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Chapter 1

Introduction

Understanding the focus of attention is a challenging computer vision task

with many valuable and interesting applications. Attention may be directed

towards other people or objects in the scene and both these cases represent

strong cues in understanding people behavior. For the first case, usually re-

ferred as social signals and/or group behavior analysis, a reliable prediction

on who is looking at whom is the main cue to seek. Group behavior is of-

ten defined in terms of spatial disposition and orientation of persons (people

formations). However, body orientation estimation without gaze informa-

tion may often lead to ambiguous predictions. Understanding instead what

objects are looked at and for how long is also of great interest for retail com-

panies that may want to obtain a large dataset of customer behavior. This

is often solved by tracking all the persons in the scene and consequently gen-

erating heat images, registered with the shop maps, that indicate customer

persistence. Although, even if the scene strongly constrains people position,

such as in a supermarket aisles, there is a lot of ambiguity if we consider

just the position. If we are willing to detect which products draw people

attention in a shop, gaze estimation is the only option.

A slightly different but complementary task is profiling the interests of a

single person in a given environment. In this case, instead of accumulating a

global statistic from all persons behavior, a single profile is sought. In par-

ticular, given a set of person detections, the goal is to build identities and

the corresponding interest profiles. Identity building is a problem similar

to clustering and is usually solved exploiting person re-identification algo-

rithms [62]. Once a certain amount of detections of a single individual are

1



2 Introduction

connected an interest profile can be built. In this situation a higher precision

is required since the amount of samples are scarcer.

Passive profiling finds several interesting applications in the cultural her-

itage scenario [53]. For example, user profiling can help solving many issues

Museums struggle to cope with; like personalizing content for visitors. Per-

sonalization should both increase engagement and satisfaction creating a

dedicated view of museum collections and suggesting novel cultural paths to

explore. Moreover a recommender system may, also building from previously

watched people behaviors, help in planning further tours towards different

cultural venues, places of interest or museums.

To this end both person gaze and position in the scene are very crucial tasks

for a correct attention estimation; how far an object is from the person could

not be a sufficient hint. Gaze is usually inferred through head/body pose

estimation which requires fast and accurate methods to detect the person.

Person detection is important in many video surveillance tasks of computer

vision, like tracking [52, 80], person re-identification [59, 60] and human be-

havior analysis [28,58]. However, designing a generic pedestrian detector that

works reliably and efficiently on different scenes remains a challenging task.

Difficulties arise mainly because of changes in the camera viewpoint, different

illumination conditions as well as the distinct backgrounds that characterize

each scenario. Significant advances on person detection have been proposed

in many research works in the last decade, as surveyed in [13,38,97]. These

solutions focus on improving one or more stages of a person detector pipeline,

as shown in Figure 1.1, which usually includes: pyramidal representation of

the imaged frame to account for the different scales at which a target may

appear; mapping of image content into a feature space to improve the capa-

bility to discriminate within the scene; content classification in the detection

windows; and selection of the windows that most likely contain a target.

Typically, a detection window of fixed size is slided over a predefined grid

with a fixed sampling rate until the frame is fully scanned. Since persons

can appear at different scales, the process is repeated on each rescaled image

of the pyramid. However, in most of the cases, both sliding the window

over the entire image at different scales and feature extraction and clas-

sification at each window have shown to be prohibitively costly to run in

real-time [33, 37]. Solutions to expedite the different stages of the pipeline

have addressed feature computation with new efficient and effective feature

extraction methods [14, 34, 35, 98], or introduced strategies to reduce the
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Figure 1.1: Standard execution pipeline of a multi-scale person detector.

computational cost of classification at each detection window [6, 19, 42, 82].

A few other researchers have proposed strategies to reduce the number of

windows by selecting only those that are more likely to contain the target

and obtain in this way a significant performance speed-up [12,33,57,73].

Although all these methods have proved to be effective in reducing the com-

putational effort, none of them has considered the opportunity of exploiting

scene information (i.e. the statistics of the persons in the scene) that is

typically available and usefully exploitable in most real contexts. In fact, in

most of the real cases cameras are installed in fixed positions and observe a

part of a scene. So, it is possible to learn a prior of the scene.

1.1 Contributions

We present in this thesis different solutions to obtain user interest profiling.

The contribution of this work is divided into two main themes. The first one

is related to the person detection and its complexities, while the second one

deals the gaze estimation problem in low resolution image, without the need

of a tracker. The thesis is organized as follow.

In Chapter 2 we review the state of the art methods for person detection

and gaze estimation.

In Chapter 3 we present an approach to automatically improving the effi-

ciency of the soft cascade-based person detectors, which addresses in the two

fundamental bottlenecks in cascade detectors: the number of weak classifiers

that need to be evaluated in each cascade, and the total number of detection

windows that must be evaluated.

Following this latter line of research, in Chapter 4 we discuss an extension

with a scene-dependent windows proposal method that grounds on gaussian

mixture modelling of locations and scales of the persons in a scene.

Chapter 5 deals with the particular problem of person gaze estimation
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in images and videos. We propose a coarse gaze estimation which can be

exploited for video surveillance, for the analysis of social behavior interaction

and for attention profiling. The solution exploits frame-to-frame motion

information and therefore does not need to track every person in the scene, or

perform complex and computationally onerous global optimization requiring

the knowledge of the entire person trajectory.

In chapter 6 we present a real working installation opened in February

2015 at the National Museum of Bargello, namely Mnemosyne. Based on

passive observation of the tourists during the visit, Mnemosyne extracts

a profile of interests for each visitor and provides contextual information,

author biography, related artworks and sites, based on the user’s preferences.

In appendix A we describe the MuseumVisitors dataset [10] for person

and group behavior understanding on which tracking, detection and coarse

gaze estimation can be evaluated. All frames are recorded at National Mu-

seum of Bargello in Florence, Italy. The dataset provides camera calibration,

object locations, annotation of groups, identities and occluded parts. The

dataset has been recorded across different times of the day thus generating

challenging sequences in term of lighting conditions.

Finally, in appendix B we present a Web Annotation Tool for Surveillance

Scenarios (WATSS), developed to annotate the MuseumVisitors dataset.

WATSS allows multiple users for concurrent annotations, with the possi-

bility to insert groups and people identities, gaze and body occlusion.



Chapter 2

Literature review

This chapter gives a brief survey of related work on person detec-

tion and coarse gaze estimation. In the first part of the chapter,

we review the state of the art of methods to speed-up the execu-

tion pipeline of a multi-scale person detection, while the second

part deals with the problem of coarse gaze estimation on surveil-

lance like scenarios, where head and body imagery are usually low

resolution.

2.1 Multi-scale person detection

Recently many techniques have been proposed that improve the detection

process both in terms of accuracy and efficiency. These methods can be

roughly grouped based on the domain on which they act: the multi-scale

feature representation, the method used for proposing detection windows or

exploiting scene geometry, and the classifier used.

Notable solutions that expedite the computation of features in the de-

tection window were proposed in [14, 34, 35, 37, 98]. In particular, in [35]

the authors proposed the Haar-based Integral Channel Feature (ICF) for

integral images that combines different types of features in an efficient way.

This results in a reduction of computational effort with no loss of accuracy

in the detection process. An approximation of ICF was proposed in [34]

where features are extracted only at the middle-level of each octave and the

nearby scales are obtained by interpolation. This approximation was ex-

ploited by Benenson et al. [14] in combination with three classifiers trained

5
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on the three octaves of the pyramid. This moves the complexity of feature

extraction from test to training time. A generalization of ICF was proposed

by [98] that uses different filters bank instead of rectangular filters. All these

methods however do not achieve a significant speed-up in the whole detec-

tion process although they proved to maintain good discriminative power.

In order to reduce the cost of feature extraction in the pyramid, Dollár et

al. extended the ICF into the Aggregate Channel Feature (ACF) [37], where

distinct channel features obtained from block of pixels are aggregated.

Other researchers proposed new classifier architectures that perform ef-

fective classification at reduced computational cost [19,42,82]. Bourdev et al.

proposed the Soft Cascade [19] where detections are evaluated at each node

by taking into account also the weak-classifiers responses at the previous

nodes. This permits early rejection of false positives, so reducing classifica-

tion time while improving detection rate. In [82], an entropy-based rejection

criterion was introduced in the Soft Cascade in order to allow early stop-

ping of the evaluation of negatives. Felzenswalb et al. used the part-based

deformable models (DPM) in conjunction with a cascade architecture to im-

prove the detection accuracy [42]. Although all these methods achieve a

good trade-off between accuracy and speed-up, nevertheless none of them

has real-time performance. Solutions that exploit neural networks were pro-

posed in [6, 26, 83]. In particular, in [83] a deep model was used to learn a

discriminative representation of a person considering both person attributes

and scene attributes. In [26], a two-stage system was proposed. In the first

stage, the ACF detector is used to filter out the negative windows. Positive

windows are then evaluated in the second stage with a trained Deep Con-

volutional Neural Network to obtain a feature that is used for classification.

In [6], the feature cascades of [14] were used in a Deep Neural Network to

speed-up the classification. All these methods require GPU implementations.

Solutions that avoid the sliding window over the full pyramid and use

sparse windows proposals were presented in [51, 64, 75, 85, 93, 100]. These

solutions reduce the number of detection windows to be evaluated either

exploiting appearance properties and segmentation or adding constraints on

the positions and scales of the target. In particular, in [51], the authors

evaluate only the salient regions in the image. They are identified accord-

ing to three distinct criteria: the visual contrast (uniqueness), the degree

of blur (focusness) and the likelihood of having full visibility of the tar-

get (objectness). In [75], the initial candidate windows are obtained based
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on an objectness prior considering the distribution of edges in the image.

Then, efficient cascades are learnt to estimate the importance of the selected

windows. Selective search was used in [85] to generate the most likely ob-

ject locations based on hierarchical grouping. At each iteration region-level

similarity is used to merge sub-regions of the image considering both tex-

ture and size information. In [64], to estimate salient regions, the authors

merged superpixels based on a connectivity graph using partial spanning

trees. The bounding box associated to each tree represents the location of a

candidate window. In [100], salient regions were generated considering the

edges extracted in the image and the importance of each window candidate

was defined by the number of contours inside its region. In [93], superpixels

were hierarchically grouped by considering the homogeneity of subregions.

Although these sparse windowing strategies allow to reduce the number of

detection windows to evaluate, none of them executes in real-time.

A priori information about the geometry of the scene was also used. In

particular, in [12], the authors used stereo information to estimate stixels (all

objects in the scene are described as vertical flat sticks on the ground) and

determine targets height. In [8], the authors reduced the number of stages

to be evaluated in the Soft Cascade and used spatial and scale statistics of

persons in the scene. However, these solutions assume strong geometrical

constraints, such as the vanishing line within the camera field of view [12] or

a fixed grid superimposed on the image view [8].

Scene-specific person detectors have also been proposed [48, 50, 65, 89].

In [89], the authors introduced a transfer learning framework to adapt a

generic person detector to a specific scene. To extract the training sets they

considered both motion and scale information of the targets along with a

path model. In [50] a verification strategy based on short-term tracking

have been used to generate an accurate training set from the scene and train

a classifier. A similar solution have been proposed in [65] that exploits target

tracklets. Synthetic projections of persons on the image plane according to

the geometry of the scene have been exploited in [48] to train a location-

specific person detector. These solutions do not reduce the computational

complexity of the detection process but focus on the automatic extraction of

positive and negative samples to train a scene-specific classifier.
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2.2 Coarse Gaze Estimation

Gaze and attention analysis are central topics in computer vision. In par-

ticular, gaze is usually inferred through head pose estimation which is in

turn estimated by exploiting fast and accurate methods to detect stable face

landmarks [55, 76, 94]. An even preciser gaze estimate can be computed by

locating pupils inside eyeball regions [99]. However, all these methods re-

quire a fairly good resolution to obtain a reliable landmark estimation thus

considering faces not smaller than 200 pixels. In visual surveillance scenar-

ios, even if high resolution cameras are employed, it is often infeasible to

obtain such resolution for all the faces of interest. Moreover, landmark and

eye-detection based methods require frontal or profile faces to work, while

persons are evenly imaged frontally or from their back.

For these reasons a different line of research tackled the relaxed problem

of coarse gaze estimation [15, 17]. Instead of deriving a full 3D transforma-

tion for the head, coarse gaze estimation sets the goal of predicting the 2D

orientation of the head with respect to the camera. For calibrated cameras

such gaze can also be projected onto the scene ground plane [78].

Gaze prediction can be improved considering cues other than face im-

agery. Benfold et al. make the point that a gaze model is also context

dependent, and propose an unsupervised model for learning scene-specific

classifiers [16]. Another very relevant cue is obtained from the body orien-

tation. Indeed the torso orientation poses a very strong constraint on the

possible gaze angles. Moreover, if a person is in motion, the walking direc-

tion, which can be already used as weak predictor is also extremely relevant.

Chen et al. learn body-head and velocity-head coupling factors [25]. Their

approach is shown to improve with respect to [16]. However, both these

approaches exploit a temporal model and therefore need a reliable tracker.

Multi-target tracking is a very challenging task that can also be prone to

failure in case of crowded environment. Moreover, being tracking the first

block of a processing chain, its failure may lead to inconsistent results.



Chapter 3

Unsupervised scene adaptation

for faster multi-scale pedestrian

detection

In this chapter we describe an approach to automatically improv-

ing the efficiency of soft cascade-based person detectors. Our

technique addresses the two fundamental bottlenecks in cascade

detectors: the number of weak classifiers that need to be evalu-

ated in each cascade, and the total number of detection windows

that must be evaluated. By simply observing a soft cascade oper-

ating on a scene, we learn scale specific linear approximations of

cascade traces that allows us to eliminate a large fraction of the

classifier evaluation. Independently, we learn a coarse geometric

model of the scene that allows to reduce the number of candidate

windows run through the cascade. Both of our approaches are

unsupervised and require no additional labeled person images for

learning.

3.1 Introduction

Person detection provides the basic measurement model for tracking and

person re-identification and is therefore a fundamental component of most

modern surveillance systems. However, due to its computationally onerous

9



10
Unsupervised scene adaptation for faster multi-scale pedestrian

detection

nature it is also the bottleneck in many systems. The general problem of

detection has emerged as one of the major themes of modern computer vision

research. Person detection in particular is an highly active topic of research.

It has received a lot of attention in recent years, but remains an extremely

difficult problem.

Person detection in unconstrained scenes is computationally expensive for

several reasons. First of all, without knowledge of the geometry of the scene,

every location and scale must be scanned for potential detections. Second,

in the soft cascade detection architecture, currently the state-of-the-art for

efficient person detection, a cascade of weak classifiers must be evaluated

at each of these locations and scales to obtain a detection score. These two

factors conspire to render unconstrained detection computationally onerous.

Improvements in the computational cost of person detection often address

only one of these factors and rely on supervision such as manual calibration

of the camera. We believe that it is crucial in practice that both factors be

addressed with only weak or no supervision. In this work we propose two

approaches to scene adaptation for soft cascade pedestrian detectors that

need only to observe an already trained detection on the scene of interest.

Our first adaptation strategy performs linear cascade approximation to avoid

evaluating all stages of the soft cascade, while our second strategy minimizes

the number of candidate windows evaluated using a statistical model of scales

and position of likely detections in the scene.

In the next section we discuss the state-of-the-art in person detection.

In section 3.3 we describe the soft cascade detection architecture which rep-

resents the current state-of-the-art. We describe our approach to learning

how to detect faster in section 3.4, and in section 3.5 we report on a num-

ber of experiments we performed to evaluate our approach. We conclude in

section 3.6 with a discussion of our contribution.

3.2 Related Work

Most state-of-the art methods follow the pipeline depicted in figure 3.1. Re-

cently many techniques have been proposed that improve the detection pro-

cess both in terms of accuracy and efficiency. These methods can be roughly

grouped based on the domain on which they act: the multi-scale feature rep-

resentation, the method used for proposing detection windows or exploiting

scene geometry, and the classifier used.



3.2 Related Work 11

Image Pyramid of Images
Detection Windows 

Proposal Feature
 Extraction

......

......
Non Maximal Suppression

.....T T T1
F

2
F

N
F

Rejected
Classifier

Positive
detectionDetection 

window

Figure 3.1: Standard execution pipeline of a multi-scale pedestrian detector.

Given an image I, a pyramid is computed from it by progressively sampling

by a fixed factor to obtain the set of levels. For each level are selected the

detection windows and then from each of these are extracted the feature

that will be considered by the classifier. Finally, for all detection windows

not rejected, a non maximum suppression process is performed to obtain the

final positive detection windows.

An approach to computational saving in the feature domain was proposed

in [35]. The Integral Channel Feature for integral images uses a combina-

tion of different heterogeneous information channels to speedup the detection

process while maintaining high accuracy. While a feature pyramid is manda-

tory for multi-scale detection, the authors of [34] proposed an approximation

that avoid the direct computation of all levels of the feature pyramid by ex-

tracting them only for the median layer of each octave and approximating

the remaining scales. This approximation takes the form of an exponential

function that depends both on the type of the feature and on the position

of the level in the octave. However, this preserves detector robustness only

for an octave. In [14] the authors exploit a trained classifier for each octave

and the approximation in [34] to avoid the computation of the features for

each level in the octave.

