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Abstract: This paper addresses the problem of reducing the effects of
wavefront distortions in ground-based telescopes within a “Modal-Control”
framework. The proposed approach allows the designer to optimize the
Youla parameter of a given modal controller with respect to a relevant
adaptive optics performance criterion defined on a “sampled” frequency
domain. This feature makes it possible to use turbulence/vibration profiles
of arbitrary complexity (even empirical power spectral densities from data),
while keeping the controller order at a moderate value. Effectiveness of the
proposed solution is also illustrated through an adaptive optics numerical
simulator.
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1. Introduction

A central problem when dealing with ground-based telescopes arises from deformations on
the light wavefront caused by the atmosphere. It is well known that the maximum resolution
of any optical device is due to diffraction; in order to recover diffraction limited resolution,
modern ground-based telescopes are equipped with adaptive optics (AO) devices, which aim
at reducing, thanks to the use of deformable mirrors, the aforementioned effects of wavefront
distortion. In addition to the atmospheric turbulence [1], telescopes also suffer from structural
vibrations due to situations such as telescope orientation, telescope tracking errors, and wind
shaking. Due to their potential impact, considerable attention has been devoted over the last
decades to the analysis and design of AO systems. Together with developments of physics,
mathematics and technology, contributions to the subject have been recently proposed also
from a control engineering perspective, as witnessed by [2–6] and the special issue on AO for
ground-based telescopes organized by the European Journal of Control [7].

In this work, we focus on the control architecture installed on the Large Binocular Telescope
(LBT, located on Mt. Graham, Arizona, USA) [8–10], and one of the two Magellan Telescopes
(Las Campanas Observatory, Chile) [11]. A similar architecture will be also adopted for the
upgrading of one of the four Very Large Telescopes (Cerro Paranal, Chile) [12] and the Giant
Magellan Telescope (Las Campanas, Chile), which is expected to be operative by the end of
2024 [13]. The considered AO unit comprises a wavefront sensor (WFS) - in this work a pyra-
mid one has been taken into account - an adaptive secondary mirror (ASM), and a real-time
computer (RTC). Roughly speaking, the pyramid WFS delivers a signal that is proportional, by
a first-order approximation, to the first derivative of the incoming wavefront. The RTC, which
implements the AO controller, computes the command vector driving the actuators of the ASM.
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Through the use of hundreds of voice-coil (electro-magnetic force) actuators, distributed on the
mirror shell, the ASM corrects the wavefront distortion according to the RTC command vector.
The correction is realized in such a way that the shape of the shell of the ASM becomes, as
closely as possible, opposite to that of the wavefront distortion [1, 14].

Classic approaches to AO control can be subdivided into two main groups: those which do
not employ any form of identification of turbulence and vibrations models [15, 16]; and those
which employ models of turbulence and/or vibrations in combination with model-based control
design techniques, such as H2, H∞ and LQG control. [2, 3, 8, 17, 18]. Model-based approaches
have the intuitive advantage of including a notion of optimality in the sense of performance
(Strehl ratio) ideally achievable for the identified process model. Achieving an exact modelling
of turbulence and vibrations is however a practically impossible task, i.e. models will necessar-
ily be approximate. It is therefore important that the models used to synthesize the controller
are sufficiently accurate at the frequencies of concern. Herein lies the difficulty: model-based
approaches provide controllers whose order is essentially determined by the order of the under-
lying models. High-order turbulence/vibrations models, in addition to requiring non-negligible
identification effort, will therefore lead to high-order controllers, which may be infeasible (or
simply not desired) from an implementation viewpoint. On the other hand, models with re-
duced complexity may fail to capture well the behavior of turbulence and/or vibrations at the
frequencies of concern.

In this paper, we describe an approach which can moderate the aforementioned difficul-
ties within a “Modal-Control” framework [4, 8, 18–21]. Specifically, it allows to optimize the
parameters of a modal controller of given order with respect to a relevant AO performance cri-
terion which is defined on a “sampled” frequency-domain. By sampled frequency-domain we
mean that the optimization procedure involves samples of turbulence and vibrations frequency
profiles, rather than their analytical models (as happens in classical H2, H∞ and LQG control de-
sign). This makes it possible to use turbulence/vibration profiles of arbitrary complexity, even
empirical power spectral densities (PSDs) from data, while keeping the controller order at a
desired (manageable) value. As elaborated next in detail, the proposed approach relies on the
idea of optimizing the Youla parameter starting from a given stabilizing controller which can be
either: i) a non-model-based controller, avoiding any identification effort; or ii) a model-based
(H2, H∞ or alike) controller synthesized in accordance with turbulence and vibration models of
limited complexity, avoiding to identify mathematical models of turbulence and vibrations of
increased complexity. Because of this, the proposed approach is best viewed as cooperative with
(rather than as alternative to) other control design approaches. Also, the problem can be cast
as a quadratic programming problem (unconstrained, or with linear constraints if the controller
is required to be stable), which can be efficiently solved by means of standard optimization
routines.

