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1 Introduction

The classical Monge’s transport problem refers to the problem of moving one dis-
tribution of mass onto another as efficiently as possible, where the efficiency cri-
terion is expressed in terms of the average distance transported. It originates from
a paper by G. Monge, Mémoire sur la théorie des déblais et des remblais, in 1781.
Rephrased and generalized in modern mathematical terms, we are given two Borel
probability measures � and � on a metric space .X; d/ and we want to minimize

T 7!

Z
X

d.x; T .x// d�.x/

among all transport maps T from � to �, i.e., all �-measurable maps T W X ! X

such that T]� D �, meaning that �.B/ D �.T �1.B// for all Borel sets B .
In this paper, we are interested in Monge’s transport problem in the Heisen-

berg group .Hn; d / equipped with its Carnot–Carathéodory distance. We prove
the existence of an optimal transport map between two compactly supported Borel
probability measures � and � on Hn assuming that the first measure � is abso-
lutely continuous with respect to the Haar measure L2nC1 of Hn.

Theorem 1.1. Let� and � be two compactly supported Borel probability measures
on Hn. Assume that � � L2nC1. Then there exists an optimal transport map
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solution to Monge’s transport problem between � and �, i.e., a �-measurable
map T W Hn ! Hn such that T]� D � and

Z
Hn
d.x; T .x// d�.x/ D inf

S]�D�

Z
Hn
d.x; S.x// d�.x/:

Monge’s transport problem in Rn equipped with a distance induced by a norm
has already been widely investigated. A first attempt to solve this problem goes
back to the work of Sudakov [25]. It was however discovered some years later
that the proof in [25] was not completely correct. In [14] a PDE-based alternative
to Sudakov’s approach has been developed. The authors prove the existence of an
optimal transport map in Rn equipped with the Euclidean norm under the assump-
tions that spt� \ spt � D ;, �, � � Ln with Lipschitz densities with compact
support. Existence results for general absolutely continuous measures �, � with
compact support have been obtained independently in [11] and [26] and have been
extended to a Riemannian setting in [15]. The existence of a solution to Monge’s
transport problem assuming only that the initial measure � is absolutely continu-
ous has been proved in [1], see also [3], [4], [10]. All these later proofs roughly
involve a Sudakov-type dimension reduction argument, via different technical im-
plementations though, and require some regularity assumptions about the norm Rn

is endowed with. For some time, it seemed that there were indeed some borderline
cases about the norms that could not be attacked through these techniques.

Recently another approach that does not go through Sudakov-type arguments
and in particular does not require disintegration of measures has been developed
in [13], see also [12], to solve Monge’s transport problem for general norms in Rn.
This approach relies on rather simple but powerful density results. In the present
paper we follow closely this approach. We basically show that a very similar strat-
egy can be implemented in the context of the Heisenberg group equipped with
its Carnot–Carathéodory distance. The main features that play a role in this ap-
proach are that .Hn; d;L2nC1/ is a doubling polish metric measure space, a non-
branching geodesic space and satisfies a so-called Measure Contraction Property.
It is very likely that this approach can be extended to more general metric measure
spaces, see Section 9. We have chosen however to present the particular case of the
Heisenberg group for simplicity, this space being moreover an instructive explicit
example of non-Riemannian space.1

The strategy starts by considering the nowadays classical relaxation of Monge’s
transport problem proposed by Kantorovich. In Kantorovich’s formulation one

1 The preprint [7] which appeared during the completion of the present paper also addresses
Monge’s transport problem in metric spaces with a geodesic distance using a Sudakov-type
dimension reduction argument and disintegration of measures.
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considers transport plans, i.e., Borel probability measures on X � X with first
and second marginals � and � respectively. Denoting by ….�; �/ the class of all
transport plans, one wants to minimize

� 7!

Z
X�X

d.x; y/ d�.x; y/

among all � 2 ….�; �/. Due to the linearity of the constraint � 2 ….�; �/, weak
topologies provide existence of optimal transport plans. As a classical fact it turns
out that whenever an optimal transport plan is induced by a �-measurable map
T , i.e., can be written in the form .I ˝ T /]� where .I ˝ T /.x/ WD .x; T .x//,
then T is an optimal transport map between � and � solution to Monge’s transport
problem. We follow here this scheme seeking after optimal transport plans that
will be shown to be eventually induced by �-measurable maps.

In our present context we first prove that any optimal transport plan is concen-
trated on a set of pairs of points that are connected by a unique minimal curve and
that these transport rays cannot bifurcate (see Section 4). Next, following ideas al-
ready introduced in the literature and more specifically here inspired by [24], one
introduces variational approximations (see Section 5). This procedure allows to
select optimal transport plans with specific properties. These transport plans will
eventually be proved to be induced by �-measurable maps. This procedure is here
essentially twofold. On one hand it allows to select optimal transport plans that
are solution to a secondary variational problem. This secondary variational prob-
lem prescribes the geometry of transport rays. The selected transport plans are
indeed shown to be monotonic along transport rays (see Lemma 4.3). On the other
hand, given a transport plan, one can in our context interpolate between its first and
second marginal in a natural way (see Subsection 3.3). Absolute continuity and
more importantly L1-estimates on the density of the interpolations will play an
important role and one can indeed prove L1-estimates on the interpolations in the
approximating variational problems (see Proposition 5.7). These estimates rely on
the so-called Measure Contraction Property of Hn. In the limit one will eventually
get suitableL1-estimates on the interpolations constructed from optimal transport
plans selected through the variational approximation procedure. Next we note that
some properties of plans with absolutely continuous first marginal proved in [13]
can be easily generalized to our setting (see Section 6). These properties are in-
dependent of the transport problem. They rely on the notion of Lebesgue points
of functions and Lebesgue points of sets, notions which make sense for instance
in any doubling metric measure space. Together with the above mentioned L1-
estimates on the interpolations, one can in particular prove density estimate on
the transport set of selected optimal transport plans in the same way as in [13]
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(see Section 7). All together, namely combining this later density estimate on the
transport set (Lemma 7.1) with Lemma 6.2 and remembering the monotonicity
along transport rays (Lemma 4.3) it turns out that the selected transport plans are
necessarily induced by a transport map as eventually proved in Theorem 8.1.

The paper is organized as follows. In Section 2 we recall classical facts about
optimal transportation for later use. In Section 3 we describe the Heisenberg group
focusing on the features that will be needed in this paper. In Section 4 we prove ge-
ometric properties of optimal transport plans and the monotonicity along transport
rays of solutions to the secondary variational problem. The variational approxima-
tions are introduced and studied in Section 5. In Section 6 we state in our frame-
work properties of plans with absolutely continuous first marginal proved in [13]
in Rn. This section, independent of the transport problem, contains density results
that play an essential role in the strategy followed here. In Section 7 we prove
lower bounds on the density, in some suitable sense, of the transport set of opti-
mal transport plans selected through the variational approximations. We conclude
in Section 8 proving that the selected transport plans are induced by a transport
map. We discuss in the final Section 9 some possible extensions of this approach
to other spaces.

2 Preliminaries on optimal transportation

We recall some well-known facts about optimal transportation confining ourselves
to statements that will fit our needs in the rest of the paper. More general ver-
sions of these results hold in more general contexts. We refer to e.g. [27] and the
references therein.

Let .X; d/ be a Polish space, i.e., a complete and separable metric space. We
denote by P .X/ the set of all Borel probability measures on X and by Pc.X/ the
set of Borel probability measures on X with compact support. The weak topology
we consider on P .X/ is the topology induced by convergence against bounded
and continuous test functions (or narrow topology).

2.1 Kantorovich transport problem

Let �, � 2 P .X/. We denote by

….�; �/ WD ¹� 2 P .X �X/I .�1/]� D �; .�2/]� D �º

the set of all transport plans between � and �. Here �1, �2 W X �X ! X denote
the canonical projections on the first and second factor respectively.
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Given c W X �X ! Œ0;C1� a lower semicontinuous cost function, we look at
Kantorovich transport problem between � and � with cost c:

min
�2….�;�/

Z
X�X

c.x; y/ d�.x; y/: (2.1)

As a classical fact, existence of solutions to (2.1) follows from the weak com-
pactness of….�; �/ together with the lower semicontinuity of the functional to be
minimized. We call them optimal transport plans.

