
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Informatica (ssd ing-inf/05)

Compact Hash Codes and Data

Structures for Visual

Descriptors Retrieval

Candidate

Simone Ercoli

Supervisors

Prof. Alberto Del Bimbo

Prof. Marco Bertini

PhD Coordinator

Prof. Luigi Chisci

ciclo XXIX, 2013-2016

Università degli Studi di Firenze, Dipartimento di Ingegneria

dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Engineering. Copyright © 2017 by

Simone Ercoli.

”Memento audere semper”

A tutti quelli che hanno creduto in me

Acknowledgments

This thesis is the result of my work at Media Integration and Communication

Center (MICC). I am most grateful to my supervisors Prof. Alberto Del

Bimbo and Prof. Marco Bertini who have always supported my research

and gave me the opportunity to work on challenging tasks. In addition, I

would like to thank all my colleagues for the beautiful moments, the fruitful

discussions and support given to me during these years. At the end I would

like to thank my family who has always believed in me and I will always be

grateful to my girlfriend Natascia for her love and understanding.

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Structure of the Document 3

1.2 Contributions . 3

2 Literature Review 5

2.1 Visual Features . 5

2.2 Hashing Functions . 6

2.3 Scalar Quantization . 6

2.4 Vector Quantization . 7

2.5 Neural Network . 8

2.6 Data Structures . 9

2.6.1 Bloom Filter . 9

3 Content-Based Image Retrieval 11

3.1 Introduction . 11

3.2 History . 13

3.3 Technical Progress . 13

3.4 Components of a CBIR System 14

3.5 Features Extraction . 14

3.5.1 Invariance . 16

3.5.2 Information Content 17

3.5.3 Semantic Gap . 19

v

vi CONTENTS

3.6 Performance Measurement . 22

3.7 Single Query Image Scenario 24

3.7.1 Similarity Measures 24

3.8 Conclusion . 25

4 Optimized Feature Hashing for Retrieval 27

4.1 Introduction . 27

4.2 Proposed Method . 28

4.2.1 Multi-k-means Hashing 29

4.2.2 Computational Complexity 33

4.3 Indexing . 33

4.3.1 Trie Data Structure 33

4.4 Experimental Results . 34

4.4.1 Datasets . 35

4.4.2 Evaluation Metrics . 37

4.4.3 Configurations and Implementations 38

4.4.4 Results on BIGANN: SIFT1M, GIST1M 40

4.4.5 Results on BIGANN: SIFT1B 45

4.4.6 Results on DEEP1B 46

4.4.7 Results on CIFAR-10, MNIST 48

4.4.8 Trie Data Structure Performance 49

4.5 Conclusion . 49

5 Efficient and Distributed Image Retrieval 51

5.1 Introduction . 51

5.2 Convolutional Neural Network 52

5.2.1 VGG16 . 53

5.2.2 GoogLeNet with Batch Normalization 55

5.3 The Proposed Method . 59

5.3.1 Quantization Algorithm 59

5.3.2 Bloom Filter Algorithm 60

5.3.3 Retrieval System . 63

5.4 Experimental Results . 65

5.4.1 Datasets and Configurations 65

5.4.2 Results on VGG16 . 67

5.4.3 Results on Inception BN 73

5.4.4 Results on Bloom Filter 79

5.5 Conclusion . 82

CONTENTS vii

6 Conclusions and Perspectives 83

6.0.1 Conclusion . 83

6.0.2 Perspectives . 84

A Publications 85

Bibliography 87

viii CONTENTS

List of Figures

3.1 An image retrieval use case at its most abstract level 13

3.2 General scheme of content-based image retrieval 15

3.3 An example of the semantic gap problem. The two images

possess very similar colour and texture characteristics, but

differ vastly as far as the semantics are concerned. 20

3.4 Sample images from a hypothetical visual class ”cars” 20

3.5 Sample images from a hypothetical semantic class ”cars” . . 21

3.6 Interpretation of Precision and Recall 23

3.7 Ranking induced by similarity functions.Spherical ranking due

to Euclidean distance (left) and ranking due to Manhattan

distance (right). 25

4.1 Toy examples illustrating the proposed method: (top) fea-

tures can be assigned (green line) to a variable number of

nearest clusters (e.g. those with distances below the mean δ

- i.e. m-k-means-t1); (middle) features can be assigned to a

fixed number of clusters (e.g. the 2 nearest clusters - i.e. m-

k-means-n1);(bottom) hash code created from two different

codebooks (m-k-means-x2, where x can be either t or n). If a

feature is assigned to a centroid the corresponding bit in the

hash code is set to 1. 31

4.2 Comparison of trie (left) vs. patricia trie (right), used to store

7 hash codes (top). 34

4.3 Sample images from INRIA Holiday dataset. Left column

shows the query images, the other columns show similar images. 36

4.4 Sample images from CIFAR-10 dataset 37

4.5 Sample images from MNIST dataset 37

ix

x LIST OF FIGURES

4.6 Framework used for CNN feature extraction on CIFAR-10

[67]: we use the values of the nodes of the FCh layer as feature

(48 dimensions). 39

4.7 Results on SIFT1M (top). Results on GIST1M (bottom) . . . 44

4.8 Results on SIFT1B (top). Results on DEEP1B (bottom) . . . 47

5.1 Two properties which distinguish CNNs from MLPs. Sparse

connectivity (left) and Shared Weights (right) 53

5.2 Linear convolutional level (left) and mplconv (right) 55

5.3 Network in Network example net 56

5.4 Inception module . 57

5.5 GoogLeNet architecture . 58

5.6 Binarization examples with a distance vector of 8 elements:

(top) geometric mean (MEAN method); (bottom) smaller dis-

tances N = 3 (MINx method). 60

5.7 Memory accesses with Bloom filters 61

5.8 Example Bloom filter: (top) Insertion, (bottom) Search 62

5.9 System overview. 64

5.10 Sample images from Oxford 66

5.11 Sample images from Paris . 66

5.12 Map (top) and Execution Time (bottom) for Inria Holidays . 67

5.13 Map (top) and Execution Time (bottom) for Paris Buildings . 68

5.14 Map (top) and Execution Time (bottom) for Oxford Buildings 69

5.15 Example wich shows the difference during a feature (red) re-

construction for MIN4 (orange) and MIN8 (blue). Crosses are

codebook centroids. 72

5.16 Histogram of signatures distribution for MIN6 (a) and MIN40

(b). 72

5.17 Map (top) and Execution Time (bottom) for Inria Holidays . 74

5.18 Map (top) and Execution Time (bottom) for Paris Buildings . 75

5.19 Map (top) and Execution Time (bottom) for Oxford Buildings 76

List of Tables

4.1 Notation table . 29

4.2 BIGANN datasets characteristics 35

4.3 DEEP1B datasets characteristics 35

4.4 Recall@R on SIFT1M - Comparison between our method (m-

k-means-t1, m-k-means-n1 with n=32, m-k-means-t2 and m-k-

means-n2 with n=32), the Product Quantization method (PQ

ADC and PQ IVFADC) [47], Cartesian k-means method (ck-

means) [76], a non-exhaustive adaptation of the Optimized

Product Quantization method (I-OPQ), a Locally optimized

product quantization method (LOPQ) [51], OPQ-P and OPQ-

NP [28,29], and PQ-RO, PQ-RR, RVQ-P and RVQ-NP [34]. . 42

4.5 Recall@R on GIST1M - Comparison between our method (m-

k-means-t1, m-k-means-n1 with n=48, m-k-means-t2 and m-

k-means-n1 with n=48), the Product Quantization method

(ADC and IVFADC) [47], Cartesian k-means method (ck-

means) [76], a non-exhaustive adaptation of the Optimized

Product Quantization method (I-OPQ) [51], a Locally opti-

mized product quantization method (LOPQ) [51], OPQ-P and

OPQ-NP [28, 29], and PQ-RO, PQ-RR, RVQ-P and RVQ-

NP [34]. 43

4.6 Recall@R on SIFT1B - Comparison between our method (m-

k-means-t1, m-k-means-n1 with n=24), the Product Quanti-

zation method [48], a non-exhaustive adaptation of the Op-

timized Product Quantization method (I-OPQ) [51], a multi-

index method (Multi-D-ADC), a Locally optimized product

quantization method (LOPQ) with a sub-optimal variant (LOR+PQ)

[51]. 45

xi

xii LIST OF TABLES

4.7 Recall@R on DEEP1B - Comparison between our method (m-

k-means-t1, m-k-means-n1 with n=24), Inverted Multi-Index

(IMI) [4], Non-Orthogonal Inverted Multi-Index (NO-IMI) [4]

and Generalized Non-Orthogonal Inverted Multi-Index (GNO-

IMI) [4]. 46

4.8 MAP results on CIFAR-10 and MNIST. Comparison between

our method (m-k-means-t1, m-k-means-n1 with n=24, m-k-

means-t2 and m-k-means-n2 with n=24) with KSH [69], ITQ-

CCA [33], MLH [78], BRE [58], CNNH [105], CNNH+ [105],

KevinNet [67], LSH [30], SH [104], ITQ [33]. Results from

[67,72,105]. 48

4.9 Comparison of data structures used in the experiments to

store 1 million SIFT hash codes (computed with the proposed

approach). Search time measures the time required to perform

the series using all the 10,000 query vectors of the dataset. . . 49

5.1 Table with architectures showed in [90]. VGG16 configuration

is represented by the column D 54

5.2 GoogLeNet architecture . 57

5.3 Bloom Filter false positive probability related to m 63

5.4 VGG16 numerical Results for Inria Holidays dataset 70

5.5 VGG16 numerical Results for Paris Buildings dataset 70

5.6 VGG16 numerical Results for Oxford Buildings dataset . . . 70

5.7 Mean distances between features and binarized signatures.

Distance is calculated using the cosine formula, so an high

value correspond to a greater similarity 71

5.8 Mean distances between features and their binarized signa-

tures computed for each quantization approach, each Neural

Network and each dataset. Distance is calculated using the

cosine formula, so an high value correspond to a greater sim-

ilarity . 73

5.9 MAP results on Holidays, Oxford 5K and Paris 6K datasets.

The proposed MINx method outperforms all the current state-

of-the-art methods. All hashes are 64 bit long. 77

5.10 Inception BN numerical Results for Inria Holidays dataset . . 78

5.11 Inception BN numerical Results for Paris Buildings dataset . 78

5.12 Inception BN numerical Results for Oxford Buildings dataset 78

LIST OF TABLES xiii

5.13 MAP obtained on Paris 6K with the proposed system with

different numbers of Bloom filters (1, 2 and 5) and with a

baseline without filters. 2n and 5n are the size of the filters,

where n is the number of stored elements. Thr. is the maxi-

mum Hamming distance used for hash code retrieval. 80

5.14 Time (secs.) obtained on Paris 6K with the proposed system

with different numbers of Bloom filters (1, 2 and 5) and with

a baseline without filters. 2n and 5n are the size of the fil-

ters, where n is the number of stored elements. Thr. is the

maximum Hamming distance used for hash code retrieval. . . 80

5.15 The ratios represent the number of distractors rejected by the

Bloom Filter over the total rejections number. We report

different numbers of Bloom filters (1, 2 and 5). 2n and 5n

are the size of the filters, where n is the number of stored

elements. Thr. is the maximum Hamming distance used for

hash code retrieval. 81

5.16 MAP+time (secs.) obtained on Paris 6K, Oxford 5K and

Holidays with the proposed system with 10 Bloom filters of

varying size and with a baseline without filters. The database

contains 100,000 distractor + the database images of each

dataset. 82

xiv LIST OF TABLES

Chapter 1

Introduction

We live in the digital age, burdened by information overload. Digital images

play an important role in our everyday life. In many areas of science, com-

merce and government images are daily acquired and used. During the past

decades we have been observing a permanent increase in image data, leading

to huge repositories. This led to an increasing percentage of information

in other mediums, for example in the form of audio, video and images, not

to mention raw data which is created as a result of various industrial and

scientific applications.

Naturally, such a massive amount of data would be close to being useless

unless there are efficient ways to access it. This rapid evolution triggers the

demand of qualitative and quantitative image retrieval systems. It can thus

be said that we need efficient information retrieval systems.

Content-based image retrieval (CBIR) methods have tried to alleviate the

access to image data. The broad range of image retrieval and classification

applications demands a sort of generalization as well as highly specialized

systems equipped with image features such as for example color, texture or

structure-based ones. Content based image retrieval has been also an active

research topic in computer vision and multimedia in the last decades, and it

is still very relevant due to the emergence of social networks and the creation

of web-scale image databases.

Efficient nearest neighbor (NN) search is one of the main issues in large

scale information retrieval for multimedia and computer vision tasks. Com-

putin Euclidean distances between high dimensional vectors is a fundamen-

tal requirement in many applications. Focusing on the D-dimensional Eu-

1

2 Introduction

clidean space IRD of n vectors minimizing the distance to the query vector

x ∈ IRD. Several multi-dimensional indexing methods, such as the popular

KD-tree [26] or other branch and bound techniques, have been proposed to

reduce the search time. However, for high dimensions it turns out that such

approaches are not more efficient than the brute-force exhaustive distance

calculation, whose complexity is O(nD). There is a large body of litera-

ture [18], [31], [74] on algorithms that overcome this issue by performing

approximate nearest neighbor (ANN) search. The key idea shared by these

algorithms is to find the NN with high probability ”only”, instead of probabil-

ity 1. Most of the effort has been devoted to the Euclidean distance, though

recent generalizations have been proposed for other metrics [59]. One of

the most popular ANN algorithms is the Euclidean Locality-Sensitive Hash-

ing (E2LSH) [18], [88], which provides theoretical guarantees on the search

quality with limited assumptions. It has been successfully used for local de-

scriptors [52] and 3D object indexing [73], [88]. However, for real data, LSH

is outperformed by heuristic methods, which exploit the distribution of the

vectors. These methods include randomized KD-trees [89] and hierarchical

k-means [75], both of which are implemented in the FLANN selection algo-

rithm [74].

ANN algorithms are typically compared based on the tradeoff between search

quality and efficiency. However, this tradeoff does not take into account the

memory requirements of the indexing structure. In the case of E2LSH, the

memory usage may even be higher than that of the original vectors. More-

over, both E2LSH and FLANN need to perform a final re-ranking step based

on exact L2 distances, which requires the indexed vectors to be stored in

main memory if access speed is important. This constraint seriously limits

the number of vectors that can be handled by these algorithms. Only re-

cently, researchers came up with methods limiting the memory usage. This

is a key criterion for problems involving large amounts of data [98], i.e., in

large-scale scene recognition [99], where millions to billions of images have

to be indexed.

When dealing with high dimensional features also methods for multidimen-

sional indexing obtain performance comparable to that of exhaustive search

[47]. A typical solution is to employ methods that perform approximate near-

est neighbor (ANN) search, typically using feature hashing and Hamming

distances. Most of the works have addressed the development of effective

visual features, from engineered features like SIFT and GIST to, more re-

1.1 Structure of the Document 3

cently, learned features such as CNNs [5]. To obtain scalable CBIR systems

features are typically compressed or hashed, to reduce their dimensionality

and size.

However, research on data structures that can efficiently index these descrip-

tors has attracted less attention, typically simple inverted files (e.g. imple-

mented as hash tables) are used, and require to use hash codes with a length

of several tens of bits to obtain a reasonable performance in retrieval. This

combination requires quite large amounts of memory to store large scale

databases of features, thus their application to systems with relatively lim-

ited memory (e.g. most of the mobile devices still have 1-2 GB RAM only)

or systems that involve a large-scale media analysis is not feasible.

1.1 Structure of the Document

This thesis is structured as follows. We begin by introducing a brief sur-

vey of related work on feature hashing for retrieval using local and global

visual features illustrating all related methods (Chapter 2). In Chapter 3

we describe the standard components of an image retrieval system, includ-

ing common performance measures for evaluation purposes. In Chapter 4

we introduce and describe a new approach for vector quantization based on

kmeans which allows the possibility of assignment of a visual feature to mul-

tiple cluster centers during the quantization process. We show the goodness

of this new approach by presenting an exhaustive comparison with all the

methods presented in Chapter 2. We also introduce the usage of an efficient

and recursive data structure to store datas. Finally, in the Chapter 5, we in-

troduce a new approach for efficient image retrieval based on the m-k-means

hashing introduced in Chapter 4 and we apply our method on CNN features.

To conclude we introduce the usage of an efficient indexing structure based

on Bloom filters and we show how the experimental validation outperforms

the state-of-the-art hashing methods in terms of precision.

1.2 Contributions

The aim of this thesis is the investigation of several methods for visual fea-

ture hashing and multidimensional indexing related to the image and, more

in general, large scale information retrieval problems. Moreover, we present

a novel method for feature hashing, based on multiple k-means assignments,

4 Introduction

that is unsupervised, that requires a very limited codebook size and that

obtains a very good performance in retrieval, for local and global visual fea-

tures, either engineered or learned, even with very compact hash codes. The

proposed approach greatly reduces the need of training data and memory

requirements for the quantizer, and obtains a retrieval performance similar

or superior to more complex state-of-the-art approaches on standard large

scale datasets. This makes it suitable, in terms of computational cost, for

mobile devices, large-scale media analysis and content-based image retrieval

in general.

We also propose a novel variation of this effective hashing method for CNN

descriptors. To perform an immediate rejection of a search that should not

return any result we store the hash code in a Bloom filter, i.e. a space efficient

probabilistic data structure that is used to test the presence of an element in

a set. To the best of our knowledge this is the first time that this data struc-

ture has been proposed for image retrieval since, natively, it has no facility

to handle approximate queries. We perform extensive experimental valida-

tion on three standard datasets, showing how the proposed hashing method

improves over state-of-the-art methods, and how the data structure greatly

improves computational cost and makes the system suitable for application

to mobile devices and distributed image databases.