The remainder of the paper is as follows. Section 2 describes the problem from a control
perspective, along with the control system architecture. Sections 3 and 4 are devoted to the
explanation of the proposed control synthesis strategy, with particular emphasis on the choice of
the class of controllers and the description of the optimization problem to be solved. Simulation
results are presented in Section 5 using an End-to-End Simulator for the performance analysis
of the First Light Adaptive Optics (FLAO) system of the LBT. Finally, concluding remarks are
provided in Section 6.

2. AO control system architecture

The architecture of the AO control system we consider is depicted in Fig. 1, and is composed of
an external AO control system (working at the AO sampling time Ts = 1 ms), whose task is to
determine the commands to the ASM, and an internal ASM control system (with sampling time
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Fig. 1. AO control scheme.

TASM ≈ 10−2 Ts). The principal devices characterizing the control loop are the AO controller, the
Pyramid WFS, and the ASM. The AO controller receives at time kTs the measurement vector
y(k)∈R

q, with q the number of measurements, from the Pyramid WFS and computes the com-
mand vector u(k)∈R

p, with p the number of actuators, so as to pilot the actuators acting on the
ASM shell. The command vector provides the information about the shape to be reproduced
by the shell in order to compensate for the wavefront distortions. Due to the non-negligible dy-
namics of the shell, a dedicate control loop is needed to get the desired shape within Ts. Such a
control loop is realized through the use of p capacitive sensors co-located with the actuators and
placed at the back of the shell. Specifically, the control law piloting each actuator has a decen-
tralized component obtained by a Proportional-Derivative feedback action which depends on
the measurement of the co-located sensor, and a centralized component implemented through a
feed-forward action which equals the force needed to statically deform the shell as indicated by
the command vector u(k): this latter action is obtained by multiplying u(k) with the estimate of
a shell stiffness matrix of dimensions p× p, which is a-priori calibrated. For more details about
the ASM internal position control, the interested reader is referred to [9, 22].

In Fig. 1 the phase aberration of the light wavefront due to turbulence and vibrations is de-
noted by φ tot(k). Such a distortion has to be corrected by the shell deformations which provide
the so called correction phase φ cor(k). The difference φ res(k) = φ tot(k)−φ cor(k) is the residual
phase after the ASM correction. The objective of the external control loop therefore consists in
regulating the residual phase φ res(k) about 0.

The control architecture of Fig. 1 refers to a modal control scheme where the phase aber-
rations are expressed through a modal basis. Common choices in this regard are Zernike and
Karhunen-Loève basis [1, 14], the latter being considered in this paper. The residual phase is
translated into the measurement vector y(k) from the Pyramid WFS as described by the follow-
ing

y(k) = D φ res(k−1) + w(k) , (1)

where w(k) ∈ R
q is the measurement noise vector, which can be assumed to be a zero-mean

white noise. The matrix D characterizes the WFS and describes the geometric relationship
between the modal space and the measurement space. Notice that the modal space depends on
the selected modal basis and all the phase variables represent coefficient vectors belonging to
R

p, where p denotes the dimension of the modal space.
The ASM correction phase is obtained as

φ cor(k) = N u(k−1), (2)
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where N is the so-called Commands-to-Modes matrix, which describes the geometric relation-
ship between the command space and the modal space. An estimate of N can be obtained via
finite elements analysis of the mirror shell, once chosen the modal basis to be used.

The command vector provided to the ASM is computed by the AO controller as follows

U(z) = M KM(z)RY (z) , (3)

where U(z) and Y (z) are the Z-transforms of u(k) and y(k), respectively (hereafter we will use
the corresponding capital letter to denote the Z-transform of a lower-case letter signal). M is
the Modes-to-Commands (or Projection) matrix, represented by the From modes to commands
block in Fig. 1, and R is the Reconstruction matrix, which yields the geometric relationship
between the WFS measurements and the deformations of the ASM (Modal reconstruction block
in Fig. 1). The transfer matrix KM(z) has dimension p× p and has to be designed in order to
satisfy the control requirements. In the proposed setting, KM(z) is chosen as a diagonal matrix,
KM(z) = diag{C1(z), · · · ,Cp(z)}, as the ideal goal would be to control the i−th mode by means
of controller Ci(z).