Cyclical monotonicity. We say that a set � � X � X is c-cyclically monotone
if

NX
iD1

c.xi ; yi / �

NX
iD1

c.xiC1; yi /

whenever N � 2 and .x1; y1/; : : : ; .xN ; yN / 2 � .

Theorem 2.1. Let � 2 ….�; �/ be an optimal transport plan and assume thatR
X�Y c.x; y/ d� < C1. Then � is concentrated on a c-cyclically monotone

Borel set.

Dual formulation – Kantorovich potentials. Let  W X ! R[¹�1º. We say
that  is c-concave if  6� �1 and if there exists ' W X ! R[¹�1º, ' 6� �1,
such that

 .x/ D inf
y2X

c.x; y/ � '.y/:

Theorem 2.2. Let X be a Polish metric space and let c W X � X ! Œ0;C1Œ be
a lower semicontinuous cost function. Assume that

8 .x; y/ 2 X �X; c.x; y/ � a.x/C b.y/

for some a 2 L1.�/ and b 2 L1.�/. Then one has

min
�2….�;�/

Z
X�X

c.x; y/ d�.x; y/ D max
Z
X

 .x/ d�.x/C

Z
X

 c.y/ d�.y/

(2.2)
where the above maximum is taken among all c-concave functions  and
 c.y/ WD infx2X c.x; y/ �  .x/.

Definition 2.3 (Kantorovich potentials). We say that  W X ! R [ ¹�1º is
a Kantorovich potential if  is a c-concave maximizer for the right-hand side
of (2.2).
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Theorem 2.4. With the same assumptions as in Theorem 2.2, let  be a Kan-
torovich potential. Then � 2 ….�; �/ is an optimal transport plan if and only if

c.x; y/ D  .x/C  c.y/ �-a.e. in X �X:

We will use these results for various cost functions. In the particular case which
is the core of this paper and where c.x; y/ D d.x; y/ and �, � 2 Pc.X/, one
can rephrase these results in terms of 1-Lipschitz Kantorovich potentials. More
precisely, set

Lip1.d/ WD ¹u W X ! RI ju.x/ � u.y/j � d.x; y/ 8 x; y 2 Xº:

Theorem 2.5. Let �, � 2 Pc.X/. Then one can find a Kantorovich potential
u 2 Lip1.d/ so that

min
�2….�;�/

Z
X�X

d.x; y/ d�.x; y/ D

Z
X

u.x/ d�.x/ �

Z
X

u.y/ d�.y/

and � 2 ….�; �/ is an optimal transport plan solution to Kantorovich transport
problem (2.1) between � and � with cost c.x; y/ D d.x; y/ if and only if

u.x/ � u.y/ D d.x; y/ �-a.e. in X �X:

2.2 Transport problem

Let �, � 2 P .X/. We say that a �-measurable map T W X ! X is a transport
map between � and � if T]� D �, i.e., �.B/ D �.T �1.B// for all Borel sets B .

Given c W X�X ! Œ0;C1Œ a continuous cost function, we look at the transport
problem between � and � with cost c:

min
T]�D�

Z
X

c.x; T .x// d�.x/: (2.3)

We say that a transport plan � 2 ….�; �/ is induced by a transport if there exists
a �-measurable map T W X ! X such that .I ˝T /]� D � where .I ˝T /.x/ WD
.x; T .x//. Such a map is automatically a transport map between � and �. We also
recall that if a transport plan � is concentrated on a �-measurable graph then � is
induced by a transport.

Theorem 2.6 (Optimal transport plans versus optimal transport maps).

(i) Assume that � is an optimal transport plan solution to Kantorovich transport
problem (2.1) and that � is induced by transport T . Then T is an optimal
transport map solution to the transport problem (2.3).
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(ii) Assume that any optimal transport plan solution to Kantorovich transport
problem (2.1) is induced by transport. Then there exists a unique optimal
transport map solution to the transport problem (2.3).

3 Preliminaries on Hn

We consider the Heisenberg group Hn equipped with its Carnot–Carathéodory
distance. Endowed with this distance Hn is a polish geodesic and non-branching
metric space and a doubling metric measure space when equipped with its Haar
measure.

3.1 The Heisenberg group

The Heisenberg group Hn is a connected, simply connected Lie group with strati-
fied Lie algebra. We identify it with Cn �R equipped with the group law

Œ�; t � 	 Œ�0; t 0� WD
h
� C �0; t C t 0 C 2

nX
jD1

Im �j �
0

j

i

where � D .�1; : : : ; �n/, �0 D .�01; : : : ; �
0
n/ 2 Cn and t , t 0 2 R. The unit element

is 0 and the center of the group is

L WD ¹Œ0; t � 2 HnI t 2 Rº:

There is a natural family of dilations ır on Hn defined by ır.Œ�; t �/ WD Œr�; r2t �.
These dilations are group homomorphisms.

We may also identify Hn with R2nC1 via the correspondence Œ�; t � D .	; 
; t/

where 	 D .	1; : : : ; 	n/, 
 D .
1; : : : ; 
n/ 2 Rn, t 2 R and � D .�1; : : : ; �n/ 2

Cn with �j D 	j C i
j . The horizontal subbundle of the tangent bundle is defined
by

H WD span¹Xj I j D 1; : : : ; nº ˚ span¹Yj I j D 1; : : : ; nº

where the left invariant vector fields Xj and Yj are given by

Xj WD @�j C 2
j @t ; Yj WD @�j � 2	j @t :

Vector fields in H will be called horizontal vector fields. Setting T WD @t , the
only non-trivial bracket relations are ŒXj ; Yj � D �4T hence span¹T º D ŒH ;H �

and the Lie algebra Hn of Hn admits the stratification Hn D H ˚ span¹T º.
The Lebesgue measure L2nC1 on Hn 
 R2nC1 is a Haar measure of the group.

It is .2nC 2/-homogeneous with respect to the dilations,

L2nC1.ır .A// D r
2nC2L2nC1.A/

for all Borel sets A and all r > 0.
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3.2 Carnot–Carathéodory distance

The Carnot–Carathéodory distance on Hn is defined by

d.x; y/ D inf¹lengthg0.�/I � horizontal C 1-smooth curve joining x to yº;
(3.1)

where a C 1-smooth curve is said to be horizontal if, at every point, its tangent
vector belongs to the horizontal subbundle of the tangent bundle and g0 is the
left invariant Riemannian metric which makes .X1; : : : ; Xn; Y1; : : : ; Yn; T / an or-
thonormal basis. For a general presentation of Carnot–Carathéodory spaces, see
e.g. [8], [21].

The topology induced by this distance is the original (Euclidean) topology on
Hn 
 .R2nC1; g0/ and .Hn; d / is a complete metric space. The distance is left
invariant and 1-homogeneous with respect to the dilations,

d.x 	 y; x 	 z/ D d.y; z/ and d.ır .y/; ır .z// D r d.y; z/

for all x, y, z 2 Hn and all r > 0. It follows in particular that B.x; r/ D
x 	 ır.B.0; 1// and hence

L2nC1.B.x; r// D cn r
2nC2 (3.2)

for all x 2 Hn, all r > 0 and where cn WD L2nC1.B.0; 1// > 0. The measure
L2nC1 is in particular a doubling measure on .Hn; d /. For more details about
doubling metric measure spaces, see e.g. [19].

As a classical fact, endowed with its Carnot–Carathéodory distance, Hn is
a geodesic space, i.e., for all x, y 2 Hn, there exists a curve � 2 C.Œa; b�;Hn/

such that �.a/ D x, �.b/ D y and d.x; y/ D l.�/ where

l.�/ D sup
N2N�

sup
aDt0�����tNDb

N�1X
iD0

d.�.ti /; �.tiC1//:

Up to a reparameterization one can always assume that length minimizing curves
� are parameterized proportionally to arc-length, i.e.,

d.�.s/; �.s0// D v .s0 � s/

for all s < s0 2 Œa; b�, where v WD d.�.a/; �.b//=.b � a/ is the (constant) speed
of the curve. For proofs and further details we refer to e.g. [9] and [18]. As
a convention we will use throughout this paper the terminology minimal curves to
denote length minimizing curves parameterized proportionally to arc-length.
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Definition 3.1 (Minimal curves). We say that a continuous curve � W Œa; b�! Hn

is a minimal curve if l.�/ D d.�.a/; �.b// and � is parameterized proportionally
to arc-length.