Chapter 2

Literature Review

This chapter gives a brief survey of related works on features hashing for

retrieval using local and global visual features. Previous works on visual

features hashing and retrieval can be divided in methods based on hashing

functions, scalar quantization, vector quantization and, more recently, neural

networks.

These methods typically rely on the use of inverted files to store the hash

codes and to perform retrieval. A few works have also addressed specifically

the study of efficient data structures for nearest neighbor retrieval.

2.1 Visual Features

SIFT [70] descriptors have been successfully used for many years to perform

CBIR 1. Features have been aggregated using Bag-of-Visual-Words and, with

improved performance, using VLAD [45] and Fisher Vectors [87].

The recent success of CNNs for image classification tasks has suggested their

use also for image retrieval tasks. Babenko et al. [5] have proposed the

use of different layers of CNNs as features, compressing them with PCA to

reduce their dimensionality, and obtaining results comparable with state-of-

the-art approaches based on SIFT and Fisher Vectors. Aggregation of local

CNN features using VLAD has been proposed in [106], while Fisher Vectors

computed on CNN features of objectness window proposals have been used

in [101].

1Content-based image retrieval (CBIR) are systems which allow, given a query, to find

a subset of similar elements within a database. In this case an element can be an image

5

6 Literature Review

2.2 Hashing Functions

Weiss et al. [104] have proposed to treat the problem of hashing as a partic-

ular form of graph partitioning, in their Spectral Hashing (SH) algorithm.

Li et al. [64] have improved the application of SH to image retrieval opti-

mizing the graph Laplacian that is built based on pairwise similarities of

images during the hash function learning process, without requiring to learn

a distance metric in a separate step. Heo et al. [39] have proposed to encode

high-dimensional data points using hyperspheres instead of hyperplanes; Jin

et al. [50] have proposed a variation of LSH, called Density Sensitive Hashing,

that does not use random projections but instead uses projective functions

that are more suitable for the distribution of the data.

Du et al. [21] have proposed the use of Random Forests to perform linear

projections, along with a metric that is not based on Hamming distance.

Lv et al. [72] address the problem of large scale image retrieval learning

two hashes in their Asymmetric Cyclical Hashing (ACH) method: a short

one (k bits) for the images of the database and a longer one (mk bits) for

the query, computed using similarity preserving Random Fourier Features,

and computing the Hamming distance between the long query hash and the

cyclically m-times concatenated compact hash code of the stored image.

Paulevé et al. [80] have compared structured quantization algorithms

with unstructured quantizers (i.e. k-means and hierarchical k-means cluster-

ing). Experimental results on SIFT descriptors have shown that unstruc-

tured quantizers provide significantly superior performances with respect to

structured quantizers.

2.3 Scalar Quantization

Zhou et al. [109] have proposed an approach based on scalar quantization

of SIFT descriptors. The median and the third quartile of the bins of each

descriptor are computed and used as thresholds, hashing is then computed

coding the value of each bin of the descriptor with 2 bits, depending on this

subdivision. The final hash code has a dimension of 256 bits, but only the

first 32 bits are used to index the code in an inverted file. The method

of [109] has been extended by Ren et al. [84], including an evaluation of the

reliability of bits, depending on their quantization errors. Unreliable bits

are then flipped when performing search, as a form of query expansion. To

2.4 Vector Quantization 7

avoid using codebooks, in the context of memory limited devices such as

mobile phones, Zhou et al. [108] have proposed the use of scalable cascaded

hashing (SCH), performing sequentially scalar quantization on the principal

components, obtained using PCA, of SIFT descriptors. Chen and Hsieh [12]

have recently proposed an approach that quantizes the differences of the

bins of the SIFT descriptor, using the median computed on all the SIFT

descriptors of a training set as a threshold.

2.4 Vector Quantization

Jégou et al. [47] have proposed to decompose the feature space into a Carte-

sian product of subspaces with lower dimensionality, that are quantized

separately. This Product Quantization (PQ) method is efficient in solving

memory issues that arise when using vector quantization methods such as

k-means, since it requires a much reduced number of centroids. The method

has obtained state-of-the-art results on a large scale SIFT features dataset,

improving over methods such as SH [104] and Hamming Embedding [44].

This result is confirmed in the work of Chandrasekhar et al. [10], that have

compared several compression schemes for SIFT features.

The success of the Product Quantization method has led to development

of several variations and improvements. The idea of compositionality of the

PQ approach has been further analyzed by Norouzi and Fleet [76], that have

built upon it proposing two variations of k-means: Orthogonal k-means and

Cartesian k-means (ck-means). Also Ge et al. [28] have proposed another

improvement of PQ, called OPQ, that minimizes quantization distortions

w.r.t. space decomposition and quantization codebooks; He et al. [38] have

proposed an affinity-preserving technique to approximate the Euclidean dis-

tance between codewords in k-means method. Kalantidis and Avrithis [51]

have presented a simple vector quantizer (LOPQ) which uses a local opti-

mization over a rotation and a space decomposition and apply a parametric

solution that assumes a normal distribution. More recently, Guo et al. [34]

have improved over OPQ and LOPQ adding two quantization distortion

properties of the Residual Vector Quantization (RVQ) model, that tries to

restore quantization distortion errors instead of reducing it.

Babenko and Lempitsky [3] have proposed an efficient similarity search

method, called inverted multi-index (IMI); this approach generalizes the in-

verted index by replacing vector quantization inside inverted indices with

8 Literature Review

product quantization, and building the multi-index as a multi-dimensional

table (Multi-D-ADC). More recently, Babenko and Lempitsky [4] have ad-

dressed the problem of indexing CNN features, observing that IMI is in-

efficient to index such features, and proposing two extensions of IMI: the

Non-Orthogonal Inverted Multi-Index (NO-IMI) and the Generalized Non-

Orthogonal Inverted Multi-Index (GNO-IMI).

2.5 Neural Network

Lin et al. [67] have proposed a deep learning framework to create hash-like

binary codes for fast image retrieval. Hash codes are learned in a point-wise

manner by employing a hidden layer for representing the latent concepts that

dominate the class labels (when the data labels are available). This layer

learns specific image representations and a set of hash-like functions.

Do et al. [20] have addressed the problem of learning binary hash codes for

large scale image search using a deep model which tries to preserve similarity,

balance and independence of images. Two sub-optimizations during the

learning process allow to efficiently solve binary constraints.

Guo and Li [35] have proposed a method to obtain the binary hash code

of a given image using binarization of the CNN outputs of a certain fully

connected layer.

Zhang et al. [107] have proposed a very deep neural network (DNN) model

for supervised learning of hash codes (VDSH). They use a training algorithm

inspired by alternating direction method of multipliers (ADMM) [8]. The

method decomposes the training process into independent layer-wise local

updates through auxiliary variables.

Xia et al. [105] have proposed an hashing method for image retrieval

which simultaneously learns a representation of images and a set of hash

functions.

A deep learning framework for hashing of multimodal data has been

proposed by Wang et al. [103], using a multimodal Deep Belief Network

to capture correlation in high-level space during pre-training, followed by

learning a cross-modal autoencoder in fine tuning phase.

Lin et al. [66] have proposed to use unsupervised two steps hashing of

CNN features. In the first step Stacked Restricted Boltzmann Machines

learn binary embedding functions, then fine tuning is performed to retain

the metric properties of the original feature space.

2.6 Data Structures 9

2.6 Data Structures

Babenko and Lempitsky [3] have proposed a data structure for efficient simi-

larity search, called inverted multi-index, that generalizes the inverted index

by replacing vector quantization inside inverted indices with product quan-

tization, and building the multi-index as a multi-dimensional table. An

efficient algorithm to produce an ordered sequence of multi-index entries for

a query is also proposed. Very recently Norouzi et al. [77] have proposed a

method to build multiple hashing tables for exact k-nearest neighbor search

of hash codes, testing the method on a large scale SIFT dataset.

2.6.1 Bloom Filter

Bloom filter and its many variants have received an extremely limited atten-

tion from the vision and multimedia community, so far. Inoue and Kise [42]

have used Bloomier filters (i.e. an associative array of Bloom filters) to store

PCA-SIFT features of an objects dataset more efficiently than using an hash

table; they perform object recognition by counting how many features stored

in the filters are associated with an object. Bloom filter has been used by

Danielsson [17] as feature descriptor for matching keypoints. Similarity of

descriptors is evaluated using the “union” operator. Srijan and Jawahar

have proposed to use Bloom filters to store compactly the descriptors of an

image, and use the filter as postings of an inverted file index in [94].

10 Literature Review

Chapter 3

Content-Based Image Retrieval

In this chapter we present an overview of the content-based im-

age retrieval (CBIR) problem. Also known as query by image

content (QBIC) and content-based visual information retrieval

(CBVIR) is the application of computer vision techniques to the

image retrieval problem, that is, the problem of searching for dig-

ital images in large database.

3.1 Introduction

During the past decades we have been observing a permanent increase in im-

age data, leading to huge repositories. Content-based image retrieval meth-

ods have tried to alleviate the access to image data. To date, numerous fea-

ture extraction methods have been proposed in order to improve the quality

of content-based image retrieval and image classification systems.

Let there exist a database D consisting of digital images. A user intends to

access the database, but linear browsing is not practical since the databases

are usually large. So how should this be performed? This is the core of the

image retrieval problem and is depicted symbolically in Figure 3.1.

”Content-based” means that the search analyzes the contents of the image

rather than the metadata such as keywords, tags, or descriptions associ-

ated with the image. The term ”content” in this context might refer to

colors, shapes, textures, or any other information that can be derived from

the image itself. CBIR is desirable because searches that rely purely on

metadata are dependent on annotation quality and completeness. Having

11

12 Content-Based Image Retrieval

humans manually annotate images by entering keywords or metadata in a

large database can be time consuming and may not capture the keywords

desired to describe the image. The evaluation of the effectiveness of keyword

image search is subjective and has not been well-defined. In the same regard,

CBIR systems have similar challenges in defining success. In the end there

is no unique best solution to this problem which holds for each and every

database and for different retrieval scenarios.

The initial point of entry in a search engine is a query, which tells the system

about what the user is looking for. Textual search engines, for example, can

accept whole words or phrases as input query. A query in a text-based search

engine may be seen as being a tiny document in itself. Indeed, most web

search engines now include a find similar web pages extension, which can be

viewed as a search request with a complete web page as the starting query.

The most natural extension of a textual query model for use in image retrieval

would be a query-by-image-region model. The image region should contain

the object or objects which the user is looking for in an image. However,

there are many practical differences compared to the corresponding textual

query model. Unlike query text, which can be inputted from memory, a

query image region cannot usually be constructed on the fly (an exception

may exist for sketch retrieval, where the rough outline of the desired sketch

may suffice). Another difference is that while words are trivially extracted

from text documents (e.g. using whitespace information), image segmenta-

tion into meaningful regions is a very challenging problem whose solution

still eludes us, save for some specific problem settings [16, 24]. Due to this,

the most popular query mechanism in image retrieval literature has been the

so-called query-by-example model, in which whole images are compared. Its

main advantage is ease of validation; the quality of the results can be veri-

fied visually by viewing them alongside the query image. In a real system,

however, finding an appropriate initial query image can be difficult. Indeed

some could ask why to use of an image retrieval system if the user already

possesses a similar looking image. While this criticism does hold for many

image collections, there are scenarios where this is the preferred query model.

An example could be in clinical use, where a doctor might want to retrieve

the case history of patients with a similar radiographic image compared to

that of the current patient.

3.2 History 13

Figure 3.1: An image retrieval use case at its most abstract level

3.2 History

The term ”content-based image retrieval” seems to have originated in 1992

when it was used by T. Kato to describe experiments into automatic retrieval

of images from a database, based on the colors and shapes present [22].

Since then, the term has been used to describe the process of retrieving

desired images from a large collection on the basis of syntactic image features.

The techniques, tools, and algorithms that are used originate from fields such

as statistics, pattern recognition, signal processing, and computer vision [63].

The earliest commercial CBIR system was developed by IBM and was called

QBIC (Query by Image Content) [86]. Recent network and graph based

approaches have presented a simple and attractive alternative to existing

methods [6].

3.3 Technical Progress

The interest in CBIR has grown because of the limitations inherent to the

metadata-based systems, as well as the large range of possible uses for ef-

ficient image retrieval. Textual information about images can be easily

searched using existing technology, but this requires humans to manually

describe each image in the database. This can be impractical for very large

databases or for images that are generated automatically, e.g. those from

surveillance cameras. It is also possible to miss images that use different

synonyms in their descriptions. Systems based on categorizing images in

semantic classes like ”cat” as a subclass of ”animal” can avoid the miscat-

14 Content-Based Image Retrieval

egorization problem, but will require more effort by a user to find images

that might be ”cats”, but are only classified as an ”animal”. Many stan-

dards have been developed to categorize images, but all still face scaling and

miscategorization issues [22].

Initial CBIR systems were developed to search databases based on image

color, texture, and shape properties. After these systems were developed,

the need for user-friendly interfaces became apparent. Therefore, efforts in

the CBIR field started to include human-centered design that tried to meet

the needs of the user performing the search. This typically means inclu-

sion of: query methods that may allow descriptive semantics, queries that

may involve user feedback, systems that may include machine learning, and

systems that may understand user satisfaction levels [63].

3.4 Components of a CBIR System

Figure 3.2 shows the building blocks of a typical content-based image re-

trieval system, and how they relate to each other. First of all, in an offline

operation, meaningful features are extracted from all images in the database.

This is a critical step and will be discussed in more detail in the next section.

For computational efficiency, the features can be indexed, for example in a

R-tree [36] or in a K-D-B tree [85].

The user starts the retrieval process by providing a query image. The fea-

tures for the query image are extracted exactly in the same way as for the

database images. The features of the query image are then compared with

the features of the database images using some kind of a similarity measure.

The database images which possess the highest similarity measure value are

returned as the result images.

The reader can refer to [37] which contains a survey of the existing CBIR

literature.

3.5 Features Extraction

Digital images possess a very high dimensionality. For example, an image of

size 1024 × 1024 pixels has more than a million dimensions when interpreted

as a vector. However, there is a huge amount of redundancy present in

the images. Furthermore, it is often desirable to remove the information

content which is not essential or even counter-productive for the particular

3.5 Features Extraction 15

Figure 3.2: General scheme of content-based image retrieval

16 Content-Based Image Retrieval

retrieval task at hand. This step of extracting meaningful information is

termed as features extraction. The most critical properties to be analysed

for any kind of features are its information content and invariance to certain

transformations of the data. These properties will be discussed next.

3.5.1 Invariance

Given a transformation group G with an element g acting on the data S, a

feature F (S) is said to be invariant with respect to G if

S′ = gS⇒ F (S′) = F (S),∀g ∈ G (3.1)

This is the so-called necessary condition for invariance. For digital im-

ages, the transformation groups required in an application are typically one

or more of the following:

• the group of translations

• the group of rotations

• the group of Euclidean motion

• the group of similarity transformations

• the group of affine transformations

• the group of monotonic intensity transformation

In the above list, all except the monotonic intensity transformation are

what are known as geometric transformations. Only the location of the

points is transformed, while the value remains unchanged. For example,

given an initial source point (px, py)T , we have the destination point coor-

dinates (
p′x
p′y

)
=

(
px
py

)
+

(
tx
ty

)
(3.2)

for the case of translation, and

(
p′x
p′y

)
=

(
α11 α12

α21 α22

)(
px
py

)
+

(
tx
ty

)
,

∣∣∣∣α11 α12

α21 α22

∣∣∣∣ 6= 0 (3.3)

3.5 Features Extraction 17

for the general case of an affine transformation.

The number of independent tunable parameters in a transformation is known

as the degrees of freedom, for example, two and six for the case of translation

and affine transformations, respectively. In general, the variability within a

class is exponentially proportional to the degrees of freedom in the transfor-

mation which the class is allowed to have.

There are in principle three ways with which one can obtain invariant fea-

tures:

Normalization In this method one tries to find distinctive elements of a

class and normalize other elements with respect to it. For example, an image

of an object could be translated to have its center of gravity at a particular

point, or rotated to have its major axis aligned with the horizontal axis of

an image.

Differentiation The elements gS form an orbit in the feature space and

can be controlled using a parameter vector λ (whose dimensionality f is equal

to the degrees of freedom G). An invariant feature should take a constant

value along the orbit, thus one tries to find features satisfying the differential

equation

δgλS

δλi
= 0,∀i = 1...f (3.4)

Integration As early as in 1897, Hurwitz demonstrated the use of Haar

Integrals for generating invariant features [41]. One integrates over the group

elements which have been transformed using a (often non-linear) kernel func-

tion f .

F (S) =
1

| G |

∫
G

f(gS)dg (3.5)

3.5.2 Information Content

Invariance towards desired transformations alone does not guarantee good

performance for a classification or retrieval task. It is also important that the

features are discriminative for the classes in hand. As an extreme example,

consider the feature described by the average gray value of the image, i.e. f =

1�MN
∑
i

∑
j S(i, j). This feature is invariant against Euclidean motion of

18 Content-Based Image Retrieval

objects present in the image, but unfortunately, it is invariant against many

more transformations. For example, one may permute the pixel positions

in an arbitrary manner without affecting the feature f , which may have

an undesirable behaviour. Mathematically, one can express this property in

terms of what is known as the sufficient condition for invariance:

F (S′) = F (S)⇒ S′ = gS, g ∈ G (3.6)

Which means that if two patterns are mapped to the same point in the

feature space, then they must belong to the same equivalence class. If both

the necessary condition (Equation 3.1) as well as the sufficient condition are

satisfied, we say that the invariant mapping is complete.