In fact, the residual phase satisfies the relationship

Φres(z) = Φtot(z)−N z−1U(z) = Φtot(z)−N z−1 M KM(z)RY (z) (4)

which can be rewritten as

Δ(z)Φres(z) = Φtot(z)−Ξ(z)W (z) (5)

where Δ(z) := (I + z−2N M KM(z)R D) and Ξ(z) := z−1 N M KM(z)R. The matrix R is
then selected as the Moore-Penrose inverse of D , i.e. R := (DT D)−1DT . Accordingly, Δ(z)
simplifies to Δ(z) = (I + z−2N M KM(z)). The matrices N and M are instead calibrated
so as to yield N M ≈ I (more precisely for the LBT, N M is a matrix with elements on
the diagonal equal to 1 and extra-diagonal elements with absolute values ≈ 2−15). Thus, by
neglecting the measurement noise, we can therefore select a diagonal controller KM(z) and
achieve modal decoupling, i.e. Φres(z)≈ (I+ z−2KM(z))−1 Φtot(z).

In principle, one could synthesize a dedicated controller Ci(z) for each mode. However, in
practice, it is convenient to consider advanced control design techniques only for those modes
having more influence on the value of Φres(k). Within the addressed framework, a dedicated
controller CD(z) is synthesized only for tip and tilt modes [4, 8, 10], which consist in the image
displacements in the two orthogonal directions of the focal plane, while the remaining modes
are regulated by simple integrator controllers CI(z) = gz/(z− 1), where g is a gain to be set.
In fact, it has been observed by means of experimental studies on LBT that turbulence and
vibrations affect mainly tip/tilt modes. In turn, the experimental studies have revealed that in
the considered operating setting tip/tilt modes yield more than 80% of the overall atmospheric
turbulence variance. The choice of considering only two dedicated controllers has been mainly
motivated by the memory constraints of the RTC which, as detailed in [8], has been designed
to work with a modal integrator, so that the maximum state dimension allowed for the AO
controller KM(z) is 672. It is however important to point out that the design procedure proposed
in the following sections is well-suited to being applied to each modal controller Ci(z).

Let uM(k) ∈ R
p be the command vector in the modal space, such that u(k) = M uM(k), and

suppose that tip and tilt correspond to the first two entries of the vector uM(k), then KM(z) =
diag{CD(z),CD(z),CI(z), · · · ,CI(z)}, where for simplicity the same controller is used for tip
and tilt modes. In the sequel, for notation simplicity, we simply write C(z) instead of CD(z).
In addition, with reference to control scheme of Fig. 2, we adopt the subscript “t” to indicate
variables related to tip/tilt modes.
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3. Modal control design: a frequency based approach

Let C(z,ρ) represent the transfer function of an arbitrary controller with fixed structure depend-
ing on a parameter vector ρ which has to be tuned so as to achieve the desired performance,
where the choice of C(z,ρ) will be discussed more accurately in the sequel of the section. Here-
after, we will denote by P(z) the transfer function of the plant to be controlled through C(z,ρ).
By referring to Fig. 2, P(z) consists of the cascade of the blocks M(z) and H(z), representing
the dynamics of the ASM and WFS, respectively. It is to be pointed out that, within our setting,
both M(z) and H(z) can be assumed to behave as a unit delay, in that their tasks are executed
within one sampling time of the external loop. Specifically, the internal position control acting
on the mirror shell, see Fig. 1, works with a sampling time much lower than the one of the
external AO loop (in LBT, for example, it is about 0.01 ms), and thus it allows the mirror shell
to achieve the desired shape within one AO loop sampling time. Accordingly, we can assume
M(z) = 1/z and H(z) = 1/z.

The main objective of the AO system is to regulate the residual phase about zero by rejecting
the disturbances acting on the system. To this end, a typical AO performance criterion to be
minimized is the sampled-valued variance of the residual phase, defined as (see [18])

f (ρ) = lim
h→∞

1
h+1

h

∑
k=0

|φ res
t (k)|2 . (6)