In general Carnot–Carathéodory spaces, issues about uniqueness and regularity
of minimal curves between any two points as well as issues about the regularity
of the distance function to a given point could be delicate. In the specific case of
the Heisenberg group, equations of all minimal curves can be explicitly computed
and exploited to overcome these difficulties. We recall below the description of
minimal curves in Hn, see e.g. [17], [5]. We set

� WD ¹.x; y/ 2 Hn �HnI x�1 	 y … Lº: (3.3)

Theorem 3.2 (Minimal curves in Hn). Minimal curves in Hn are horizontal C 1-
smooth curves such that the infimum in (3.1) is achieved. One has the more precise
description:

(i) Non-trivial minimal curves starting from 0 and parameterized on Œ0; 1� are
all curves ��;' for some 
 2 Cn n ¹0º and ' 2 Œ�2�; 2�� where

��;'.s/ D

�
i
.e�i's � 1/


'
; 2j
j2

's � sin.'s/

'2

�

if ' 2 Œ�2�; 2��n¹0º and

��;'.s/ D Œ
s; 0�

if ' D 0. Moreover one has j
j D d.0; ��;'.1//.

(ii) For all .x; y/ 2 �, there is a unique minimal curve x 	 ��;' between x and y
for some 
 2 Cn n ¹0º and some ' 2 .�2�; 2�/ and one has j
j D d.x; y/.

(iii) If .x; y/ … �, x�1 	 y D Œ0; t � for some t 2 R�, there are infinitely many
minimal curves between x and y. These curves are all curves of the form
x 	 ��;2� if t > 0, x 	 ��;�2� if t < 0, for all 
 2 Cn such that j
j D

p
�jt j.

Here and in the following, j
j D .
Pn
jD1 j
j j

2/1=2 for 
 D .
1; : : : ; 
n/ 2 Cn.
In particular it follows from this description that .Hn; d / is non-branching.

Proposition 3.3 (Non-branching property of Hn). The space .Hn; d / is non-
branching, i.e., any two minimal curves which coincide on a non-trivial interval
coincide on the whole intersection of their intervals of definition.
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Equivalently for any quadruple of points z, x, y, y0 2 Hn, if z is a midpoint
of x and y as well as a midpoint of x and y0, then y D y0.

The next lemma collects some differentiability properties of the distance func-
tion to a given point to be used later. For y 2 Hn, we set Ly WD y 	 L.

Lemma 3.4. Let y 2 Hn and set dy.x/ WD d.x; y/. Then the function dy is of
class C1 on HnnLy (equipped with the usual differential structure when identi-
fying Hn with R2nC1). Moreover one has

(i) jrHdy.x/j D 1 for all x 2 HnnLy where

rHdy.x/ WD .X1dy.x/C iY1dy.x/; : : : ; Xndy.x/C iYndy.x//:

(ii) If rdy.x/ D rdy0.x/ and d.x; y/ D d.x; y0/ for some x 2 Hnn.Ly[Ly0/,
then y D y0. Here r D .@�1 ; : : : ; @�n ; @�1 ; : : : ; @�n ; @t / denotes the classical
gradient when identifying Hn with R2nC1.

Proof. Set ˆ.
; '/ WD ��;'.1/ where ��;' is given in Theorem 3.2. This map is
a C1-diffeomorphism from Cn n ¹0º� .�2�; 2�/ onto Hn nL (see e.g. [5], [20],
[22]). If x D ˆ.
; '/ 2 Hn n L with .
; '/ 2 Cn n ¹0º � .�2�; 2�/, one has
d0.x/ D j
j and

rHd0.x/ D



j
j
e�i' and @td0.x/ D

'

4j
j
;

see [5, Lemma 3.11]. Next, by left invariance, we have dy.x/ D d0.y
�1 	 x/,

rHdy.x/ D rHd0.y
�1 	 x/ and @tdy.x/ D @td0.y�1 	 x/ if x 2 HnnLy and the

lemma follows easily.

3.3 Interpolation between measures

The notion of interpolation constructed from a transport plan between any two
measures will be one of the key notion to be used later. To define it in our geomet-
rical context, we first fix a measurable selection of minimal curves, i.e., a Borel
map S W Hn �Hn ! C.Œ0; 1�;Hn/ such that for all x, y 2 Hn, S.x; y/ is a min-
imal curve joining x and y. The existence of such a measurable recipe to join
any two points in Hn by a minimal curve follows from general theorems about
measurable selections, see e.g. [27, Chapter 7]. Next we set et .�/ WD �.t/ for all
� 2 C.Œ0; 1�;Hn/ and t 2 Œ0; 1�. In particular et .S.x; y// denotes the point ly-
ing at distance t d.x; y/ from x on the selected minimal curve S.x; y/ between x
and y.
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Definition 3.5. Let �, � 2 P .Hn/ and let � 2 ….�; �/. The interpolations be-
tween � and � constructed from � are defined as the family ..et ıS/]�//t2Œ0;1	 of
Borel probability measures on Hn.

Note that these interpolations depend a priori on the measurable selection S of
minimal curves. This is actually not a serious issue for our purposes. We will
moreover always consider interpolations constructed from transport plans that are
concentrated on the set � on which S.x; y/ is nothing but the unique minimal
curve between x and y. Note also for further reference that Sb
 is continuous.

3.4 Intrinsic differentiability

Intrinsic differentiability properties of real-valued Lipschitz functions on Hn,
namely a Rademacher’s type theorem, will be useful when considering 1-Lipschitz
Kantorovich potentials. This theorem is a particular case of a more general result
due to P. Pansu. We say that a group homomorphism g W Hn ! R is homogeneous
if g.ır.x// D r g.x/ for all x 2 Hn and all r > 0.

Definition 3.6. We say that a map f W Hn ! R is Pansu-differentiable at x 2 Hn

if there exists a homogeneous group homomorphism g W Hn ! R such that

lim
y!x

f .y/ � f .x/ � g.x�1 	 y/

d.y; x/
D 0:

The map g is then unique and will be denoted by DHf .x/.

If f W Hn ! R is Pansu-differentiable at x 2 Hn then the maps s 7!
f .x 	 ısŒej ; 0�/, resp. s 7! f .x 	 ısŒenCj ; 0�/, are differentiable at s D 0 and
if we denote the corresponding derivatives by Xjf .x/, resp. Yjf .x/, then

DHf .x/.	; 
; t/ D

nX
jD1

	jXjf .x/C 
jYjf .x/:

Here ej D .ı
j
1 ; : : : ; ı

j
n/ 2 Cn and enCj D .iı

j
1 ; : : : ; iı

j
n/ 2 Cn. Using similar

notations as in the classical smooth case, we then set rHf .x/ WD .X1f .x/ C

iY1f .x/; : : : ; Xnf .x/C iYnf .x//.

Theorem 3.7 (Pansu-differentiability theorem). [23] Let f W .Hn; d / ! R be
a C -Lipschitz function. Then, for L2nC1-a.e. x 2 Hn, the function f is Pansu-
differentiable at x and jrHf .x/j � C .
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The next lemma will be used to prove that any optimal transport plan is concen-
trated on the set �.

Lemma 3.8. Let u 2 Lip1.d/, x 2 Hn be such that u is Pansu-differentiable at x
with jrHu.x/j � 1 and let y 2 Hn be such that u.x/ � u.y/ D d.x; y/. Then
there exists a unique minimal curve between x and y.