Non-Vectorial Data

The scalar features extracted using the methods described in the previous

section must be combined in some way. The simplest way to group them is

to create a vector, with the scalar features being its members. This approach

has the advantage that even unrelated features can be grouped together, as

no special property about the features is assumed. The algorithms presented

in this thesis are in general applicable to such vectorial features, as is indeed

most work existing in the pattern recognition literature. However, other

data representation formats such as strings, trees and graphs are getting

popular, especially in domains such as text mining and bioinformatics. Even

a segmented image could be thought of as an unordered set of its parts.

Interactive retrieval is of interest in many bioinformatics applications, such

as protein retrieval, where a vectorbased feature approach might not be the

best choice.

Non-Standard Similarity Measures

In some cases, it might be practicable to skip the feature extraction step,

and instead build the complexity in the matching algorithm. For example, in

the case of medical images, an algorithm might perform image registration

and consider the quality of the registration as a similarity measure, or judge

the similarity through the amount of deformation that must be carried out

on one of the images [53].

3.5 Features Extraction 19

3.5.3 Semantic Gap

Due to the fact that current feature extraction methods are not powerful

enough to capture all kinds of subtle nuances present in natural images,

we have what is known as the problem of the semantic gap. The following

definition was provided in [93], which is arguably the most prevalent review

paper on the field of content based image retrieval:

”The semantic gap is the lack of coincidence between the

information that one can extract from the visual data and

the interpretation that the same data have for a user in a

given situation.”

However, different researchers have taken somewhat differing interpreta-

tions, which leads to some confusion. Especially, some authors chose to use

the word semantic as in semantic labelling or semantic classification when

clearly the terms visual labelling and visual classification would have been

closer to the intended meaning. The primary difference is that in variabil-

ity. An image would be a candidate for semantic labelling by a keyword if

a human being could associate the keyword with the image either directly

or indirectly. That is to say, on the basis of semantics. On the other hand,

visual labelling merely postulates that the images possess a visual (low-level)

content similarity. Figures 3.4 and 3.5 give examples of a possible label cars

in its visual and semantic connotations. An example of the semantic gap

problem is shown in Figure 3.3.

The semantic gap exists because the features or information that we can

currently extract from the pixel content of digital images are not rich or

expressive enough to capture higher-level information which on the other

hand is readily performed by human beings. As an example, consider a face

detection engine, which can detect, with a high enough precision (say 90%

), human faces in a digital image. The high-level information missing for a

particular application could be, for example, the general mood present in the

image. We wish to understand the hurdles in learning complex such high-

level concepts from image data. There can be two fundamental approaches.

One is to train a concept detector for every high level concept such as

mood directly from image data. This approach seems however, unlikely to

work, as the number of possible high-level concepts can be very high, with

possibly much higher intraconcept variability as compared to low-level tasks.

The other approach is to have simple concept detectors and then use external

20 Content-Based Image Retrieval

Figure 3.3: An example of the semantic gap problem. The two images possess

very similar colour and texture characteristics, but differ vastly as far as the

semantics are concerned.

rules to learn high-level concepts. These rules could be combinational based

on certain observations and could also be learned automatically to a certain

extent. Let us give an example. Assume that we can predict with medium

precision (say 70%) the following information from the content of an image:

(a) the nationality of the people present

(b) their location estimate

(c) condition of the people’s clothes

Figure 3.4: Sample images from a hypothetical visual class ”cars”

3.5 Features Extraction 21

Then rules such as the following might lead us to the desired result:

Although probabilistic logic would be more natural, the above example

uses first-order predicate logic for simplicity.

Figure 3.5: Sample images from a hypothetical semantic class ”cars”

The rule R2 is simply dependent on the rule R1, however the rule R1 is

dependent on three sub-rules. Assuming that the detectors for the sub-rules

are statistically independent, the output of R1 is correct with a probability

of (0.7)3 = 0.343. Thus, we can observe that the output of a cascaded

detector degrades much faster than the output of its individual units. This,

together with the higher number of required training images, is the reason

why semantic labelling still eludes us.

22 Content-Based Image Retrieval

3.6 Performance Measurement

A timeless question in the field of content based image retrieval has been

how to quantify the performance of a system. In our opinion, the real issue

is not about finding good performance measures, but rather finding reliable

groundtruth for the scenario under consideration. Ground truth here refers

to the correct classification, labelling, or the retrieval result, which a system

can achieve only in the best possible case1.

Creating the ground truth for image retrieval or classification is in general

a challenging task. Is mandatory to state clearly and unambiguously, the

criterions that were used in creating the ground truth. For example, in a

collection of images for different objects, each object must be reported to a

separate class. The separation can be realized in a visual, or a more seman-

tic level. For the query-by-example approach used in content-based image

retrieval (CBIR), is possibile to create the so-called relevance lists. Each list

contains, for each query image, all images in the database which would be

perceived as being similar. The list indicates only a boolean information

about each image which can be relevant or non-relevant. Since similarity

is subjective, a common practice is to have multiple lists per query image,

each based on the perceptions of a different individual, and to average out

the results to reach a common ground truth.

The most common performance measures used in the literature are precision

and recall [25]. Assume that the user has seen k result images, out of which

kR are good results (i.e. relevant), and the remaining kNR are nonrelevant.

Further, let the total number of images in the database be N , out of which

NR are relevant for the current query, and NNR are not. Then, the measures

are defined as follows:

RecallK =
kR
NR

(3.7)

The recall is thus the ratio of retrieved relevant images to the total num-

ber of relevant images. By itself, it is not sufficient to measure system

performance, as one could increase k arbitrarily which would push Recall

to 1 in the asymptotic case. Thus, one further formula defines:

PrecisionK =
kR
k

(3.8)

1The term ground truth has its origins in cartography, satellite imagery and other

remote sensing techniques, where the truth literally lies on the ground.

3.6 Performance Measurement 23

which measures the precision after k images have been retrieved. Figure

3.6 gives a visual representation of the formulas introduced before.

Figure 3.6: Interpretation of Precision and Recall

The Precision and Recall values can be plotted against each other for

different values of k, the result being known as a precision-recall graph, which

is well understood within the image retrieval community.

24 Content-Based Image Retrieval

3.7 Single Query Image Scenario

In the query-by-example paradigm, the user begins the image search process

by providing an initial query image. In the absence of any further informa-

tion a CBIR system can only assume that the target images are distributed

according to some symmetric function around the location of the query image

in the feature space. These functions are known as similarity measures.

3.7.1 Similarity Measures

A measure is a valid distance metric, if the following conditions are satisfied:

1. Non-negativity: d(x,y) ≥ 0 , with the equality holding only in

the case of x = y

2. Symmetry: d(x,y) = d(y,x)

3. Triangle Inequality: d(x, z) ≤ d(x,y) + d(y, z)

In general it is desirable to use measures which are valid distance metrics,

however it does not automatically mean that a non-metric function would

perform poorly for a particular task. We give here a few common similarity

measures which can be used in image retrieval. In the following, the elements

of a feature vector will be represented by the notation x = (x1, x2, ..., xn)

with n the dimensionality of the feature space.

Minkowski distance The general Minkowski distance of norm p (also

referred to as the distance induced by the Lp norm) is given by :

dLp
(x,y) =

(
n∑
i=1

| xi − yi |p
)1/p

(3.9)

which leads to the following special cases:

Euclidean distance is the distance measure induced by the L2 norm:

dE(x,y) =

(
n∑
i=1

(xi − yi)2
)1/2

(3.10)

3.8 Conclusion 25

Manhattan distance Also known as the city-block distance, it is induced

by the L1 norm:

dM (x,y) =

n∑
i=1

| xi − yi | (3.11)

The ranking induced by the Euclidean and the Manhattan distance is

illustrated in Figure 3.7.

Figure 3.7: Ranking induced by similarity functions.Spherical ranking due

to Euclidean distance (left) and ranking due to Manhattan distance (right).

3.8 Conclusion

In this chapter we have illustrated the task of image retrieval. We have shown

a little history, some technical progress and illustrated each component of

a CBIR system. Feature extraction techniques, performance measurements

and the single-query scenario were illustrated at the end to complete the

overview.

26 Content-Based Image Retrieval

Chapter 4

Optimized Feature Hashing for

Retrieval

In this chapter we describe a novel version of the kmeans vector

quantization approach introducing the possibility of assignment of

a visual feature to multiple cluster centers during the quantization

process. This approach greatly reduces the number of required

cluster centers, as well as the required training data, performing

a sort of quantized codebook soft assignment for an extremely

compact hash code of visual features. We also introduce the usage

of an efficient and recursive data structure to store datas. Results

show that the our proposed technique is efficient,guarantees a low

computational cost and results in a compact quantizer. 1 2

4.1 Introduction

The technical features of modern smartphones have greatly improved in all

aspects in recent years. Regarding the computational capabilities mobile

1This chapter has been partially published as “Compact hash codes and data structures

for efficient mobile visual search” in Multimedia & Expo Workshops (ICMEW), 2015 IEEE

International Conference on. IEEE, 2015 [23].
2Acknowledgments: this work was partially supported by the “Social Museum and

Smart Tourism” project (CTN01 00034 231545). This research is based upon work sup-

ported [in part] by the Office of the Director of National Intelligence (ODNI), Intelli-

gence Advanced Research Projects Activity (IARPA), via IARPA contract number 2014-

14071600011

27

28 Optimized Feature Hashing for Retrieval

phones now have relatively fast processors and storage that is in the order

of tens of GB. However certain characteristics are still quite lagging with

respect to PCs. Because of these limitations, algorithms designed to run on

desktop computers are not suitable for smartphones and mobile devices.

Regarding the problem of visual search, methods that aim at reducing com-

putational costs typically use feature hashing, performing nearest neighbor

search using Hamming distances. These methods generally use inverted files,

e.g. hash tables, that require large quantities of memory to store the hash

codes of the features. Moreover hash codes are relatively long (in the order

of several tens of bits) to obtain a reasonable performance in retrieval, thus

requiring fairly large amounts of memory when storing large scale databases

of features.

In this chapter we present a novel method for feature hashing, based on

k-means, that requires a very limited codebook size and that obtains good

performance in retrieval even with very compact hash codes. We show also

the benefit of using compact data structures to store a large database of

features.

The proposed approach greatly reduces memory requirements and is suit-

able, also in terms of computational cost, for mobile visual search applica-

tions. The proposed method is compared to state-of-the-art approaches on

a standard large scale dataset, showing a retrieval performance comparable

or superior to more complex state-of-the-art approaches.

4.2 Proposed Method

The proposed method exploits a novel version of the k-means vector quanti-

zation approach, introducing the possibility of assignment of a visual feature

to multiple cluster centers during the quantization process. This approach

greatly reduces the number of required cluster centers, as well as the required

training data, performing a sort of quantized codebook soft assignment for

an extremely compact hash code of visual features. Table 4.1 summarizes

the symbols used in the following.

The first step of the computation is a typical k-means algorithm for clus-

tering. Given a set of observations (x1,x2, . . . ,xn) where each observation is

a D-dimensional real vector, k-means clustering partitions the n observations

into k(≤ n) sets S = {S1, S2, . . . , Sk} so as to minimize the sum of distance

functions of each point in the cluster to the Ck centers. Its objective is to

4.2 Proposed Method 29

Table 4.1: Notation table
xi feature to be hashed

Ci generic centroid

Si cluster

k number of centroids; length of the hash code

Cj centroid associated to the jth bit of the hash code

D dimension of the feature

find:

argmins

k∑
i=1

∑
x∈Si

‖ x− Ci ‖2 (4.1)

This process is convergent (to some local optimum) but the quality of

the local optimum strongly depends on the initial assignment. We use the

k-means++ [2] algorithm for choosing the initial values, to avoid the poor

clusterings sometimes found by the standard k-means algorithm.

4.2.1 Multi-k-means Hashing

K-means is typically used to compute the hash code of visual feature in

unstructured vector quantization, because it minimizes the quantization er-

ror by satisfying the two Lloyd optimality conditions [47]. In a first step

a dictionary is learned over a training set and then hash codes of features

are obtained by computing their distance from each cluster center. Vectors

are assigned to the nearest cluster center, whose code is used as hash code.

Considering the case of 128-dimensional visual content descriptors, like SIFT

or the FC7 layer of the VGG-M-128 CNN [11], this means that compress-

ing them to 64 bits codes requires to use k = 264 centroids. In this case the

computational cost of learning a k-means based quantizer becomes expensive

in terms of memory and time because: i) there is the need of a quantity of

training data that is several times larger than k, and ii) the execution time of

the algorithm becomes unfeasible. Using hierarchical k-means (HKM) makes

it possible to reduce execution time, but the problem of memory usage and

size of the required learning set affects also this approach. Since the quan-

tizer is defined by the k centroids, the use of quantizers with a large number

of centroids may not be practical or efficient: if a feature has a dimension

D, there is need to store k × D values to represent the codebook of the

quantizer. A possible solution to this problem is to reduce the length of the

hash signature, but this typically affects negatively retrieval performance.

30 Optimized Feature Hashing for Retrieval

The use of product k-means quantization, proposed originally by Jégou et

al. [47], overcomes this issue.

In our approach, instead, we propose to compute a sort of soft assign-

ment within the k-means framework, to obtain very compact signatures and

dimension of the quantizer, thus reducing its memory requirements, while

maintaining a retrieval performance similar to that of [47].

The proposed method, called multi-k-means (in the following abbreviated

as m-k-means), starts learning a standard k-means dictionary as shown in

Eq. 4.1, using a very small number k of centroids to maintain a low computa-

tional cost. Once we obtained our C1, . . . ,Ck centroids, the main difference

resides in the assignment and creation of the hash code. Each centroid is

associated to a specific bit of the hash code:{
‖ x− Cj ‖≤ δ jth bit = 1

‖ x− Cj ‖> δ jth bit = 0
(4.2)

where x is the feature point and δ is a threshold measure given by

δ =


(
∏k
j=1 ‖ x− Cj ‖)

1
k geometric mean

1
k

∑k
j=1 ‖ x− Cj ‖ arithmetic mean

nth nearest distance ‖ x− Cj ‖ ∀j = 1, ..., k

(4.3)

i.e. centroid j is associated to the jth bit of the hash code of length k; the

bit is set to 1 if the feature to be quantized is assigned to its centroid, or to

0 otherwise.

A feature can be assigned to more than one centroid using two different

approaches:

i) m-k-means-t1 - using Eq. (4.2) and one of the first two thresholds of

Eq. (4.3). In this case the feature vector is considered as belonging to all

the centroids from which its distance is below the threshold. Experiments

have shown that the arithmetic mean is more efficient with respect to the

geometric one, and all the experiments will report results obtained with it.

ii) m-k-means-n1 - using Eq. (4.2) and the third threshold of Eq. (4.3),

i.e. assigning the feature to a predefined number n of nearest centroids.

We also introduce two variants (m-k-means-t2 and m-k-means-n2) to the

previous approaches by randomly splitting the training data into two groups

and creating two different codebooks for each feature vector. The final hash

code is given by the union of these two codes.

4.2 Proposed Method 31

Figure 4.1: Toy examples illustrating the proposed method: (top) fea-

tures can be assigned (green line) to a variable number of nearest clusters

(e.g. those with distances below the mean δ - i.e. m-k-means-t1); (middle)

features can be assigned to a fixed number of clusters (e.g. the 2 nearest

clusters - i.e. m-k-means-n1);(bottom) hash code created from two different

codebooks (m-k-means-x2, where x can be either t or n). If a feature is

assigned to a centroid the corresponding bit in the hash code is set to 1.

32 Optimized Feature Hashing for Retrieval

With the proposed approach it is possible to create hash signatures using

a much smaller number of centroids than using the usual k-means baseline,

since each centroid is directly associated to a bit of the hash code. This

approach can be considered a quantized version of codebook soft assignment

[102] and, similarly, it alleviates the problem of codeword ambiguity while

reducing the quantization error.

Fig. 4.1 illustrates the quantization process and the resulting hash codes

in three cases: one in which a vector is assigned to a variable number of

centroids (m-k-means-t1), one in which a vector is assigned to a predefined

number of centroids (m-k-means-n1) and one in which the resulting code

is created by the union of two different codes created using two different

codebooks (m-k-means-t2 and m-k-means-n2). In all cases the feature is

assigned to more than one centroid. An evaluation of these two approaches

is reported in Sect. 5.4.

Typically a multi probe approach is used to solve the problem of ambigu-

ous assignment to a codebook centroid (in case of vector quantization, as in

the coarse quantization step of PQ [47]) or quantization error (e.g. in case of

scalar quantization, as in [84,109]); this technique stems from the approach

originally proposed in [71], to reduce the need of creating a large number of

hash tables in LSH. The idea is that if a object is close to a query object

q, but is not hashed to the same bucket of q, it is still likely hashed to a

bucket that is near, i.e. to a bucket associated with an hash that has a small

difference w.r.t. the hash of q. With this approach one or more bits of the

query hash code are flipped to perform a query expansion, improving recall

at the expense of computational cost and search time. In fact, if we chose

to try all the hashes within an Hamming distance of 1 we have to create

variations of the original hash of q flipping all the bits of the hash, one at

a time. This means that for a hash code of length k we need to repeat the

query with additional k hashes. In the proposed method this need of multi

probe queries is greatly reduced, because of the possibility of assignment of

features to more than one centroid. For example, consider either Fig. 4.1

(top) or (middle): if a query point nearby f1 or f2 falls in the Voronoi cell of

centroid C6, using standard k-means it could be retrieved only using a multi

probe query, instead the proposed approach maintains the same hash code.