Several methods have been proposed to speed up the computation by

reducing the number of detection windows evaluated. In [21,47] the authors

propose to first compute a sparse set of detector responses and then sample

more densely around promising locations. In [33] the Crosstalk Cascade was

proposed to simultaneously evaluate multiple candidates at a time exploiting

two type of cascade: excitatory cascades that encourage a detection window

with a neighborhood of possible positive responses and inhibitory cascades

that reject detection windows with low partial scores in the neighborhood.

The geometry of the scene is also extensively exploited in the to speedup

the computation and improve detection accuracy. For example, the method

proposed in [31] exploits a calibration of the scene to improve and speedup

a person detector by spatially filtering detection windows based on the ex-
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pected height of a person. In [49] the authors propose a probabilistic in-

ference model to merge pre-trained detector responses with scene geometry

knowledge. However, this method requires that the vanishing lines be al-

ways visible in the image in order to estimate a coarse camera viewpoint

from objects in the scene. The Stixels model used in [14] exploits a stereo

vision system to extract depth information of the scene and then reduce the

set of candidate detection windows.

In the classifier domain the Hard Cascade [86] improves both the accuracy

and efficiency of the classic AdaBoost algorithm [87] by specializing the first

stages in order to reject the majority of the negatives detection windows.

The authors of [19] proposed the Soft Cascade architecture in which the

evaluation of each detection window depends on the sum of all stages partial

scores up to the current stage. The rejection threshold at each stage is

learned considering the ROC surface, thus taking into account conjointly

the speedup, the detection rate and the false positive rate.

We propose a framework to speed up the detection process by acting both

in the classifier domain and in the scene geometry domain. The result is a

significant reduction in the total number of stages evaluation required in the

soft cascade detection process. To do this we exploit the regions of support,

which refers to the suppressed positive detections that occur around a local

maxima, to improve detector efficiency in:

❼ the classifier domain through linear approximation of soft cascades in

order to estimate a final detection score without calculating all stages;

❼ the pyramid domain by locally modeling the scene-dependent statistics

of detection windows and their scale distribution in order to focus effort

on the evaluation of detection windows that are more likely to be a local

maxima in the image.

Our approach does not require any a priori information about the scene

and all learning is done by mining statistics about the soft cascade detector

operating on a scene.

3.3 Pedestrian detection with soft cascade

In figure 3.1 we show the standard pipeline for person detection. Since the

process of capturing an image from a scene can introduce changes in the scale

of a pedestrian, a multi-scale detector is required. This is usually performed
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by constructing a pyramid of images, which is a set of images obtained by

progressively upsampling and downsampling the original image (referred to

as the levels of image pyramid). Then each level is processed to extract the

features. In particular, candidate regions are usually obtained using a sliding

window at a fixed step size over all image levels. A classifier is then applied

to each window for each level to assign a score. Finally, non maximum

suppression is performed on positive candidates to obtain the final detection

windows.

3.3.1 Multi-scale detection complexity

Without any optimization strategies, the evaluation of the whole pyramid of

images in terms of total number of detection windows can be very expensive.

Let L be the total number of levels of the pyramid, with m levels per octave,

extracted for an image of n × n pixels, then the total number of windows

that must be evaluated is:

L−1
∑

l=0

O(n2) 2
−2l
m ≈ n2

L−1
∑

l=0

(4−
1
m )l

= n2

(

1− 4−
L
m

1− 4−
1
m

)

(3.1)

Note that eq. (3.1) converges to n2/(1 − 4−
1
m ) for L → ∞. Thus, for an

image of 640×480 pixels with a pyramid of 3 octaves of 8 levels each, a total

of 285, 944 detection windows must be evaluated.

3.3.2 The soft cascade classifier

An evolution of the cascade classifier used in [86] is the Soft Cascade proposed

in [19]. To train a Soft Cascade, a set of rejection thresholds is learned in

order to perform early stopping during the evaluation of negative detection

windows. Given the feature vector x ∈ R
D of a sample detection window,

and let H : RD → R be a classifier composed of T stages, where each stage

is a function hi : R
D → R. The partial score up to stage t is computed as:

Ht(x) =
t
∑

i=1

hi(x). (3.2)
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Let {τt} be the set of rejection thresholds, x is classified as positive with score

HT (x) if Ht(x) ≥ τt ∀t ∈ [1, T ]. In this way the evaluation of each sample

depends also on the scores obtained in the previous stages. Thus, considering

the number of detection windows estimated in (3.1), it follows that using a

soft cascade with 1024 stages requires the evaluation of approximately 109

stages for a single second of a video at 25 fps. This enormous number of

cascade stages evaluated renders real-time pedestrian detection extremely

challenging.

Figure 3.2: The Region of Support (ROS) around strong detections (black

detection window) on a frame extracted from Oxford. The windows inside

the same ROS have the same color and at the top-left of each strong detection

window we report the cardinality of each ROS.

3.4 Unsupervised scene adaptation of soft cas-

cade detectors

To avoid the computation of a very high number of stages as described in

section 3.3 we propose a strategy to reduce the entire process by acting on

both the classification and the detection windows proposal on the pyramid.

The first contribution regards the total number of weak classifiers that must

be evaluated to obtain a score for each positive detection window. In par-

ticular, we propose a solution to approximate the final score of a detection

window without considering all the stages of a soft cascade. The second con-

tribution provides an alternative strategy to the classic detection windows

proposal that is able to avoid the sampling on the scene of those detection
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Figure 3.3: Positive traces extracted from soft cascade of 1024 stages on

Oxford. The pyramid contains 24 levels (3 octaves of 8 levels each). Traces

are colored based the level to which they correspond.

windows with a low probability of being a local maximum, in particular by

filtering out those windows with a scale not consistent with the geometry of

the scene. Both strategies are unsupervised and require only some frames

extracted from the observed scene as a training set.

3.4.1 Leveraging region of support information

As reported in [33], the responses of the classifier on near positions and

scales of the pyramid are related. A region of support (ROS) represents the

extension of the sub-regions of an image in which all the detection windows

(with different scale) are classified as positives. In general a ROS is composed

of many intersecting detection windows, each with a different score. The

window with the highest score is called local maximum (strong) because it

is the only one that will survive the non maximum suppression procedure.

Figure 3.2 shows some strongs with their respective ROS extracted from a

soft cascade on a frame from the Oxford dataset [16]. The ROS shown can

be very indicative of both the detector precision and the scene geometry,

as well as the targets location inside the scene. In fact, the cardinality of

each ROS can be used as a estimate of true positive for a detection window

since the objects with a low rank in the frame are often false positive, e.g.

the garbage and the mannequins. The location and scale of strongs can be

considered to learn a model able to describe the geometry and perspective of

the scene. All this information are very discriminative and can be extracted

at no additional cost during the non maximum suppression process.
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+75

Grid Training Set ExtractionLevel

|RO
S|

Figure 3.4: Pipeline for training the candidate window proposal model. After

selecting the grid resolution, for each frame of the training set we extract

the histogram of levels Hb and {µb,Σb} considering the ROI information of

strong detections. Finally, for each block we estimate the energy parameter

Eb to accentuate the research in sub-regions of the scene.

3.4.2 Linear cascade approximation

In figure 3.3 we plot the traces, that is the outputs of each weak classifier

in the evaluation of a cascade, of many positive detections from the Oxford

sequence. The trace plots are color coded according to which level in the

image pyramid in which they were recoded. Note how all traces are basi-

cally linear. They are subject to local perturbations of limited energy, but

the traces from the same level remain close to each other for their entire

evolution. Considering this trend, we group the traces based on the level

they come from and estimate a linear function that approximates the trend

of curves from each level.

In particular, we define a linear score estimation function H̃t→T (x) ∈ R

that requires the evaluation of only a fixed number t < T of cascade stages

and such that:

H̃t→T (x) ≈ HT (x), (3.3)

where HT (x) represents the true cascade output obtained by evaluating all

stages on input x. Given the trend observed in figure 3.3, we use linear

regression and estimate the slope and intercept parameters for each trace.

Formally this is obtained by solving the following minimization problem:

ŵ = argmin
w

∥

∥

∥
STw − ht→T (x)

∥

∥

∥
(3.4)

where w ∈ R
2, w = [w0 w1] with w0 the intercept and w1 the slope and

with:

S =

[

1 · · · 1 · · · 1

t t+∆ t+ 2∆ · · · T

]

(3.5)
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hT

t→T (x) =
[

Ht(x) Ht+∆(x) · · · HT (x)
]

(3.6)

where ∆ is the sampling step for the stages used in the regression. Under

the maximum rank hypothesis of S the problem in Eq. (3.4) admits a unique

solution ŵ = (SST)−1S ht→T (x).

We compute the best parameters {ŵl
i} through eq (3.4) for each trace

in each level l of the pyramid and then we estimate the final parameter wl

by averaging on that. This is done for each level of the pyramid. The final

score approximation is:

H̃t→T (x) = wl · [0 T − t ] +Ht(x) + ǫl (3.7)

where l is the level of x, ǫl is an error obtained as E[HT (x)− (wl · [0 T −

t ]+Ht(x))] for x ∈ V , and V is a validation set. Note that Eq. (3.7) does not

consider w0, since the approximation is constrained to pass through Ht(x)

in that H̃t→t(x) ≃ Ht(x).

Eq. 3.7 is easy and fast to compute and can be used to obtain an ap-

proximation of the final score of a detection window. This approximation

requires the evaluation of only the first t stages of the soft cascade. Note

also that it is completely unsupervised in that we only require a sample of

cascade evaluations from an already trained soft cascade detector and do not

require additional labeled training data to fit the model parameters.

3.4.3 A generative model for candidate window pro-

posal

The naive soft cascade approach to detection achieves scale invariance by

exhaustively scanning all locations and scales in an image. In practice, espe-

cially in typical surveillance scenarios using fixed cameras, not all scale/loca-

tion combinations are feasible due to the geometry of the scene. Our second

strategy is to learn a generative model for candidate window proposal in or-

der to reduce the number of candidate windows extracted from the pyramid.

We do this without relying on calibration or any additional information. As

shown in figure 3.2, the presence and scale of targets is highly dependent on

the geometry of the scene. Since the geometric information of the scene is

directly related to the level of the pyramid, we argue that the complete eval-

uation of all possible levels of the pyramid in all sub-regions of the image is

wasteful. Instead, we will exploit the ROS for observed strong detections (i.e.
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those that survive non maximum suppression) in order to propose candidate

windows for each scale and position combination in the scene.

Learning the generative model The pipeline of the proposed model is

shown in figure 3.4. To extract the statistics of subregions of the scene we

divide each frame of the training set into n × n rectangular blocks. Inside

each block b, the strong detections observed in the training set are used

to compute a histogram Hb where each bin Hl
b represents a level of the

pyramid. Specifically, the strong detections in the block b contribute with

the cardinality of their ROS in the corresponding bin level. The cardinality of

the ROS is the number of detections that are suppressed by the overlapping

strong detection. This provides a robust local description of the frequent

scales in a block.

To extract information about the representative locations in a block for

a certain level we thus compute the average centroid position µl
b and its

covariance Σl
b on the strong detections. This is useful to estimate the real

locations in the scene where person detections occur with high probability.

Finally, for each block we compute an energy factor Eb, such that:

Eb =

∑L

l=1H
l
b

∑

b̃∈Gn

∑L

l=1H
l

b̃

, (3.8)

where Gn indicate the set of blocks. This factor emphasizes the research for

certain sub-regions by generating the detection windows proportionally. The

final model is:

Mn = (Gn, {H̃
l
b}, {µ

l
b,Σ

l
b}, {Eb}), (3.9)

where H̃l
b indicates Hl

b normalized over all levels in block b.

Candidate window proposal at detection time The number of de-

tection windows of a pyramid to be evaluated is chosen proportionally to

a parameter γ ∈ [0, 1]. This parameter is used as an estimate of the final

speedup we want from the resulting detector. There is clearly a tradeoff

between speed (γ → 0) and accuracy (γ → 1) of the detector. In particular,

given a test frame I, the number of detection windows that we evaluate for

each block b and level l in the pyramid P(I) is:

N = γ |P(I)| Eb H̃
l
b. (3.10)

where |P(I)| corresponds to the total number of detection windows in pyra-

mid P(I).
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At detection time we sample detection windows using an iterative proce-

dure. In the first iteration we randomly sample N detection windows from

the normal distribution N (µl
b,Σ

l
b). From this set of detection windows we

remove duplicates and if necessary perform another iteration, expanding the

covariance matrix by a fixed factor s along the principal directions of the

covariance matrix Σl
b.

Note that this strategy for improving the efficiency of soft cascade detec-

tion is also completely unsupervised. We build our scale- and position-local

generative models by analyzing the behavior of strong detections and their

regions of support on a training set of detection outputs. At detection time

we can control the number of candidate windows proposed and thus control

the efficiency/accuracy tradeoff of the final detector.

3.5 Experimental results
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Figure 3.5: ROC curves of baseline using the linear cascade approximation,

for different values of t, in sequence Oxford (a) and PETS (b). In bracket

we show the obtained saving. (c) Saving (delta) for different values of t,

using the linear cascade approximation. The maximum reduction is under

the 40% (1.5x).

In this section we report on the performance for the proposed approach

using the linear cascade approximation, the candidate windows proposal

model, and the combination of both. We use the soft cascade detector im-

plemented in the OpenCV repository1 as a baseline. We use two datasets

in our experiments: Oxford [16] and PETS [4]. The Oxford dataset is a

1https://github.com/Itseez/opencv

https://github.com/Itseez/opencv
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challenging full HD video sequence due to high variation of pedestrian scale,

occlusions and confusion with shopping window mannequins. For the PETS

dataset we considered the s2.l1-view1 sequence with an image resolution of

768 × 576 pixels. We extracted 180 frames from Oxford by sampling one

over fifteen frames and 199 frames from PETS by sampling one over four

frames. From these frames we a third for the training and the remaining for

the test. All comparisons between different detectors are given using ROC

curves in terms of miss rate versus false positive per image. The baseline is

represented by the soft-cascade with 1024 stages using a classifier for each

octave and a pyramid of images consisting of 3 octaves of 8 levels each.

The performance of our proposed approaches is measured as function of

a savings factor δ that is computed as:

δ =

∑

∀x∈P [H(x)]
∑

∀x∈X 1{c=0} [H(x)]+ 1{c=1} [H̃t→T (x)]
(3.11)

where the operator [·] returns the number of stages computed, c indicates

if the linear cascade approximation is used (c = 1) and X = P when all

sliding detection windows are considered or X = P̃ when the set of detec-

tion windows is obtained from our generative model for candidate window

proposal.

3.5.1 Experiments with linear cascade approximation

In this section we analyze the performance of linear cascade approximation

for different t values. Observe in Figure 3.5(a) how on the Oxford sequence,

the curves of the proposed approximation are close to the baseline, with a

gradual reduction in loss when the number of stages evaluated increases.

The total savings varies from 19% (1.24×) with 129 stages to 2% (1.02×)

with 897 stages evaluated. For the PETS sequence, shown in figure 3.5(b),

loss is drastically reduced for t > 129 stages. The maximum saving reached

with this sequence is 28% (1.38×).

In figure 3.5(c), we show the savings evolution varying the number of

stages evaluated for both sequences. Considering a small number of stages

for each detection window, the computational savings is at most 23% (1.3×)

in Oxford and 31% (1.45×) in PETS. The savings is modest because the

computational cost is mostly dominated by the total number of negative win-

dows evaluated, that decreases exponentially with increasing t (the number

of stages considered for the linear cascade approximation). Linear cascade
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Figure 3.6: ROC curves using candidate window proposal on Oxford se-

quence for a range of γ and grid sizes 2× 2 (a), 4× 4 (b), 6× 6 (c).

approximation helps, but to achieve significant computational cost reduction

the total number of the candidate windows must be reduced.

3.5.2 Experiments with candidate windows proposal

We evaluated the performance of our candidate window proposal model on

the Oxford sequence for different values of γ and grid dimensions. The

results are shown in figure 3.6. Each plot shows results for different grid

resolutions (2 × 2, 4 × 4 and 6 × 6) and varying the speedup parameter

γ. In general, with all configurations we obtain a savings greater then 50%

(2×). For example, for a grid size of 2 × 2, the minimum and maximum

saving values is 65% (2.85×) and 95% (19.44×), respectively. Considering

the savings in computation, the loss in accuracy with respect to the baseline

is very low at 10−1 fppi (under 0.5%). Increasing the grid resolution results

in a small performance drops with respect to the baseline. The grid 2 × 2

is the best configuration in terms of loss and savings. This is due to the

fact that, despite the large blocks in the 2× 2 grid configuration, covariance

expansion will ensure that the Gaussian will still eventually cover the whole

block.

3.5.3 Experiments with both strategies

In this section we evaluate the combination of both proposed strategies on the

Oxford and PETS sequence (see figure 3.7). Results are shown for different

values of γ and t with a grid resolution of 2× 2. On Oxford, with γ = 0.25
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Figure 3.7: ROC curves for both strategies, with a grid size of 2 × 2 and

γ ∈ {0.25, 0.0625}, on both the Oxford (a-b) and PETS(c-d) sequences.