Proof. Let � W Œ0; 1� ! Hn be a minimal curve between x and y. Then � is
a horizontal C 1-smooth curve and if �.t/ D .�1.t/; : : : ; �2nC1.t// 2 Hn 


R2nC1, one has for all t 2 Œ0; 1�,

P�.t/ D

nX
jD1

P�j .t/ Xj .�.t//C P�nCj .t/ Yj .�.t//

and j P�H .t/j D d.x; y/ where P�H .t/ WD . P�1.t/ C i P�nC1.t/; : : : ; P�n.t/ C

i P�2n.t// 2 Cn. On the other hand, one has

u.x/ � u.�.t// D d.x; �.t// D t d.x; y/

for all t 2 Œ0; 1�. Differentiating this equality with respect to t , we get

nX
jD1

P�j .0/Xju.x/C P�nCj .0/ Yju.x/ D
d

dt
u.�.t//

ˇ̌
ˇ
tD0
D �d.x; y/:

All together, it follows that

d.x; y/ D

ˇ̌
ˇ̌ nX
jD1

P�j .0/Xju.x/C P�nCj .0/ Yju.x/

ˇ̌
ˇ̌

� jrHu.x/j j P�H .0/j � d.x; y/:

In particular, there is equality in all the previous inequalities which implies in turn
that P�H .0/ D � d.x; y/rHu.x/. On the other hand one knows from Theorem 3.2
that � D x 	 ��;' for some 
 2 Cn n ¹0º and ' 2 Œ�2�; 2��. In particular one
has P�H .0/ D 
. It follows that 
 D � d.x; y/rHu.x/ is uniquely determined
hence there is a unique minimal curve joining x and y according once again to the
description given in Theorem 3.2.
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4 Properties of…1.�; �/ and…2.�; �/

Let �, � 2 Pc.Hn/ be fixed. We denote by …1.�; �/ the set of optimal transport
plans solution to Kantorovich transport problem (2.1) between � and � with cost
c.x; y/ D d.x; y/.

We first prove some geometric properties of optimal transport plans. These
properties follow from the behavior of minimal curves in .Hn; d /. In the next
lemma, we prove that any optimal transport plan is concentrated on the set � (see
(3.3)) of pair of points that are connected by a unique minimal curve.

Lemma 4.1. Let � 2 …1.�; �/ and assume that � � L2nC1. Then for �-a.e.
.x; y/, there exists a unique minimal curve between x and y.

Proof. Let u 2 Lip1.d/ be a Kantorovich potential associated to Kantorovich
transport problem (2.1) between � and � with cost c.x; y/ D d.x; y/ (see Sec-
tion 2 and Theorem 2.5 there). Since u 2 Lip1.d/, we know from Theorem 3.7
that for L2nC1-a.e., and hence �-a.e., x 2 Hn, u is Pansu-differentiable at x with
jrHu.x/j � 1. Then the conclusion follows from Lemma 3.8 since u.x/�u.y/ D
d.x; y/ for �-a.e. .x; y/ (see Theorem 2.5).

The next lemma says that minimal curves used by an optimal transport plan can-
not bifurcate. It follows essentially from the non-branching property of .Hn; d /.

Lemma 4.2. Let � 2 …1.�; �/. Then � is concentrated on a set � such that
the following holds. For all .x; y/ 2 � and .x0; y0/ 2 � such that x 6D y and
x 6D x0, if x0 lies on a minimal curve between x and y then all points x, x0, y and
y0 lie on the same minimal curve. More precisely, there exists a minimal curve
� W Œa; b�! Hn such that x D �.a/, y D �.t/ for some t 2 .a; b�, x0 D �.s/ for
some s 2 .a; t � and y0 D �.t 0/ for some t 0 2 Œs; b�.

Proof. Let .x; y/ 2 Hn�Hn and .x0; y0/ 2 Hn�Hn such that x 6D y and x0 6D x.
Assume that x0 2 �..0; d.x; y/�/ where � W Œ0; d.x; y/� ! Hn is a unit-speed
minimal curve between x and y. Let � 0 be a unit-speed minimal curve between x0

and y0 parameterized on Œd.x; x0/; d.x; x0/C d.x0; y0/�. Assume moreover that

d.x; y/C d.x0; y0/ � d.x; y0/C d.x0; y/:

Recall that this holds true for � -a.e. .x; y/ and .x0; y0/ by Theorem 2.1. Then the
curve Q� W Œ0; d.x; x0/C d.x0; y0/�! Hn which coincides with � on Œ0; d.x; x0/�
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and � 0 on Œd.x; x0/; d.x; x0/C d.x0; y0/� is a length minimizing curve between x
and y0. Indeed, otherwise we would have

d.x; y0/ < l. Q�/ D l.�jŒ0;d.x;x0/	/C l.�
0
jŒd.x;x0/;d.x;x0/Cd.x0;y0/	/

D d.x; x0/C d.x0; y0/:

Since x0 lies on a minimal curve between x and y, we have d.x; x0/C d.x0; y/ D
d.x; y/ and we get

d.x; y0/C d.x0; y/ < d.x; y/C d.x0; y0/

which gives a contradiction. It follows that � and Q� are unit-speed minimal curves
that coincide on the non-trivial interval Œ0; d.x; x0/�. Since Hn is non-branching
(see Proposition 3.3), this implies that � and Q� are sub-arcs of the same minimal
curve, namely � if d.x; y0/ � d.x; y/ and Q� otherwise, on which all points x, x0,
y and y0 lie. And the conclusion follows.

We denote by …2.�; �/ the set of transport plans solution to the secondary
variational problem:

min
�2…1.�;�/

Z
Hn�Hn

d.x; y/2 d�.x; y/:

Optimal transport plans selected through the variational approximations to be
introduced in Section 5 will be solution to this secondary variational problem.
The next lemma gives a one-dimensional monotonicity condition along minimal
curves used by optimal transport plans in …2.�; �/. This follows essentially from
a constrained version of d2-cyclical monotonicity.

Lemma 4.3. Let � 2 …2.�; �/. Then � is concentrated on a set � such that the
following holds. For all .x; y/ 2 � and .x0; y0/ 2 � such that x 6D y and x 6D x0,
if x0 lies on a minimal curve between x and y then all points x, x0, y and y0 lie on
the same minimal curve ordered in that way.

In other words, there exists a minimal curve � W Œa; b�! Hn such that �.a/ D
x, �.t/ D y for some t 2 .a; b�, �.s/ D x0 for some s 2 .a; t � and �.t 0/ D y0

for some t 0 2 Œt; b�.

Proof. First, as a classical fact, one can rephrase the secondary variational prob-
lem as a classical Kantorovich transport problem (2.1) between � and � with cost
c.x; y/ D ˇ.x; y/ with

ˇ.x; y/ D

´
d.x; y/2 if u.x/ � u.y/ D d.x; y/;

C1 otherwise;
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where u 2 Lip1.d/ is a Kantorovich potential associated to Kantorovich transport
problem (2.1) between � and � with cost c.x; y/ D d.x; y/ (see Section 2 and
Theorem 2.5 there). Since ˇ is lower semicontinuous and

Z
Hn�Hn

ˇ.x; y/ d�.x; y/ < C1

for all � 2 …2.�; �/, it follows from Theorem 2.1 that any � 2 …2.�; �/ is
concentrated on a ˇ-cyclically monotone set. So, taking into account the fact that
…2.�; �/ � …1.�; �/, we know that � 2 …2.�; �/ is concentrated on a set �
such that

u.x/ � u.y/ D d.x; y/

for all .x; y/ 2 � ,

ˇ.x; y/C ˇ.x0; y0/ � ˇ.x; y0/C ˇ.x0; y/

for all .x; y/ 2 � and .x0; y0/ 2 � and the conclusion of Lemma 4.2 holds.
Then let .x; y/ 2 � and .x0; y0/ 2 � be as in the statement. By Lemma 4.2, the

conclusion will follow if we show that d.x0; y/ � d.x0; y0/. First we check that
ˇ.x0; y/ D d.x0; y/2 and ˇ.x; y0/ D d.x; y0/2. We have

u.x/ � u.x0/Cd.x; x0/ � u.y/Cd.x0; y/Cd.x; x0/ D d.x; y/Cu.y/ D u.x/

hence all these inequalities are equalities. In particular, we get that u.x0/ D u.y/C
d.x0; y/ hence ˇ.x0; y/ D d.x0; y/2. We also get that

u.x/ D d.x; x0/C u.x0/ D d.x; x0/C u.y0/C d.x0; y0/ D u.y0/C d.x; y0/

hence ˇ.x; y0/ D d.x; y0/2. If d.x0; y0/ < d.x0; y/, we get

ˇ.x; y0/C ˇ.x0; y/ � ˇ.x0; y0/ � ˇ.x; y/

D d.x; y0/2 C d.x0; y/2 � d.x0; y0/2 � d.x; y/2

D .d.x; x0/C d.x0; y0//2 C d.x0; y/2 � d.x0; y0/2 � .d.x; x0/C d.x0; y//2

D 2 d.x; x0/.d.x0; y0/ � d.x0; y// < 0

which gives a contradiction.