In fact, minimizing f (ρ) amounts to maximizing the Strehl-ratio (SR), which is the ratio of the
maximum of the Point Spread Function (PSF) of the distorted image and the maximum of the
theoretical diffraction limited image PSF [23]. Let now ϒφ (ω) and ϒw(ω) denote the PSDs of
the signals φ tot

t (k) and wt(k), respectively. Supposing φ tot
t (k) and wt(k) mutually uncorrelated,

by virtue of the Parseval’s relationship, one can rewrite f (ρ) in the frequency domain as follows

f (ρ) =
1

2π

∫ π

−π
( |S(e jω ,ρ)|2 ϒφ (ω)+ |T (e jω ,ρ)|2 ϒw(ω))dω , (7)

where S(z,ρ), called the sensitivity function, is the transfer function mapping the phase aberra-
tion φ tot

t (k) into the residual phase φ res
t (k), whereas T (z,ρ) is the transfer function mapping the

measurement noise wt(k) into the residual phase φ res
t (k). With reference to Fig. 2, it is immedi-

ate to see that S(z,ρ) = (1+C(z,ρ)P(z))−1 and T (z,ρ) =−M(z)C(z,ρ)(1+C(z,ρ)P(z))−1.
In practice, it is convenient to approximate the integral in Eq. (7) with a finite sum by consid-

ering the samples at certain frequencies ω1,ω2, . . . ,ωN of the PSDs of φ tot
t (k) and wt(k). These

samples can be obtained either from a model, possibly infinite-dimensional and non parametric,

#173695 - $15.00 USD Received 2 Aug 2012; revised 12 Oct 2012; accepted 14 Oct 2012; published 16 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  27113



or directly from collected data series. Accordingly, we redefine the performance criterion in Eq.
(7) as

f (ρ) =
1
N

N

∑
f=1

(|S(e jω f ,ρ)|2 ϒ̂φ (ω f )+ |T (e jω f ,ρ)|2 ϒ̂w(ω f )) , (8)

where ϒ̂φ (ω f ) and ϒ̂φ (ω f ) denote estimates of the PSDs ϒφ (ω f ) and ϒφ (ω f ), respectively, at
the frequency ω f .

In order to derive a controller C(z,ρ) with optimized performance with respect to the objec-
tive function f (ρ), we resort to the well-known Youla parametrization [24]. In particular, let S
be the family of all the proper transfer functions with poles inside the open unit disk, and C (P)
the set of all stabilizing controllers, i.e., the set of all controllers which are able to guarantee
that the closed-loop is internally stable. Since P(z) ∈ S , the set of all stabilizing controllers
takes the form ( [25], Chapter 5)

C (P) =

{
C(z) =

Q(z)
1−P(z)Q(z)

, Q(z) ∈ S

}
, (9)

where Q(z), the so-called Youla parameter, is an arbitrary transfer function belonging to S . It
is straightforward to prove that the controllers which can be expressed as shown in Eq. (9) are
all and the only ones which guarantee the internal stability ( [25], Chapter 5).

We point out that the transfer function Q(z) has to be regarded as a free parameter which can
be tuned so as to achieve the desired control performance. To this end, we give Q(z) a fixed
structure depending on a parameter vector ρ , i.e., Q(z) = Q(z,ρ), thus considering controllers
of the form

C(z,ρ) =
Q(z,ρ)

1−P(z)Q(z,ρ)
. (10)

One of the main positive features of the Youla parametrization is that it allows one to express
both S(z,ρ) and T (z,ρ) in a form which is affine in the Youla parameter Q(z,ρ) in that

S(z,ρ) = 1−P(z)Q(z,ρ) , (11)

T (z,ρ) = −M(z)Q(z,ρ) . (12)

Hence, by expressing Q(z) as a linear combination of functions ψi(z), each one weighted by a
parameter ρi, i.e.

Q(z,ρ) = ψT (z)ρ , (13)

where ψ(z) = [ψ1(z)ψ2(z) · · · ψn(z)]
T , and ρ = [ρ1 ρ2 · · · ρn]

T , it is possible to make both
S(z,ρ) and T (z,ρ) affine functions of the parameter vector ρ:

S(z,ρ) = 1−P(z)ψT (z)ρ , (14)

T (z,ρ) = −M(z)ψT (z)ρ . (15)

Clearly, the choice of the vector ψ(z) is important. For instance, one can choose ψ(z) as a
collection of basis functions, through which it is possible to approximate any finite-order stable
transfer function with arbitrary accuracy by increasing the value of n [26]. Among the many
possible choices for defining the functions ψi(z), in this work we considered

ψi(z) =
zi−1

d(z)
, i = 1,2, . . . ,n , (16)

where the denominator d(z) is a fixed polynomial of degree n−1. As it can be seen from Eqs.
(14) and (15), the polynomial d(z) determines the closed-loop poles of the considered modal
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control loop. Accordingly, the choice of d(z) allows to a priori fix an adequate stability margin.
As will be discussed in details in Section 4, in practice d(z) can be chosen on the basis of a
given reference controller which represents the starting point of the proposed control design
procedure.