(4×) the maximum savings obtained respect to the baseline is 74% (3.78×),

9% more than the candidate window proposal alone, with no loss. For PETS,

with γ = 0.25 (4×) we obtain a reduction of 81% (5.42×) with respect to

the baseline, while with γ = 0.0625 (16×) we reach the 91% (11.26×) of

saving. With both values of γ and t ≥ 513 the obtained curves are the best

in terms of accuracy with respect to the baseline, with a loss under 5%. The

combination of the proposed strategies result in higher savings compared to

the candidate windows proposal strategy while sacrificing little in terms of

accuracy.

3.5.4 Comparison with the state-of-the-art

A direct comparison with state-of-the-art techniques is difficult due to the

unavailability of source code for detectors, differences in protocols for eval-

uation, and ambiguities in how speedup is measured. Nonetheless, we make

here qualitative observations about the performance of our approach with

respect to the Crosstalk Cascade [33], which is similar in spirit to our can-

didate window proposal strategy. They evaluate performance on an images

dataset, and thus we cannot directly compare on the same data since we

require video on which to learn our model parameters. Losses of 0.1%, 0.5%

and 2 − 4% for savings of 4×, 8×, and 16 − 32×, respectively, are reported

in [33]. Adjusting the γ and t parameters of our candidate proposal model to

match these savings as closely as possible, we obtain losses of −0.4%, 0.1%,

and 0.5% for savings of 3.78×, 8.06×, and 25×, respectively.
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3.6 Conclusion

In this work we proposed two strategies to reduce the computational com-

plexity of a multi-scale pedestrian detector. Both strategies are unsuper-

vised, based only on region of support information measured on a training

set of unlabeled images. Our experiments demonstrate that both techniques

are effective at increasing the efficiency of detection while sacrificing little

in terms of accuracy. Linear cascade approximation yields modest improve-

ment in efficiency due to the fact that the evaluation of negative windows

dominates the total computation time. Candidate window proposal instead

yields significant gains since it reduces the total number of candidate detec-

tion windows considered.
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Chapter 4

Scene-dependent Windows

Proposals for Efficient Person

Detection

In this chapter we extend the strategy proposed in Chapter 3

with a new method for scene-dependent windows proposal that

provides a substantial speed-up of person detection while show-

ing high classification accuracy. This method learns a Gaussian

Mixture Model of locations and scales of the persons in the scene

under observation. The model is learnt from a set of detections

extracted from a small number of frames. The mixture distri-

bution is learnt in an unsupervised way so that each component

of the mixture represents the expectation of finding a target in a

region of the image at a specific scale. At runtime, the windows

that most likely contain a person are sampled from the compo-

nents and evaluated by the classifier. Experimental results show

replacing sliding windows with our scene-dependent windows pro-

posal in state of the art person detectors allows us to drastically

reduce the computational complexity while granting equal or su-

perior performance in terms of accuracy.

25
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4.1 Scene-dependent windows proposal

While developing on some ideas of our previous proposed method [8], in this

work, we present an innovative solution for scece-specific windows proposals

that grounds on Gaussian Mixture Modelling (GMM) of locations and scales

of the persons in a scene. The GMM is learnt in an unsupervised way from

a set of detections extracted from a small number of frames of the scene.

Each component of the mixture is a probability distribution that represents

the expectation to find the target in a region of the image at a specific scale.

In the GMM fitting procedure, any detection is weighed according to its

importance in its Region of Support (ROS) [33]. At runtime, the windows

that most likely contain a person are sampled from the components of the

mixture, and evaluated by the classifier.

4.1.1 Scene model representation

The scene is modelled as:

p(yi|θ) =
∑

k

α̂k p(yi|θ̂k), (4.1)

p(yi|θ̂k) ∼ N (yi|µk,Ck)

where yi is a generic target detection in the scene and θ ≡ {θ̂1, ..., θ̂K , α̂1, ...,

α̂K} includes the mixture components θ̂k of the GMM and their mixing

probabilities α̂k (both to be estimated). Each component θ̂k of the GMM

has mean µk and covariance Ck, i.e.:

θ̂k = {µk,Ck}, µk ∈ R
2, Ck ∈ R

2×2

α̂k ∈ R,
∑

k

α̂k = 1

and represents with mixing probability α̂k a region of the scene with proba-

bility of having targets at a certain scale. Parameter µk and Ck, represent

respectively the position of the centroid and the extension of a region of the

image.

The GMM is learnt in an unsupervised way from the set of detections

extracted with a person detector before Non Maximum Suppression, in a

small number of frames of the scene. Fitting the GMM to the detections is
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performed using a modified version of the Component-Wise EM (CEM) al-

gorithm [43]. The conditional distribution p(yi| θ̂k) represents the likelihood

that a detection yi is generated by the GMM component θ̂k and is defined

as:

p(yi| θ̂k) =
si,k
S
N (yi|µk,Ck) (4.2)

where S =
∑

k si,k N (yi|µk,Ck) is a normalization factor and si,k is a multi-

plicative factor that accounts for the relative importance of yi in relationship

to the other detections in its ROS and the probability that the scale of the

GMM component θ̂k well fits with the scale of yi, i.e.:

si,k = p
(

yi|w(yi)
)

p
(

yi|Σ(l(θ̂k))
)

where:

p
(

yi|w(yi)
)

=
w(yi)

∑

j w(yj)
(4.3)

being w(yi) the relative weight of yi, appropriately defined as in sec-

tion 4.1.2.

p
(

yi |Σ
(

l(θ̂k)
)

)

=
1

Z
exp{−

(

l(θ̂k)− l(yi)
)2

2Σ
(

l(θ̂k)
) } (4.4)

being Z a normalization factor over the variances of the scales, l(·) a

function that returns the scale and

Σ(l(θ̂k)) =
1

M

∑

(

l(θ̂k)− l(yi)
)2

with M equal to the number of detections that fall in the ROS, such

that their maximum has scale equal to the scale of the GMM compo-

nent θ̂k.

GMM fitting is shown in pseudocode in Algortihm 1. Given the initial

condition θ, appropriately defined as in section 4.1.3, at each iteration a new

configuration θ is estimated. The objective function L(θ) is then applied:

L(θ) =
K
∑

k=1

|θ̂k|

2

(

log
( |{yi}|αk

12

)

+
K

12
log
( |{yi}|

12

)

+
K(|θ̂k|+ 1)

2

)

− log p({yi}|θ) (4.5)
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where (|θ̂k|/2)log(|{yi}|αk) represent the optimal sample size for estimating

θk and −log p({yi}|θ) represent the code-length of the data, according to the

Minimum Description Length principle [46]. If L(θ) is lower than the best

configuration Lbest obtained so far, the current components will replace the

best configuration. A low value of L(θ) means that the learned model well

fit the detections windows {yi}.

The least significant components of the GMM are discarded according to

the representativeness factor β̂k that accounts for both coverage (i.e. how

much a component is covered by another - components with a greater exten-

sion are promoted), and overlapping (i.e. how much a component overlaps

with another - overlapped components are penalized), and defined as:

β̂k =
1

2

(

1 +
Area(Ck)

maxj Area(Cj)
−

Area(
⋃

j Cj −Ck)

Area(
⋃

j Cj)

)

. (4.6)

(a)

Scales

(b) TownCentre (c) PETS S2.L1-view1 (d) CAVIAR

Figure 4.1: GMM fitting on sample frames obtained with the VeryFast per-

son detector [14]. Only the most relevant components of the GMM are

shown.

This process is repeated until the number of components of the GMM is

equal to a fixed number Kmin. Figure 4.1 shows examples of GMM fitting

for selected frames of sample sequences.

4.1.2 Detection weighting

Regions of Support are defined as the set of detections yi that have intersec-

tion higher or equal to a predefined threshold τvoc. Typically τvoc is set to

0.65 [38]. In our previous work [8], we used a single weight for each ROS that
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Algorithm 1 GMM Fitting

Input: Detection windows {yi},θinit,Kmin

Output: GMM with best configuration θ

Lbest ← +∞

θbest ← θ

while Number of components θ̂k > Kmin do

[θ,L(θ)]← CEM
(

{yi}, θ
)

with Eq. (4.2)

if L < Lbest then

Lbest ← L

θbest ← θ

end if

k∗ ← argmink

{

α̂k · β̂k

}

Remove the component θ̂k∗ from θ

end while

θ ← θbest

was equal to the number of the detections in the ROS (Hard ROS weight-

ing). Such set of weights, learnt from the detections in a training set, was

used to generate the window proposals in the same scene at runtime. As a

modification of this approach we have assigned a weight for each detection

yi that accounts for its relative importance in the ROS in relationship to the

other detections (Soft ROS weighting), i.e.:

w(yi) =

{

π(yi) ρ(yi) |ROS(yi)| if yi is not a local maximum

|ROS(yi)| otherwise
(4.7)

where:

❼ π(yi) represents the relative positiveness of the detection window yi
defined as gi− τT where gi is the classifier score and τT is the rejection

threshold of the cascade classifier at the scale of yi, scaled with respect

to the maximum in the ROS.

❼ ρ(yi) represents the relevance of yi defined as:

ρ(yi) =

[

1 + exp{−
6

(1− φ)

(

[[yi]]− φ|ROS(yi)|

|ROS(yi)|

)

}

]

−1

being [[yi]] the rank in the ROS given by the classifier, and φ ∈ [0, 1)
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Dataset
Detections Filtered Detections

Avg. n◦ detections/frame Avg. Min-Max Scales Avg. n◦ scales/frame Avg. n◦ detections/frame Avg. Min-Max Scales Avg. n◦ scales/frame

TownCentre 341 6-19 13 31 6-18 12

PETS S2.L1-view1 443 3-19 16 50 3-19 15

CAVIAR 252 8-16 9 7 9-16 8

Table 4.1: Detections statistics with and without pre-filtering, using the

VeryFast detector on test datasets.

is used to center the sigmoid, so that:

ρ(yi) =















> 0.5 if [[yi]] > φ · |ROS(yi)|

0.5 if [[yi]] = φ · |ROS(yi)|

< 0.5 otherwise

Detections with [[yi]] < φ · |ROS(yi)| have lower weight so to inhibit the

contributions of non informative detection windows (φ = 0.5 is used).

4.1.3 GMM initialization

Deriving a GMM model from the full set of detections is generally unfeasi-

ble. To this end, for each image of the training sequence we apply the Otsu

transformation [70] after the background subtraction to obtain the binary

foreground mask and extract the foreground connected regions. Hence, only

the detections that have overlap higher than 50% with such regions are re-

tained. Table 4.1 reports the effects of pre-filtering on three test datasets.

While the average number of detections per frame is drastically reduced, we

can observe that the range of scales is preserved.

Given the set of filtered detections, for each scale of the pyramid, we

iteratively execute the K-means algorithm decreasing the number of com-

ponents at each iteration until the second moments of each cluster form a

semi-definite positive matrix. This process is repeated separately for each

scale and all the components are hence combined together to initialize the

GMM model. The maximum number of clusters for each scale is chosen

proportionally to the number of local maxima of the scale.

4.1.4 Mixture-based windows proposal

At runtime, the set of detection windows generated by the GMM is evaluated

according to Algorithm 2. At each iteration, n detection window centroids
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Figure 4.2: ROC curves of detection obtained with the VeryFast detector

and our windows proposal (TownCentre dataset, γ = 1/8): effects of scale,

representativeness β, Hard and Soft ROS.

Algorithm 2 Mixture-based Windows Proposal

Input: θ, γ,N

Output: set of sparse detection windows Y

Y ← ∅

for each θ̂k do

n← γN ∗ α̂k Area(Ck)
∑

j
α̂j Area(Cj)

{yi} ← Sample n detection windows using N (µk,Ck)

Y ← Y ∪ {yi}

end for
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are sampled from the normal distribution N (µk,Ck):

n = γN ∗
α̂k Area(Ck)
∑

j α̂j Area(Cj)

where N is the maximum number of detection windows and γ ∈ [0, 1] the

fraction of windows that are passed to the classifier, as in [8]. This factor

controls the speed-up of the detector and there is clearly a tradeoff with

recall (γ −→ 1). Centroids are converted in detection windows with height

corresponding to the scale of the Gaussian component.

Scale Scale + Representativeness

Hard ROS weighting [8] 0.95 0.95

Soft ROS weighting 0.92 0.91

Table 4.2: Miss-rate @10−1 FPPI of detection with sparse windows proposals

(TownCentre dataset, γ = 1/8).

Figure 4.9 shows the performance improvement ascribed respectively to

Soft ROS weighting (Eq. (4.7)), scale (Eq. (4.4)) and representativeness β

(Eq. (4.6)) of detections in GMM fitting. Tests were conducted on the Town-

Centre dataset [16], with γ = 1/8 using the cascade classifier of the VeryFast

detector [14] applied to the set of windows proposals. Soft ROS weighting

with scale information are responsible for the highest improvement. This

can be explained by the fact that Soft ROS weighting considers detections

at any scale and these detections are re-weighed according to their scale.

From Table 4.4 it can be observed that GMM fitting with weighting, scale

and representativeness of detections for each ROS, defines a model that bet-

ter generalizes the observed scene while granting a minimal coverage for each

Gaussian component.

We will refer to our windows proposal method as Mixture-based Windows

Proposal (MWP) in the following.

4.2 Experimental results

In this section, we report a set of experiments to assess the performance of

MWP. Three public available datasets have been considered, namely: Town-

Centre [16], PETS S2.L1-view1 [3] and CAVIAR [1]. For the TownCentre
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TownCentre dataset

Baseline γ = 1/4 γ = 1/8 γ = 1/16 γ = 1/32

HOG [30] 2.43 (1) 4.92 (1) 7.39 (1) 9.98 (1) 13.84 (1)

DPM [42] 0.23 (0.91) - (0.86) - (0.88) - (0.89) - (0.9)

ChnFtrs [35] 1.52 (0.96) - (0.94) - (0.95) - (0.95) - (0.95)

VeryFast [14] 11.61 (0.96) 13.95 (0.90) 22.15 (0.91) 31.9 (0.92) 40.65 (0.92)

ACF [37] 23.31 (0.97) 27.81 (0.96) 33.70 (0.96) 42.24 (0.97) 57.85 (0.97)

PETS S2.L1-view1 dataset

Baseline γ = 1/4 γ = 1/8 γ = 1/16 γ = 1/32

HOG [30] 3.34 (1) 5.67 (1) 8.25 (1) 9.31 (1) 11.22 (1)

DPM [42] 0.23 (0.56) - (0.41) - (0.46) - (0.48) - (0.49)

ChnFtrs [35] 1.51 (0.52) - (0.42) - (0.47) - (0.48) -(0.49)

VeryFast [14] 10.41 (0.36) 9.36 (∼ 0.41) 15.01 (∼ 0.42) 22.00 (∼ 0.45) 30.47 (∼ 0.47)

ACF [37] 22.34 (0.57) 24.93 (0.48) 32.15 (0.54) 39.48 (0.57) 46.19 (0.57)

CAVIAR dataset

Baseline γ = 1/4 γ = 1/8 γ = 1/16 γ = 1/32

HOG [30] 7.51 (1) 8.83 (1) 10.55 (1) 12.17 (1) 14.69 (1)

DPM [42] 0.23 (0.83) - (0.8) - (0.8) - (0.81) - (0.81)

ChnFtrs [35] 1.38 (0.86) - (0.85) - (0.85) - (0.85) - (0.86)

VeryFast [14] 11.95 (0.86) 13.03 (0.85) 21.31 (0.85) 31.18 (0.84) 40.01 (0.85)

ACF [37] 21.77 (0.86) 24.57 (0.84) 31.79 (0.85) 43.65 (0.85) 57.03 (0.86)

Table 4.3: Comparative performance of MWP against sliding windows for the

tested person detectors. Number of frames per second of the full classification

pipeline are reported with miss-rates@10−1 FPPI in parenthesis.

and the PETS S2.L1-view1 datasets we considered the first half of the im-

ages for training and the remaining for testing. For the CAVIAR dataset we

considered the 26 clips of the Corridor Viewpoint for a total of 36293 frames

and adopted the leave-one-out strategy (one clip is used as test while the

other 25 are used for training) and evaluated the average accuracy. For each

dataset, video frames were resized to 640× 480 pixels.

We run five state of the art person detectors, namely: HOG [30], DPM [42],

ChnFtrs [35], VeryFast [14] and ACF [37] on the training set to extract per-

son detections. Those detections are used to learn our scene-depenedent

windows proposal model, one for each dataset and person detectors.

At test time, for the HOG, VeryFast and ACF detectors we modify the

original algorithm and replace the sliding windows (in the windows proposal

stage) with our MWP. This was not possible for the ChnFtrs and DPM

detectors and in this case, before the non-maximum suppression stage, we

automatically filter out all those windows that do not overlap with the ones

generated by our model.
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All the experiments have been performed on an Intel Xeon@2.67 GHz

(8-core) with 20 GB RAM.

Table 4.3 report the number of frames per second and miss rates at 10−1

FPPI obtained with sliding windows or with our MWP, for different values

of γ. It is possible to observe that using MWP in a person detector allows

obtaining similar miss rate performance, with respect to sliding windows,

with much higher efficiency.
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Figure 4.3: Performance comparison on the TownCentre, PETS S2.L1-view1

and CAVIAR datasets using MWP with VeryFast detector

Fig 4.3 shows the ROC curves of the VeryFast person detector on the

three tested datasets. On TownCentre, the use of MWP allows obtaining a

significant reduction of the miss-rate, over 0.05 at 10−1 FPPI with respect to

sliding the windows over the whole image. This is mainly due to the ability of

our solution to select windows at the true scale of the target. For the PETS

S2.L1-view1 dataset, MWP drastically limits the false positives generated

by the Veryfast detector resulting in a better accuracy under 10−1 FPPI.