5 Variational approximations

We introduce variational approximations in the spirit of [4] (see also [11], [3]) by
rephrasing in our geometrical context the variational approximations considered



16 L. De Pascale and S. Rigot

recently in [24]. This approximation procedure will be used to select optimal
transport plans that will be eventually proved to be induced by transport maps.

Let �, � 2 Pc.Hn/ be fixed. Let K be a compact subset of Hn such that
spt� [ spt � � K and set

… WD ¹� 2 P .Hn �Hn/I .�1/]� D �; spt .�2/]� � Kº:

For " > 0 fixed and � 2 …, we set

C".�/ WD
1

"
W1..�2/]�; �/C

Z
Hn�Hn

d.x; y/ d�.x; y/

C "

Z
Hn�Hn

d.x; y/2 d�.x; y/C "6nC8 card .spt .�2/]�/

and consider the family of minimization problems:

min¹C".�/I � 2 …º: (P")

Here W1 denotes the 1-Wasserstein distance defined for any two probability mea-
sures �1, �2 2 P .Hn/ by

W1.�1; �2/ WD min
�2….�1;�2/

Z
Hn�Hn

d.x; y/ d�.x; y/:

First we note that (P") always admits solutions.

Theorem 5.1. For any " > 0, the problem (P") admits at least one solution and
min¹C".�/I � 2 …º < C1.

Proof. First note that since K is compact, C".�/ < C1 for any � 2 … such that
.�2/]� is finitely atomic. Next the existence of solutions to (P") follows from the
weak compactness of …, the lower semicontinuity of the three first terms to be
minimized and the Kuratowski convergence of the supports of weakly converging
probability measures (see [2, Chapter 5]).

Next, weak limits of solutions to (P") are optimal transport plans that are so-
lutions to the secondary variational problem introduced in Section 4 to which we
refer for the definition of …2.�; �/. Modulo minor modifications due to our geo-
metrical context, this can be proved with the same arguments as those given in [24].

Lemma 5.2. Let "k be a sequence converging to 0 and �"k a sequence of solu-
tions to .P"k / which is weakly converging to some � 2 P .Hn � Hn/. Then
� 2 …2.�; �/.
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Proof. First we note that for any m � 1, one can find a finite set Fm � K such
that cardFm � C m2nC2 for some constant C > 0 which depends only on n and
diamK and a Borel map pm W K ! Fm such that

d.pm.x/; x/ < 1=m

for all x 2 K. Indeed choose x1 2 K. For i � 2, choose by induction
xi 2 K n

S
j<i B.xj ; 1=m/ as long as K n

S
j<i B.xj ; 1=m/ 6D ;. Let Fm

denote the set of all these points. The balls B.xi ; 1=.2m// are mutually disjoint
and

S
i B.xi ; .1=.2m// � B.x1; diamKC1/. Remembering (3.2), it follows that

cn.2m/
�2n�2 cardF � L2nC1

�[
i

B.xi ; 1=.2m//
�

� L2nC1.B.x1; diamK C 1// D cn.diamK C 1/2nC2

for any finite subset F � Fm, hence Fm is a finite set with cardFm � C m2nC2

where C depends only on n and diamK. Next, by construction, for any x 2 K,
there exists a unique xi 2 Fm such that x 2 B.xi ; 1=m/ n

S
j<i B.xj ; 1=m/ and

we then set pm.x/ WD xi .
The proof of the lemma can now be completed following the same arguments

as those in [24]. For sake of completeness, we sketch these arguments below. Let
�"k and � be as in the statement. Form � 1, one sets �m WD .pm/]�. Note that by
construction of Fm and pm, one has card .spt �m/ � C m2nC2 and W1.�m; �/ �
1=m. To check that � 2 ….�; �/, one takes some �m 2 ….�; �m/ � … and uses
the optimality of �"k which implies

W1..�2/]�"k ; �/ � "k C"k .�m/

�
1

m
C "k diam.K/C "2k diam.K/2 C C"6nC9

k
m2nC2:

Then one lets "k ! 0 with m � 1 fixed and then m ! C1 to get that .�2/]�"k
converges weakly to �. Since it also converges weakly to .�2/]� , it follows that
� 2 ….�; �/.

To check that � 2 …1.�; �/, one takes � 2 …1.�; �/ and sets �m WD
.Id; pm/]� 2 ….�; �m/ where .Id; pm/.x; y/ D .x; pm.y//. By optimality of
�"k , one has

Z
Hn�Hn

d.x; y/ d�"k .x; y/ � C"k .�m/

�
1

m "k
C

Z
Hn�Hn

d.x; y/ d�m.x; y/C "k diam.K/2 C C"6nC8
k

m2nC2:
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Choosing m of the order of "�2
k

and letting "k ! 0, one gets

Z
Hn�Hn

d.x; y/ d�.x; y/ �

Z
Hn�Hn

d.x; y/ d�.x; y/

hence � 2 …1.�; �/.
Finally, to check that � 2 …2.�; �/, one uses once again the optimality of �"k

in the following way,

W1..�2/]�"k ; �/C "k

Z
Hn�Hn

d.x; y/ d�"k .x; y/

C "2k

Z
Hn�Hn

d.x; y/2 d�"k .x; y/ � "k C"k .�m/:

On the other hand, one has

W1.�; �/ � W1.�; .�2/]�"k /CW1..�2/]�"k ; �/

�

Z
Hn�Hn

d.x; y/ d�"k .x; y/CW1..�2/]�"k ; �/

and Z
Hn�Hn

d.x; y/ d�m.x; y/ D

Z
Hn�Hn

d.x; pm.y// d�.x; y/

�

Z
Hn�Hn

d.x; y/ d�.x; y/C

Z
Hn�Hn

d.y; pm.y// d�.x; y/

� W1.�; �/C
1

m
:

It follows that

.1 � "k/W1..�2/]�"k ; �/C "kW1.�; �/C "
2
k

Z
Hn�Hn

d.x; y/2 d�"k

�
1

m
C
"k

m
C "kW1.�; �/C "

2
k

Z
Hn�Hn

d.x; y/2 d�m C C"
6nC9
k

m2nC2

and hence

Z
Hn�Hn

d.x; y/2 d�"k .x; y/

�
1

m "2
k

C
1

m "k
C

Z
Hn�Hn

d.x; y/2 d�m.x; y/C C"
6nC7
k

m2nC2
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provided "k � 1. Choosing m of the order of "�3
k

and letting "k ! 0, one gets

Z
Hn�Hn

d.x; y/2 d�.x; y/ �

Z
Hn�Hn

d.x; y/2 d�.x; y/:

Since � 2 …1.�; �/ was arbitrary, it follows that � 2 …2.�; �/.

The rest of this section is devoted to the study of the solutions to (P"). We fix
" > 0 and set

c".x; y/ WD d.x; y/C " d.x; y/
2:

We first recall the following classical fact.

Lemma 5.3. Let �" be a solution to (P"). Then for any Borel set U � Hn �Hn,
.�2/].�"bU / is finitely atomic and �"bU is a solution to Kantorovich transport
problem (2.1) between .�1/].�"bU / and .�2/].�"bU / with cost c".