4.3 Indexing 33

4.2.2 Computational Complexity

Let us consider a vector with dimensionality D, and desired hash code length

of 64 bits. Standard k-means has an assignment complexity of kD, where

k = 264, while the proposed approach instead needs k′ = 64 centroids, has

a complexity of k′D and requires k′D floats to store the codebook. Product

Quantization requires K∗D floats for the codebook and has an assignment

complexity of k∗D, where k∗ = k1/m, using typically k∗ = 256 and m = 8

values, for a 64 bit length [47]; in this case the cost of the proposed method

is a quarter of that of PQ.

4.3 Indexing

In this section we present an efficient and recursive data structure to store

datas. We also show,in the experimental section, how the resulting hash code

from 4.2.1 is stored into that structure and how it is suitable for devices with

very limited RAM such a mobile devices. Most of the approaches presented in

scientific literature have relied on inverted files [47,84,109] that are typically

implemented as hash tables3 [12,77,92,100] or B-Trees. Instead we propose

the use of a variant of radix tree (also known as ‘patricia trie’ or ‘trie’) for

an extremely compact storage of the hash codes of visual features. The

combination of these two solutions results in a greatly reduced consumption

of memory and improved search speed.

4.3.1 Trie Data Structure

Radix tries are often used in approximate string matching algorithms [1],

such as those required for spell checking. The trie can be used to implement

an inverted file, where the key to search the data is stored in the position

of the nodes. A memory efficient variant of radix tree is the patricia trie,

a data structure that represents a space-optimized trie in which each node

with only one child is merged with its parent. Fig. 4.2 compares a trie with

a patricia trie.

In this work we propose the use of Matching Algorithm with Recursively

Implemented StorAge (MARISA) trie. MARISA trie is a recursive data

structure in which a patricia trie is used to represent another patricia trie.

This recursion makes the data structure more compact at the expenses of

3E.g. Yael Library http://yael.gforge.inria.fr

http://yael.gforge.inria.fr

34 Optimized Feature Hashing for Retrieval

1

101
010101

101 0

00
1

01

0

011011
110110

1

1 0

0

1

1

0

1

0

0

0

1

01

1

0

1

0

1

0

0

1

1

0

1

1

1

1

0

1

1

0

 1101101 10101011101011 0110110 1101000 00110111101010

Figure 4.2: Comparison of trie (left) vs. patricia trie (right), used to store 7

hash codes (top).

search performance. In particular, to maintain a good time-space tradeoff,

we have used one level of recursion depth.

Patricia tries have a better space complexity than hash tables, while time

complexity is comparable only when considering imbalanced hash tables.

However, the compactness of the data structure makes it amenable to be

maintained in the CPU cache, thus greatly improving its speed.

4.4 Experimental Results

In this section we present an exhaustive comparation with all the method

presented in chapter 2 and we evaluate the performance of the Trie data

structure. The variants of the proposed method (m-k-means-t1, m-k-means-

n1, m-k-means-t2 and m-k-means-n2) have been thoroughly compared to sev-

eral state-of-the-art approaches using standard datasets, experimental setups

and evaluation metrics.

4.4 Experimental Results 35

4.4.1 Datasets

BIGANN Dataset

Is a large-scale dataset commonly used to compare methods for visual feature

hashing and approximate nearest neighbor search [3,28,47,48,51,76,77]. The

dataset is composed by three different sets of SIFT and GIST descriptors,

each one divided in three subsets: a learning set, a query set and base set;

each query has corresponding ground truth results in the base set, computed

in an exhaustive way with Euclidean distance, ordered from the most similar

to the most different. For SIFT1M and SIFT1B query and base descriptors

have been extracted from the INRIA Holidays images [46], while the learning

set has been extracted from Flickr images. For GIST1M query and base

descriptors are from INRIA Holidays and Flickr 1M datasets, while learning

vectors are from [97]. In all the cases query descriptors are from the query

images of INRIA Holidays (see Figure 4.3). The characteristics of the dataset

are summarized in Table 4.2.

DEEP1B Dataset

Is a recent dataset used to treat the problem of indexing CNN features [4] and

produced using a deep CNN based on the GoogLeNet [95] architecture and

trained on ImageNet dataset [19]. Descriptors are extracted from the outputs

of the last fully-connected layer, compressed using PCA to 96 dimensions,

and l2-normalized. The characteristics of the dataset are summarized in

Table 4.3.

Table 4.2: BIGANN datasets characteristics
vector dataset SIFT 1M SIFT 1B GIST 1M

descriptor dimensionality D 128 128 960

learning set vectors 100,000 100,000,000 500,000

database set vectors 1,000,000 1,000,000,000 1,000,000

queries set vectors 10,000 10,000 1,000

nearest vectors for each query 100 1000 100

Table 4.3: DEEP1B datasets characteristics
descriptor dimensionality D 96

learning set vectors 358,480,000

database set vectors 1,000,000,000

queries set vectors 10,000

nearest vectors for each query 1

36 Optimized Feature Hashing for Retrieval

5.1 Dataset 41

Query Immagini rilevanti

Tabella 5.1: Esempi di query e di immagini rilevanti in INRIA Holidays

Figure 4.3: Sample images from INRIA Holiday dataset. Left column shows

the query images, the other columns show similar images.

CIFAR-10 Dataset

Consists of 60,000 colour images (32 × 32 pixels) in 10 classes, with 6,000

images per class [56] (see Figure 4.4). The dataset is split into training and

test sets, composed by 50,000 and 10,000 images respectively . A retrieved

image is considered relevant for the query if it belongs to the same class.

This dataset has been used for ANN retrieval in [67,105].

MNIST Dataset

Consists of 70,000 handwritten digits images [61] (28× 28 pixels, see Figure

4.5). The dataset is split into 60,000 training examples and 10,000 test

examples. Similarly to CIFAR-10, a retrieved image is considered relevant

if it belongs to the same class of the query. This dataset has been used for

ANN retrieval in [67,105].

4.4 Experimental Results 37

Figure 4.4: Sample images from CIFAR-10 dataset

Figure 4.5: Sample images from MNIST dataset

4.4.2 Evaluation Metrics

The performance of ANN retrieval in BIGANN dataset is evaluated using

recall@R, which is used in most of the results reported in the literature

[3, 28, 47, 48, 51, 76] and it is, for varying values of R, the average rate of

queries for which the 1-nearest neighbor is retrieved in the top R positions.

38 Optimized Feature Hashing for Retrieval

In case of R = 1 this metric coincides with precision@1. The same measure

has been used by the authors of the DEEP1B dataset [4].

Performance of image retrieval in CIFAR-10 and MNIST is measured

following the setup of [105], using Mean Average Precision:

MAP =

∑Q
q=1AveP (q)

Q
(4.4)

where

AveP =

∫ 1

0

p(r)dr (4.5)

is the area under the precision-recall curve and Q is the number of queries.

4.4.3 Configurations and Implementations

BIGANN We use settings which reproduce top performances at 64-bit

codes. We perform search with a non-exhaustive approach. For each query

64 bits binary hash code of the feature and Hamming distance measure are

used to extract small subsets of candidates from the whole database set

(Table 4.2). Euclidean distance measure is then used to re-rank the nearest

feature points, calculating recall@R values in these subsets.

DEEP1B We use the CNN features computed in [4], hashed to 64-bit

codes. Searching process is done in a non-exhaustive way, using Hamming

distances to reduce the subsets of candidates from the whole database set.

After we have extracted a shortlist of candidates we perform a re-rank step

based on Euclidean distances and we calculate recall@R values.

CIFAR-10 We use features computed with the framework proposed in [67]

(Figure 4.6). The process is carried out in two steps: in the first step a su-

pervised pre-training on the large-scale ImageNet dataset [57] is performed.

In the second step fine-tuning of the network is performed, with the insertion

of a latent layer that simultaneously learns domain specific feature represen-

tations and a set of hash-like functions. The authors used the pre-trained

CNN model proposed by Krizhevsky et al. [57] and implemented in the Caffe

CNN library [49]. In our experiments we use features coming from the FCh

Layer (Latent Layer H), which has a size of 48 nodes.

4.4 Experimental Results 39

Target domain dataset

Module1: Supervised Pre-Training on ImageNet

ImageNet (~1.2M images)

Parameter Transferring

CNN 4096 nodes 1000 nodes

Latent Layer (H)
h nodes n nodesCNN

Query Image
Results

Module2: Fine-tuning on Target Domain

Module3: Image Retrieval via Hierarchical Deep Search

4096 nodes

Fine-level SearchCoarse-level Search

101001
101010
101011 Candidate Pool

Query

Similarity
Computation

7F 8F

8F7F

Figure 1: The proposed image retrieval framework via hierarchical deep search. Our method consists of three main com-
ponents. The first is the supervised pre-training of a convolutional neural network on the ImageNet to learn rich mid-level
image representations. In the second component, we add a latent layer to the network and have neurons in this layer learn
hashes-like representations while fine-tuning it on the target domain dataset. The final stage is to retrieve similar images
using a coarse-to-fine strategy that utilizes the learn hashes-like binary codes and F7 features.

million images categorized into 1000 object classes. Our
method for learning binary codes is described in detail as
follows.

3.1. Learning Hash-like Binary Codes

Recent studies [14, 7, 5, 1] have shown that the fea-
ture activations of layers F6−8 induced by the input im-
age can serve as the visual signatures. The use of these
mid-level image representations demonstrates impressive
improvement on the task of image classification, retrieval,
and others. However, these signatures are high-dimensional
vectors that are inefficient for image retrieval in a large cor-
pus. To facilitate efficient image retrieval, a practical way
to reduce the computational cost is to convert the feature
vectors to binary codes. Such binary compact codes can be
quickly compared using hashing or Hamming distance.

In this work, we propose to learn the domain specific im-
age representations and a set of hash-like (or binary coded)
functions simultaneously. We assume that the final outputs
of the classification layer F8 rely on a set of h hidden at-
tributes with each attribute on or off. In other points of view,

images inducing similar binary activations would have the
same label. To fulfill this idea, we embed the latent layer H
between F7 and F8 as shown in the middle row of Figure 1.
The latent layer H is a fully connected layer, and its neuron
activities are regulated by the succeeding layer F8 that en-
codes semantics and achieves classification. The proposed
latent layer H not only provides an abstraction of the rich
features from F7, but also bridges the mid-level features and
the high-level semantics. In our design, the neurons in the
latent layer H are activated by sigmoid functions so the ac-
tivations are approximated to {0, 1}.

To achieve domain adaptation, we fine-tune the proposed
network on the target-domain dataset via back propagation.
The initial weights of the deep CNN are set as the weights
trained from ImageNet dataset. The weights of the latent
layer H and the final classification layer F8 are randomly
initialized. The initial random weights of latent layer H
acts like LSH [6] which uses random projections for con-
structing the hashing bits. The codes are then adapted from
LSH to those that suit the data better from supervised deep-
network learning. Without dramatic modifications to a deep

ImageNet Convolutional layers FC7 FC8

4096d 1000d

Target domain dataset

Module1: Supervised Pre-Training on ImageNet

ImageNet (~1.2M images)

Parameter Transferring

CNN 4096 nodes 1000 nodes

Latent Layer (H)
h nodes n nodesCNN

Query Image
Results

Module2: Fine-tuning on Target Domain

Module3: Image Retrieval via Hierarchical Deep Search

4096 nodes

Fine-level SearchCoarse-level Search

101001
101010
101011 Candidate Pool

Query

Similarity
Computation

7F 8F

8F7F

Figure 1: The proposed image retrieval framework via hierarchical deep search. Our method consists of three main com-
ponents. The first is the supervised pre-training of a convolutional neural network on the ImageNet to learn rich mid-level
image representations. In the second component, we add a latent layer to the network and have neurons in this layer learn
hashes-like representations while fine-tuning it on the target domain dataset. The final stage is to retrieve similar images
using a coarse-to-fine strategy that utilizes the learn hashes-like binary codes and F7 features.

million images categorized into 1000 object classes. Our
method for learning binary codes is described in detail as
follows.

3.1. Learning Hash-like Binary Codes

Recent studies [14, 7, 5, 1] have shown that the fea-
ture activations of layers F6−8 induced by the input im-
age can serve as the visual signatures. The use of these
mid-level image representations demonstrates impressive
improvement on the task of image classification, retrieval,
and others. However, these signatures are high-dimensional
vectors that are inefficient for image retrieval in a large cor-
pus. To facilitate efficient image retrieval, a practical way
to reduce the computational cost is to convert the feature
vectors to binary codes. Such binary compact codes can be
quickly compared using hashing or Hamming distance.

In this work, we propose to learn the domain specific im-
age representations and a set of hash-like (or binary coded)
functions simultaneously. We assume that the final outputs
of the classification layer F8 rely on a set of h hidden at-
tributes with each attribute on or off. In other points of view,

images inducing similar binary activations would have the
same label. To fulfill this idea, we embed the latent layer H
between F7 and F8 as shown in the middle row of Figure 1.
The latent layer H is a fully connected layer, and its neuron
activities are regulated by the succeeding layer F8 that en-
codes semantics and achieves classification. The proposed
latent layer H not only provides an abstraction of the rich
features from F7, but also bridges the mid-level features and
the high-level semantics. In our design, the neurons in the
latent layer H are activated by sigmoid functions so the ac-
tivations are approximated to {0, 1}.

To achieve domain adaptation, we fine-tune the proposed
network on the target-domain dataset via back propagation.
The initial weights of the deep CNN are set as the weights
trained from ImageNet dataset. The weights of the latent
layer H and the final classification layer F8 are randomly
initialized. The initial random weights of latent layer H
acts like LSH [6] which uses random projections for con-
structing the hashing bits. The codes are then adapted from
LSH to those that suit the data better from supervised deep-
network learning. Without dramatic modifications to a deep

Convolutional layers FC7 FC8

4096d Nd

FCh

Hd

Parameter transfer

CIFAR-10

Step 1: Supervised Pre-Training on ImageNet

Step 2: Fine tuning on CIFAR-10

Figure 4.6: Framework used for CNN feature extraction on CIFAR-10 [67]:

we use the values of the nodes of the FCh layer as feature (48 dimensions).

MNIST We use LeNet CNN to compute our features in MNIST. This is a

network architecture developed by LeCun [60] that was especially designed

for recognizing handwritten digits, reading zip codes, etc. It is a 8-layer net-

work with 1 input layer, 2 convolutional layers, 2 non-linear down-sampling

layers, 2 fully connected layers and a Gaussian connected layer with 10 out-

put classes. We used a modified version of LeNet [49] and we obtain features

from the first fully connected layer.

We perform search with a non-exhaustive approach on both CIFAR-10

and MNIST datasets. For each image we extract a 48-dimensional feature

vector for CIFAR-10, and 500-dimensional feature vector for MNIST, from

the respective network and then we generate a 48 bits binary hash code using

the proposed methods of Sect. 4.2. Hamming distance is used to select the

nearest hash codes for each query and similarity measure given by

similarity = cos(θ) =
A ·B

‖ A ‖‖ B ‖ =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(4.6)

where Ai and Bi are the components of the original feature vectors A

and B, is used to re-rank the nearest visual features.

40 Optimized Feature Hashing for Retrieval

4.4.4 Results on BIGANN: SIFT1M, GIST1M

In this set of experiments the proposed approach and its variants are com-

pared on the SIFT1M (Table 4.4) and GIST1M (Table 4.5) datasets against

several methods presented in chapter 2 : Product Quantization (ADC and

IVFADC) [47], PQ-RO [34], PQ-RR [34], Cartesian k-means [76], OPQ-

P [28, 29], OPQ-NP [28, 29], LOPQ [51], a non-exhaustive adaptation of

OPQ [28], called I-OPQ [51], RVQ [13] , RVQ-P [34] and RVQ-NP [34].

ADC (Asymmetric Distance Computation) is characterized by the num-

ber of sub vectors m and the number of quantizers per sub vectors k∗, and

produces a code of length m ×log2k∗.
IVFADC (Inverted File with Asymmetric Distance Computation) is char-

acterized by the codebook size k′ (number of centroids associated to each

quantizer), the number of neighbouring cells w visited during the multiple

assignment, the number of sub vectors m and the number of quantizers per

sub vectors k∗ which is in this case fixed to k∗ = 256. The length of the final

code is given by m ×log2k∗.
PQ-RO [34] is the Product Quantization approach with data projection

by randomly order dimensions.

PQ-RR [34] is the Product Quantization approach with data projection

by both PCA and randomly rotation.

Cartesian k-means (ck-means) [76] models region center as an additive

combinations of subcenters. Let m be the number of subcenters, with h

elements, then the total number of model centers is k = hm, but the total

number of subcenters is h ×m, and the number of bits of the signature is

m× log2h.

OPQ-P [28, 29] is the parametric version of Optimized Product Quanti-

zation (OPQ), that assumes a parametric Gaussian distribution of features

and performs space decomposition using an orthonormal matrix computed

from the covariance matrix of data.

OPQ-NP [28, 29] is the non-parametric version of OPQ, that does not

assume any data distribution and alternatively optimizes sub-codebooks and

space decomposition.

LOPQ (Locally optimized product quantization) [51] is a vector quantizer

that combines low distortion with fast search applying a local optimization

over rotation and space decomposition.

I-OPQ [51] is a non-exhaustive adaptation of OPQ (Optimized Product

Quantization [28]) which use either OPQ-P or OPQ-NP global optimization.

4.4 Experimental Results 41

RVQ [13] approximates the quantization error by another quantizer in-

stead of discarding it. In this method several stage-quantizers, each one

with its corresponding stage-codebook, are connected sequentially. Each

stage-quantizer approximates the residual vector of the preceding stage by

one of centroids of its stage-codebook and generates a new residual vector

for the next stage.

RVQ-P [34] is a parametric version of RVQ, where stage-codebooks and

space decomposition of RVQ are optimized using SVD.

RVQ-NP [34] is a non-parametric version of RVQ, using the same tech-

niques of RVQ-P, but optimizing a space decomposition for all the stages.