No substantial improvement can be observed on the CAVIAR dataset due

to the low resolution of the original video sequences. In terms of efficiency,

MWP with the VeryFast detector allows improving the execution time from

12fps up to 40fps.

Fig 4.4 reports the performance obtained with the DPM detector. There

is no significant difference in accuracy with MWP for γ < 1/8, while with γ =

1/4 our method achieves the best result at 10−1 FPPI on the TownCentre.

The limited improvement of MWP in this case is motivated by the ability

of DPM to manage the strong occlusions and the high scale variations that
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Figure 4.4: Performance comparison on the TownCentre, PETS S2.L1-view1

and CAVIAR datasets using MWP with DPM detector

are present in this dataset. However, on the PETS S2.L1-view1 dataset, we

obtain a significant reduction of the miss-rate, from 0.56 up to 0.41. In this

case, in fact, MWP is able to discard wrong detections generated by DPM

due to persons walking close each other. A little improvement is observed

on the CAVIAR dataset for all γ values.
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Figure 4.5: Performance comparison on the TownCentre, PETS S2.L1-view1

and CAVIAR datasets using MWP with ChnFtrs detector

Fig 4.5 and Fig 4.6 show the performance considering the ChnFtrs and

ACF person detectors, respectively. These two detectors are based on the

same features and classifier. It is possible to observe a slight improvement

in performance on both TownCentre and CAVIAR datasets using MWP.
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(a) TownCentre
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Figure 4.6: Performance comparison on the TownCentre, PETS S2.L1-view1

and CAVIAR datasets using MWP with ACF detector

However, a higher improvement can be appreciated on the PETS S2.L1-view1

dataset. This can be motivated by the fact that PETS S2.L1-view1 has a

noisy background and MWP is able to discard regions that do not contains

persons. Moreover, our strategy considerably improves the execution time

of the ACF detector from about 20fps up to almost 60fps.
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Figure 4.7: Performance comparison on the TownCentre, PETS S2.L1-view1

and CAVIAR datasets using MWP with HOG detector

Fig 4.7 shows the ROC curves of the HOG person detector. The very

low performance of this detector does not allow to appreciate the benefit

introduced by our MWP. This is mainly due to the fact that HOG features

have a really limited discriminative capability, resulting in a lot of missed
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detections. However, the reduction of the total detections to be evaluated

allows increasing detection efficiency from 2fps up to 14fps.

γ

1/32 1/16 1/8 1/4

×10
4

0

1

2

3

4

5

6

7

8

TownCentre

PETS S2.L1-view1

Caviar

γ*N

Figure 4.8: Detection windows generated by our MWP for the VeryFast

detector on the test datasets. The maximum number of detection windows

to be evaluated by the classifier is N = 285944.

Fig 4.8 shows the average number of detection windows generated with

MWP for the three tested datasets and for different γ values. As reference,

we also report the maximum number of windows N simply divided by γ.

The observed gap is mainly due to the fact that MWP selects the window

proposals considering the positions and scales that most likely contain a

person according to the learned model, as well as the γ parameter, resulting

in a very restricted set of final detection windows to be evaluated.

We have finally compared five state of the art sparse methods, namely

SelectiveSearch [85], Objectness [51], EdgeBoxes [100], RandPrims [64] and

Rath [75]. Tests were run on three publicly available datasets: TownCen-

tre [16], PETS S2.L1-view1 [3] and CAVIAR [1].

As a baseline, we used the VeryFast detector, with the Soft Cascade clas-

sifier for the first octave trained on the Caltech Pedestrian dataset [38], and

the Soft Cascade classifiers for the second and third octaves trained on the

INRIA Person dataset [2], respectively. For the sparse methods, detection

performance was evaluated running the VeryFast detector and applying the

classifier exclusively to the sparse set of windows proposals of each method.

Figure 4.10 and Figure 4.11 show ROC curves on TownCentre and PETS

S2.L1-view1 datasets. Table 4.5 shows the average number of frames per

second for the proposal of the sparse set of windows and the average miss
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Figure 4.9: ROC curves of detection with sparse windows proposals (Town-

Centre dataset, γ = 1/8): effects of scale, representativeness β, Hard and

Soft ROS.

Scale Scale + Representativeness

Hard ROS weighting [8] 0.95 0.95

Soft ROS weighting 0.92 0.91

Table 4.4: Miss-rate @10−1 FPPI of detection with sparse windows proposals

(TownCentre dataset, γ = 1/8).

rate at 10−1 FPPI, respectively.

We can observe different behaviors of the methods with the two datasets.

With the TownCentre, all the methods present a high number of false pos-

itives. The best miss rate is scored by MWP, EdgeBoxes and Objectness,

with similar performance. However, both EdgeBoxes and Objectness have

a much higher computational cost (see the number of frames per second

required to obtain the sparse set in Table 4.5). With PETS S2.L1-view1,

the difference in performance between MWP and the others is highly more

apparent. In this case, the use of scale information in the GMM fitting of

MWP reduces the number of false positives caused by the scene edgeness

and cornerness. Similar speed-up as in TownCentre is observed in both the

extraction of the sparse set and classification. Since both MWP and Rand-

Prims allow to control the fraction γ of windows that is evaluated, effects

of γ on performance is shown in Figure 4.12 and Figure 4.13 for these two
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Figure 4.10: ROC curves of sparse windows methods on TownCentre.
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Figure 4.11: ROC curves of sparse windows methods on PETS S2.L1-view1.

methods. For MWP we can observe that reducing the number of windows

in the sparse set produces only a slight miss rate decay (higher with PETS

S2.L1-view1) but doubles its efficiency performance. This permits real-time

operation of the method up to about 40 fps.

4.3 Conclusion

In this work we have proposed MWP as a new method that exploits a pre-

viously learnt scene model to provide sparse proposals of windows where

targets should be detected most likely. The model of the scene is built using

a Mixture of Gaussians whose components take into account position, scale

and relative importance of detections in their Region of Support.
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MSP − γ: 1\32

MSP − γ: 1\16

MSP − γ: 1\8

MSP − γ: 1\4

RandPrims − γ: 1\32

RandPrims − γ: 1\16

RandPrims − γ: 1\8

RandPrims − γ: 1\4

Figure 4.12: ROC curves of MWP and RandPrims on TownCentre.

Experimental results show that exploiting replacing sliding windows with

our MWP in state of the art person detectors allows obtaining the lowest

miss rate with a higher frame rate. This is mainly due to the ability of the

method to select windows at the right scale of the target and to discard

those regions that do not contains persons, so reducing the number of false

positives.

Furthermore the set of filtered detections used to train our mixture model

can be further exploited to train a specific classifier and further improve the

detection accuracy, as also been done for scene-specific person detectors.
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Figure 4.13: ROC curves of MWP and RandPrims on PETS S2.L1-view1.

Sparse method TownCentre dataset PETS S2.L1-view1 dataset

Sparse Sparse & Classification Sparse Sparse & Classification

SelectiveSearch [85] 1.20 1.07 (0.94) 1.18 1.11 (0.63)

Objectness [51] 0.23 0.22 (0.91) 0.24 0.22 (0.45)

EdgeBoxes [100] 0.86 0.84 (0.91) 0.89 0.86 (0.44)

RandPrims [64] (γ = 1/4) 1.18 1.08 (0.92) 1.14 1.08 (0.60)

RandPrims [64] (γ = 1/8) 1.18 1.11, (0.93) 1.14 1.09 (0.60)

RandPrims [64] (γ = 1/16) 1.19 1.12(0.93) 1.14 1.09 (0.60)

RandPrims [64] (γ = 1/32) 1.20 1.14(0.93) 1.15 1.12(0.63)

Rautu [75] 0.17 0.16 (0.92) 0.20 0.18 (0.47)

MWP (γ = 1/4) 22.06 13.95 (0.90) 17.78 9.36 (∼ 0.41)

MWP (γ = 1/8) 29.90 22.15 (0.91) 22.92 15.01 (∼ 0.42)

MWP (γ = 1/16) 39.25 31.9 (0.92) 29.29 22 (∼ 0.45)

MWP (γ = 1/32) 48.92 40.65 (0.92) 36.71 30.47 (∼ 0.47)

Table 4.5: Comparative performance of the sparse methods. Number of

frames per second needed for sparse windows proposal and sparse windows

proposal with classification. Miss rates at 10−1 FPPI are also shown in

parenthesis.
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Chapter 5

User Interest Profiling Using

Tracking-free Coarse Gaze

Estimation

Understanding where people attention focuses is a challenging

and extremely valuable task that can be solved using computer

vision technologies. In this Chapter we address this problem on

surveillance-like scenarios, where head and body imagery are usu-

ally low resolution. We propose a method to profile the attention

of people moving in a known space. We exploit coarse gaze es-

timation and a novel model based on optical flow to improve at-

tention prediction without the need of a tracker. Removing the

tracker dependency makes the method applicable also on highly

crowded scenarios. The proposed method is able to obtain com-

parable performance with respect to state of the art solutions in

terms of Mean Average Angular Error (MAAE) on the TownCen-

tre dataset. We also test our approach on the publicly available

MuseumVisitors dataset showing an improvement both in terms

of MAAE and in terms of accuracy in the estimation of visitors’

profile.
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5.1 Introduction

Understanding what objects are looked at and for how long is also of great

interest for retail companies that may want to obtain a large dataset of cus-

tomer behavior. This is often solved by tracking all the persons in the scene

and consequently generating heat images, registered with the shop maps,

that indicate customer persistence. Although, even if the scene strongly

constrains people position, such as in a supermarket aisles, there is a lot of

ambiguity if we consider just the position. If we are willing to detect which

products draw people attention in a shop, gaze estimation is the only option.

A slightly different but complementary task is profiling the interests of a

single person in a given environment. In this case, instead of accumulating

a global statistic from all persons behavior, a single profile is sought.

Passive profiling finds several interesting applications in the cultural her-

itage scenario [53]. For example, user profiling can help solving many issues

Museums struggle to cope with; like personalizing content for visitors. Per-

sonalization should both increase engagement and satisfaction creating a

dedicated view of museum collections and suggesting novel cultural paths to

explore. Moreover a recommender system may, also building from previously

watched people behaviors, help in planning further tours towards different

cultural venues, places of interest or museums.

To this end both person gaze and position in the scene are very relevant

to understand the attention; how far an object is from the person could not

be a sufficient hint. We argue that understanding which objects are in the

person’s field of view is crucial for a correct attention estimation.

We propose a method for coarse gaze estimation that can be exploited

for video surveillance, for the analysis of social behavior interaction and for

attention profiling. Our solution exploits frame-to-frame motion information

and therefore does not need to track every person in the scene, as in [16], or

perform complex and computationally onerous global optimization requiring

the knowledge of the entire person trajectory.

5.2 Stateless coarse gaze estimation

In this section we first summarize how to learn a model that is able to

estimate at runtime coarse head and body poses. Then we introduce a

motion model to improve the coarse gaze estimation for moving persons.
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Figure 5.1: Feature extracted from a sample head.

To detect person in the scene we use the detector from [42] that is able to

segment both the body and the head of the detected person.

5.2.1 Head and body pose estimation

We build upon the solution proposed in [15,17] in order to coarsely estimate

the head and body orientations.

For the head visual representation, we resize each patch to a standard

resolution of 128x128 pixels from which we extract the Histogram of Oriented

Gradients (HOG). Then we resize the same patch to a resolution of 16x16

pixels and extract both the intensity of the gradients and the RGB colors.

The final head descriptor is obtained as early fusion of these three distinct

features and has a dimension of 1600 bins: 576 bins for the HOG feature,

256 (16x16) bins for the intensity of the gradient and 768 (16x16x3) bins

for the RGB color channels. A sample of the feature extraction process is

reported in Fig. 5.1.

We use random ferns [18], as in [15], to train our model, and we will

refer to it as Head-ferns. The fern differ from the standard decision trees

since the same set of branch-test is applied to each image regardless of the

previous test results. We quantize all the possible head orientations (from 0

to 360 degrees) in 16 classes.

Estimating the orientation of the head can be really difficult due to the

limited resolution at which a head is observed in typical surveillance footage

and also because of missing information about the context in which the head

is acquired. Indeed, the class with the maximum score given by the Head-

ferns does not always represent the correct orientation. It could happen that

there are two or more modes and in this case choosing the orientation class

with the highest score can lead to a wrong decision. For this reason, we would
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like to refine the initial estimation given by our Head-ferns by exploiting the

whole body orientation, as also proposed in [25].

As for the head, we train random ferns using as input a set of features

extracted from the whole body image of a person. In particular, we extract

the same features of the head but we resize the body patches to a standard

resolution of 384x128 pixels for the HOG and 48x16 pixels for the intensity

of the gradients and the RGB colors (we keep an aspect ratio of 3:1). For

the random-ferns we quantize the possible orientation in 8 classes; we will

refer to this model as Body-ferns from now on.

We finally concatenate the output of both the Head- and Body-ferns

predictors to form a new set of features and train a SVM classifier with a

RBF kernel. We cross-validate the regularization parameter C and estimate

σ as the average distance between training features.

5.2.2 Motion model

The use of the head and body orientations may not always be sufficient to

correctly discriminate the gaze of a person. This is mainly motivated by two

reasons: 1) low resolution patches can be too ambiguous to be discriminated

by the classifier; 2) for body patches it is really difficult to discriminate

between a person seen frontal (0 degrees) or rear (180 degrees). For this

reason some solutions have been proposed in literature that exploit tracking

information to constrain the gaze of a person towards its direction. This

information can be particularly useful for moving people. However, tracking

all the persons in a scene is computationally onerous and prone to failure

due to drift issue.

For this reasons we introduce a motion feature in our gaze representation.

We believe that just the motion of a person can instantly disambiguate such

situations. We use the technique from [63] to extract the optical flow from

two consecutive frames at time It−1 and It. We discard all those pixels

with a motion below a given threshold τ and then compute the optical flow

orientation for the remaining pixels. For each bounding box detected in the

image It we compute the histogram of orientations weighted according to

an Epanechnikov kernel. We quantize the possible orientation in 8 classes.

We will refer to this feature as Histogram of Oriented Optical Flow (HOOF).

Fig. 5.2 shows the HOOF extraction process.

The use of this feature allows us to keep our solution stateless while grant-

ing a lower computational cost with respect to solutions based on tracking
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Figure 5.2: Motion feature extracted from a person detection.

or global optimization.

The final model is learned using as features the concatenation of the

predictions from the Head- and Body-ferns and the HOOF motion feature.

As in the case of the concatenation of head and body orientation prediction

we learn an SVM to predict the final gaze.

5.3 User Profiling

Our goal is to identify for each person the interest towards the surrounding

environment. For this purpose the estimation of the gaze of a person can be

used to determine an area of the scene that represent, with high probability,

the subject of user’s attention. To this end the coarse gaze estimated as in

Sect. 5.2 can be exploited to profile user interests in a scene and give him

more details about its preferences.

In order to be able to understand where the person is looking to or at

what is looking at in the observed scene we need to: 1) map the position

and gaze of a person on the ground plane; 2) compensate the projection of

the gaze [77] with respect to the real world reference system. To this end we

first estimate the camera matrix H using the intrinsic and extrinsic camera

parameters. Then it is possibile to estimate the compensation needed for

the gaze as:

θ = arccos

(

Hv −Hx

||Hv −Hx||
· i

)

(5.1)

where x is the position of the target in the image plane and v is the vanishing

point, see Fig. 5.3.

Once both position and the gaze are projected it is possible to exploit

these information to profile the interests towards the environment for each
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Figure 5.3: Visual representation of how the compensation angle θ is com-

puted.

person and, vice versa, understand which objects (e.g. artworks in a mu-

seum) of the scene are more attractive. For each object position Hxk and

each person position Hxi on the ground plane we define:

dik(α) = α
||pik||

M
+ (1− α) arccos

(

gi(θ) ·
pik

||pik||

)

π−1 (5.2)

where

pik = Hxk −Hxi (5.3)

being gi(θ) the person’s gaze projected on the ground plane through H and

corrected with the angle θ, M the maximum distance an artwork can have

from a visitor in the room and α a factor that weighs the combination of the

distance between the person i and the object k with the person’s gaze.

The artwork k∗ to be assigned to the person’s profile is selected using:

k∗ = argmin
k

dik(α). (5.4)

Note that if α = 1 we obtain the naif model associating people to artworks

based only on the position on the ground plane.
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5.4 Experiments

In this section we report a set of experiments to assess the performance of

our solution for coarse gaze estimation in comparison with state of the art

methods. Then we show how estimating the interest of a person through

both position and gaze improves with respect to using just the position of a

person in the scene.

5.4.1 Datasets and experimental details

Tests are conducted on two different datasets, TownCentre [16] and Mu-

seumVisitors [9]. The TownCentre dataset is a outdoor surveillance video

composed of 4500 frames with high scale variations for each person, occlu-

sions, and false positives in the scene. We randomly split the set in 218

persons for the training and 57 persons for the test.

