use of PCA in [101] to find large cliques in Erdés random graphs.

e The connection to statistics and machine learning algorithms recently presented in [207].

1.5 Structure of the book

PCA have deservedly gained widespread recognition as versatile and efficient computational and
simulation tools. They are presently been used in many areas of knowledge ranging from pure
probability to social studies and including a wealth of scientific and technological applications.
Furthermore, they constitute interesting mathematical objects on their own, whose theory lies at
the crossroad of probability, statistical mechanics and theoretical computer science. This situation
has led to a highly diversified pool of theoreticians, developers and practitioners whose interaction
is highly desirable but can be hampered by differences in jargon and focus.

This book —as the workshop in which it is based—- is an attempt to approach these different
research communities by offering a tribune for them to present achievements, pressing issues and
future directions. The book is not intended as a treatise, but rather as a gentle introduction, for
a general readership, of the role and relevance of PCA technology. The goal is to foster interest
of newcomers and interaction between the different community-dependent perspectives, hopefully
promoting new syntheses and applications. Each chapter can be read independently, in particular it
carries its own bibliography section. Notation and formal aspects vary, according go standard usage
in each research area, but differences are not dramatic and transitions should be straightforward
for the reader.

The remaining of the book is divided in three parts oriented towards different families of appli-
cations:

Part I: Probability and statistical mechanics. Its seven chapters deal with probabilistic issues arising
from the use of PCA as statistical mechanical models. These models share properties—and have
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contrasting attributes— with the standard sequential stochastic models used in out-of-equilibrium
statistical mechanics.

Part II: Computer science and discrete dynamical systems. The six chapters of this part are de-
voted to central questions regarding robustness and computational aspects of PCA. Issues include
comparisons with deterministic CA, general mathematical properties (e.g., convergence to a fixed
point, phase transitions, existence of invariant measures) and determination of computations best
suited to the use of PCA (e.g., density classification [27, 80]). Here, the term “computation” is
intended in a general sense which includes, for instance, pattern formation [63] and classification of
initial conditions. A particularly interesting question is to which extent randomness helps to speed
up computations.

Part III: Applications to natural sciences and computational (cell) biology. It is formed by five
chapters with applications to cell functions (e.g. Cellular Potts Model and stability of emerging
patterns), challenging aspects of computational biology (Chap. 17, Chap. 18 and Chap. 19) in par-
ticular weakened parallel with CPM, and multiscale modeling of atmospheric or oceanic circulation
(Chap. 20). Chap. 16 introduces a model of swarming.
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