The parameters of the proposed methods are set as follows: for m-k-

means-t1 we use as threshold the arithmetic mean of the distances between

feature vectors and centroids to compute hash code; m-k-means-n1 creates

hash code by setting to 1 the corresponding position of the first 32 (SIFT1M)

and first 48 (GIST1M) nearest centroids for each feature; m-k-means-t2 and

m-k-means-n2 create two different sub hash codes for each feature by splitting

into two parts the training phase and combine these two sub parts into one

single code to create the final signature. Since we have a random splitting

during the training phase, these experiments are averaged over a set of 10

runs.

42 Optimized Feature Hashing for Retrieval

Table 4.4: Recall@R on SIFT1M - Comparison between our method (m-k-

means-t1, m-k-means-n1 with n=32, m-k-means-t2 and m-k-means-n2 with

n=32), the Product Quantization method (PQ ADC and PQ IVFADC) [47],

Cartesian k-means method (ck-means) [76], a non-exhaustive adaptation of

the Optimized Product Quantization method (I-OPQ), a Locally optimized

product quantization method (LOPQ) [51], OPQ-P and OPQ-NP [28, 29],

and PQ-RO, PQ-RR, RVQ-P and RVQ-NP [34].

Method R@1 R@10 R@100 R@1000 R@10000

PQ(ADC) [47] 0.224 0.600 0.927 0.996 0.999

PQ(IVFADC) [47] 0.320 0.739 0.953 0.972 0.972

PQ-RO [34] 0.177 0.501 0.854 N/A N/A

PQ-RR [34] 0.107 0.331 0.695 N/A N/A

ck-means [76] 0.231 0.635 0.930 1 1

OPQ-P [28,29] 0.219 0.563 0.917 N/A N/A

OPQ-NP [28,29] 0.242 0.627 0.938 N/A N/A

I-OPQ [51] 0.299 0.691 0.875 0.888 0.888

LOPQ [51] 0.380 0.780 0.886 0.888 0.888

RVQ [13] 0.264 0.659 0.949 1 1

RVQ-P [34] 0.397 0.821 0.983 N/A N/A

RVQ-NP [34] 0.271 0.686 0.958 N/A N/A

m-k-means-t1 0.501 0.988 1 1 1

m-k-means-t2 0.590 0.989 1 1 1

m-k-means-n1 0.436 0.986 1 1 1

m-k-means-n2 0.561 0.986 1 1 1

4.4 Experimental Results 43

Table 4.5: Recall@R on GIST1M - Comparison between our method (m-k-

means-t1, m-k-means-n1 with n=48, m-k-means-t2 and m-k-means-n1 with

n=48), the Product Quantization method (ADC and IVFADC) [47], Carte-

sian k-means method (ck-means) [76], a non-exhaustive adaptation of the

Optimized Product Quantization method (I-OPQ) [51], a Locally optimized

product quantization method (LOPQ) [51], OPQ-P and OPQ-NP [28, 29],

and PQ-RO, PQ-RR, RVQ-P and RVQ-NP [34].

Method R@1 R@10 R@100 R@1000 R@10000

PQ(ADC) [47] 0.145 0.315 0.650 0.932 0.997

PQ(IVFADC) [47] 0.180 0.435 0.740 0.966 0.992

PQ-RO [34] 0.034 0.056 0.136 N/A N/A

PQ-RR [34] 0.033 0.062 0.124 N/A N/A

ck-means [76] 0.135 0.335 0.728 0.952 0.985

OPQ-P [28,29] 0.095 0.297 0.629 N/A N/A

OPQ-NP [28,29] 0.089 0.277 0.642 N/A N/A

I-OPQ [51] 0.146 0.410 0.729 0.862 0.866

LOPQ [51] 0.160 0.461 0.756 0.860 0.866

RVQ [13] 0.095 0.276 0.656 0.936 1

RVQ-P [34] 0.309 0.700 0.950 N/A N/A

RVQ-NP [34] 0.107 0.314 0.678 N/A N/A

m-k-means-t1 0.111 0.906 1 1 1

m-k-means-t2 0.123 0.890 1 1 1

m-k-means-n1 0,231 0,940 1 1 1

m-k-means-n2 0,265 0,905 1 0,999 0,999

44 Optimized Feature Hashing for Retrieval

Figure 4.7: Results on SIFT1M (top). Results on GIST1M (bottom)

4.4 Experimental Results 45

4.4.5 Results on BIGANN: SIFT1B

In this experiment we compare our method on the large scale SIFT1B dataset

(Table 4.6) against LOPQ and a sub-optimal variant LOR+PQ [51], single

index PQ approaches IVFADC+R [48] and ADC+R [48], I-OPQ [28] and

ck-means [76], and a multi-index method Multi-D-ADC [3]. [48] differ from

the standard IVFADC [47] and ADC [47] in using short quantization codes

to re-rank the NN candidates. m-k-means-t1 uses the same setup of the

previous experiment; m-k-means-n1 uses the first 24 nearest centroids for

each feature.

Table 4.6: Recall@R on SIFT1B - Comparison between our method (m-

k-means-t1, m-k-means-n1 with n=24), the Product Quantization method

[48], a non-exhaustive adaptation of the Optimized Product Quantization

method (I-OPQ) [51], a multi-index method (Multi-D-ADC), a Locally op-

timized product quantization method (LOPQ) with a sub-optimal variant

(LOR+PQ) [51].

Method R@1 R@10 R@100

PQ(ADC+R) [48] 0.656 0.970 0.985

PQ(IVFADC+R) [48] 0.630 0.977 0.983

ck-means [76] 0.084 0.288 0.637

I-OPQ [51] 0.114 0.399 0.777

Multi-D-ADC [3] 0.165 0.517 0.860

LOR+PQ [51] 0.183 0.565 0.889

LOPQ [51] 0.199 0.586 0.909

m-k-means-t1 0.775 0.917 0.928

m-k-means-n1 0.787 0.990 1

46 Optimized Feature Hashing for Retrieval

4.4.6 Results on DEEP1B

Experiments on DEEP1B [4] are shown in Table 4.7. We use a configuration

with an hash code length of 64 bits for the m-k-means-t and m-k-means-n

variants. The comparison is made against IMI [4], NO-IMI [4] and GNO-

IMI [4], for which we report the results obtained by the authors using a

rerank approach for codes of 64 bits. Following the experimental setup used

in [4], we considered R = 1, R = 5 and R = 10 for the recall@R measure.

The proposed method obtains best results in both configurations (m-k-means-

t1 and m-k-means-n1) and considering R = 1 obtains a result approximately

three times greater than the others methods; for the other values of R the

improvement is between 2 and 1.5×.

Table 4.7: Recall@R on DEEP1B - Comparison between our method (m-

k-means-t1, m-k-means-n1 with n=24), Inverted Multi-Index (IMI) [4],

Non-Orthogonal Inverted Multi-Index (NO-IMI) [4] and Generalized Non-

Orthogonal Inverted Multi-Index (GNO-IMI) [4].

Method R@1 R@5 R@10

NO-IMI [4] 0.272 0.492 0.593

IMI [4] 0.241 0.450 0.545

GNO-IMI [4] 0.276 0.508 0.613

m-k-means-t1 0.694 0.892 0.912

m-k-means-n1 0.768 0.988 0.999

4.4 Experimental Results 47

Figure 4.8: Results on SIFT1B (top). Results on DEEP1B (bottom)

48 Optimized Feature Hashing for Retrieval

4.4.7 Results on CIFAR-10, MNIST

In the experiments on CIFAR-10 [56] and MNIST [61] images dataset we use

the following configurations for the proposed method: hash code length of

48 bits (the same length used by the compared methods),arithmetic mean

for the m-k-means-t1 variant, n = 24 for m-k-means-n1.

Queries are performed using a random selection of 1,000 query images

(100 images for each class), considering a category labels ground truth rele-

vance (Rel(i)) between a query q and the ith ranked image. SoRel(i) ∈ {0, 1}
with 1 for the query and ith images with the same label and 0 otherwise.

This setup has been used in [67, 105]. Since we select queries in a random

way the results of these experiments are averaged over a set of 10 runs.

Table 4.8: MAP results on CIFAR-10 and MNIST. Comparison between our

method (m-k-means-t1, m-k-means-n1 with n=24, m-k-means-t2 and m-k-

means-n2 with n=24) with KSH [69], ITQ-CCA [33], MLH [78], BRE [58],

CNNH [105], CNNH+ [105], KevinNet [67], LSH [30], SH [104], ITQ [33].

Results from [67,72,105].

Method CIFAR-10 (MAP) MNIST (MAP)

LSH [30] 0.120 0.243

SH [104] 0.130 0.250

ITQ [33] 0.175 0.429

BRE [58] 0.196 0.634

MLH [78] 0.211 0.654

ITQ-CCA [33] 0.295 0.726

KSH [69] 0.356 0.900

CNNH [105] 0.522 0.960

CNNH+ [105] 0.532 0.975

ACH [72] 0.600 -

KevinNet [67] 0.894 0.985

m-k-means-t1 0.953 0.972

m-k-means-t2 0.849 0.964

m-k-means-n1 0.972 0.969

m-k-means-n2 0.901 0.959

4.5 Conclusion 49

4.4.8 Trie Data Structure Performance

In experiments we evaluate the performance of MARISA trie w.r.t. the data

structures typically used to implement inverted files, i.e. hash table and

binary tree. The 106 feature vectors of the database set (SIFT1M) have

been coded using the proposed multi-k-means quantization, then stored

using C++ implementations of the data structures. The STL versions of

unordered multimap and multimap provided by GCC C++ compiler have

been used for hash tables and B-Tree, respectively. Results reported in

Tab. 4.9 show that MARISA trie obtains a dramatic improvement both in

terms of speed and size. In particular hash table and B-Tree would occupy

a very large percentage of RAM in a mobile phone (e.g. ∼ 10% in an Apple

iPhone 6), while the trie fits the L1 cache of an ARM CPU commonly used

in mobile phones.

Table 4.9: Comparison of data structures used in the experiments to store

1 million SIFT hash codes (computed with the proposed approach). Search

time measures the time required to perform the series using all the 10,000

query vectors of the dataset.

MARISA trie Hash table Binary Tree

Dimension (Kb) 19 90,112 93,184

Search Time (ms) 25.3 245.31 370

4.5 Conclusion

We introduced a novel version of the k-means vector quantization obtaining

very high performances compared with other state-of-the art methods. We

show how this approach produces very compact hash codes maintaining high

performances in retrieval. We also introduced a recursive data structure to

store datas which has a better space complexity than has tables obtaining

remarkable achievements in terms of speed and size.

50 Optimized Feature Hashing for Retrieval

Chapter 5

Efficient and Distributed Image

Retrieval

In this chapter we introduce a new approach for efficient image

retrieval based on the m-k-means hashing applied on CNN fea-

tures and the use of an indexing structure based on Bloom filters.

These filters are used as gatekeepers for the database of image

features, allowing to avoid to perform a query if the query fea-

tures are not stored in the database and speeding up the query

process, without affecting retrieval performance. Thanks to the

limited memory requirements the system is suitable for mobile

applications and distributed databases, associating each filter to

a distributed portion of the database. Experimental validation

has been performed on three standard image retrieval datasets,

outperforming state-of-the-art hashing methods in terms of pre-

cision, while the proposed indexing method obtains a 2× speedup.

5.1 Introduction

Content based image retrieval (CBIR) has been an active research topic in

computer vision and multimedia in the last decades, and it is still very rele-

vant due to the emergence of social networks and the creation of web-scale

image databases. Most of the works have addressed the development of effec-

tive visual features, from engineered features like SIFT and GIST to, more

recently, learned features such as CNNs [5]. To obtain scalable CBIR systems

51

52 Efficient and Distributed Image Retrieval

features are typically compressed or hashed, to reduce their dimensionality

and size. However, research on data structures that can efficiently index

these descriptors has attracted less attention, and typically simple inverted

files (e.g. implemented as hash tables) are used.

In this chaper we address the problem of approximate nearest neighbor

(ANN) image retrieval proposing a simple and effective data structure that

can greatly reduce the need to perform any comparison between the descrip-

tor of the query and those of the database, when the probability of a match

is very low. Considering the proverbial problem of finding a needle in a

haystack, the proposed system is able to tell when the haystack probably

contains no needle and thus the search can be avoided completely.

To achieve this we use an effective hashing method for CNN descriptors, and

use this code to perform ANN retrieval in a database. To perform an im-

mediate rejection of a search that should not return any result we store the

hash code in a Bloom filter, i.e. a space efficient probabilistic data structure

that is used to test the presence of an element in a set. To the best of our

knowledge this is the first time that this data structure has been proposed

for image retrieval since, natively, it has no facility to handle approximate

queries. We perform extensive experimental validation on three standard

datasets, showing how the proposed hashing method improves over state-of-

the-art methods, and how the data structure greatly improves computational

cost and makes the system suitable for application to mobile devices and dis-

tributed image databases.

5.2 Convolutional Neural Network

Traditional non-convolutional neural net is a stack of fully connected layers.

The layers extracts different levels of concepts from the input.When the in-

put has spatial information, for instance, the input is an image, this spatial

information is lost during the process.

While in Convolutional Neural Network (CNN), the feature maps generated

from the convolutional layers has the same layer out as the input image.

Thus the spatial information is still there. Convolution scans the whole

image with a square filter, that extracts local information from the under-

lying patches. It works just like a detector. Convolutional Neural Networks

(CNN) are a variant of the Multi-Layer Perceptron Network (MPL). This

kind of networks are composed of more levels and the neurons at each level

5.2 Convolutional Neural Network 53

are completely connected to the neurons of the previous and following level.

At the end CNNs were presented to cope the computational and memory

cost of MLPs during the training phase.

A convolutional neural network is a type of feed-forward artificial neural net-

work in which the connectivity pattern between its neurons is inspired by the

organization of the animal visual cortex. CNNs consist of multiple layers of

receptive fields and may include local or global pooling layers, which combine

the outputs of neuron clusters [15,57]. They also consist of various combina-

tions of convolutional and fully connected layers, with pointwise nonlinearity

applied at the end of or after each layer [14]. One major advantage of convo-

lutional networks is the use of shared weight in convolutional layers, which

means that the same filter (weights bank) is used for each pixel in the layer;

this both reduces memory footprint and improves performance [62].

Figure 5.1: Two properties which distinguish CNNs from MLPs. Sparse

connectivity (left) and Shared Weights (right)

Training a CNN means to adjust the weight of the layers through the

back-propagation algorithm [40].

Initially CNN were designed for classification task but subsequently it

was realized that CNNs could be used to extract global features from images.

Now we analize the two Neural Network architectures used in this chapter.

5.2.1 VGG16

VGG16 [90] is a network with a first input level of 224×224 with 3 RGB

channels. Following we have small convolutional filters (3×3 with stride 1).

Some of these convolutional levels have also a max-pooling step which is

applied over areas of 2X2 with stride 1. After the convolutional levels stack

we can found three fully connected layers: first two have a dimension of 4096

while the third have a dimension of 1000. The last level is a softmax step for a

54 Efficient and Distributed Image Retrieval

classification over 1000 classes. Table 5.1 shows a schematic representation of

VGG16 (column D). This network was used for our experiments and we used

features extracted from the second fully connected layer of 4096 dimension

(FC-4096).

Unfortunately this network has a major drawback: the file which contains

the weights of the net is considerable big (550 MB). This means that we get

several seconds to extract featuters from an image and and it is not suitable

in a mobile approach.

ConvNet Configuration

A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight

layers layers layers layers layers layers

input (224×224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128 conv3-128

maxpool

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256

conv3-256

maxpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512

conv3-512

maxpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512

conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 5.1: Table with architectures showed in [90]. VGG16 configuration is

represented by the column D

5.2 Convolutional Neural Network 55

5.2.2 GoogLeNet with Batch Normalization

In this subsection we present some basic concepts [68] which distinguish the

Google Net. After that we introduce the Inception architecture [96] and at

the end we talk about Batch Normalization [43].

Network in Network

The CNN is a extension of non-convolutional deep networks, by replacing

each fully connected layers with a convolutional layer. Usually the first layer

of convolution is a detection layer of edges, corners and other low level fea-

tures. Then the second layer detects higher features like parts etc. For face

classification, the second layer may learn features such as eyes, noses etc.

Then the third layer may combine the eyes noses into a intact face. If we

convolve the image with a aligned face classifier, there is no such cascade.

The abstraction of each local patch is done through a linear classifier and a

non-linear activation function. Which is definitely not a strong abstraction.

Weak abstraction resolves the combinatorial explosion to some extent, but

not as potent as strong abstraction. In [68] is presented a new convolutional

approach (Network in Network or NiN) which tries to increase the abstrac-

tion degree. Intead of the classical convolutional model authors presented

a micro Multilayer Perception Network (MPL) which creates a new level in

the net called mlpconv.

Figure 5.2: Linear convolutional level (left) and mplconv (right)

In this level the Rectified Linear Unit (ReLU) is used like activation

function. This configuration was used inside GoogLeNet to obtain a dimen-

56 Efficient and Distributed Image Retrieval

sionality reduction of the parameters and to increase the non-linearity degree

between the levels.

Figure 5.3: Network in Network example net

Inception Architecture and GoogLeNet

The inception architecture [96] was structured for a quest aimed at reducing

the computational burden of deep neural networks.

By now, Fall 2014, deep learning models were becoming extremely useful

in categorizing the content of images and video frames. Most skeptics had

given in that Deep Learning and neural nets came back to stay this time.

Given the usefulness of these techniques, the internet giants like Google were

very interested in efficient and large deployments of architectures on their

server farms.

A google team has thought a lot about ways to reduce the computational

burden of deep neural nets while obtaining state-of-art performance (on Im-

ageNet, for example), or be able to keep the computational cost the same,

while offering improved performance.