Proof. The fact that .�2/].�"bU / is finitely atomic obviously follows from the fact
that C".�"/ D min¹C".�/I � 2 …º < C1. Next it is also immediate that �"
is a solution to Kantorovich transport problem (2.1) between � and .�2/].�"/
with cost c". Then as a classical fact, the claim follows from the linearity of
the functional to be minimized with respect to the transport plan. If � 2
…..�1/].�"bU /; .�2/].�"bU //, one indeed simply compares C".�"/ with C". O�/
where O� D �"b.Hn�Hn/nUC� 2 ….�; .�2/].�"// to get the conclusion.

Next in this section we consider interpolations between two measures �, � 2
Pc.Hn/ that are constructed from a transport plan solution to Kantorovich trans-
port problem (2.1) between these two measures with cost c". We prove absolute
continuity and, more importantly, L1-estimates on the density with respect to
L2nC1 of these interpolations whenever �� L2nC1 and � is finitely atomic, see
Proposition 5.7. We divide the arguments into several steps. First we prove that
any solution to this Kantorovich transport problem is induced by a transport.

Theorem 5.4. Let �, � 2 Pc.Hn/ be fixed. Assume that �� L2nC1 and that � is
finitely atomic. Then any solution to Kantorovich transport problem (2.1) between
� and � with cost c" is induced by a transport. In particular there exists a unique
optimal transport map solution to the transport problem (2.3) between � and �
with cost c".

Proof. Let  be a Kantorovich potential for Kantorovich transport problem (2.1)
between � and � with cost c" given by Theorem 2.2. Let ¹yiºkiD1 denote the
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atoms of �. We prove that for L2nC1-a.e. x 2 Hn, there is at most one point yi
for some i 2 ¹1; : : : ; kº such that

 .x/C  c.yi / D c".x; yi /:

Since � � L2nC1, it will follow that any transport plan solution to Kantorovich
transport problem (2.1) between � and � with cost c" is concentrated on a �-
measurable graph and hence induced by a transport. This implies in turn existence
and uniqueness of the optimal transport map solution to the transport problem (2.3)
between � and � with cost c" (see Theorem 2.6).

For i 6D j , set hij .x/ WD c".x; yi / � c".x; yj /C  c.yj / �  c.yi /. It follows
from Lemma 3.4 that hij is of class C1 on the open set Hn n .Lyi [ Lyj / with
rhij 6D 0. Indeed assume on the contrary that rhij .x/ D 0 for some x 2
Hn n .Lyi [ Lyj /. Then, differentiating along the horizontal vector fields Xj
and Yj , we would have

rHdyi .x/ .1C 2" dyi .x// D rHdyj .x/ .1C 2" dyj .x//:

Since jrHdyi .x/j D jrHdyj .x/j (see Lemma 3.4(i)), this would imply that
dyi .x/ D dyj .x/ and in turn that rHdyi .x/ D rHdyj .x/. Since we also have
by assumption @tdyi .x/ D @tdyj .x/, Lemma 3.4(ii) would give yi D yj . It fol-
lows that the set ¹x 2 Hn n .Lyi [ Lyj /I hij .x/ D 0º is a C1-smooth sub-
manifold of dimension 2n in R2nC1 and hence has Lebesgue measure 0. Since
L2nC1.Lyi / D 0, it follows that

L2nC1
� [
i 6Dj

¹x 2 HnI hij .x/ D 0º
�
D 0

and the claim follows.

If T W Hn ! Hn, we set Tt D et ı S ı .I ˝ T /, i.e., Tt .x/ is the point lying at
distance t d.x; T .x// from x on the selected minimal curve S.x; T .x// between
x and T .x/ (see Subsection 3.3 for the definition of S and et ).

Proposition 5.5. [27, Chapter 7] Let �, � 2 Pc.Hn/ be fixed such that � �
L2nC1 and � is finitely atomic. Let T " be the optimal transport map solution to
the transport problem (2.3) between � and � with cost c". Then there exists a �-
measurable set A such that �.A/ D 1 and such that for each t 2 Œ0; 1/, T "t bA is
injective.

The cost c" can be recovered as coming from a so-called coercive Lagrangian
action. Since .Hn; d / is non-branching, the proposition essentially follows from
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[27, Chapter 7, Theorem 7.30]. However one does not need the full strength of the
theory developed in [27, Chapter 7] to get the conclusion of Proposition 5.5 and
we sketch below the arguments for the reader’s convenience.

Proof. Let 0 � s < t � 1 and x, y 2 Hn. Set

cs;t" .x; y/ D d.x; y/C "
d.x; y/2

t � s
:

The space .Hn; d / being a geodesic space and u 7! u C " u2 being strictly in-
creasing and strictly convex on Œ0;C1/, one has

c".x; y/ � c
0;t
" .x; z/C ct;1" .z; y/

for all x, y, z 2 Hn and t 2 .0; 1/, with equality if and only if any curve in
C.Œ0; 1�;Hn/ obtained by concatenation of a minimal curve �x;z W Œ0; t � ! Hn

between x and z and a minimal curve �z;y W Œt; 1� ! Hn between z and y is
a minimal curve between x and y.

On the other hand, by c"-cyclical monotonicity, one knows that there exists
a �-measurable set A such that �.A/ D 1 and

c".x; T
".x//C c". Qx; T

". Qx// � c".x; T
". Qx//C c". Qx; T

".x//

for all x, Qx 2 A (see Theorem 2.1).
Now let t 2 .0; 1/ be fixed and let x, Qx 2 A. Assume that T "t .x/ D T "t . Qx/.

Then
c".x; T

". Qx// � c0;t" .x; z/C ct;1" .z; T ". Qx//; (5.1)

and similarly,
c". Qx; T

".x// � c0;t" . Qx; z/C ct;1" .z; T ".x//

where z D T "t .x/ D T
"
t . Qx/. It follows that

c".x; T
".x//C c". Qx; T

". Qx//

� c".x; T
". Qx//C c". Qx; T

".x//

� c0;t" .x; T "t .x//C c
t;1
" .T "t .x/; T

".x//C c0;t" . Qx; T "t . Qx//C c
t;1
" .T "t . Qx/; T

". Qx//

D c".x; T
".x//C c". Qx; T

". Qx//:

Hence equality has to hold in all these inequalities. In particular equality holds
in (5.1). It follows that the curve obtained by concatenation of the minimal curve
s 2 Œ0; t � 7! es.S.x; T

".x/// between x and z with the minimal curve s 2 Œt; 1� 7!
es.S. Qx; T

". Qx/// between z and T ". Qx/ is a minimal curve. Since this curve coin-
cides with the minimal curve � W s 2 Œ0; 1� 7! es.S.x; T

".x/// on the non-trivial
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interval Œ0; t � and Hn is non-branching (see Proposition 3.3), we get that it coin-
cides with � on the whole interval Œ0; 1�. Similarly, it coincides with the minimal
curve Q� W s 2 Œ0; 1� 7! es.S. Qx; T

". Qx/// on the whole interval Œ0; 1�. Hence � D Q�
and in particular x D �.0/ D Q�.0/ D Qx.

We turn now to the main estimate that will lead to Proposition 5.7.

Proposition 5.6. Let � 2 P .Hn/, � � L2nC1, � D �L2nC1, and T W Hn !

Hn be a �-measurable map such that T]� is finitely atomic. Let t 2 .0; 1/ and set
�t WD Tt ]�. Assume that there exists a �-measurable set A such that �.A/ D 1

and TtbA is injective. Then �t � L2nC1, �t D �t L2nC1 with

�t �
1lTt .A/

.1 � t /2nC3
� ı T �1t bTt .A/ L2nC1-a.e.

Arguments for the proof of this proposition can be found in [16, Section 3]
even-though not explicitly stated in the same way in that paper. They rely on the
following estimate:

L2nC1.E/ �
1

.1 � t /2nC3
L2nC1..et ı S/.E; y//

for any y 2 Hn andE � Hn which is proved in [20, Section 2] and which roughly
means that .Hn; d;L2nC1/ satisfies a so-called Measure Contraction Property.
We detail the proof below for the reader’s convenience.