The parameter vector ρ plays a fundamental role, in that it is used as the decision variable of
the optimization problem. In fact, the objective function in Eq. (8) can be equivalently written
as a quadratic function of ρ:

f (ρ) =
1
N

N

∑
f=1

{
|(1−P(e jω f )ψT (e jω f )ρ)|2 ϒ̂φ (ω f )+ |M(e jω f )ψT (e jω f )ρ |2 ϒ̂w(ω f )

}
. (17)

Thanks to the form of the function f (ρ), it would now be immediate to compute the param-
eter vector, say ρ◦, which minimizes f (ρ). The resulting controller C(z,ρ◦) would provide
optimized performance in the sense of the minimum sampled-valued variance.

Nevertheless, in many situations a controller should fulfill additional requirements beyond
stabilization and performance. For instance, while observing an astronomical object, several
circumstances may cause the command signal u(k) to be interrupted for a few time steps: ac-
tuators may be required to perform an action that is not compatible with its stroke or with the
force they can bear (this phenomenon can be frequent, up to some events per second, in seeing
conditions ≥ 1.2”); also, slopes may not be delivered for a frame or two, producing the same
effects of command interruptions (though the latter is an extremely rare event).

In this respect, common practice suggests that it is not advisable to make use of unstable con-
trollers, especially if the plant itself is stable, as it is within our setting. In fact, if the feedback
loop opens (generalizing, this could happen due to a sensor or actuator failing, or deliberately
being turned off during start-up or shutdown), overall stability is maintained if both plant and
controller individually are stable ( [25], Chapter 5).

Clearly, the Youla parametrization does not ensure by itself that a generic controller of the
form shown in Eq. (10) is stable, thus unconstrained minimization of f (ρ) can result in an un-
stable (albeit stabilizing) controller C(z,ρ◦). A possible way of overcoming such a drawback
consists in taking into account the controller stability requirement directly while synthesizing
the controller. Accordingly, we propose to solve a constrained optimization problem (COP),
defined such that f (ρ) is the objective function and the controller stability requirement charac-
terizes the feasibility domain

min
ρ

f (ρ) , (18)

s.t.
C(z,ρ) ∈ S . (19)

4. Modal control design: algorithm details

Solving an optimization problem is not a trivial numerical task, and requires that the constraints,
as well as the objective function, are expressed in the simplest possible form. Unfortunately,
the feasibility domain embodied by Eq. (19) is in general non convex and thus it is advisable
to consider some kind of convex approximation. This can be done provided that a reference
parameter vector ρ̂ is available corresponding to a stable controller C(z, ρ̂) (in practice ρ̂ can
be computed from a given stable and stabilizing controller as will be detailed in the following).
In fact, a sufficient condition for the stability of a controller C(z,ρ) is that

Re
{
(1−P(e− jω)Q(e− jω , ρ̂))(1−P(e jω)Q(e jω ,ρ))

}
> 0 , ∀ω , (20)

#173695 - $15.00 USD Received 2 Aug 2012; revised 12 Oct 2012; accepted 14 Oct 2012; published 16 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  27115



Table 1. Simulation parameters and conditions.

Telescope diameter = 8.222 m (central obstruction 11%)
Pyramid WFS sensing wavelength = 0.750 μm

tilt modulation radius = 2.0 λ
D

number of subapertures = 30×30
number of photons per integration time

per subaperture = 213
number of electrons per pixel of

readout noise = 11.5 e−RMS
ASM 672 Karhunen-Loève (KL) modes projected

onto the ASM influence functions
turbulence seeing = 0.8′′ (at 0.5 μm)

outer scale L0 = 40 m
mean wind speed = 16.5 m/s

telescope structural vibrations frequencies = 13, 22 Hz
standard deviation = 20 mas

damping ratio = 0.01
loop parameters sampling frequency = 1000 Hz

2 frames total delay
Strehl Ratio calculated at 1.65 μm

where Re{·} denotes the real part. Indeed, condition in Eq. (20) ensures that the number of
counterclockwise encirclements around the origin of the Nyquist plot of 1−P(z)Q(z,ρ) equals
that of the Nyquist plot of 1−P(z)Q(z, ρ̂). In view of the Nyquist stability criterion ( [27],
Chapter 5), this ensures that C(z,ρ) and C(z, ρ̂) have the same stability property (recall Eq.
(10)).