Result was the Inception module showed in Figure 5.4, which at a first glance

is basically the parallel combination of 1×1, 3×3, and 5×5 convolutional fil-

ters. But the great insight of the inception module was the use of 1×1

convolutional blocks (NiN) to reduce the number of features before the ex-

pensive parallel blocks.

The inception architecture was used to generate GoogLeNet [96] which

was used in ILSVRC14 competition1. Table 5.2 shows the net structure

while Figure 5.5 shows the network topology in a graphical way.

1Imagenet Large Scale Visual Recognition Challenge which evaluates algorithms for

object detection and image classification at large scale

5.2 Convolutional Neural Network 57

Figure 5.4: Inception module

type
patch size/

stride
output depth # 1 × 1

3×3

reduce
3×3

5×5

reduce
5×5

proj

pool
params ops

convolution 7×7/2 112×112×64 1 2.7K 34M

max pool 3×3/2 56×56×64 0

convolution 3×3/1 56×56×192 2 64 192 112K 360M

max pool 3×3/2 28×28×192 0

inception (3a) 28×28×256 2 64 96 128 16 32 32 159K 128M

inception (3b) 28×28×480 2 128 128 192 32 96 64 380K 304M

max pool 3×3/2 14×14×480 0

inception (4a) 14×14×512 2 192 96 208 16 48 64 364K 73M

inception (4b) 14×14×512 2 160 112 224 24 64 64 437K 88M

inception (4c) 14×14×512 2 128 128 256 24 64 64 463K 100M

inception (4d) 14×14×528 2 112 144 288 32 64 64 580K 119M

inception (4e) 14×14×832 2 256 160 320 32 128 128 840K 170M

max pool 3×3/2 7×7×832 0

inception (5a) 7×7×832 2 256 160 320 32 128 128 1072K 54M

inception (5b) 7×7×1024 2 384 192 384 48 128 128 1388K 71M

avg pool 7×7/1 1×1×1024 0

dropout (40%) 1×1×1024 0

linear 1×1×1000 1 1000K 1M

softmax 1×1×1000 0

Table 5.2: GoogLeNet architecture

58 Efficient and Distributed Image Retrieval

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 5.5: GoogLeNet architecture

5.3 The Proposed Method 59

Batch Normalization

Batch Normalization (BN) was introduced in [43]. It is a normalization

which tries to eliminate the internal covariance shift phenomenon, i.e the

distribution of the inputs change on various levels during network training.

The approch is based on the whitening technique [79], which consists of a

linear transformation of the inputs in such a way that they have zero mean,

unit variance and that are not correlated between them. This technique al-

lows a greater convergence speed and then reduces training time. The idea

is to extend the whitening approach to the inputs at each net levels in such

a way as to have a fixed distribution of the inputs themselves and a removal

of the internal covariance shift.

This work is done working on the mini-batch distributions, which are small

sample sets used during the training of the net and that are used in the

gradient calculation which is used for the backpropagation step during net-

work upgrade. The mini-batch technique speeds up the training because

the feedforward operations and gradiend calculation can be vectorized. So

the proposed solution is to normalize each feature map with mean and vari-

ance of each mini-batch. Therefore the BN approach consists in making the

normalization an integral part of the network architecture.

5.3 The Proposed Method

In the proposed approach, differently from [27], we learn a vector quantizer

separately from the CNN features, so to easily replace different and pre-

trained CNN networks for feature extraction, without need of retraining.

Moreover, we propose to include Bloom filters into feature indexing struc-

tures to improve the speed of queries. Bloom filters act as gatekeepers that

rule out immediately, with a very limited memory cost, if a query should be

completely performed or if it can be avoided. The proposed data structure

is very suitable for mobile and distributed applications.

5.3.1 Quantization Algorithm

The proposed approach is based on the multi-k-means method [23] (Chapter

4), which is an efficient method for mobile visual search based on a mul-

tiple assignment k-means hashing schema that obtained very good results,

compared to Product Quantization [47], on the BIGANN dataset.

60 Efficient and Distributed Image Retrieval

The first step of the method consists in learning a standard k-means

dictionary with a small number of centroids (to maintain a low computational

cost). Each centroid is associated to a bit of the hash code, that has thus

length equal to the number of centroids. The bit is set to 1 if the feature

is assigned to the centroid, 0 otherwise. A feature can be assigned to more

than one centroid, and it is assigned to it if the distance from the centroid is

less than the mean distance from all the centroids (Figure 5.6, top). Instead,

in this work we select a fixed number N of distances and we set to 1 all

the bits associated to the smaller N distances (Figure 5.6, bottom). In the

following we refer to this method as MINx. This change has proven to be

more efficient when coding CNN feature descriptors, that were used in the

experiments.

Figure 5.6: Binarization examples with a distance vector of 8 elements: (top)

geometric mean (MEAN method); (bottom) smaller distances N = 3 (MINx

method).

Approximate nearest neighbor retrieval of image descriptors is performed

in two steps: in the first step is performed an exhaustive search over the bi-

nary codes using Hamming distances, to reduce negative effects of quantiza-

tion errors. All the binary codes with Hamming distance below a threshold

are selected. In the second step the candidate neighbors are ranked according

to the distance computed using the full feature vector using cosine distance

(Eq:4.6), that proved to be more effective than L2 during the experiments.

5.3.2 Bloom Filter Algorithm

To improve search of feature vectors we also introduced the use of Bloom

filters [7]. Typically this type of structures are used to speed up the answers

in a key-based storage system (Figure 5.7).

5.3 The Proposed Method 61

Figure 5.7: Memory accesses with Bloom filters

A Bloom filter is an efficient probabilistic data structure used to test

if an element belongs to a set or not. This structure works with binary

signatures, and can provide false positive response but not false negative

and more elements are inserted into the structure and more high is the

probability to obtain a false positive. To insert an element inside a Bloom

filter we need to define k hash functions which locate k positions inside the

array, setting them to 1.

To check the presence of an element inside a Bloom filter we compute

the k hash functions over the element and check the related positions inside

the array. If just one bit of these positions is equal to 0 it means that the

element is not present inside the array; if all the checked bits are equal to 1 it

means that either the element is inside the array or we have a false positive.

We used the method of [55] to create the k functions from just two hash

functions.

62 Efficient and Distributed Image Retrieval

Figure 5.8: Example Bloom filter: (top) Insertion, (bottom) Search

A useful property of Bloom filter is that we can measure the presence of

a false positive with probability:

(1− e−kn/m)k = (1− p)k = ε (5.1)

where m is the bit number of the array, n is the number of inserted

items, p is the probability that one position of the array is equal to 0, and k

is the number of hash functions. We can obtain the optimal value k which

minimizes false positive probability:

k̃ = ln 2(m/n). (5.2)

Supposed that p = 0.5 we can write out ε like

ε = 0.5k̃ = (0.6185)m/n (5.3)

So n is strictly related to m, and in general m = O(n) it is a good

compromise.

Storing in the Bloom filter hash codes that are designed for ANN, as

those of Sect. 5.3.1, results in a data structure that is similar, from a practical

point of view, to distance-sensitive Bloom filters proposed in [54], where LSH

functions are used as k hash functions.

5.3 The Proposed Method 63

Table 5.3: Bloom Filter false positive probability related to m

m ε %

n 0.61 61%

2n 0.38 38%

5n 0.09 9%

10n 0.008 0.8%

5.3.3 Retrieval System

Our proposed retrieval system merges the methods introduced in 5.3.1 and

5.3.2. Regarding visual feature hashing we have applied the proposed method

to CNNs features. Our system (Figure 5.9) provides a initial phase were

descriptors are extracted from base images, binarized following one of the

methods introduced in 5.3.1 and saved inside a data structure composed

by a set of inverted files of hashes implementing an horizontal partition of

data (allowing to distribute the database as “shard”), each one guarded

by a Bloom filter. The hash code is also added to the Bloom filter of the

corresponding inverted file.

During the search phase we extract the CNN descriptor from query im-

ages, we compute the hash code, and check the presence of the hash in the

Bloom filters, each of which guard a subset of the base. If one of this Bloom

filters gives a positive response (this means that we have a positive or a false

positive match), all the hash codes within an Hamming distance threshold

are used to select the full feature vector. This provides a great speedup in

the approximate nearest neighbor retrieval since we consider only descriptors

from base coded by a Bloom filter, and below the Hamming threshold value.

For each resulting original CNN descriptor we compute the distance and we

rearrange results to obtain a ranked list of vectors.

64
E

ffi
c
ie

n
t

a
n

d
D

istrib
u

te
d

Im
a
g
e

R
e
trie

v
a
l

Figure 5.9: System overview.

5.4 Experimental Results 65

5.4 Experimental Results

In this section we present an experimental validation performed on three

standard image retrieval datasets.

5.4.1 Datasets and Configurations

We tested our system using three standard dataset typically used to evalu-

ate image retrieval systems: INRIA Holidays [46], Oxford 5K [81] and Paris

6K [82]. For each dataset are given a number of query images, and the as-

sociated ground truth. INRIA Holidays (Figure: 4.3) is composed by 1,491

images, of which 500 are used as queries; Oxford 5K (Figure: 5.10) is com-

posed by 5,062 images with 55 query images, and Paris 6K 5.11) is made of

6,412 images with 55 query images. We used the query images and ground

truth provided for each dataset, adding 100,000 distractor images from Flickr

100K [81].

When testing on a dataset training is performed using the other two datasets.

Features have been hashed to 64 bits binary codes, a length that has proved

to be the best compromise between compactness and representativeness.

Other parameters used for hashing were:

– number of N nearest distances used in the hash code computation (N ∈
{6, 10, 16, 32, 40});
– Hamming distance threshold ∈ {2, 4, 6, 10, 16, 30}.

For the evaluation we used the Mean Average Precision (MAP) metric

defined as follow:

given the Precision at k value

P@k :=
#imgRelevant with rank ≤ k

k
(5.4)

.

which is the ratio between the relevant images in the first k position and

k the number of retrieved images, we can define the Average Precision value

for a single query q

AP (q) :=
1

R

R∑
i=1

P@ki (5.5)

66 Efficient and Distributed Image Retrieval

and compute the mean over Q queries with:

MAP (Q) :=
1

|Q|

|Q|∑
j=1

AP (qj) (5.6)

The CNN features used in the following experiments have been extracted

using the 1024d average pooling layer of GoogLeNet with Batch Normaliza-

tion (Inception BN) [95] and using the FC7 layer of VGG [91] used in [101].

Figure 5.10: Sample images from Oxford

Figure 5.11: Sample images from Paris

5.4 Experimental Results 67

5.4.2 Results on VGG16

VGG16 5.2.1 is the first Neural Network used in our experiments. We eval-

uate the effects of the method parameters, comparing the proposed hashing

approach (MINx) with the original method [23] (MEAN) and a baseline that

uses no hashing. Figure 5.12, 5.13 and 5.14 show results over Inria Holidays,

Paris Buildings and Oxford Buildings with feature quantization set to 64

bits. Tables 5.4, 5.5 and 5.6 show instead numerical results.

2 4 6 10 16 20 30

Threshold Hamming Distance

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
A

P

MIN6

MIN10

MIN16

MIN32

MIN40
MEAN
BASELINE

2 4 6 10 16 20 30

Threshold Hamming Distance

0

100

200

300

400

500

600

T
im

e
 i
n
 s

e
c

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

Figure 5.12: Map (top) and Execution Time (bottom) for Inria Holidays

68 Efficient and Distributed Image Retrieval

2 4 6 10 16 20 30

Threshold Hamming Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

P

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

2 4 6 10 16 20 30

Threshold Hamming Distance

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 i
n
 s

e
c

MIN6

MIN10

MIN16

MIN32

MIN40
MEAN
BASELINE

Figure 5.13: Map (top) and Execution Time (bottom) for Paris Buildings

5.4 Experimental Results 69

2 4 6 10 16 20 30

Threshold Hamming Distance

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
A

P

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

2 4 6 10 16 20 30

Threshold Hamming Distance

0

500

1000

1500

2000

2500

3000

T
im

e
 i
n
 s

e
c

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

Figure 5.14: Map (top) and Execution Time (bottom) for Oxford Buildings

70
E

ffi
c
ie

n
t

a
n

d
D

istrib
u

te
d

Im
a
g
e

R
e
trie

v
a
l

Table 5.4: VGG16 numerical Results for Inria Holidays dataset
MAP Tempo (sec)

2 4 6 10 16 20 30 2 4 6 10 16 20 30

MIN6 0.48546 0.65339 0.70396 0.72478 0.72684 0.72684 0.72684 22.1838 76.6519 173.376 419.146 560.489 567.853 560.387

MIN10 0.39720 0.58187 0.66859 0.71677 0.72680 0.72684 0.72684 17.4546 56.2703 121.757 283.830 503.768 611.230 591.357

MIN16 0.41639 0.58187 0.65692 0.71194 0.72355 0.72501 0.72684 28.6139 75.8825 152.928 315.155 502.210 545.864 557.215

MIN32 0.43559 0.58392 0.64526 0.70711 0.72023 0.72254 0.72456 51.2062 149.971 266.948 422.159 520.333 558.560 590.420

MIN40 0.56763 0.66170 0.69221 0.71622 0.72389 0.72460 0.72484 169.92 299.816 391.363 482.617 542.281 558.346 570.134

MEAN 0.48734 0.63076 0.67753 0.71209 0.72340 0.72389 0.72458 66.5149 211.404 333.677 462.711 531.258 550.540 564.158

Baseline 0.72684 520.566

Table 5.5: VGG16 numerical Results for Paris Buildings dataset
MAP Tempo (sec)

2 4 6 10 16 20 30 2 4 6 10 16 20 30

MIN6 0.173853 0.306208 0.440519 0.576764 0.580334 0.580334 0.580334 89.157 335.23 753.087 2114.33 3707.3 3683.34 3683.83

MIN10 0.0774561 0.194167 0.310534 0.470674 0.569312 0.580334 0.580334 84.0938 276.385 601.77 1409.53 2567.37 3639.17 3660.7

MIN16 0.0621038 0.157804 0.260079 0.408719 0.518021 0.551434 0.579773 68.8062 255.445 559.012 1252.52 2142.93 2657.14 3593.88

MIN32 0.0857685 0.191491 0.282481 0.402354 0.498396 0.523985 0.563083 219.181 625.117 1187.47 2102.64 2733.88 2977.03 3315.83

MIN40 0.174999 0.315817 0.401305 0.465136 0.505779 0.527712 0.569156 560.244 1490.26 2225.62 2857.88 3202.4 3315.8 3516.39

MEAN 0.12088 0.243217 0.340479 0.442362 0.494162 0.512963 0.552908 188.535 800.487 1632.92 2646.11 3027.26 3112.33 3334.68

Baseline 0.580334 3265.54

Table 5.6: VGG16 numerical Results for Oxford Buildings dataset
MAP Tempo (sec)

2 4 6 10 16 20 30 2 4 6 10 16 20 30

MIN6 0.177951 0.271898 0.333289 0.383842 0.385201 0.385201 0.385201 55.2494 189.145 414.549 1361.07 2895.35 2985.01 2865.13

MIN10 0.137537 0.21141 0.276424 0.359071 0.385223 0.385201 0.385201 36.9503 119.832 253.718 694.655 1746.08 2996.33 2912.88

MIN16 0.125302 0.192899 0.250409 0.33225 0.379823 0.383617 0.385207 20.2284 94.5917 224.075 621.784 1296.83 1779.63 2833.26

MIN32 0.117939 0.192885 0.253495 0.318336 0.369331 0.381529 0.38525 17.1714 85.4339 249.617 777.084 1532.52 1920.31 2569.46

MIN40 0.119043 0.207129 0.270422 0.335373 0.367562 0.379725 0.385272 83.0668 283.074 599.718 1284.81 2049.09 2342.8 2883.16

MEAN 0.0982769 0.150642 0.24033 0.304124 0.36046 0.379531 0.385462 29.6716 144.074 370.738 985.035 1747.7 2082.61 2598.34

Baseline 0.385272 2623.38

5.4 Experimental Results 71

As expected the uncompressed features perform better than MIN6 and

MIN40 which provide anyway good results. To undertand better this beav-

iour we calculated mean distances between features and their binarized sig-

natures2. Table 5.7 shows these distances and we can see how for hight

values of n (MINn) we obtain a worst reconstruction of the features.

Table 5.7: Mean distances between features and binarized signatures. Dis-

tance is calculated using the cosine formula, so an high value correspond to

a greater similarity

Inria Paris Oxford

MIN6 0.7153 0.7363 0.7502

MIN10 0.6852 0.7147 0.7320

MIN16 0.6528 0.6900 0.7095

MIN32 0.5905 0.6486 0.6650

MIN40 0.5687 0.6324 0.6464

MEAN 0.5782 0.6395 0.6581

This means that centroids computed by k-means are very scattered in

the multi-dimensional space and that a signature with a low number of bits

set to 1 is more accurate (Fig 5.15).

Another interesting aspect is the distribution of the signatures. This value

indicates how many image descriptors are quantized in the same way. For

simplicity we show only distributions related to MIN6 and MIN40 for Inria

Holidays dataset in Figure 5.16 (for the other dataset the behavior is almost

the same). We ca see how MIN6 approach has a more uniform distribution of

the signatures while MIN40 is more concentrated. This means that MIN40

approach works well also with low hamming thresholds because we analyze

an higher signatures subspace and at the end of the story we have a MAP

with high values but at the same time we have also high values for the

searching time. For MIN6 instead we have a good MAP but lower values for

searching time respect to MIN40 and this is a proof of the goodness for the

quantization approach with a low values for n.