Proof. Let ¹yiºkiD1 denote the atoms of T]�. Set Ai D T �1.¹yiº/ \ A and OA DS
i Ai . The sets Ai are mutually disjoint and �. OA/ D 1 by hypothesis. For any

x 2 Ai , Tt .x/ D .et ı S/.x; yi /, hence

L2nC1.E/ �
1

.1 � t /2nC3
L2nC1.Tt .E//

for any E � Ai . Next if E � OA, writing E D
S
i .E \ Ai / where the sets Ai are

mutually disjoint and remembering that Tt is injective on OA � A by hypothesis,
one gets

L2nC1.E/ �
1

.1 � t /2nC3
L2nC1.Tt .E//:

It follows that for any F � Hn,

L2nC1.T �1t .F / \ OA/ �
1

.1 � t /2nC3
L2nC1.F \ Tt . OA//:
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Assume that F � Hn is such that L2nC1.F / D 0. We get L2nC1.T �1t .F / \
OA/ D 0 from the previous inequality. On the other hand �t .F / D �.T

�1
t .F // D

�.T �1t .F / \ OA/ hence �t .F / D 0 since � � L2nC1 and it follows that �t �
L2nC1.

Next, to prove the estimate on the density of �t with respect to L2nC1, we note
that the inequality above implies that

Z
OA

g.Tt / dL2nC1 �
1

.1 � t /2nC3

Z
Tt . OA/

g dL2nC1

for any non-negative measurable map g W Hn ! Œ0;C1�. Let h W Hn ! Œ0;C1�

be a non-negative measurable map and set

g.x/ D 1l
Tt . OA/

.x/ h.x/ �.T �1t bTt . OA/
.x//:

Then

Z
OA

g.Tt .x// dL2nC1.x/

�
1

.1 � t /2nC3

Z
Tt . OA/

h.x/ �.T �1t bTt . OA/
.x// dL2nC1.x/:

On the other handZ
OA

g.Tt / dL2nC1 D

Z
OA

h.Tt / � dL2nC1 D

Z
Hn
h.Tt / d� D

Z
Hn
h d�t ;

henceZ
Hn
h.x/ d�t .x/ �

1

.1 � t /2nC3

Z
Tt . OA/

h.x/ �.T �1t bTt . OA/
.x// dL2nC1.x/:

Remembering that OA � A, this concludes the proof.

Finally, combining Theorem 5.4, Propositions 5.5 and 5.6, we get the following
proposition which gives the absolute continuity of the interpolations together with
an L1-estimate on their density. Note that if �" is the transport plan solution to
Kantorovich transport problem (2.1) between � and � with cost c" and T " the
optimal transport map solution to the transport problem (2.3) between � and �
with cost c", which hence induces �", then .et ı S/]�" D T

"
t ]
�.

Proposition 5.7. Let �, � 2 Pc.Hn/ be fixed. Assume that � � L2nC1 with
� D �L2nC1 and � is finitely atomic. Let �" be the transport plan solution
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to Kantorovich transport problem (2.1) between � and � with cost c". Then for
any t 2 Œ0; 1/, the interpolation .et ı S/]�" is absolutely continuous with respect
to L2nC1, .et ı S/]�" D �

"
t L2nC1, and one has

k�"tkL1 �
1

.1 � t /2nC3
k�kL1 :

6 Properties of measures � 2 P .Hn �Hn/ with .�1/]� � L2nC1

This section is independent of the transport problem. We state some properties of
measures in P .Hn �Hn/ with first marginal absolutely continuous with respect
to L2nC1. These properties are essential steps in the strategy adopted here to solve
Monge’s transport problem. They are the exact counterpart in the framework of
.Hn; d;L2nC1/ of similar properties proved in [13] in Rn. These properties hold
actually true in more general settings, for instance in any separable doubling metric
measure space.

We first recall some facts about Lebesgue points of Borel functions and density
of absolutely continuous measures. Since the measure L2nC1 is a doubling mea-
sure on .Hn; d /, see (3.2), if � W Hn ! Œ0;C1� is a L2nC1-locally summable
Borel function then for L2nC1-a.e. x 2 Hn, one has

lim
r!0

1

L2nC1.B.x; r//

Z
B.x;r/

j�.y/ � �.x/j dL2nC1.y/ D 0; (6.1)

see e.g. [19]. A point x 2 Hn where (6.1) holds is called a Lebesgue point of �
and we denote by Leb � the set of all Lebesgue points of �.

In the rest of this paper, and especially in the lemma to follow, it will be tech-
nically convenient to consider the density � of an absolutely continuous measure
� � L2nC1 as a L2nC1-summable Borel function, i.e., a function well-defined
everywhere, so that one can speak about its Lebesgue points and its value at any
arbitrary point without any ambiguity. If � 2 P .Hn/, we set

�.x/ WD lim sup
r!0

�.B.x; r//

L2nC1.B.x; r//
: (6.2)

This map � W Hn ! Œ0;C1� is a Borel map and if � � L2nC1 then � D
�L2nC1. By a slight abuse of terminology, when speaking about the density of an
absolutely continuous measure � 2 P .Hn/ with respect to L2nC1, we will thus
always refer in the following to the Borel function � defined above.

The next lemma will be an essential ingredient in the proof of Lemma 7.1.
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Lemma 6.1. Let � 2 P .Hn � Hn/ be such that .�1/]� � L2nC1. Then � is
concentrated on a set � such that, for all .x; y/ 2 � and all r > 0, there exist
y0 2 Hn and r 0 > 0 such that

(i) y 2 B.y0; r 0/ �� B.y; r/,

(ii) x 2 Leb � and �.x/ < C1,

(iii) x 2 Leb �0 and �0.x/ > 0,

where � denotes the density of .�1/]� and �0 the density of .�1/]�b.Hn�B.y0;r 0//
with respect to L2nC1.

Proof. Let .ym/m�1 be a dense sequence in Hn. For eachm; k 2 N�, set �m;k WD
�b.Hn�B.ym;rk// where rk WD 1=k. Let �m;k denote the density of .�1/]�m;k
with respect to L2nC1. Set Am;k WD Hn n .Leb � \ Leb �m;k \ ¹� < C1º/.
We have L2nC1.Am;k/ D 0. Since .�1/]� � L2nC1, it follows that �.Am;k �
B.ym; rk// � .�1/]�.Am;k/ D 0. Next

�.¹�m;k D 0º � B.ym; rk// D .�1/]�m;k.¹�m;k D 0º/ D 0:

It follows that �.Dm;k/ D 0 for all m; k 2 N� where

Dm;k WD ŒH
n n .Leb � \ Leb �m;k \ ¹� < C1º \ ¹�m;k > 0º/� � B.ym; rk/

hence �.
S
m;kDm;k/ D 0 and � is concentrated on Hn n

S
m;kDm;k . Then the

conclusion follows noting that for each .x; y/ 2 Hn �Hn and r > 0, one can find
m; k 2 N� such that y 2 B.ym; rk/ �� B.y; r/.

We say that x 2 E is a Lebesgue point of a Borel set E if x 2 Leb 1lE , i.e.,
if x 2 E and

lim
r!0

L2nC1.E \ B.x; r//

L2nC1.B.x; r//
D 1;

and we denote by LebE WD Leb 1lE the set of all Lebesgue points of E. Note that
L2nC1.E n LebE/ D 0.

The next lemma together with Lemma 7.1 and Lemma 4.3 is one of the key in-
gredients of the proof of Theorem 8.1 and eventually of the existence of a solution
to Monge’s transport problem. It can be recovered as a consequence of Lemma 6.1.
However, for sake of clarity, we state and prove it independently.

Lemma 6.2. Let � 2 P .Hn �Hn/ be such that .�1/]� � L2nC1. Assume that
� is concentrated on a �-compact set � . For y 2 Hn and r > 0, set

��1.B.y; r// D �1.� \ .H
n � B.y; r///:
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Then ��1.B.y; r// is a Borel set and � is concentrated on a set � 0 � � such that
for all .x; y/ 2 � 0 and all r > 0, x 2 Leb��1.B.y; r//.