MuseumVisitors is a challenging dataset recorded at National Museum

of Bargello in Florence, composed of three sequences acquired with three

IP cameras at a resolution of 1280 × 800 pixels. This dataset is specifically

designed for group detection, occlusion handling, tracking, re-identification

and behavior analysis. On MuseumVisitors we adopted the leave-one-out

strategy to evaluate our solution, so one person detection is used as test while

the other detections are used for training. The final accuracy is obtained by

averaging over all the results.

The ferns for the head orientation have been trained using the BMVC2009

dataset [15], that contains 1477 cropped head taken from different view-

points, with resolution from 10 × 10 pixels to 128 × 128 pixels. While the

ferns for the body have been trained on the TUD dataset [25], considering

7657 body patches extracted from 4732 frames, with resolution from 79× 26

pixels to 310× 102 pixels. For both Head-ferns and Body-ferns, the number

and the size of each fern have been chosen experimentally through a phase

of preliminary validation. In particular, we use 200 ferns each with a size of

10, respectively.

5.4.2 Gaze estimation evaluation

In this section we describe the improvements introduced by using different

features with the proposed strategy. In particular, we analyse the perfor-

mance between exploiting Head (H) and Body (B) ferns predictors, and



50
User Interest Profiling Using Tracking-free Coarse Gaze

Estimation

Histogram of Oriented Optical Flow (O) alone and their combinations. The

results are reported in terms of Mean Absolute Angular Error (MAAE) com-

puted between the estimated gazes {gi} and the ground truth {Gi} on the

image plane:

MAAE =
1

N

N
∑

i=1

min{|gi −Gi|, |gi −Gi ± 360◦|}.

Table 5.1 shows the performance of our strategy compared with Benfold

et al. [17] and Chen et al. [25] methods on the TownCentre dataset. We

specify the characteristics of each strategy in terms of using Head or Body

gaze estimation, motion and tracking. We consider a method using motion if

it exploits as cue the information computed from two adjacent frames such

as the walking direction or the optical flow. We consider a method using

tracking if it uses the information from multiple frames to estimate a single

gaze. This can be done in a causal and non-causal manner, in this latter

case performing a global optimization.

On TownCentre, our strategy with only the motion feature obtains com-

parable result with respect to the other methods. This is mainly due to the

fact that in the TownCentre dataset the person walks in the street with gaze

mainly oriented towards the motion direction. Our best with 22◦ of MAAE

is obtained with the full features combination. Although, Chen et al. [25]

reach the lowest MAAE, that is 18◦, the strong limitation of this method

is the use of tracking information to extract the gaze, which reduces the

applicability of the method in real scenarios where occlusions and crowd are

present.

In Table 5.2 we report the performance obtained on the MuseumVisi-

tors, considering only the persons with occlusion area lower than 20%. In

particular, we evaluate 1400 persons in Camera 1, 166 persons in Camera

2 and 1192 persons in Camera 3. The gap in performance varying the fea-

tures is notable. Using only Optical Flow produces the worst results on all

cameras, with gaze errors over 40◦. The Head feature reduces the error in

the cameras 1 and 3 with respect to Body and Optical features. A larger

improvement is achieved by combining Head and Body, that drops the gaze

error. Best results are obtained exploiting the combination of all features

with an error lower than 30◦ on all cameras. This is mainly due to the fact

that the direction extracted from the motion of each person limits the range

of feasible gazes in our method, improving the accuracy. In Fig. 5.4 we show
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Strategy MAAE Head Gaze Body Gaze Motion Tracking

Benfold [17] 26◦ ✓ ✗ ✗ ✓

Benfold [17] 26◦ ✓ ✗ ✓ ✓

Chen [25] 45◦ ✓ ✗ ✗ ✓

Chen [25] 28◦ ✓ ✓ ✓ ✗

Chen [25] 18◦ ✓ ✓ ✓ ✓

Our (O) 26◦ ✗ ✗ ✓ ✗

Our (H) 42◦ ✓ ✗ ✗ ✗

Our (B) 45◦ ✗ ✓ ✗ ✗

Our (H+B) 42◦ ✓ ✓ ✗ ✗

Our (H+B+O) 22◦ ✓ ✓ ✓ ✗

Table 5.1: Mean Absolute Angular Error of the proposed strategy in com-

parison with state-of-the-art on the TownCentre dataset.

Feat. Combination Camera 1 Camera 2 Camera 3

O 46◦ 47◦ 51◦

H 34◦ 35◦ 34◦

B 35◦ 30◦ 43◦

H+B 28◦ 26◦ 32◦

H+B+O 26◦ 22◦ 30◦

Table 5.2: Mean Absolute Angular Error on the MuseumVisitors dataset

with the proposed method (for different features combination).
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(a) TownCentre (b) MuseumVisitors: Camera 1

Figure 5.4: Example of persons’ gaze estimated with the proposed strategy

in TownCentre (a) and MuseumVisitors (b).

the gaze extracted with the proposed strategy in one frame of Camera 1 of

the MuseumVisitors dataset and on a frame from the TownCentre dataset.

MuseumVisitors is a more challenging dataset for gaze estimation as it can

be seen gaze can be hardly inferred by people motion alone, while on Town-

Centre gaze is almost parallel to the walking direction. Indeed, our method

only using optical flow (O), as is shown in Table 5.2, is much worse than in

Table 5.1.

5.4.3 Profiling evaluation

In this section we report the accuracy of user profiling on MuseumVisitors.

For the test we considered 10 artworks inside the Donatello’s Hall, as shown

in Fig 5.5. An interesting annotation that is provided with this dataset is

the association, for each frame, of visitors to artworks. The ground truth

also specifies if no relevant object is observed by a person. We measure the

accuracy of correct visitor-artwork association. If dik(α) > 0.2 we do not

associate a visitor to any artwork.

In Table 5.3 we report the accuracy of the computed profiles, considering

the geometrical distance alone (α = 1) and the combination of distance and

gaze (α < 1). In the last case, we report only the best results obtained

with α = 0.75. In general, the performance improves using the distance

and gaze together, reaching the highest accuracy with the combination of all

features. Some sample of correct and wrong association for different setup

of our method are shown in Fig 5.6.

Finally, in Fig 5.7 we show, for each camera and over all the cameras,
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Score function Camera 1 Camera 2 Camera 3

Geom. distance: dik(1) 88% 69% 84%

dik(0.75) + Feat. O 87% 60% 82%

dik(0.75) + Feat. H 91% 68% 86%

dik(0.75) + Feat. B 90% 69% 86%

dik(0.75) + Feat. H+B 91% 73% 86%

dik(0.75) + Feat. H+B+O 93% 75% 86%

Table 5.3: Accuracy of the profiles of interest varying the features combina-

tion of the proposed method.

Figure 5.5: Artworks location inside the Donatello’s Hall.

the heatmap obtained using the position of the persons in the scene and the

heatmap obtained using both the position and the gaze. It can ne noted that

the gaze heatmap is more informative. Indeed if we compare the maps from

camera 3, the position heatmap (c) estimates a lot of energy in the top left

corner of the room, while for the gaze map (g) the area is not receiving any

interest. This is a more realistic prediction since the corner does not contain

relevant artworks and the two artworks on the left side are minor works,

with less historical and artistic relevance with respect to the Donatello’s

sculptures on the other side of the room.
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(a) (b)

Figure 5.6: Anecdotal evidence of our approach: (a) correct association

by gaze or position; (b) wrong artwork association using position while no

artwork is actually looked at.

(a) Cam. 1 (b) Cam. 2 (c) Cam. 3 (d) All cameras

(e) Cam. 1 (f) Cam. 2 (g) Cam. 3 (h) All cameras

Figure 5.7: Heatmaps of the profiles of interest in the Donatello’s Hall com-

puted considering the feet position on the ground plane (first row) or the

combination between feet position and gaze (second row).



Chapter 6

The Mnemosyne System:

delivering personalized

information to Museum visitors

The amount of multimedia data museums gather in their databases

is growing fast, while the capacity to display more information to

visitors is limited. Such information often targets the interests

of average visitors instead of the whole spectrum of different in-

terests each individual visitor could have. In this Chapter we de-

scribe the Mnemosyne system that addresses these issues through

a new multimedia museum experience. Mnemosyne builds a user

profile for each visitor used to drive an interactive table to person-

alize the multimedia content delivery of the available resources.

6.1 Introduction

Artworks displayed in popular museums range from few thousands to hun-

dreds of thousands. Visitors are challenged with a huge amount of informa-

tion. Every single piece of exhibited art comes with many layers of additional

contextual information that people must filter according to their own inter-

est, need and time available. Museum directors usually design hall layouts

and art descriptions to target an “average visitor”. It would not be possible

to provide the full history, contextual information, author biography, related

55
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artworks and sites, for every work of art in display. This information must

be delivered in an organized manner, allowing each individual to sift through

the available data following her own inclinations and interests.

Moreover, some visitors may prefer to maximize their visual and sensory

experience, discarding historical and technical artistic details. Even the most

culturally aware may better like the possibility to defer the deepening of their

knowledge of seen art at a later time.

Museums should exploit modern technology to improve visitor experi-

ence and engagement. The main goal of such approaches should be that

of intercepting user interest and expand the amount of information accord-

ingly. Many efforts in the past exploited augmented reality applications.

The main drawback of this interaction paradigm is the intrusiveness, since it

requires the user to employ a hand-held device every time she feels the need

to get more information on a work of art. This approach although poten-

tially leading to visually pleasant and informative views of the real world,

completely disrupts the visitor attention, and in our opinion the quality of

her experience.

Another way of gathering information on user interest is through profil-

ing. Profiling means to associate to every visitor a probability distribution

over the artworks, representing her interest.

Passive profiling is the task of gathering user attention measurements.

Since a direct measurement of one’s attention is not physically possible one

must rely on cues that proxy the actual attention. A strong cue is the

physical proximity to an artwork. How far a person is from a certain physical

point can be measured using several strategies. Wireless signals have been

used in the past for localization, but state-of-the art technologies may have

errors even up to two meters. Moreover in crowded environments signals are

highly disturbed.

Accurate results may be obtained coupling a mobile application with

BLE tags. This approach is unfortunately, also intrusive, needing to deploy

tags on every artwork and the user to install some app to keep track of tag

activations.

In this work we propose to use passive user profiling through computer

vision techniques. We couple the computer vision system with a mobile

app and an interactive table for the deferred information delivery. Through

computer vision techniques we can acquire very precise measurements of

people location using calibrated cameras. Moreover, head visual features
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(a) Overview of the Hall (b) Artworks monitored from the system

Figure 6.1: Mnemosyne installation at the Donatello’s Hall.

can be exploited to estimate a coarse gaze, improving the cues for attention

further.

6.2 Mnemosyne System

Mnemosyne is a working installation opened in February 2015 at the National

Museum of Bargello, in the Donatello’s Hall (see Fig. 6.1(a)). Inside this hall

there are more than 70 artworks, most of them realized by Donatello. We

consider ten artworks of interest, as shown in Fig. 6.1(b).

Based on passive observation of the tourists during the visit, the system

extracts a profile of interests. This is obtained by analyzing, in real-time, the

video streams of four fixed cameras opportunely positioned in the Donatello’s

hall. For each camera the system localizes the tourists and build local profiles

considering all the artworks observed by each visitor. The profiles of the same

person coming from different cameras are then merged to obtain an unique

global profile. At the end of the visit, the tourist can interact with a user

interface that shows personalized contents according to the estimated global

profile and exploit a mobile application to download a summary of his visit

with additional multimedia contents.

The execution pipeline is composed by the following stages:

❼ Visitor Detection: localization of persons in the frames of each camera.

❼ Visitor Description: extraction of a visual person descriptors from each

detection to capture the visual characteristics of each visitor.
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(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 6.2: Different challenges for pedestrian detection in real scenarios:

scales variation of the target (red and green box), false positives in the image

(violet box), strong occlusion and crowd of the people (blue box).

❼ Visitor Local Modelling: build of a local profile for each visitor based

on the observed artworks.

❼ Visitor Global Modelling: merging of local profiles between the four

cameras.

In the following we will expound each stage of the Mnemosyne pipeline.

6.2.1 Visitor Detection

Pedestrian detection in a real museum is a very difficult task due to many

challenges that must be addressed, as shown in Fig. 6.2. The first issue to

be considered is the high scale variation of pedestrians in the image due to

scene perspective. Usually, multiple scales of the same image are considered

(pyramid of the image) and a sliding windows is evaluated by the classifier

at each location and scale of the image.

To overcome these issues a model of the scene is built that is based on

the expected scale of each visitor in the image. The model is learnt in an

unsupervised way, considering as training set the output of a pedestrian

detector. At test time, according to the scene model, only the detection

windows at the correct height are generated and evaluated by the classifier,

producing an improvement in terms of both accuracy and speed. The scene

model is defined as a linear combination of the visitors positions {x, y} in

the image:

f(x, y,γ) = γ · [1 x y]T , γ ∈ R
3 (6.1)

where γ are the plane parameters. To estimate γ we consider a set of posi-

tive detection windows {d(i) = [d
(i)
x , d

(i)
y , d

(i)
w , d

(i)
h ]} extracted from the same
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camera, where d
(i)
x and d

(i)
y represent the coordinates of the window in the

image, d
(i)
w and d

(i)
h are respectively the width and height of the detection

window. For each detection d(i), given the classification score d
(i)
s of the

detector, we estimate its relevance, π(i), by considering the cardinality of its

ROS:

π(i) = |{d(r)| d(r)s ≤ d(i)s and
d(r) ∩ d(i)

d(r) ∪ d(i)
≥ τvoc}|

where d(r)∩d(i)

d(r)∪d(i) is the VOC score computed as the intersection over union of

the bounding boxes d(r) and d(i) while τvoc is a threshold. A weighting factor

w(i) is then assigned to each d(i) based on its relevance and classification

score:

w(i) = π(i) · d(i)s , d(i)s , π(i) ∈ R

The best configuration for the plane parameters γ is finally obtained by

solving the following weighted least square problem:

γ = argmin
γ

∑

i

w(i)[d
(i)
h − f(d(i)x , d(i)y ,γ)]2 = (DT

x,yWDx,y)
−1DT

x,yWDh

6.2.2 Visitor Description

We describe the visual appearance of each person detected in the scene

through a descriptor d
(i)
a composed of both color and texture features [61]. In

particular, color information are encoded as histograms in the HS, RGB and

Lab color spaces while texture information is described through Histogram

of Oriented Gradients (HOG) [30].

Together with the visual description we collect over time both spatial

and temporal information for each detection. Spatial information d
(i)
g are

represented through the absolute position of the person on the ground plane,

while the synchronized timestamp d
(i)
t represents the temporal information.

6.2.3 Visitor Local Modelling

The path covered by each visitor in a camera is described in terms of small

groups of detections clustered together, namely tracklets. Tracklets are cre-

ated exploiting the visual description jointly with spatial and temporal in-

formation associated with each detection.
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Figure 6.3: Example of tracklets generated for three different persons.

To assign a new detection d(i) to an existing tracklet m(j) the similarity

is computed as follows:

δ(d(i), m(j)) = exp
{

−
(

(1− α− β)||d(i)a −m(j)
a ||2 + α

||d
(i)
g −m

(j)
g ||2

wg

+

(6.2)

+ β
||d

(i)
t −m

(j)
t ||2

wt

)}

(6.3)

where m
(j)
a is the appearance descriptor of the detection in the median po-

sition of the j-th tracklet, while m
(j)
g and m

(j)
t are respectively the spatial

and temporal information of the last detection in m(j). The normalization

factors wg and wt define respectively the spatial and temporal intervals of

observation, while α and β control the contribution of each component to the

distance score. The detection d(i) will be associated to an existing tracklet

only if the similarity score δ(d(i), m(j)) is greater than a fixed threshold and

according to:

j∗ = argmax
j

δ(d(i), m(j)) (6.4)

A new tracklet will be created every time a detection cannot be associated to

any of the existing tracklet. In figure 6.3 are shown three tracklets obtained

considering the eq. 6.4.

The local profile p(j) associated to m(j) is computed considering the dis-

tance between each detection in the tracklet and the gaze of the person.
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In fact, building a profile of a visitor without considering orientation infor-

mation can be misleading. In many situation a person may stand close to

an artwork but look in an opposite direction. To this end, we propose to

include coarse gaze information in the local profiling model. In particular,

we build upon our previously proposed solution (Chapter 5) which does not

require a tracker to obtain reliable gazes, but exploits optical flow as a cue

for incorporating motion information. Our final coarse gaze integrates head,

body and motion orientations.

In order to be able to understand where the person is looking to or at

what is looking at in the observed scene we need to: 1) map the position

and gaze of a person on the ground plane; 2) compensate the projection of

the gaze [77] with respect to the real world reference system. To this end we

first estimate the camera matrix G using the intrinsic and extrinsic camera

parameters. Then it is possibile to estimate the compensation needed for

the gaze as:

θ = arccos

(

G · v −G · [dx(i), dy(i), 1]′

||G · v −G · [dx(i), dy(i), 1]′||
· i

)

(6.5)

where v is the vanishing point.