2we consider the center of gravity of centroids

72 Efficient and Distributed Image Retrieval

Figure 5.15: Example wich shows the difference during a feature (red) re-

construction for MIN4 (orange) and MIN8 (blue). Crosses are codebook

centroids.

0 100 200 300 400 500

0

10

20

30

40

50

60

70

80

90

(a) MIN6

0 100 200 300 400 500

0

10

20

30

40

50

60

70

80

90

(b) MIN40

Figure 5.16: Histogram of signatures distribution for MIN6 (a) and MIN40

(b).

5.4 Experimental Results 73

5.4.3 Results on Inception BN

Experiments executed in 5.4.2 have shown that features extracted using the

FC7 layer of VGG are not performing in terms of time search. This is why

it has been necessary to use Inception BN 5.2.2, a more lightweight neural

network.

Tabel 5.8 shows a general comparison. We can observe how the values are

more high for the Inception Bn Network and furthermore there is not much

difference between MIN6 and MIN40. This means that reconstruction in

Inception BN is more accurate respect to VGG16 and it is high along different

values of n.

Table 5.8: Mean distances between features and their binarized signatures

computed for each quantization approach, each Neural Network and each

dataset. Distance is calculated using the cosine formula, so an high value

correspond to a greater similarity

VGG16 Inception BN

Inria Paris Oxford Inria Paris Oxford

MIN6 0.7153 0.7363 0.7502 0.7935 0.8204 0.8175

MIN10 0.6852 0.7147 0.7320 0.7757 0.8088 0.8067

MIN16 0.6528 0.6900 0.7095 0.7581 0.7962 0.7950

MIN32 0.5905 0.6486 0.6650 0.7313 0.7737 0.7719

MIN40 0.5687 0.6324 0.6464 0.7224 0.7654 0.7625

MEAN 0.5782 0.6395 0.6581 0.7300 0.7782 0.7776

Figures 5.17, 5.18 and 5.19 show experimental results on Inria holidays,

Paris Buildings and Oxford Buildings dataset. We can note some differences

respect to VGG16 regardings MAP and Time search. Time improvement is

due to the dimensionality of the features: VGG16 provides float features of

4096 length while Inception BN provides features of 1024 length. We can see

also an improvment respecto to MAP related to baseline. This means that

the 1024 space dimension generated by Inception BN is more representative

than the VGG16 one.

Interestingly that best results for MAP are given by MIN6 while worst result

is given by MEAN and that, respect to VGG16, MIN40 does not represent

a good approach for MAP computing with low hamming distance treshold.

Tables 5.10, 5.11 and 5.12 show all numerical results.

74 Efficient and Distributed Image Retrieval

2 4 6 10 16 20 30

Threshold Hamming Distance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

P

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

2 4 6 10 16 20 30

Threshold Hamming Distance

0

20

40

60

80

100

120

140

T
im

e
 i
n
 s

e
c

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

Figure 5.17: Map (top) and Execution Time (bottom) for Inria Holidays

5.4 Experimental Results 75

2 4 6 10 16 20 30

Threshold Hamming Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
A

P

MIN6

MIN10

MIN16

MIN32
MIN40
MEAN
BASELINE

2 4 6 10 16 20 30

Threshold Hamming Distance

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
 i
n
 s

e
c

MIN6

MIN10

MIN16

MIN32

MIN40

MEAN
BASELINE

Figure 5.18: Map (top) and Execution Time (bottom) for Paris Buildings

76 Efficient and Distributed Image Retrieval

2 4 6 10 16 20 30
Threshold Hamming Distance

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
AP

MIN6
MIN10
MIN16
MIN32
MIN40
MEAN
BASELINE

2 4 6 10 16 20 30

Threshold Hamming Distance

0

100

200

300

400

500

600

700

800

T
im

e
 i
n
 s

e
c

MIN6

MIN10

MIN16

MIN32

MIN40
MEAN
BASELINE

Figure 5.19: Map (top) and Execution Time (bottom) for Oxford Buildings

5.4 Experimental Results 77

In the last experiment we evaluated the effects of the method parameters,

comparing the proposed hashing approach (MINx) with the original method

of [23] (MEAN), a baseline that uses no hashing, and several state-of-the-art

methods, among which the recent UTH method [65]. The best combina-

tions of MINx are reported, compared on the three datasets in terms of

MAP. As expected the uncompressed features perform better, but the MIN6

setup, with an Hamming distance ≥ 6 has comparable results, and greatly

outperforms any state-of-the-art hashing method.

Table 5.9: MAP results on Holidays, Oxford 5K and Paris 6K datasets. The

proposed MINx method outperforms all the current state-of-the-art methods.

All hashes are 64 bit long.

Method Holidays Oxford 5K Paris 6K

ITQ [33] 53.68 23.00 -

BPBC [32] 38.10 22.51 -

PCAHash [33] 52.80 23.90 -

LSH [18] 43.08 23.91 -

SKLSH [83] 24.09 13.39 -

SH [104] 52.22 23.24 -

SRBM [9] 51.58 21.23 -

UTH [65] 57.10 24.00 -

MIN6

Thr. 10
75.62 45.93 68.28

MIN6

Thr. 16
75.62 46.06 67.84

MIN10

Thr. 10
75.51 44.86 64.72

MIN10

Thr. 16
75.62 46.03 67.84

MEAN [23]

Thr. 10
73.91 41.89 45.50

Baseline 75.62 46.06 67.84

78
E

ffi
c
ie

n
t

a
n

d
D

istrib
u

te
d

Im
a
g
e

R
e
trie

v
a
l

Table 5.10: Inception BN numerical Results for Inria Holidays dataset
MAP Tempo (sec)

2 4 6 10 16 20 30 2 4 6 10 16 20 30

MIN6 0.51506 0.69421 0.74263 0.75628 0.75628 0.75628 0.75628 2.963 11.724 30.228 90.839 138.497 138.944 138.666

MIN10 0.39690 0.61842 0.72449 0.75510 0.75628 0.75628 0.75628 1.493 5.401 14.419 51.123 116.661 139.962 138.988

MIN16 0.25424 0.50181 0.65851 0.74932 0.75634 0.75627 0.75628 0.959 2.947 8.357 34.975 92.452 121.119 137.780

MIN32 0.22012 0.44575 0.61967 0.74234 0.75778 0.75628 0.75628 0.722 2.283 7.869 37.542 98.646 122.668 136.324

MIN40 0.27121 0.53897 0.68969 0.75360 0.75636 0.75628 0.75628 1.109 4.963 16.496 61.593 118.037 132.900 138.170

MEAN 0.19229 0.43638 0.61138 0.73914 0.75380 0.75428 0.75428 0.605 1.777 6.861 38.701 100.717 124.373 139.385

Baseline 0.75628 136.456

Table 5.11: Inception BN numerical Results for Paris Buildings dataset
MAP Tempo (sec)

2 4 6 10 16 20 30 2 4 6 10 16 20 30

MIN6 0.336309 0.50876 0.626968 0.682864 0.678424 0.678424 0.678424 11.1328 39.7277 104.978 446.163 969.086 962.748 962.51

MIN10 0.17771 0.322388 0.471783 0.647291 0.678409 0.678424 0.678424 5.19482 15.3159 43.5377 169.808 558.622 932.004 920.107

MIN16 0.075801 0.186052 0.314223 0.535456 0.672823 0.678376 0.678412 3.74478 8.18897 20.5611 86.9614 313.326 510.891 909.636

MIN32 0.024746 0.097367 0.225794 0.499426 0.659921 0.676726 0.678392 3.22912 4.86233 11.2225 63.749 282.084 477.427 830.361

MIN40 0.040081 0.145862 0.318565 0.570833 0.671578 0.678191 0.678431 3.36214 5.996 16.4596 99.8146 424.567 667.834 978.704

MEAN 0.030127 0.093854 0.205108 0.455086 0.649518 0.676606 0.678419 3.32751 4.63821 9.57446 55.4068 265.784 463.114 837.478

Baseline 0.678424 843.598

Table 5.12: Inception BN numerical Results for Oxford Buildings dataset
MAP Tempo (sec)

2 4 6 10 16 20 30 2 4 6 10 16 20 30

MIN6 0.274981 0.380422 0.439791 0.459339 0.460614 0.460614 0.460614 8.40198 27.9177 68.6569 310.741 766.072 761.215 762.646

MIN10 0.214395 0.348057 0.396712 0.448613 0.460359 0.460614 0.460614 5.66545 15.0693 33.4678 106.29 373.755 761.433 774.001

MIN16 0.199912 0.308418 0.388412 0.447595 0.459411 0.460182 0.460616 3.77203 8.44777 19.5041 65.5873 194.385 321.81 716.188

MIN32 0.129356 0.240127 0.34654 0.435165 0.458162 0.459625 0.460587 3.27494 7.26284 18.6175 69.0486 186.43 278.267 532.951

MIN40 0.138421 0.250189 0.353441 0.435194 0.459095 0.460184 0.460616 3.95866 10.5687 26.2706 92.3946 236.457 353.24 639.706

MEAN 0.135638 0.229622 0.321836 0.418972 0.457484 0.459269 0.460536 2.82485 4.79286 11.6194 50.7517 165.334 255.416 501.609

Baseline 0.460614 690.80

5.4 Experimental Results 79

5.4.4 Results on Bloom Filter

The second part of the experiments has involved the application of the Bloom

Filters 5.3.2 . We evaluated a use case in which a database of images is

queried with a large number of images that do not belong to it. Hash codes

have been computed with different variants of the proposed hashing method

using the Inception BN features. The most useful context in which a Bloom

Filter can be used is a large scale application. This is why experiments were

performed over Paris Buildings dataset which is the largest one.

The database contains the Paris 6K images, and it is queried with all the

query images of Paris 6K and all the 100,000 distractor images 5.4.1.

We analized the three most interesting configurations:

• MIN6 with maximun hamming distance 10

• MIN10 with maximun hamming distance 16

• MIN16 with maximun hamming distance 20.

For each of these configurations we excecuted the methods with one

Bloom Filter, two bloom Filters and five Bloom Filters with size factor equal

to 2n and 5n where n is the number of stored elements. MAP values and

query time in seconds are reported in Tab 5.13 and 5.14.

The speedup obtained is about 2× since a large number of distractor queries

are immediately stopped by the system; the slight increase in MAP is due

to the beneficial effect of elimination of some false positives of the Paris 6K

images, that do not result in retrieving wrong dataset images. We can see

this effect also in Table 5.15; when we have a ratio equal to one means that

all the queries rejected by the bloom Filter are distractors.

80 Efficient and Distributed Image Retrieval

Table 5.13: MAP obtained on Paris 6K with the proposed system with

different numbers of Bloom filters (1, 2 and 5) and with a baseline without

filters. 2n and 5n are the size of the filters, where n is the number of stored

elements. Thr. is the maximum Hamming distance used for hash code

retrieval.

MAP

No

BF

1 BF 2 BF 5 BF

2n 5n 2n 5n 2n 5n

MIN6

Thr. 10
0.6828 0.6828 0.6828 0.6899 0.6911 0.6828 0.6855

MIN10

Thr. 16
0.6784 0.6784 0.6784 0.6735 0.6860 0.6784 0.6889

MIN16

thr. 20
0.6783 0.6783 0.6783 0.6859 0.6931 0.6791 0.6709

Table 5.14: Time (secs.) obtained on Paris 6K with the proposed system

with different numbers of Bloom filters (1, 2 and 5) and with a baseline

without filters. 2n and 5n are the size of the filters, where n is the number

of stored elements. Thr. is the maximum Hamming distance used for hash

code retrieval.

Time (secs)

No

BF

1 BF 2 BF 5 BF

2n 5n 2n 5n 2n 5n

MIN6

Thr. 10
479.15 332.80 236.65 391.67 276.08 483.94 398.38

MIN10

Thr. 16
580.75 342.89 224.94 463.30 285.26 550.62 446.15

MIN16

Thr. 20
546.23 300.12 160.727 410.18 228.28 524.91 416.99

5.4 Experimental Results 81

Table 5.15: The ratios represent the number of distractors rejected by the

Bloom Filter over the total rejections number. We report different numbers

of Bloom filters (1, 2 and 5). 2n and 5n are the size of the filters, where n

is the number of stored elements. Thr. is the maximum Hamming distance

used for hash code retrieval.

1 BF 2 BF

2n 5n 2n 5n

BF0 BF0 BF0 BF1 BF0 BF1

MIN6

Thr. 10

25972

25972

39888

39888

11860

11865

14367

14372

36770

36780

35144

35155

MIN10

Thr. 16

39175

39175

58545

58545

19285

19287

19632

19636

48226

48238

49746

49758

MIN16

Thr. 20

44747

44747

70238

70238

19409

19412

19409

19412

56878

56890

54400

54409

5 BF

2n 5n

BF0 BF1 BF2 BF3 BF4 BF0 BF1 BF2 BF3 BF4

MIN6

Thr. 10

414

414

1759

1759

777

777

963

963

1118

1118

15004

15011

17954

17962

18343

18351

16836

16845

18619

18622

MIN10

Thr. 16

791

791

1109

1109

363

363

514

514

567

567

1904

1909

19312

19317

18839

18846

19751

19758

19423

19433

MIN16

Thr. 20

1726

1726

344

344

1405

1406

1785

1785

2250

2252

19880

19892

24365

24371

19939

19951

20008

20017

24312

24319

82 Efficient and Distributed Image Retrieval

In the third experiment we evaluate a more challenging and large scale

experiment: three datasets composed by distractor images and Holidays,

Paris 6K and Oxford 5K images are built and stored in the proposed data

structure. The standard dataset query images are then used to query the

system. In this case we have used 10 filters to “shard” the database that,

thus, can be distributed. Tab. 5.16 reports the results in terms of MAP and

time (secs.). For semplicity we report only results for MIN6 and Hamming

threshold 10 for Paris 6K and Holidays, while for Oxford we report MIN10

with threshold 16. Using the proposed method results in speed improvement

of 2× while improving MAP, except the Holidays dataset that only improves

speed. The size of each Bloom filter is ∼ 6− 62 KB, allowing the use of the

method in a mobile environment.

Table 5.16: MAP+time (secs.) obtained on Paris 6K, Oxford 5K and Hol-

idays with the proposed system with 10 Bloom filters of varying size and

with a baseline without filters. The database contains 100,000 distractor +

the database images of each dataset.

BF Paris 6K Oxford 5K Holidays

No BF 58.52 42.05 59.56

3.35 2.35 56.71

10 BF 59.44 41.45 52.15

10n 2.66 1.95 47.21

10 BF 61.21 42.01 42.36

20n 1.93 1.53 36.36

10 BF 62.82 42.29 39.26

30n 1.43 1.25 31.37

10 BF 63.52 42.24 34.29

50n 1.21 1.11 26.59

5.5 Conclusion

We have presented a simple and effective method for CNN feature hashing

that outperforms current state-of-the-art methods on standard datasets. A

novel indexing structure, where Bloom filters are used as gatekeepers to in-

verted files storing the hash codes, results in a 2× speedup for ANN, without

loss in MAP.

Chapter 6

Conclusions and Perspectives

6.0.1 Conclusion

In this thesis we have investigated the content-based image retrieval prob-

lem related to the large scale information retrieval which is very relevant

due to the emerge of social networks and mostly the creation of web-scale

image databases. We have proposed and presented a new version of the k-

means based hashing schema called multi-k-means. This approach provides 4

variants: mk-means-t1, m-k-means-t2, m-k-means-n1 and m-k-means-n2 and

uses a small number of centroids to guarantee a low computational cost and

to result in a compact quantizer. These characteristics are achieved thanks

to the association of the centroids to the bits of the hash code, that greatly

reduce the need of a large number of centroids to produce a code of the

needed length. Another advantage of the method is that it has no parame-

ters in its m-k-means-t1 and m-k-means-t2 variants, and only one parameter

for the other two variants; anyway, as shown by the experiments, it is quite

robust to variations of such parameter, as well as hash code length.

Our compact hash signature is able to represent high dimensional visual

features obtaining a very high efficiency in approximate nearest neighbor

(ANN) retrieval, both on local and global visual features. This character-

istic stems from the multiple-assignment strategy, that reduces the need of

multi probe strategy to retrieve hash codes that differ by few bits, typically

due to quantization errors, and results in better approximated nearest neigh-

bour estimation using Hamming distance.

We presented also a recursive data structure which provides, in conjunction

83

84 Conclusions and Perspectives

with our compact hash signature, best results in terms of memory require-

ments and search time compared to the traditional approaches represented

by hash table and binary tree.

The method has been tested also on large scale datasets of engineered (SIFT

and GIST) and learned (deep CNN) features, obtaining results that outper-

form or are comparable to more complex state-of-the-art approaches. Finally,

we noted that the m-k-means-n1 variant typically performs better than m-

k-means-t1 when dealing with modern CNN features.

Correlated to our approach we also presented a new system which uses inside

it, in conjunction with CNN features, a novel indexing structure, where we

used our compact hash signatures and an efficient probabilistic data struc-

tures called Bloom filters as gatekeepers. This structure helped us to have

an inverted file storing and to obtain a higher compression ratio that has al-

lowed us a more quick search. This approach has shown to be very efficient

and in our experiments it results in a 2X speedup for ANN, without loss in

MAP.

6.0.2 Perspectives

In this work we have shown a new kind of quantization method for features

and how these compact hash signatures can be used inside a system which

makes use of a new kind of probabilistic data structure.

To conclude, we would like to share some ideas about possible future im-

provements; we are interested in ”exploring” a new kind of features and

their impact with our method, especially we are interested in an extensive

evaluation of our system on bigger real dataset. We are also interested in

an extension of the system in the video field with particular focus on video

surveillance applications and last but not least we are interested in a devel-

opment of a real mobile system based on our retrieval approach.