The condition given above is defined for all ω , i.e. over a continuum, thus of no practical
use. One possible solution in order to avoid this drawback is to impose that Eq. (20) is satisfied
only in the sampled-frequency domain {ω1,ω2, ...ωN}. The resulting condition can be written
in the form of linear constraints

A(ρ̂)ρ +b(ρ̂)< 0 (21)

by conveniently defining matrix A and vector b. Specifically, matrix A takes the form

A(ρ̂) =

⎡
⎢⎣

a11(ρ̂) · · · a1n(ρ̂)
...

. . .
...

aN1(ρ̂) · · · aNn(ρ̂)

⎤
⎥⎦ (22)

with elements a f i(ρ̂), f = 1, ...,N, i = 1, ...,n computed as

a f i(ρ̂) = Re
{
(1−P(e− jω f )Q(e− jω f , ρ̂))P(e jω f )ψi(e

jω f )
}
, (23)

and vector b(ρ̂) is defined as
b(ρ̂) = [b1(ρ̂) · · ·bN(ρ̂)]T (24)

with elements b f (ρ̂), f = 1, ...,N computed as

b f (ρ̂) =−Re
{

1−P(e− jω f )Q(e− jω f , ρ̂)
}
. (25)
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The problem of dealing with an infinite number of frequency constraints (as in Eq. (20)) via
a finite number of frequencies has been addressed in [26] (Section 3.3), wherein guidelines on
the choice of the sampled-frequency domain can be found.

Summing up, by replacing the original stability constraint in Eq. (19) with the linear con-
straints in Eq. (21), we obtain a quadratic programming problem which can be solved efficiently
by means of several numerical tools. Typical algorithms for solving such a kind of problems
are based on Active-Set, Sequential Quadratic Programming (SQM) or Interior-Point methods.
In the proposed implementation, the Active-Set method has been adopted.

Herafter, we write the proposed synthesis procedure step by step and provide a schematic
summary of the algorithm. As previously mentioned, the procedure starts with a pre-existing
stable and stabilizing controller Ĉ(z) which can be synthesized either by means of a simple
non-model based technique or of some model-based design procedure. Then we compute the
Youla parameter

Q̂(z) =
Ĉ(z)

1+P(z)Ĉ(z)
=

n̂(z)

d̂(z)
(26)

In order to increase the degrees of freedom of our optimization problem we can introduce γ
additional poles in z = 0 and define the polynomial d(z) in Eq. (16) as d(z) = d̂(z)zγ . Then, n
is set equal to the degree of d(z) increased by one, while the reference parameter vector ρ̂ is
set equal to the vector of the coefficients of the polynomial n̂(z)zγ . At this point, it is possible
to minimize the performance criterion f (ρ) under the constraints in Eq. (21). In addition, in
order to improve the controller performance one can construct an iterative procedure by using,
at every step, the solution of the optimization problem as a novel reference parameter vector.
This idea gives rise to the following iterative procedure.

Iterative design procedure

Step 1: given an initial controller Ĉ(z) and a nonnegative integer γ , compute d(z), n, and ρ̂ as
described above;
Step 2: set i := 0 and ρ(0) := ρ̂;
Step 3: compute the matrix A(ρ(i)) and the vector b(ρ(i));
Step 4: compute the parameter vector ρ(i+1) as the solution of the quadratic programming
problem

min
ρ

f (ρ) (27)

s.t.
A(ρ(i))ρ +b(ρ(i))< 0; (28)

Step 5: if the termination criterion is met then return ρ(i+1); otherwise set i := i+ 1 and go
back to step 3.

As for the termination criterion, we decided to impose an upper bound on the difference
between the value functions corresponding to subsequent iterations, thus terminating the al-
gorithm when | f (ρ(i+1))− f (ρ(i))| < ε , with ε a given threshold. In this respect, notice that
by construction the sequence f (ρ(i)) is monotonically non-increasing with i. In fact, it can be
easily verified that ρ(i) always satisfies the constraint in Eq. (28) so that f (ρ(i+1)) ≤ f (ρ(i)).
Since f (ρ) is bounded from below, this ensures that the sequence f (ρ(i)) converges to some
finite limit and, hence, that the termination criterion is always eventually met.
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Fig. 3. Turbulence and vibration PSD related to tip.

5. Simulation results

In this section we provide the results obtained from simulation studies. The simulation results
rely on an End-to-End simulator of the FLAO system. Table 1 presents a summary of the sim-
ulation parameters.