Once both position and the gaze are projected it is possible to exploit these

information to profile the interests towards the environment for each person

and, vice versa, understand which objects (e.g. artworks in a museum) of

the scene are more attractive. For each artwork position and each person

position on the ground plane we compute the follows distance:

d
(i)
k (α) = α

||pik||

M
+ (1− α) arccos

(

gi(θ) ·
pik

||pik||

)

π−1 (6.6)

where

pik = Hxk −Hxi (6.7)

being gi(θ) the person’s gaze projected on the ground plane through G

and corrected with the angle θ, M the maximum distance an artwork can

have from a visitor in the hall, and α that weighs the combination of the

distance between the person i and the artwork k with the person’s gaze.

Each detection d(i) of the tracklet m(j) contributes to the k-th bin of the

local profile histogram p(j) as follows:

p(j) = {p
(j)
k }

K
k=1, where p

(j)
k =

∑

∀d(i)∈m(j)

e
− 1

2

(

d
(i)
k

(α)
)2

(6.8)
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6.2.4 Visitor Global Modelling

When a visitor approaches the tabletop, its detection d is used to retrieve the

most similar tracklets m(j) from each camera and the relative local profiles

p(j). These profiles are fused together in order to obtain the global profile p

of the visitor considering each artwork k, as follows:

p = {pk}
K
k=1, where pk =

∑

∀m(j) | ||m
(j)
a −da||2<T

p
(j)
k

1 + e
−6

(

1

||m
(j)
a −da||2

)

where T is a threshold that avoids considering those tracklets with a high

distance, in terms of appearance, with respect to appearance extracted from

the visitor detection d.

6.3 Experiments

In this section, we report a set of experiments to assess the performance of

each stage of the Mnemosyne pipelinem, and the final accuracy of the user

profiling. Tests are performed on a dataset composed of four synchronized

sequences, one for each camera in the Donatello’s hall, recorded during a

real visiting scenario. Each sequence is composed about 2000 frames and 67

observed visitors. For each person across each camera we manually labelled

the identity, the bounding box, the visible region of the bounding box and

the associated artwork if he is observing any.

6.3.1 Visitor Detection

We evaluated the performance of the our strategy with state of the art meth-

ods to obtain sparse detection windows proposals, using the VeryFast detec-

tor [14] to evaluate each detection window. Experiments were conducted

considering all the bounding boxes from the ground truth or considering a

subset of these composed by all the bounding boxes with a minimum height of

100 pixels and a percentage of occlusion lower than 50%, namely reasonable.

We have analyzed five state of the art sparse methods: SelectiveSearch [85],

Objectness [51], EdgeBoxes [100] and RandPrims [64]. Results are shown

in Fig. 6.4. We can observe different behaviors of the methods in the four

cameras. In Camera 1, we obtain similar miss rate performance as the other
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Figure 6.4: ROC curves of sparse windows methods for each camera.
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Cam. 1 Cam. 2 Cam. 3 Cam. 4

Rank 1 10 20 40 1 10 20 40 1 10 20 40 1 10 20 40

85.77 97.82 98.91 99.47 31.01 67.57 78.49 85.04 26.36 63.73 75.86 83.14 27.13 64.38 72.54 78.33

Table 6.1: Performance of the visitor re-identification for each camera, con-

sidering the single-vs-all scenario at different ranks.

strategies, with a slight improvement in terms of accuracy. With the Cam-

era 2, all the tested methods present a high number of false positives at

10−1FPPI. The lowest miss rate is scored by our strategy. With Camera 3,

the difference in performance between the proposed solution and the others

is highly more apparent. In this case, the use of the proposed plane of the

scales reduces the number of false positives caused by the scene complex-

ity. In Camera 4, we obtain similar performance as the VeryFast, but with

a much lower computational cost with respect to the dense method. We

can observe that reducing the number of windows to be evaluated does not

produce a loss in the accuracy, but doubles its efficiency performance. This

permits to run out person detection in real-time, at about 40 fps.

6.3.2 Visitor Re-identification

We evaluated the re-identification performance between cameras considering

the person descriptor [60] and a simple nearest neighbor classification. Tests

were conducted following a single-vs-all (SvsAll) scenario [54]. We consider

as probe images all those person’ detected in front of the interactive table

(in Camera 1), the rest of the detections from all the four cameras are used

as gallery. Identity knowledge is not exploited for both probe and gallery.

Results are reported in Table 6.1. We can observe a difference in terms of

accuracy between the Camera 1 and the rest of the cameras. This result can

be explained considering that the probe and the gallery set come from the

same camera, sharing identical conditions of illumination and prospective of

the images. In this case, best performance reach over 85% of accuracy at rank

1. Likewise, similar results are obtained with the Cameras 2 and 3 due to

the same complexity and prospective in both the cameras. Totally different

results in Camera 4, where the reduced brightness in the images and the

strong presence of false positive in the scene compromise the identification

of the persons.
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Cam. 1 Cam. 2 Cam. 3 Cam. 4

#Traces Acc. #Traces Acc. #Traces Acc. #Traces Acc.

dws h0 v0 49 0.7589 68 0.66151 105 0.75933 48 0.68121

gt
h0 v0 37 0.91353 53 0.71118 69 0.7945 33 0.82601

h100 v50 39 0.92279 46 0.76928 55 0.85404 26 0.84418

Table 6.2: Accuracy (average number of correct detection windows for each

trace) of the modelling phase.

6.3.3 Modelling and Profiling

We evaluated the capability of the proposed global modelling solution of cre-

ating traces (e.g. a composition of tracklets) containing only the detections

of the same person. In particular, we considered the detection windows ob-

tained with our person detector (dws) or the detection windows annotated in

the ground truth (gt). In this latter case, we performed a set of experiments

with the full set of detection windows (h0 v0) or considering only the reason-

able set (h100 v50). Results are reported in Table 6.2. Better performance

are achieved with gt data due to the perfect alignment of the persons in the

windows, with a very reduced portion of the background in the images. In

this case, the re-identification of the persons is more accurate, resulting in

a better creation of the traces. However, we obtained comparable results

considering the h0 v0 set. This proves the effectiveness of our method to

cluster together the detections of the same person.

6.3.4 User profiling

We performed a set of experiments to assess the accuracy of user profiling

of Mnemosyne. For the test we considered 10 artworks of interest inside the

Donatello’s Hall. For each visitor, we have annotated frame by frame the

observed artwork (or if no relevant object is observed by the person). We

measure the accuracy of correct visitor-artwork association. In general, the

performance improves using the distance and gaze together in the eq. 6.3,

reaching the highest accuracy of 87% with α = 0.75.

6.4 Conclusion

In this chapter we have presented Mnemosyne as a new system for per-

sonalized multimedia museum experience. Mnemosyne estimates the user’s
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interest profile based on the passive observation of visitors in museum ex-

hibits. Visual profiling is obtained by running a complex execution pipeline

composed of different computer vision task. For each video stream the sys-

tem performs detection and description of the visitors in order to localize all

persons in the frames, capturing the visual characteristics of each one. Then,

the local modelling phase is performed to build the profiles of the visitors,

separately for each camera. Finally, the global modelling merges all profiles

between the cameras. The proposed strategies described in this work allow

to run the pipeline in real-time.



Chapter 7

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

7.1 Summary of contribution

This thesis makes different contributions to person detection, coarse gaze

estimation and user interest profiling. We have proposed two methods to re-

duce the complexity of a multi-scale person detection, which address the two

fundamental bottlenecks of cascade detectors: the number of weak classifiers

that need to be evaluated in each cascade, and the total number of detection

windows that must be evaluated. As regards the task of people profiling,

we proposed a strategy to profile the attention of people moving in a known

space, exploiting coarse gaze estimation and a novel model based on optical

flow to improve attention prediction, without the need of a tracker.

The major contributions are summarized below:

❼ In Chapter 3, we proposed two strategies to reduce the computational

complexity of a multi-scale pedestrian detector. Both strategies are un-

supervised, based only on region of support information measured on

a training set of unlabeled images. Our first strategy linearly approxi-

mates soft cascades so that only a fraction of stages must be evaluated

in order to obtain an output of the entire cascade. The second strat-

egy instead builds a generative model for candidate window proposal

in order to reduce the number of infeasible windows evaluated. The ex-

67
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periments demonstrate that both techniques are effective at increasing

the efficiency of detection while sacrificing little in terms of accuracy.

Linear cascade approximation yields modest improvement in efficiency.

Candidate window proposal instead yields significant gains since it re-

duces the total number of candidate detection windows considered.

❼ In Chapter 4, we have proposed Mixture-based Windows Proposal

(MWP) as a new method that exploits a previously learnt scene model

to provide sparse proposals of windows where targets should be de-

tected most likely. The model of the scene is built using a Mixture

of Gaussians whose components take into account position, scale and

relative importance of detections in their Region of Support. Experi-

mental results have shown that detection with MWP scores the lowest

miss rate with respect to state of the art methods for sparse windows

proposal. This is mainly due to the ability of the method to select

windows at the right scale of the target, so reducing the number of

false positives.

❼ In Chapter 5, we have presented a solution for coarse gaze estimation

that can be exploited to understand where people attention focuses.

We proposed to fuse head and body orientations with a novel model

based on optical flow in order to improve attention prediction without

the need of a tracker. The proposed method obtains comparable per-

formance with respect to state of the art solutions. We also show that

our approach improves both mean absolute angular error and profiling

accuracy on the more challenging MuseumVisitors dataset, confirming

that a good coarse gaze estimate is a valuable cue for user interest

profiling.

❼ In Chapter 6, we presented the Mnemosyne system, which makes use

of passive observation to estimate the visitor’s preferences in the Do-

natello’s Hall, at the Nationl Museum of Bargello. Based on passive

observation of the tourists during the visit, the system extracts a pro-

file of interests. This is obtained by analyzing, in real-time, the video

streams of four fixed cameras opportunely positioned in the hall. At

the end of the visit, the tourist can interact with a user interface that

shows personalized contents according to the estimated global profile.

The summary of his visit can be downloaded through a mobile appli-

cation, with additional multimedia contents.
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7.2 Directions for future work

Recents acts of terrorism and violence have brought to light the issue of

security in public areas, stations and airports. Automatic people profiling

can be exploited for this purpose. In this context, people detection and re-

identification have received a lot of attention due to the possibility to identify

an individual over different non-overlapping cameras and viewpoints, finding

the best matching in a large database of billions of people in the world In

the next years I will investigate possible solutions to pedestrian detection,

tracking and recognition in the wild, aiming at the development of a sys-

tem that supports advanced surveillance systems with identification of the

subject(s) in the frames. State of the art Convolutional Neural Network

technology will be considered as subject of investigation. Since the effective-

ness of this technology is strictly related to the availability of a huge number

of training samples, I will also investigate the possibility of using tracking as

an unsupervised method to collect different appearances of the individual’s

silhouette. Finally, I will analyze solutions based on fixed and first-person

vision, considering technological requirements for real-time performance
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Appendix A

MuseumVisitors: a dataset for

pedestrian and group detection,

gaze estimation and behavior

understanding

In this appendix we describe a new dataset, under construction,

acquired inside the National Museum of Bargello in Florence. It

was recorded with three IP cameras at a resolution of 1280× 800

pixels and an average framerate of five frames per second. Se-

quences were recorded following two scenarios. The first sce-

nario consists of visitors watching different artworks (individu-

als), while the second one consists of groups of visitors watching

the same artworks (groups). This dataset is specifically designed

to support research on group detection, occlusion handling, track-

ing, re-identification and behavior analysis. In order to ease the

annotation process we designed a user friendly web interface that

allows to annotate: bounding boxes, occlusion area, body orien-

tation and head gaze, group belonging, and artwork under obser-

vation. We provide a comparison with other existing datasets

that have group and occlusion annotations. In order to assess

the difficulties of this dataset we have also performed some tests

exploiting seven representative state-of-the-art pedestrian detec-

tors.
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A.1 Introduction

The interest for challenging and realistic datasets is raising in the computer

vision and pattern recognition community. All recent major advancements in

fundamental computer vision tasks have been driven by the release of large

and challenging datasets. Public datasets are often associated with chal-

lenges in order to push researcher to develop algorithms and systems that

advance the state-of-the-art. For tasks like object recognition, detection and

segmentation the PASCAL VOC [41] datasets are a reference for the com-

munity. Recently the large scale taxonomy annotated dataset ImageNet [32]

provided the sufficient amount of data to train large and deep neural net-

works [56]. Deep learning provided a new set of tools for object classification

and detection researchers that could easily improve performance by simple

transfer learning of models fitted on ImageNet [23,45].

Large scale action recognition with trimmed and untrimmed videos have

been recently proposed [81] with a challenge. This was the first attempt to

release a large scale dataset, both in term of classes and samples. Moreover

untrimmed sequences were released as test samples in 2014 in order to push

research in action recognition towards detection, or temporal segmentation

of actions of interest.

Recently the problem of group behavior understanding gained attention.

Understanding group behavior is a challenging and sometimes ill defined

problem. Some authors addressed the task of understanding collective be-

haviors like standing in a queue or crossing the road [5, 27]. Other authors

have addressed the problem of person to person interaction, that can both

happen in couples or groups. This kind of task stems from social studies

and psychology. In some cases approaches are exploiting the social behav-

ior to improve other, more basic, tasks like tracking [11, 74]. More recently

researchers began to address the analysis of collective patterns. A typical

task is the detection of F-formations [29]; F-formations are patterns that cre-

ate when two or more individuals arrange spatially so that they have equal

and direct access to the space between them. Therefore there exist multiple

F-formation kinds depending both on the amount of participants and their

spatial location and orientation. Being able to detect the presence and types

of F-formations allows to roughly understand social behavior of observed

people.

Person interaction is also mainly described by the so called attention, that

is usually measured by recognizing where a person gaze is directed [17, 24].
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Estimating people gaze can give a finer understanding of the relationship

between a person and the environment.

At the core of user behavior understanding lays the computer vision

problem of pedestrian detection. Most of the measurement and descriptors

proposed to understand collective behaviors and group formations need ei-

ther gaze or people location. Moreover gaze can only be accurately estimated

if the head is located correctly.

We believe that to allow researchers to explore the group behavior un-

derstanding extensively many heterogeneous annotations are needed. Gaze

and people location in images are a must. Multi-camera setups are usual in

real scenarios, therefore a modern dataset should include multiple partially

overlapped views of a scene. The presence of groups will certainly gener-

ate occlusions among people so a desirable property of a dataset is also an

annotation of occluded parts of each pedestrian. Finally environmental infor-

mation such as accurate camera calibration and relevant object locations in

a single real world reference may help analyzing not only the person-person

interaction but also the person-object and person-scene interaction.

In this work we are proposing MuseumVisitors a dataset for person and

group behavior understanding on which tracking, detection and coarse gaze

estimation can be evaluated. We recorded this dataset at National Museum

of Bargello in Florence, Italy. We provide camera calibration and object

locations. Moreover we developed a multi-user web-based annotation tool

(WATSS) that will allow a continuous growth of the dataset in the upcoming

years. Annotation of groups, identities and occluded parts are provided. The

dataset has been recorded across different times of the day thus generating

challenging sequences in term of lighting conditions. We thoroughly evaluate

modern state-of-the-art pedestrian detection in different set-ups.

A.2 Existing dataset for group and occlusion

detection

Person detection is widely studied in literature and many datasets have been

publicly released, each one with different characteristics. However, there is

a lack of datasets with group annotation, that can be used for example in

group detection, tracking and behavior analysis. In this section we briefly

review some currently available datasets that contain groups or occlusion

annotations.
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Dataset # cam. # frames # ind. # ped. density Group Person ID Occl. Gaze Video Calib.

MuseumVisitors 3 4808 43 53389 11.1 X X X X X X

CAVIAR Shop. Center [22] 2 72515 ∼2378 179283 2.5 X X X X

Friends meet [11] 1 10685 – – – X X X X

Caltech [36] 1 250000 2300 ∼ 350000 1.4 X X X X

Daimler Ped. Det. [39] 21790 88880 4.1 X X

CVC-05 Part. Occl. [67] 593 2008 3.4 X

CUHK occlusion [72] 1063 10191 9.6 X X

Table A.1: Comparison between existing datasets for group and occlusion

detection. Missing information are denoted with “–”.

Group detection The CAVIAR dataset [22]1 was released in 2003 for

behavior analysis purposes. It consists of two sets of experiments, each one

composed by a set of video clips taken also from different cameras. These

sequences were recorded acting out different scenarios of interest for different

behaviors. In literature this datasets were mainly exploited for tracking

purposes [7, 95]. It comes with groups annotations and it can be exploited

for group detection, tracking or behavior analysis.

The Friends Meet (FM) dataset2 was recently proposed in [11] specifically

for group detection and tracking. It contains groups of people that evolve,

appear and disappear spontaneously, and experience split and merge events.

It is composed by 53 sequences, for a total of 16286 frames. The sequences are

partitioned in a synthetic set without any complex object representation and

dynamics, and a real dataset. The real dataset also contains bounding boxes

annotations for each observed subject along with identities. We only consider

the latter in Table A.1. However, it was recorded from a single camera

positioned far away from the observed plane, with a strong perspective and

it can be really difficult to detect people on its frames since classic detectors

are usually trained on frontal or lateral person images [30, 36].

The Images of Groups Dataset [44]3 is a collection of people images from

Flickr obtained by performing three searches with some selected keywords.

However, this dataset largely differs from the classic pedestrian detection

datasets [30,36] since it was mainly designed for social behavior analysis on

single-shot images. In each image, the authors provide the group annotations

along with the gender and the age category for each person.