Appendix A

Publications

International Conferences and Workshops

1. G. D’Amico, S. Ercoli, and A. Del Bimbo, ”A Framework for Itinerary Per-

sonalization in Cultural Tourism of Smart Cities” AI* HCI@ AI* IA. 2013.

2. S. Ercoli, M. Bertini, and A. Del Bimbo, ”Compact hash codes and data

structures for efficient mobile visual search”. Multimedia & Expo Workshops

(ICMEW), 2015 IEEE International Conference on. IEEE, 2015

3. A. Salvi, S. Ercoli, M. Bertini, A. Del Bimbo, ”Bloom Filters and Compact

Hash Codes for Efficient and Distributed Image Retrieval”. IEEE ISM, 2016

The IEEE International Symposium on Multimedia

International Journals

Submitted

1. S. Ercoli, M. Bertini, A. Del Bimbo, ”Compact Hash Codes for Efficient

Visual Descriptors Retrieval in Large Scale Databases”. IEEE Transactions

on Multimedia

85

86 Publications

Bibliography

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibli-

ographic search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340,

1975.

[2] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-

ing,” in Proc. of ACM-SIAM SODA, 2007.

[3] A. Babenko and V. Lempitsky, “The inverted multi-index,” in Proc. of

CVPR, 2012.

[4] ——, “Efficient indexing of billion-scale datasets of deep descriptors,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016, pp. 2055–2063.

[5] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for

image retrieval,” in Proc. of ECCV, 2014.

[6] S. J. Banerjee, M. Azharuddin, D. Sen, S. Savale, H. Datta, A. K. Dasgupta,

and S. Roy, “Using complex networks towards information retrieval and di-

agnostics in multidimensional imaging,” Scientific reports, vol. 5, 2015.

[7] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-

timization and statistical learning via the alternating direction method of

multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp.

1–122, 2011.

[9] V. Chandrasekhar, J. Lin, O. Morere, A. Veillard, and H. Goh, “Compact

global descriptors for visual search,” in Proc. of DCC, 2015.

[10] V. Chandrasekhar, M. Makar, G. Takacs, D. Chen, S. S. Tsai, N.-M. Che-

ung, R. Grzeszczuk, Y. Reznik, and B. Girod, “Survey of SIFT compression

schemes,” in Proc. of WMPP, 2010.

87

88 BIBLIOGRAPHY

[11] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the

devil in the details: Delving deep into convolutional nets,” in Proc. of BMVC,

2014.

[12] C.-C. Chen and S.-L. Hsieh, “Using binarization and hashing for efficient

SIFT matching,” Journal of Visual Communication and Image Representa-

tion, vol. 30, pp. 86–93, 2015.

[13] Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor search

by residual vector quantization,” Sensors, vol. 10, no. 12, pp. 11 259–11 273,

2010.

[14] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural net-

works for image classification,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3642–3649.

[15] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-

huber, “Flexible, high performance convolutional neural networks for image

classification,” in IJCAI Proceedings-International Joint Conference on Ar-

tificial Intelligence, vol. 22, no. 1, 2011, p. 1237.

[16] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical approaches

to level set segmentation: integrating color, texture, motion and shape,”

International journal of computer vision, vol. 72, no. 2, pp. 195–215, 2007.

[17] O. Danielsson, “Category-sensitive hashing and Bloom filter based

descriptors for online keypoint recognition,” in Proc. of SCIA, 2015.

[Online]. Available: http://dx.doi.org/10.1007/978-3-319-19665-7 27

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive

hashing scheme based on p-stable distributions,” in Proc. of SoCG, 2004.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

large-scale hierarchical image database,” in Proc. of CVPR, 2009.

[20] T.-T. Do, A.-Z. Doan, and N.-M. Cheung, “Discrete hashing with deep neural

network,” arXiv preprint arXiv:1508.07148, 2015.

[21] S. Du, W. Zhang, S. Chen, and Y. Wen, “Learning flexible binary code for

linear projection based hashing with random forest,” in Proc. of ICPR, 2014.

[22] J. P. Eakins and M. E. Graham, “Content based image retrieval: A report

to the jisc technology applications programme,” 1999.

[23] S. Ercoli, M. Bertini, and A. Del Bimbo, “Compact hash codes and data

structures for efficient mobile visual search,” in Multimedia & Expo Work-

shops (ICMEW), 2015 IEEE International Conference on. IEEE, 2015, pp.

1–6.

http://dx.doi.org/10.1007/978-3-319-19665-7_27

BIBLIOGRAPHY 89

[24] A. X. Falcão, P. A. Miranda, and A. Rocha, “A linear-time approach for

image segmentation using graph-cut measures,” in International Conference

on Advanced Concepts for Intelligent Vision Systems. Springer, 2006, pp.

138–149.

[25] D. Feng, W.-C. Siu, and H. J. Zhang, Multimedia information retrieval and

management: Technological fundamentals and applications. Springer Science

& Business Media, 2013.

[26] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding

best matches in logarithmic expected time,” ACM Transactions on Mathe-

matical Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977.

[27] L. Gao, J. Song, F. Zou, D. Zhang, and J. Shao, “Scalable

multimedia retrieval by deep learning hashing with relative similarity

learning,” in Proc. of ACM MM, 2015. [Online]. Available: http:

//doi.acm.org/10.1145/2733373.2806360

[28] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization for

approximate nearest neighbor search,” in Proc. of CVPR, 2013.

[29] ——, “Optimized product quantization,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 36, no. 4, pp. 744–755, 2014.

[30] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions

via hashing,” in Proc. of VLDB, 1999.

[31] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions

via hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–529.

[32] Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik, “Learning binary codes for

high-dimensional data using bilinear projections,” in Proc. of CVPR, 2013.

[33] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantization:

A procrustean approach to learning binary codes for large-scale image re-

trieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 12, pp. 2916–2929, 2013.

[34] D. Guo, C. Li, and L. Wu, “Parametric and nonparametric residual vector

quantization optimizations for {ANN} search,” Neurocomputing, 2016.

[35] J. Guo and J. Li, “CNN based hashing for image retrieval,” arXiv preprint

arXiv:1509.01354, 2015.

[36] A. Guttman, R-trees: a dynamic index structure for spatial searching. ACM,

1984, vol. 14, no. 2.

[37] A. Halawani, A. Teynor, L. Setia, G. Brunner, and H. Burkhardt, “Fun-

damentals and applications of image retrieval: An overview.” Datenbank-

Spektrum, vol. 18, no. 14-23, p. 6, 2006.

http://doi.acm.org/10.1145/2733373.2806360
http://doi.acm.org/10.1145/2733373.2806360

90 BIBLIOGRAPHY

[38] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving quan-

tization method for learning binary compact codes,” in Proc. of CVPR, 2013.

[39] J. P. Heo, Y. Lee, J. He, S. F. Chang, and S. E. Yoon, “Spherical hashing:

Binary code embedding with hyperspheres,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 11, pp. 2304–2316, 2015.

[40] S.-i. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using

fuzzy neural networks with the back-propagation algorithm,” IEEE transac-

tions on Neural Networks, vol. 3, no. 5, pp. 801–806, 1992.

[41] A. Hurwitz, “Ueber die erzeugung der invarianten durch integration,”

Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-Physikalische Klasse, vol. 1897, pp. 71–2, 1897.

[42] K. Inoue and K. Kise, “Compressed representation of feature vectors using

a Bloomier filter and its application to specific object recognition,” in Proc.

of ICCV Workshops, 2009.

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[44] M. Jain, H. Jégou, and P. Gros, “Asymmetric Hamming embedding: Taking

the best of our bits for large scale image search,” in Proc. of ACM MM, 2011.

[45] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid,

“Aggregating local descriptors into compact codes,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 34, no. 9, pp. 1704–1716,

2012.

[46] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geo-

metric consistency for large scale image search,” in Proc. of ECCV, 2008.

[47] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest neigh-

bor search,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 33, no. 1, pp. 117–128, 2011.

[48] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one billion

vectors: re-rank with source coding,” in Proc. of ICASSP, 2011.

[49] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” in Proc. of ACM MM, 2014.

[50] Z. Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE Trans-

actions on Cybernetics, vol. 44, no. 8, pp. 1362–1371, 2014.

[51] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization for

approximate nearest neighbor search,” in Proc. of CVPR, 2014.

BIBLIOGRAPHY 91

[52] Y. Ke, R. Sukthankar, L. Huston, Y. Ke, and R. Sukthankar, “Efficient near-

duplicate detection and sub-image retrieval,” in ACM Multimedia, vol. 4,

no. 1. Citeseer, 2004, p. 5.

[53] D. Keysers, T. Deselaers, C. Gollan, and H. Ney, “Deformation models for

image recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 8, pp. 1422–1435, 2007.

[54] A. Kirsch and M. Mitzenmacher, “Distance-sensitive Bloom filters,” in Proc.

of ALENEX, 2006.

[55] ——, “Less hashing, same performance: Building a better Bloom filter,”

Random Structures & Algorithms, vol. 33, no. 2, pp. 187–218, 2008. [Online].

Available: http://dx.doi.org/10.1002/rsa.v33:2

[56] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Master’s thesis, Department of Computer Science, University

of Toronto, 2009.

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Proc. of NIPS, 2012.

[58] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive em-

beddings,” in Proc. of NIPS, 2009.

[59] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scal-

able image search,” in 2009 IEEE 12th international conference on computer

vision. IEEE, 2009, pp. 2130–2137.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[61] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwrit-

ten digits,” 1998.

[62] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:

http://yann. lecun. com/exdb/lenet, 2015.

[63] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based multimedia

information retrieval: State of the art and challenges,” ACM Transactions on

Multimedia Computing, Communications, and Applications (TOMM), vol. 2,

no. 1, pp. 1–19, 2006.

[64] P. Li, M. Wang, J. Cheng, C. Xu, and H. Lu, “Spectral hashing with seman-

tically consistent graph for image indexing,” IEEE Transactions on Multi-

media, vol. 15, no. 1, pp. 141–152, 2013.

[65] J. Lin, O. Morère, J. Petta, V. Chandrasekhar, and A. Veillard,

“Tiny descriptors for image retrieval with unsupervised triplet hashing,”

http://dx.doi.org/10.1002/rsa.v33:2

92 BIBLIOGRAPHY

arXiv preprint arXiv:1511.03055, 2015. [Online]. Available: http:

//arxiv.org/abs/1511.03055

[66] ——, “Tiny descriptors for image retrieval with unsupervised triplet hash-

ing,” in Proc. of DCC, 2016.

[67] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen, “Deep learning of binary

hash codes for fast image retrieval,” in Proc. of CVPR, 2015.

[68] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint

arXiv:1312.4400, 2013.

[69] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hashing

with kernels,” in Proc. of CVPR, 2012.

[70] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-

ternational Journal of Computer Vision, vol. 60, no. 2, 2004.

[71] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe lsh:

Efficient indexing for high-dimensional similarity search,” in Proc. of VLDB,

2007.

[72] Y. Lv, W. W. Y. Ng, Z. Zeng, D. S. Yeung, and P. P. K. Chan, “Asymmet-

ric cyclical hashing for large scale image retrieval,” IEEE Transactions on

Multimedia, vol. 17, no. 8, pp. 1225–1235, 2015.

[73] B. Matei, Y. Shan, H. S. Sawhney, Y. Tan, R. Kumar, D. Huber, and

M. Hebert, “Rapid object indexing using locality sensitive hashing and joint

3d-signature space estimation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28, no. 7, pp. 1111–1126, 2006.

[74] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with auto-

matic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.

[75] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in

2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 2161–2168.

[76] M. Norouzi and D. Fleet, “Cartesian k-means,” in Proc. of CVPR, 2013.

[77] M. Norouzi, A. Punjani, and D. Fleet, “Fast exact search in Hamming space

with multi-index hashing,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 36, no. 6, pp. 1107–1119, 2014.

[78] M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact binary codes,”

in Proc. of ICML, 2011.

[79] G. B. Orr and K.-R. Müller, Neural networks: tricks of the trade. Springer,

2003.

[80] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A com-

parison of hash function types and querying mechanisms,” Pattern Recogni-

tion Letters, vol. 31, no. 11, pp. 1348–1358, 2010.

http://arxiv.org/abs/1511.03055
http://arxiv.org/abs/1511.03055

BIBLIOGRAPHY 93

[81] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval

with large vocabularies and fast spatial matching,” in Proc. of CVPR, 2007.

[82] ——, “Lost in quantization: Improving particular object retrieval in large

scale image databases,” in Proc. of CVPR, 2008.

[83] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from shift-

invariant kernels,” in Proc. of NIPS, 2009.

[84] G. Ren, J. Cai, S. Li, N. Yu, and Q. Tian, “Scalable image search with

reliable binary code,” in Proc. of ACM MM, 2014.

[85] J. T. Robinson, “The kdb-tree: a search structure for large multidimensional

dynamic indexes,” in Proceedings of the 1981 ACM SIGMOD international

conference on Management of data. ACM, 1981, pp. 10–18.

[86] Y. Rui, T. S. Huang, and S.-F. Chang, “Image retrieval: Current techniques,

promising directions, and open issues,” Journal of visual communication and

image representation, vol. 10, no. 1, pp. 39–62, 1999.

[87] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-

tion with the Fisher vector: Theory and practice,” International Journal of

Computer Vision, vol. 105, no. 3, pp. 222–245, 2013.

[88] G. Shakhnarovich, P. Indyk, and T. Darrell, Nearest-neighbor methods in

learning and vision: theory and practice, 2006.

[89] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor

matching,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on. IEEE, 2008, pp. 1–8.

[90] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[91] ——, “Very deep convolutional networks for large-scale image recognition,”

in Proc. of ICLR, 2015.

[92] J. Sivic and A. Zisserman, “Video Google: a text retrieval approach to object

matching in videos,” in Proc. of CVPR, 2003.

[93] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-

based image retrieval at the end of the early years,” IEEE Transactions on

pattern analysis and machine intelligence, vol. 22, no. 12, pp. 1349–1380,

2000.

[94] K. Srijan and C. V. Jawahar, “Towards exhaustive pairwise matching

in large image collections,” in Proc. of ECCV, 2012. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-33863-2 22

[95] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proc. of CVPR, 2015.

http://dx.doi.org/10.1007/978-3-642-33863-2_22

94 BIBLIOGRAPHY

[96] ——, “Going deeper with convolutions,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[97] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A large

data set for nonparametric object and scene recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1958–1970,

2008.

[98] ——, “80 million tiny images: A large data set for nonparametric object

and scene recognition,” IEEE transactions on pattern analysis and machine

intelligence, vol. 30, no. 11, pp. 1958–1970, 2008.

[99] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image databases

for recognition,” in Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[100] ——, “Small codes and large image databases for recognition,” in Proc. of

CVPR, 2008.

[101] T. Uricchio, M. Bertini, L. Seidenari, and A. Del Bimbo, “Fisher encoded

convolutional bag-of-windows for efficient image retrieval and social image

tagging,” in Proc. of ICCV Workshops, 2015.

[102] J. van Gemert, C. Veenman, A. Smeulders, and J.-M. Geusebroek, “Visual

word ambiguity,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 32, no. 7, pp. 1271–1283, 2010.

[103] D. Wang, P. Cui, M. Ou, and W. Zhu, “Learning compact hash codes for

multimodal representations using orthogonal deep structure,” IEEE Trans-

actions on Multimedia, vol. 17, no. 9, pp. 1404–1416, 2015.

[104] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. of NIPS,

2009.

[105] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image

retrieval via image representation learning.” in Proc. of AAAI, 2014.

[106] J. Yue-Hei Ng, F. Yang, and L. S. Davis, “Exploiting local features from deep

networks for image retrieval,” in Proc. of CVPR Workshops, June 2015.

[107] Z. Zhang, Y. Chen, and V. Saligrama, “Supervised hashing with deep neural

networks,” arXiv preprint arXiv:1511.04524, 2015.

[108] W. Zhou, M. Yang, H. Li, X. Wang, Y. Lin, and Q. Tian, “Towards codebook-

free: Scalable cascaded hashing for mobile image search,” IEEE Transactions

on Multimedia, vol. 16, no. 3, pp. 601–611, 2014.

[109] W. Zhou, Y. Lu, H. Li, and Q. Tian, “Scalar quantization for large scale

image search,” in Proc. of ACM MM, 2012.

	Contents
	List of Figures
	List of Tables
	Introduction
	Structure of the Document
	Contributions

	Literature Review
	Visual Features
	Hashing Functions
	Scalar Quantization
	Vector Quantization
	Neural Network
	Data Structures
	Bloom Filter

	 Content-Based Image Retrieval
	Introduction
	History
	Technical Progress
	Components of a CBIR System
	Features Extraction
	Invariance
	Information Content
	Semantic Gap

	Performance Measurement
	Single Query Image Scenario
	Similarity Measures

	Conclusion

	Optimized Feature Hashing for Retrieval
	Introduction
	Proposed Method
	Multi-k-means Hashing
	Computational Complexity

	Indexing
	Trie Data Structure

	Experimental Results
	Datasets
	Evaluation Metrics
	Configurations and Implementations
	Results on BIGANN: SIFT1M, GIST1M
	Results on BIGANN: SIFT1B
	Results on DEEP1B
	Results on CIFAR-10, MNIST
	Trie Data Structure Performance

	Conclusion

	Efficient and Distributed Image Retrieval
	Introduction
	Convolutional Neural Network
	VGG16
	GoogLeNet with Batch Normalization

	The Proposed Method
	Quantization Algorithm
	Bloom Filter Algorithm
	Retrieval System

	Experimental Results
	Datasets and Configurations
	Results on VGG16
	Results on Inception BN
	Results on Bloom Filter

	Conclusion

	Conclusions and Perspectives
	Conclusion
	Perspectives

	Publications
	Bibliography