We adopted the residual phase variance and the Strehl ratio as performance parameters.
Specifically, the SR is defined as

SR =
PSFres(o)
PSFAiry(o)

, (29)

where PSFres denotes the intensity value at the center o of the AO-corrected PSF and PSFAiry

denotes the intensity value at the center o of the diffraction-limited PSF of the telescope. The
PSFres is determined as the Fourier transform of the residual phase at the telescope pupil, while
PSFAiry is the Fourier transform of a uniform phase over the telescope pupil. The pyramid
WFS [28] with tilt modulation was simulated with a full Fourier-optics code developed at the
Arcetri Astrophysical Observatory. In the simulator the image on the detector is obtained by
two Fourier Transforms. The first one converts, for each step of modulation, the complex am-
plitude of the tilted incoming wavefront into the electrical field on the pyramid; the second one
converts the electrical field on the pyramid multiplied by the phase mask of the pyramid into
the image on the detector. Finally the signal is computed as in [29]. The atmospheric turbu-
lence was simulated in order to emulate a typical LBT operating environment. Specifically, the
turbulent phase is represented by a set of turbulent layers, where each layer corresponds to a
phase screen. In the simulations presented in this paper a set of two layers is considered. The
phase screens are generated following the McGlamery method [30]. They have altitude of 0
and 6000 m over the telescope and their relative intensity is 60% and 40%, respectively (they
produce a seeing of 0.8”). The temporal evolution of the turbulence is simulated, based on the
Taylor’s hypothesis, by displacing the phase screens in front of the telescope pupil according
to the specified speed of 15 and 18 m/s respectively. The ASM spatial response was modeled
by using the influence functions determined via the FEA (Finite Elements Analysis) model of
the LBT ASM, while the temporal one is considered as a delay of 1 ms. In Table 1 the simula-
tion parameters and conditions are listed, comprising the sensor and the ASM features and the
parameters characterizing the turbulence and vibrations models. Specifically, we point out that
they are related to the LBT main features and typical operating conditions. Figure 3 shows the
PSD of turbulence and vibrations, related to tip, as resulting from the models described in the
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Table 2. Performance exhibited by the controllers considered in the simulation tests.

Ca(z) Cb(z) Cc(z) Cd(z) Ce(z) Cf (z)
SR % 58.51 86.22 86.49 79.20 84.02 86.61

table.
Simulation results reported hereafter consider two scenarios: in the first one, the proposed

procedure is initialized from a non-model-based controller, i.e. from a controller synthesized
without identifying mathematical models of turbulence and vibrations; in the second scenario,
the proposed procedure is initialized from a H2-controller synthesized using mathematical mod-
els of turbulence and vibrations of reduced complexity, namely a second-order AR model for
the turbulence and two second-order ARMA models for the vibrations.

In both scenarios, the optimization procedure is carried out by sampling the PSDs of the
phase aberration related to tip/tilt modes, as reported in Fig. 3, and the PSD of the measurement
noise (assumed having variance of ≈ 10−4). As for the sampling of the PSDs in Eq. (8), we
selected N = 2000 samples with linear gridding (simulation results, not reported here, indicate
that N > 500 samples are sufficient for achieving satisfactory closed-loop performance). The
termination criterion of the optimization algorithm was defined on the basis of the threshold ε =
10−3 on the difference between the value functions corresponding to two successive iterations.
The closed-loop performance (in terms of Strehl ratio) has been evaluated over the last 2000
samples of the residual phase (in the regime state). Finally, all the modes except for tip and
tilt were controlled by means of integrators with optimized gains selected via the Optimized
Modal Gain Integrator (OMGI) approach as described in [15]. Finally, also the constraint on
the controller stability was considered.

First scenario: Let
Ĉ(z) =

gz
z−0.95

, (30)

with g such that the closed-loop is stable. By the procedure described in Section 4, Q̂(z) takes
the form

Q̂(z) =
gz2

z2 −0.95z+g
=

n̂(z)

d̂(z)
. (31)

As previously indicated, in order to increase the degrees of freedom of our optimization prob-
lem we can introduce γ additional poles in z = 0 and define the polynomial d(z) in Eq. (16) as
d(z) = d̂(z)zγ . Accordingly,

ψi(z) =
zi−1

d(z)
=

zi−1

zγ+2 −0.95zγ+1 +gzγ , i = 1,2, . . . , γ +3 (32)

and the algorithm is then initialized by letting

ρ(0) = ρ̂ = [0 . . . 0︸ ︷︷ ︸
γ+2

g ] . (33)

As for the simulation, we set g = 0.77. Compared with Ĉ(z), which achieves a residual phase
variance (VAR) VAR = 0.2528 (SR = 58.51%), Fig. 4 shows a definite performance improve-
ment even for small values of γ , namely starting from γ = 3. In particular, for γ ≥ 7 we obtain
VAR < 0.0209 (SR > 86.22%).