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
2http://www.iit.it/it/datasets-and-code/datasets/fmdataset.html
3http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://www.iit.it/it/datasets-and-code/datasets/fmdataset.html
http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html


A.2 Existing dataset for group and occlusion detection 75

Occlusion detection Recently a lot of techniques have been focusing on

person detection with occlusions handling [68, 71, 90]. However, due to the

lack of datasets with occlusion annotations it is always difficult to produce a

quantitative measure of this phenomenon and compare with other methods.

The Daimler Pedestrian Detection Benchmark dataset [39]4 is a set of

images captured from a vehicle-mounted calibrated stereo camera rig that is

moving in an urban environment. It contains bounding boxes annotations

for pedestrians and non-pedestrians in the scene. No additional annotation

are provided about visible (or occluded) part of each pedestrian. However,

the test set is split between non-occluded and partially-occluded.

The Caltech dataset [36]5 is composed of 250000 frames extracted from

10 hours of videos acquired from a vehicle driving through regular traffic

in an urban environment. In this dataset individual pedestrians have been

labeled as Person while large groups were delineated using a single bounding

box and labeled as People. The authors also provided this dataset with the

annotation for all the occluded pedestrians by labeling both the full extent of

the pedestrian and the visible region. As described, most of the pedestrians

(70%) are occluded in at least one frame.

CVC-05 Partially Occluded Pedestrian dataset [67]6 is composed of 593

frames sampled from different sequences. It contains annotations only about

the full bounding box of each pedestrian and does not provide any informa-

tion about visible (or occluded) part of each target.

The CUHK occlusion dataset [72]7 for activity and crowded scenes anal-

ysis contains 1063 images divided in 10 clips with occluded pedestrians from

other five datasets: Caltech [36], ETHZ [40], TUD-Brussels [91], INRIA [30],

CAVIAR [22]. The authors also provided this dataset with both the full

pedestrian bounding box and the visible (not occluded) bounding box part

for each pedestrian along with a flag that separate occluded persons from

non-occluded ones.

An overview about the datasets described in this section is given in Ta-

ble A.1. Here, for each dataset, we report some quantitative information:

the number of cameras used (# cameras), the number of frames (# frames),

4http://www.gavrila.net/Datasets/Daimler Pedestrian Benchmark D/

Daimler Multi-Cue Occluded Ped/daimler multi-cue occluded ped.html
5http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
6http://www.cvc.uab.es/adas/site/?q=node/7
7http://www.ee.cuhk.edu.hk/ xgwang/CUHK pedestrian.html
8We determined the number of subjects from the available ground truth.

http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Multi-Cue_Occluded_Ped/daimler_multi-cue_occluded_ped.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Multi-Cue_Occluded_Ped/daimler_multi-cue_occluded_ped.html
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.cvc.uab.es/adas/site/?q=node/7
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_pedestrian.html
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the number of identities that can be used for tracking or re-identification

(# individuals), the number of annotated bounding boxes (# pedestrians)

and the number of annotated bounding boxes per frame (density). For each

dataset we also report some properties, such as the availability of: group an-

notation (Group), person identity for each annotation (Person ID), occlusion

information for each bounding box (Occlusion), Gaze information (Gaze) of

body or head, video sequences or single-shot frames (Video) and calibration

information (Calibration).

A.3 Design of the dataset

The dataset is extracted from video sequences recorded inside the National

Museum of Bargello in Florence. The goal of this dataset is to provide an

evaluation framework for all the components of a pipeline of computer vision

tools aimed at understanding the behavior and interests of the visitors inside

the museum. To be able to understand the visitors’ behavior a computer

vision system must first be able to robustly detect persons even when the

visitors evolve in groups. Furthermore, visitor’s face and body orientation

together with the artworks positions can provide more precise clues to fully

understand visitor interest.

In the following, we detail how the dataset was acquired and annotated.

A.3.1 Dataset acquisition

The installation at the Bargello Museum, depicted in Figure A.1, makes use

of 3 IP cameras connected to a local network through WiFi. Each camera

video stream is acquired through a dedicated grabbing process at an average

framerate of 5 frames per second. All cameras are calibrated to a common

real world ground plane coordinates system, and the calibration informa-

tion is released along the dataset. Furthermore, the real world coordinates

of 10 artworks of interest inside the Donatello hall are recorded, enabling

the dataset to be used for both behavior and interest analysis [53]. People

filmed in the sequence were given very few instructions in order to avoid a

choreographed behavior. Specifically each person or group was asked to visit

a subset of the artworks with no specific order.
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Figure A.1: Scheme of the installation at the Bargello Museum with the 3

cameras positions and fields of view, artworks location and common ground

plane axis.

A.3.2 Annotation protocol

The dataset is annotated with different information about each person. First

of all a bounding box enclosing each person is defined. If a person is partially

occluded, a secondary bounding box annotation corresponding only to the

visible part of the person is defined, see Figure A.2(a). Each person is

associated with a single identifier on all frames of all cameras. If a person is

part of a group, it is associated with the group identifier that is also shared

on all frames of all cameras. Finally, the body orientation and gaze are also

annotated according to a quantization of 5 degrees as shown in Figure A.2(b).

A.4 Experiments

We performed a series of experiments to assess the difficulty of the Muse-

umVisitors dataset. Tests were conducted considering the frames extracted

from the three cameras in the Donatello Hall, under two scenarios: individ-
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Pedestrians height

Camera Min Max Avg

1 30 498 137

2 79 442 159

3 96 423 153

Table A.2: Statistics about the pedestrians height (in pixels) in each camera

of the dataset.

ual and groups. The first scenario shows visitors watching different artworks,

while the second one shows groups of visitors watching the same artworks.

Figure A.3 shows some sample frames for the different cameras and scenarios

of the MuseumVisitors dataset. In Table A.2 we report the minimum, max-

imum and average heights in pixels of all annotated visitors for each camera

of the dataset.

We evaluated the proposed dataset with seven representative state-of-the-

art pedestrian detectors [14, 30, 34, 35, 37, 42, 92]. One of the first successful

approach to object detection has been proposed by Dalal et al. [30], de-

signing a feature based on histograms of oriented gradient (HOG) and linear

SVM. This detector has issues with deformable objects using a single holistic

template, therefore Felzenszwab et al. [42] proposed a mixtures of part-based

deformable models (DPM) in order to improve the detection of the targets

in presence of occlusion and crowd in the scene. Recently several classifiers

based on Haar-like features computed on multiple channels and soft-cascades

have been proposed [14, 34, 35, 37]. This recent line of work obtain state of

the art performances on challenging datasets [36] and lean towards efficiency.

In [35] the Haar-like feature are computed, in an efficient way, over multiple

channels by the Integral Channel Feature structure (ChnFtrs), which allows

to reduce the computational effort without loss of accuracy in the detection

process. In [34] (FPDW) the full pyramid features is approximated by in-

terpolation at nearby scales, requiring only the exact computation of the

feature in the middle-levels of each octave of the pyramid. In [14] the au-

thors propose the VeryFast detector composed of multiple classifiers, each

one trained for a specific octave of the pyramid. This in combination with

the features approximation of [34] moves the feature extraction complexity

from test time to training time. In [37] the authors proposed the Aggregate

Channel Feature (ACF) extending the work in [34] with a variant of integral
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channel features to compute the pyramid features efficiently. The ACF de-

tector was recently extended in [92] by applying a set of decorrelating filters

per channel (ACF-LDCF).

For each detector we specify if it was trained on the INRIA pedestrian

dataset [30] (I), on the Caltech pedestrian dataset [36] (C), or both of them

(I+C).

We performed an experiment to evaluate how occlusion influences the

performance of tested detectors. As it can be observed from Figure A.4(a) for

the individual scenario most of the annotated bounding boxes have less than

10% of occlusion level. This can be also noticed from Figure A.4(c) where

the performance of each detector does not vary too much as the occlusion

percentage increases. On the contrary, for the groups scenario, the number of

bounding boxes per occlusion level varies consistently (see Figure A.4(b)) and

this can be noticed from the fact that the performance of tested detectors

decreases according to the occlusion level percentage, see Figure A.4(d).

With this result in mind and also inspired by [36] we designed a Reasonable

experimental setting restricting pedestrian bounding boxes to be wider than

50 pixels and with less than 30% of occlusion. This restricted dataset setting

removes objects that are very hard to detect either because their size is too

small or because the occlusion does not provide enough evidence to the

trained classifiers.

In Tables A.3,A.4,A.5 we report the accuracy obtained from the tested

pedestrian detectors on the proposed dataset. Performances are summarized

using the miss rate (MR) at 10−1 false positive per image (FPPI) for the three

cameras. We report separately MR@10−1 on the Full scenarios Individuals

(Ind.), Groups (Group), and their respective reasonable versions (Reas.).

We obtain different results for the three cameras due to the difference in

terms of scales and locations of the visitors in the scene. For the individuals

scenario the best performance are obtained with the DPM detector in the

camera 3 (32%), while the detector ChnFtrs is the best in the other cameras,

with a MR of 67% and 51% respectively. For the groups scenario the best

performance is obtained by the FPDW detector for both camera 1 (89%)

and camera 2 (32%), while for the camera 3 the DPM detector reach the

lower miss rate (60%).

If we consider the reasonable setup all detectors have an higher accuracy

drastically reducing all the Miss Rates on every camera. In particular, for

the case of individuals the best result is obtained in the camera 3 with the
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Detector
Camera 1

Ind. Ind. Reas. Groups Groups Reas.

HOG (I) 91 88 99 96

DPM (I) 75 69 89 77

ChnFtrs (I) 67 57 90 74

FPDW (I) 67 58 89 72

VeryFast (I+C) 95 94 98 94

ACF (I) 75 70 91 80

ACF (C) 98 93 100 96

ACF-LDCF (I) 72 65 89 75

ACF-LDCF (C) 93 91 98 96

Table A.3: Miss Rates @10−1 False Positive per Image (fppi) of leading

pedestrian detectors on the MuseumVisitors dataset, for the camera 1. We

evaluated the individuals (Ind.) and groups (Groups) scenarios, considering

also the reasonable ground truth (Reas.). In bold we report the best results

for each scenario.

ACF-LDCF(I) detector (23%), while the best performer for camera 2 is the

FPDW detector (29%), and the ChnFtrs detector for the camera 1 (57%).

The ROC curves of all the tested methods are reported in Figure A.5

separately for individuals and groups and for each camera considering the

Full scenario. While in Figure A.6 we report the ROC curves separately

for individuals and groups and for each camera considering the Reasonable

scenario.

In general there is not a single pedestrian detector which obtains the best

results in all sequences. This is due to the different complexities in each sce-

nario that must be addressed by a single pedestrian strategy. This fact shows

that the proposed dataset contains many challenges for pedestrian detection

stemming from occlusion, lighting and scale changes that are inherent in a

real world scenario.

A.5 Conclusion

In this work we presented a new dataset to serve many purposes and with

unique characteristics. The MuseumVisitors dataset is a perfect testing

ground for core computer vision techniques used as prerequisites for group

behavior understanding such as: pedestrian detection under occlusion, group

detection, re-identification, tracking and gaze estimation. We provide a level

of detail in the annotation that lacks in many of the recent surveillance
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Detector
Camera 2

Ind. Ind. Reas. Groups Groups Reas.

HOG (I) 89 80 98 97

DPM (I) 58 37 52 41

ChnFtrs (I) 51 29 42 32

FPDW (I) 51 29 41 31

VeryFast (I+C) 82 72 88 82

ACF (I) 58 48 55 47

ACF (C) 85 79 90 88

ACF-LDCF (I) 51 36 47 38

ACF-LDCF (C) 82 74 75 70

Table A.4: Miss Rates @10−1 False Positive per Image (fppi) of leading

pedestrian detectors on the MuseumVisitors dataset, for the camera 2.

Detector
Camera 3

Ind. Ind. Reas. Groups Groups Reas.

HOG (I) 95 93 100 99

DPM (I) 32 24 60 45

ChnFtrs (I) 37 27 73 60

FPDW (I) 51 42 75 62

VeryFast (I+C) 80 76 88 82

ACF (I) 44 38 73 62

ACF (C) 84 82 91 86

ACF-LDCF (I) 34 23 64 49

ACF-LDCF (C) 75 70 90 85

Table A.5: Miss Rates @10−1 False Positive per Image (fppi) of leading

pedestrian detectors on the MuseumVisitors dataset, for the camera 3.
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datasets. We propose several subsets of the dataset based on different sce-

narios such as: groups or individuals and full or reasonable scenarios; all of

these scenarios are available for the three views.

The three views being calibrated on a single world coordinates reference

system it is possible to combine the information gathered from multiple

cameras at no cost. Furthermore, the real word coordinates of the artworks

in the observed museum room are also given with the dataset. Hence, people

behavior can be analysed in terms of relationship between individuals and

relationships between individuals and the objects in the scene.

The dataset footage has been captured from a real system installed in a

major Museum of the city of Florence providing challenging crowding and

lighting conditions. This setup will allow us to gather more sequences in

the future and release subsequent, enlarged, versions of the MuseumVisitors

dataset.

Having developed a user friendly, multi-user, web based annotation tool,

namely WATSS (we will present it in the next appendix), we are able to do

a continuous annotation of the footage we have acquired and we have yet to

release.
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(a) (b)

Figure A.2: (a) The solid green rectangle represent the bounding box selected

for the annotation while the green dashed rectangle represent the visible (not

occluded) area annotated by the user; (b) The cone visualizes the annotation

of the gaze provided by the user.

(a) Camera 1 - Individuals (b) Camera 2 - Individuals (c) Camera 3 - Individuals

(d) Camera 1 - Groups (e) Camera 2 - Groups (f) Camera 3 - Groups

Figure A.3: Sample frames showing the different cameras and scenarios of

the MuseumVisitors dataset.
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Figure A.4: Number of bounding boxes for both the individuals (a) and

groups (b) scenarios for all the cameras varying the occlusion area. Average

miss rate @10−1 averaged over the three cameras for both individuals (c)

and groups (d).
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Figure A.5: Evaluation results for the three cameras, on individuals and

groups scenarios over all the dataset.
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(f) Camera 3 - Groups

Figure A.6: Evaluation results for the three cameras, on individuals and

groups scenarios only over the reasonable annotations.



Appendix B

WATSS: a Web Annotation

Tool for Surveillance Scenarios

In this appendix, we present a web based annotation tool we developed al-

lowing creating collaboratively a detailed ground truth for datasets related

to visual surveillance and behavior understanding. The system persistence

is based on a relational database and the user interface is designed using

HTML5, Javascript and CSS. Our tool can easily manage datasets with

multiple cameras. It allows annotating a person location in the image, its

identity, its body and head gaze, as well as a potential occlusion or group

membership. We justify each annotation type with regards to current trends

of research in the computer vision community. We further detail how our in-

terface can be used to annotate each of these annotations type. We conclude

with an usability evaluation of our system.

B.1 Introduction

The computer vision and pattern recognition community is always seek-

ing more challenging and realistic datasets to work on. Such datasets have

been the main driver of recent major advancements in machine learning and

pattern recognition. Challenges, associated with public datasets have also

pushed researchers to develop methods to go beyond the state-of-the-art.

PASCAL VOC [41] had been and is still advancing the accuracy of object

recognition, detection and segmentation. A major break-through in image

recognition has been recently made possible thanks to the large ImageNet

87
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taxonomy [32] allowing to train a deep convolutional neural network with a

sufficient amount of data [56].

Recently, researchers started to address the problem of group behavior

understanding. Collective behavior understanding, like standing in groups

or queuing up has been addressed in [5, 27]. The problem of person to per-

son interaction has been tackled in [11, 74] showing that modelling social

behavior can improve tracking performance. Dataset to study group behav-

ior will often be recorded in mildly crowded environments therefore knowing

whether a body is fully visible or partially occluded allows to evaluate how

the methods are able to cope with occlusion. Moreover, one of the most

important social cue is gaze, usually defined as a coarse gaze by the head

pose since it is often not possible to detect the real gaze of a person from far

field camera.

Dataset annotation is a time consuming and expensive task to perform.

Recently large datasets have been annotated with crowd sourcing. Crowd

sourcing usually relies on platforms like Amazon Mechanical Turk (AMT),

where “turkers” are paid to perform annotations. To properly exploit AMT

web based annotation interfaces [79, 88] are needed.

In this work we present an open-source tool we have developed to an-

notate the MuseumVisitors dataset [10]. This dataset of person and group

behavior understanding, can be used for tracking, detection and coarse gaze

estimation. We recorded this dataset at the National Museum of Bargello in

Florence, Italy as part of the MNEMOSYNE project [53]. We designed the

tool as a web application in order to easily gather annotations from multiple

users and to allow concurrent annotations. The tool had to deal with mul-

tiple kinds of information thus needing a user interface designed specifically

for the task. Annotators can insert groups and people identities, gaze and

body occlusion.

B.2 Related tools and datasets

In this section we first review some publicly released annotation tools and

then discuss the related datasets limitations that triggered the development

of the WATSS tool.
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B.2.1 Annotation tools

The LabelMe annotation tool [79] is focused on annotating scenes providing

web based tools and mobile applications to annotate, using polygons, the

outline of objects. Tools to annotate surveillance videos have been recently

proposed such as VIPER [66] and VATIC [88]. These tools usually support

annotations like bounding boxes, polygons and ellipses, as they are mostly

developed for object detection. VATIC allows to specify a finite set of at-

tribute per every object such as “walking” for “person” objects. The main

drawback of a tool like VIPER is that is meant to be used locally instead

of online, therefore the gathering of annotations from multiple sources can

become difficult and there is no way of connecting the tool with crowdsourc-

ing platforms. VATIC is a more modern online tool that can be used for

crowdsourcing at scale, although their data model is extremely focused on

detection and structured detection of objects [96]. The possibility to add at-

tributes gives some flexibility to the data model but is not enough to manage

the diversity of data needed for behavior understanding.

B.2.2 Group and occlusion detection datasets

Person detection is widely studied in literature and many datasets have been

publicly released, each one with different characteristics. However, there is a

lack of datasets with group annotation, that can be used for example in group

detection, tracking and behavior analysis. Moreover, very few datasets have

gaze annotation. In this section we briefly review some currently available

datasets that contain groups or occlusion annotations.

Group detection The CAVIAR dataset [22] was released in 2003 for be-

havior analysis purposes. It consists of two sets of experiments, each one

composed by a set of video clips taken from different cameras. These se-

quences were recorded acting out different scenarios of interest for different

behaviors. It comes with groups annotations and it can be exploited for

group detection, tracking or behavior analysis.

The Friends Meet (FM) dataset was recently proposed in [11] specifically

for group detection and tracking. It contains groups of people that evolve,

appear and disappear spontaneously, and experience split and merge events.

It is composed of 53 sequences, for a total of 16286 frames. The sequences

are partitioned in a synthetic set without any complex object representation
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and dynamics, and a real dataset.

Occlusion detection Recently a lot of techniques have been focusing on

person detection with occlusions handling [68, 71, 90]. However, due to the

lack of datasets with occlusion annotations it is difficult to produce a quan-

titative measure of this phenomenon and compare with other methods. The

Daimler Pedestrian Detection Benchmark dataset [39] is a set of images cap-

tured from a vehicle-mounted calibrated stereo camera rig that is moving in

an urban environment. It contains bounding boxes annotations for pedestri-

ans and non-pedestrians in the scene. No additional annotation are provided

about visible (or occluded) part of each pedestrian. However, the test set is

split between non-occluded and partially-occluded. The Caltech dataset [36]

is composed of 250000 frames extracted from 10 hours of videos acquired

from a vehicle driving through regular traffic in an urban environment.

B.3 WATSS Annotation Tool

Most of current datasets are targeted for a single task, such as: person de-

tection with occlusion, group detection and/or behavior analysis. Moreover,

to the best of our knowledge no open source annotation tools are available to

easily produce all the annotations needed to build a dataset covering jointly

all these tasks.

We hence developed a web-based annotation tool to annotate our Mu-

seumVisitors Dataset [10] and we made the source code publicly available.

This dataset is a great example of what is needed in a modern visual surveil-

lance dataset. In our case we want as much information as possible so we

developed functionalities to annotate position, person identity, gaze, occlu-

sion persons and group membership.

B.3.1 Annotation protocol

We propose the following annotation protocol. First of all people bounding

boxes must be defined, a bounding box can be positioned and rescaled to

better fit a person. If a person is partially occluded, a secondary bounding

box annotation corresponding only to the visible part of the person can be

defined.

Annotators can provide identities for pedestrians associating a single

identifier on all frames of all cameras. Identities are easily assigned thanks
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to our Add person interface showing avatars of already enrolled identities as

show in Figure B.2.

In presence of groups, annotators can also associate a group identifier

that is common to all frames of all cameras. Finally, it is possible to specify

body orientation and gaze with a quantization of 5 degrees.

Figure B.1: Web interface. Showing several persons bounding boxes and the

pop-up avatar for the first one.

B.3.2 The web based annotation tool

We designed a user friendly web interface to ease the tedious task of a detailed

surveillance videos annotation. Implementing the tool as a web platform

allows concurrent annotation. In fact, multiple annotators can be easily

tasked with a different range of frames to annotate. Moreover the interface

implement a function to point an annotator to the next un-annotated frame.

In Figure B.1 we show the interface.

On the top of the interface we have a menu bar with different options:

GTmaking, Export results and Legend. If a user selects GT making the

annotation tool asks for username and allows to chose the camera and frame

to annotate, if none is specified the annotation process will start from the

latest frame annotated by the user.

On the left-top part of the interface, we show the chosen frame along with

some already annotated bounding boxes. By selecting one of the bounding
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Figure B.2: Add person view. Annotators can add a new identity or select

from a one previously inserted.

boxes the dashed rectangle become solid and the user is able to move and

resize the bounding box. Once a bounding box is selected the user can also

specify different information about that annotation, such as: the visible area

(occlusion), the direction of the body and the gaze. A new bounding boxes

can be added by clicking ”Add person”.

On the left-bottom part of the interface, we put some video related but-

tons that allows to navigate through the frames and zoom-in or out on the

image (annotators can zoom also by scrolling with the mouse or touchpad).

In the right-top part of the interface we put one table summarizing the

information about each individual, like the person identifier (ID), the color

of the bounding box, the gaze direction (Face), the body direction (Body),

the group of which the selected user is part of (Group) and if it is standing

by a particular object in the scene or not (Object).

In the right-bottom part of the interface we put, instead, a table summa-

rizing the groups information, like the identifier of the group (ID), the name

of the group (Name) and the number of persons that are part of the group

(NPeople). A new group can be added by clicking ”Add group” below the

table.

The tool now supports CSV exporting, clicking on export data triggers

the generation of an archive containing the CSV files with the annotated
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data.

In order to make this tool intuitive and ease the annotation process we

defined a series of keyboard shortcuts to speed-up the process. These short-

cuts are summarized in the Legend section of the annotation tool. Moreover,

once a frame is annotated, the successive frame will have the same bounding

boxes as a starting point for the new annotations, in order to overcome the

necessity of re-defining from scratch every person annotation at every frame.

B.3.3 Usability evaluation

To evaluate the usability of the proposed annotation tool we used the Sys-

tem Usability Scale (SUS) [20], which is a Likert scale. The form to create a

Likert [84] scale is built by presenting a set of questions and asking the re-

spondent to choose a degree of agreement in a fixed point scale, from strongly

disagree to strongly agree (in our case 1 to 5). It is not just a forced choice

questionnaire. Questions are selected in order to present extreme cases and

alternating positive and negative statements. The alternation of positive and

negative statements is a way of making sure that the respondent reads care-

fully. The selection of extreme scenarios is instead a way of removing bias.

The SUS questionnaire was build selecting among a pool of 50 questions,

those leading to the most extreme responses.

We report our usability study result in Table B.1. As suggested by

Nielsen [69] five system users are enough to find the 85% of usability is-

sues of interfaces. Regarding the SUS score our system obtained an average

score of 70. We noted that all users found to be confident using the system

(item 10), and the system easy to learn and use (items 2,3). We also found

that many user gave a neutral response to item 6; this is probably caused by

the diversity of annotations requested, but it is also room for improvement.

B.4 Conclusion

We presented a web annotation system designed for annotating multi-camera

video sequences typical of surveillance scenarios.

We tested WATSS annotating our publicly released MuseumVisitors

dataset comprised of 96972 detections, and gazes, 101 persons’ identities

over 9477 frames from four cameras. This is the work of 5 people performed

through our interface for 20 days: roughly 3 man/months. We evaluated the
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Str. Dis. Dis. Neutr. Agr. Str. Agr.

1. I think that I would like

to use this system to per-

form an annotation task

0 0 2 2 1

2. I imagine that most

people would learn to use

this system very quickly

1 3 0 1 0

3. I found the system very

cumbersome to use

2 2 0 1 0

4. I thought the system

was easy to use

0 1 0 4 0

5. I think that I would

need the help of a techni-

cal person to use this sys-

tem

2 2 1 0 0

6. I found the various

functions in this system

were well integrated

0 0 4 1 0

7. I thought there was too

much inconsistency in this

system

2 2 0 1 0

8. I found the system un-

necessarily complex

2 2 0 1 0

9. I needed to learn a lot

of things before I could get

going with this system

2 2 0 0 1

10. I felt very confident us-

ing the system

1 0 1 2 1

Table B.1: Result of our SUS usability study. We report frequencies of each

answers. Most frequent items are reported in bold.
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system usability using the well known SUS scale finding that the system is

considered easy to learn and use and annotators felt productive and confident

in using it.

The tool is available on bitbucket at https://bitbucket.org/fbert/

watss1 under GPLv3 License. We provide installation scripts to feed frames

into the system that can be tested at http://150.217.35.152/watss. We

release our MuseumVisitors dataset together with the tool so that annota-

tions can be visualized on a real world scenario.

With respect to a tool like VATIC we have a specific interface to annotate

occlusions and user gaze. Moreover we are able to easily annotate user

identity by showing the annotator previous persons frames. Our system

provides suggestions for bounding boxes and gazes for subsequent frames so

that annotators have to perform a simpler tuning task instead of redefining

all scene entities from scratch. Considering the complexity of the scenarios

usually involved we are not able, at the moment, to allow the interpolation

of coarsely annotated sequences via tracking as in [88]. We plan in the future

to add more sensible proposals for un-annotated frames both for gaze and

detections in order to reduce the complexity of the annotation process.

1Direct download: https://goo.gl/cgihhr

https://bitbucket.org/fbert/watss
https://bitbucket.org/fbert/watss
http://150.217.35.152/watss
https://goo.gl/cgihhr
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Appendix C

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

Submitted

1. F. Bartoli, G. Lisanti, S. Karaman, A. Del Bimbo. “Scene-dependent Pro-

posals for Efficient Person Detection”, Pattern Recognition, 2016.

International Conferences and Workshops

1. F. Bartoli, G. Lisanti, S. Karaman, A. D. Bagdanov, A. Del Bimbo. “Un-

supervised scene adaptation for faster multi-scale pedestrian detection”, in

Proc. of International Conference on Pattern Recognition (ICPR), Stock-

holm (Sweden), 2014.

2. F. Bartoli, G. Lisanti, L. Seidenari, S. Karaman, A. Del. Bimbo. “Mu-

seumVisitors: A Dataset for Pedestrian and Group Detection, Gaze Es-

timation and Behavior Understanding”, in Proc. of IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), Boston

(United States), 2015.

3. F. Bartoli,L. Seidenari, G. Lisanti, S. Karaman, A. Del Bimbo. “WATSS: a

Web Annotation Tool for Surveillance Scenarios”, in Proc. of ACM Multime-

1The author’s bibliometric indices are the following: H -index = X, total number of

citations = XX (source: Google Scholar on Month XX, 201x).
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dia Int. Open Source Software Competition (OSSC), Brisbane (Australia),

2015.

4. I. Masi, G. Lisanti, F. Bartoli, A. Del Bimbo. “Person Re-identification:

Theory and Best practice”, in IEEE International Conference on Biometrics:

Theory, Applications and Systems (BTAS), Washington DC (United States),

2015.
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[73] M. Pedersoli, J. Gonzàlez, A. D. Bagdanov, and J. J. Villanueva, “Recursive

coarse-to-fine localization for fast object detection,” in Proc. of ECCV, 2010.

[74] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone:

Modeling social behavior for multi-target tracking,” in Proc. of ICCV, 2009.

[75] E. Rahtu, J. Kannala, and M. B. Blaschko, “Learning a category independent

object detection cascade.” in Proc. of International Conference on Computer

Vision, 2011.

[76] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps via regressing

local binary features,” in Proc. of CVPR, June 2014.

[77] I. Robertson, Neiland Reid, “Estimating gaze direction from low-resolution

faces in video,” in 9th European Conference on Computer Vision, 2006.

[78] N. Robertson, I. Reid, and J. Brady, “What are you looking at? gaze esti-

mation in medium-scale images,” in Proc. of BMVCW, 2005.

[79] B. C. Russell, A. A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme:

a database and web-based tool for image annotation.” International Journal

of Computer Vision, vol. 77, pp. 157–173, May 2008.

[80] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,

and M. Shah, “Visual tracking: An experimental survey,” IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468, 2014.

[81] K. Soomro, A. Roshan Zamir, and M. Shah, “UCF101: A dataset of 101

human actions classes from videos in the wild,” in Proc. of CRCV-TR-12-

01, 2012.

[82] R. Sznitman, C. Becker, F. Fleuret, and P. Fua, “Fast object detection with

entropy-driven evaluation,” in Proc. of Conference on Computer Vision and

Pattern Recognition, 2013.

[83] Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian detection aided by

deep learning semantic tasks,” in Proc. of Conference on Computer Vision

and Pattern Recognition, 2015.

http://doi.acm.org/10.1145/97243.97281


BIBLIOGRAPHY 105

[84] W. M. Trochim et al., “Likert scaling,” Research methods knowledge base,

vol. 2, 2006.

[85] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,

“Selective search for object recognition,” International Journal of Computer

Vision, vol. 104, no. 2, pp. 154–171, 2013.

[86] P. Viola and M. Jones, “Robust real-time object detection,” in International

Journal of Computer Vision, 2001.

[87] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns of

motion and appearance,” Int. J. Comput. Vision, vol. 63, no. 2, pp. 153–161,

jul 2005.

[88] C. Vondrick, D. Patterson, and D. Ramanan, “Efficiently scaling up

crowdsourced video annotation,” International Journal of Computer Vision,

pp. 1–21. [Online]. Available: http://dx.doi.org/10.1007/s11263-012-0564-1

[89] X. Wang, M. Wang, and W. Li, “Scene-specific pedestrian detection for

static video surveillance,” IEEE TRANSACTIONS ON PATTERN ANAL-

YSIS AND MACHINE INTELLIGENCE, vol. 36, pp. 361–374, 2014.

[90] P. Wohlhart, M. Donoser, P. M. Roth, and H. Bischof, “Detecting partially

occluded objects with an implicit shape model random field.” in Proc. of

ACCV, 2012.

[91] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian detection,”

in Proc. of CVPR, 2009.

[92] J. H. H. Woonhyun Nam, Piotr Dollár, “Local decorrelation for improved

pedestrian detection,” in Proc. of NIPS, 2014.

[93] Y. Xiao, C. Lu, E. Tsougenis, Y. Lu, and C.-K. Tang, “Complexity-adaptive

distance metric for object proposals generation,” in Proc. of Conference on

Computer Vision and Pattern Recognition, 2015.

[94] X. Xiong and F. D. la Torre, “Supervised descent method and its applications

to face alignment,” in Proc. of CVPR, 2013.

[95] B. Yang and R. Nevatia, “Multi-target tracking by online learning of non-

linear motion patterns and robust appearance models,” in Proc. of CVPR,

2012.

[96] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible

mixtures-of-parts,” in Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on. IEEE, 2011, pp. 1385–1392.

[97] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “How far are

we from solving pedestrian detection?” in CVPR, 2016.

http://dx.doi.org/10.1007/s11263-012-0564-1


106 BIBLIOGRAPHY

[98] S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for pedes-

trian detection,” in Proc. of Conference on Computer Vision and Pattern

Recognition, 2015.

[99] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based gaze

estimation in the wild,” in Proc. of CVPR, 2015.

[100] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from

edges,” in Proc. of European Conference on Computer Vision, 2014.


	Contents
	Introduction
	Contributions

	Literature review
	Multi-scale person detection
	Coarse Gaze Estimation

	Unsupervised scene adaptation for faster multi-scale pedestrian detection
	Introduction
	Related Work
	Pedestrian detection with soft cascade
	Multi-scale detection complexity
	The soft cascade classifier

	Unsupervised scene adaptation of soft cascade detectors
	Leveraging region of support information
	Linear cascade approximation
	A generative model for candidate window proposal

	Experimental results
	Experiments with linear cascade approximation
	Experiments with candidate windows proposal
	Experiments with both strategies
	Comparison with the state-of-the-art

	Conclusion

	Scene-dependent Windows Proposals for Efficient Person Detection
	Scene-dependent windows proposal
	Scene model representation
	Detection weighting
	GMM initialization
	Mixture-based windows proposal

	Experimental results
	Conclusion

	User Interest Profiling Using Tracking-free Coarse Gaze Estimation
	Introduction
	Stateless coarse gaze estimation
	Head and body pose estimation
	Motion model

	User Profiling
	Experiments
	Datasets and experimental details
	Gaze estimation evaluation
	Profiling evaluation


	The Mnemosyne System: delivering personalized information to Museum visitors
	Introduction
	Mnemosyne System
	Visitor Detection
	Visitor Description
	Visitor Local Modelling
	Visitor Global Modelling

	Experiments
	Visitor Detection
	Visitor Re-identification
	Modelling and Profiling
	User profiling

	Conclusion

	Conclusion
	Summary of contribution
	Directions for future work

	MuseumVisitors: a dataset for pedestrian and group detection, gaze estimation and behavior understanding
	Introduction
	Existing dataset for group and occlusion detection
	Design of the dataset
	Dataset acquisition
	Annotation protocol

	Experiments
	Conclusion

	WATSS: a Web Annotation Tool for Surveillance Scenarios
	Introduction
	Related tools and datasets
	Annotation tools
	Group and occlusion detection datasets

	WATSS Annotation Tool
	Annotation protocol
	The web based annotation tool
	Usability evaluation

	Conclusion

	Publications
	Bibliography