Second scenario: As initial controller, we now consider a H2-controller synthesized using
mathematical models of turbulence and vibrations of reduced complexity. Specifically, we
adopted the design procedure described in [8], with the following choices: the model of the
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Fig. 5. PSF profiles resulting from the use of the controllers in the control loop.

turbulence is taken as a second-order AR model having input ν and output ξ , and described by
the difference equation

ξ (k) = 1.9774ξ (k−1)−0.9776ξ (k−2)+ν(k) , (34)

where ν is a white-noise process. As for the structural vibrations, we considered two second-
order ARMA models having input μi and output ζi, i = 1,2. They are described by the differ-
ence equations

ζ1(k) = 1.9917ζ1(k−1)−0.9984ζ1(k−2)+1.8431 μ1(k−1)−0.8493 μ1(k−2) , (35)

for the model having a vibration peak around 13Hz, and

ζ2(k) = 1.9782ζ2(k−1)−0.9972ζ2(k−2)+1.7418 μ2(k−1)−0.7585 μ2(k−2) , (36)

for the model having a vibration peak around 22Hz, where μ1 and μ2 are both white-noise
processes.

The order of the H2-controller is 9 and we set γ = 0 so as to keep the order of the new
controller at a moderate level. In this case, the simulation results show a performance improve-
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Fig. 6. PSDs of the residual phase (related to tip/tilt).

ment from VAR = 0.0393 (SR = 84.02%) to VAR = 0.0152 (SR = 86.61%). The performance
obtained for larger values of γ is very similar to the one obtained for γ = 0.

Figures 5, 6 and 7 along with Table 2 provide a summary of the obtained results, also com-
pared with the optimized modal gain integrator (OMGI) controller of [15], applied to all modes
(including tip/tilt). For simplicity, we adopted the following notation: Ca(z) initial controller in
the first scenario; Cb(z) final controller in the first scenario with γ = 7; Cc(z) final controller
in the first scenario with γ = 16; Cd(z) OMGI controller; Ce(z) initial controller in the second
scenario; Cf (z) final controller in the second scenario with γ = 0. The results are very close to
what one could expect: Cc(z), Ce(z) and Cf (z) are those exhibiting lower residual phase both at
low frequencies as well as in correspondence of the vibration peaks (Fig. 6). This is also evident
from Fig. 7. In particular, the sensitivity functions related to Ce(z) and Cf (z) both exhibit the
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Fig. 7. Bode diagram of the sensitivity function related to the controllers.

two anti-resonance peaks at the frequencies characterizing the vibration models.
A final point is worth mentioning. One sees from Table 2 that the best peformance (con-

sidering also the order of the final controller) is achieved when starting from a model-based
controller synthesized in accordance with models of reduced complexity. Such a result,
obtained without identifying mathematical turbulence and vibration models of increased
complexity, reinforces the idea that the proposed approach is best viewed as cooperative with
(rather than as alternative to) classical AO control design approaches.

6. Conclusions

We proposed a control design technique aiming at improving the performance of AO systems
using a Modal-Control approach. The basic idea relies in optimizing the Youla parameter of a
given modal controller with respect to a relevant AO performance criterion defined on a sampled
frequency domain. This feature makes it possible to use turbulence/vibration profiles of arbi-
trary complexity (even empirical PSDs from data), and can be therefore adopted to optimize:
i) non-model-based controllers, avoiding any identification effort; ii) model-based controllers
(such as H2, H∞ or LQG) synthesized in accordance with turbulence and vibration models of
limited complexity. Also, the problem can be cast as a quadratic programming problem, which
can be efficiently solved by means of standard optimization routines. A number of simulation
results have been reported using an End-to-End Simulator of the FLAO system of the LBT. The
results show that it is possible to obtain a good trade-off between performance and controller
complexity by optimizing model-based controllers which are synthesized in accordance with
turbulence and vibration models of reduced order. Such a feature suggests that a good trade-off
can be obtained without identifying high-order turbulence and vibration mathematical mod-
els. This makes the proposed approach a promising technique to be used in combination with
classical approaches to AO control design.

Several extensions are possible: most notably, the problem formulation appears flexible
enough so as to take into account additional requirements which can be expressed as linear
constraints within the optimization problem. For example, it is possible to impose some bounds
on the sensitivity functions in order to improve robustness under perturbed conditions, thus ob-
taining a mixed H2/H∞ approach. This could be useful in the presence of system uncertainties
or to deal with disturbances of intensity and/or frequency range varying with time.
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