Proof. Since � is �-compact, ��1.B.y; r// is also � -compact hence a Borel
set. Set A WD ¹.x; y/ 2 �I x … Leb��1.B.y; r// for some r > 0º and let
us show that �.A/ D 0. For each k 2 N�, consider a countable covering
of Hn by balls .B.yki ; rk// i�1 of radius rk WD 1=.2k/. If .x; y/ 2 � and
x … Leb��1.B.y; r// then for any k � 1=r and yki such that d.yki ; y/ < rk ,
one has x 2 ��1.B.yki ; rk// n Leb��1.B.yki ; rk//. It follows that

�1.A/ �
[
k�1

[
i�1

��1.B.yki ; rk// n Leb��1.B.yki ; rk//:

The set on the right-hand side has L2nC1-measure 0. Since .�1/]� � L2nC1, it
follows that �.A/ � .�1/]�.�1.A// D 0.

7 Lower density of the transport set

We consider optimal transport plans in …1.�; �/ that are obtained as weak limit
of solutions to the variational approximations introduced in Section 5. We prove
that if � is such a transport plan then it is concentrated on a set � whose related
transport set has positive lower density at each point x 2 �1.�/ for some suitable
notion of lower density. As already mentioned, this is one of the main ingredient
in the proof of Theorem 8.1. Following the notion of transport set introduced
in e.g. [4], we define in our geometrical context the transport set related to a set
� � Hn �Hn as

T .�/ WD ¹.et ı S/.x; y/I .x; y/ 2 �; t 2 .0; 1/º:

Recall that S is a measurable selection of minimal curves and that .etıS/.x; y/ de-
notes the point at distance t d.x; y/ from x on the selected minimal curve S.x; y/
between x and y, see Subsection 3.3.

Lemma 7.1. Let � 2 ….�; �/ be obtained as a weak limit of solutions to .P"k / for
some sequence "k converging to 0. Then � is concentrated on a set � such that for
all .x; y/ 2 � such that x 6D y and all r > 0, we have

lim inf
ı#0

L2nC1.T .� \ ŒB.x; ı
2
/ � B.y; r/�/ \ B.x; ı//

L2nC1.B.x; ı//
> 0:

The proof below follows the line of the proof of the similar property in [13]. In
our context it requires however some technical refinement.
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Proof. We consider the set � obtained by Lemma 6.1, .x; y/ 2 � with x ¤ y and
r > 0. Then let y0 2 Hn and r 0 > 0 be given by Lemma 6.1 so that Lemma 6.1(i),
(ii) and (iii) hold. Using the same notations as in this lemma, we set

G WD
°
z 2 HnI

1

2
�0.x/ � �0.z/ and �.z/ � 2�.x/

±
:

ThenG is a Borel set. We have 0 < �0.x/ � �.x/ (remember the convention about
densities of absolutely continuous measure, see (6.2)). Since x 2 Leb � \ Leb �0,
see Lemma 6.1(ii) and (iii), it follows that x 2 LebG.

Fix ı > 0 such that ı < d.x; y/C r and

1

2
L2nC1.B.x; s// � L2nC1.G \ B.x; s// (7.1)

for all s 2 .0; ı/ and fix t > 0 such that 4t.d.x; y/C r/ < ı.
We set Gı WD G \ B.x; ı

2
/, Aı WD Gı � B.y

0; r 0/ and �ı WD �bAı . We shall
prove that

�0.x/

4
L2nC1

�
B
�
x;
ı

2

��
� .et ı S/]�ı.B.x; ı// (7.2)

and

.et ı S/]�ı.B.x; ı//

� 22nC4�.x/L2nC1
�
T
�
� \

h
B
�
x;
ı

2

�
� B.y; r/

i�
\ B.x; ı/

�
: (7.3)

Then (7.2) and (7.3) will yield

2�.2nC6/
�0.x/

�.x/
L2nC1

�
B
�
x;
ı

2

��

� L2nC1
�
T
�
� \

h
B
�
x;
ı

2

�
� B.y; r/

i�
\ B.x; ı/

�

for any ı > 0 small enough which completes the proof.
To prove (7.2), we note that .�1/]�ı � L2nC1 with density bounded below by

1
2
�0.x/ L2nC1-a.e. on Gı . Together with (7.1), it follows that

�0.x/

4
L2nC1

�
B
�
x;
ı

2

��
� .�1/]�ı

�
B
�
x;
ı

2

��
:

Next, by choice of ı and t , we have .et ı S/.z; w/ 2 B.x; ı/ for all z 2 B.x; ı
2
/

and w 2 B.y; r/, hence

B
�
x;
ı

2

�
� B.y0; r 0/ � B

�
x;
ı

2

�
� B.y; r/ � .et ı S/

�1.B.x; ı//
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and it follows that

.�1/]�ı

�
B
�
x;
ı

2

��
D �ı

�
B
�
x;
ı

2

�
� B.y0; r 0/

�
� .et ı S/]�ı.B.x; ı//

and this completes the proof of (7.2).
We prove now (7.3). By hypothesis, � is a weak limit of solutions �k to .P"k /

for some sequence "k converging to 0. For each fixed k 2 N, we apply Lemma 5.3
with U D Gı � Hn and Proposition 5.7 with � D .�1/].�kbU / and � D
.�2/].�kbU /. Taking into account the fact that .�1/].�kbU / D �bGı , we get
that .et ı S/].�kbGı�Hn/� L2nC1 with density in L1 and whose L1-norm is
bounded by

1

.1 � t /2nC3
k�bGıkL1 � 2

2nC4�.x/: (7.4)

Next we check that .et ıS/].�kbGı�Hn/ converges weakly to .et ıS/].�bGı�Hn/.
First it follows from Lemma 7.2 (to be proved below) that �kbGı�Hn converges
weakly to �bGı�Hn . Then, noting that � and each �k are concentrated on � and
that et ı S is continuous on �, the claim follows from Lemma 7.3 (to be proved
below) applied with � D �bGı�Hn , �k D �kbGı�Hn , B D � and f D ' ı et ıS
where ' 2 Cb.Hn/. The fact that � is concentrated on � follows from Lemma
4.1. To check that �k is concentrated on �, denote by ¹yki ºi the finite set of the
atoms of .�2/]�k . We have that �k is concentrated on Hn � ¹yki ºi . On the other
hand �k.Lyk

i
� ¹yki º/ � �k.Lyk

i
� Hn/ D �.Lyk

i
/ D 0 since � � L2nC1. It

follows that �k is concentrated on
S
i Œ.H

n nLyk
i
/�¹yki º� � �. Then, taking into

account (7.4), we getˇ̌
ˇ
Z
Hn
' d.et ı S/].�bGı�Hn/

ˇ̌
ˇ � 22nC4�.x/ k'kL1

for every ' 2 Cb.Hn/. It follows that .et ıS/].�bGı�Hn/ is in .L1/0 with density
in L1 and whose L1-norm is bounded by 22nC4�.x/. Since .et ı S/]�ı �
.et ı S/].�bGı�Hn/, the same holds true for .et ı S/]�ı . Finally we note that �ı
being concentrated on � \ ŒB.x; ı

2
/ � B.y0; r 0/� � � \ ŒB.x; ı

2
/ � B.y; r/�, the

measure .et ı S/]�ı is concentrated on T .� \ ŒB.x; ı
2
/ � B.y0; r 0/�/ � T .� \

ŒB.x; ı
2
/ � B.y; r/�/. All together we get

.et ı S/]�ı.B.x; ı//

D .et ı S/]�ı

�
T
�
� \

h
B
�
x;
ı

2

�
� B.y; r/

i�
\ B.x; ı/

�

� 22nC4�.x/L2nC1
�
T
�
� \

h
B
�
x;
ı

2

�
� B.y; r/

i�
\ B.x; ı/

�

which proves (7.3).
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Lemma 7.2. Let X be a separable and locally compact Hausdorff metric space in
which every open set is �-compact. Let .�k/k be a sequence in P .X � X/ which
converges weakly to some � 2 P .X � X/ and such that .�1/]�k D .�1/]� for
every k 2 N. Then for any Borel set G � X , the sequence .�kbG�X /k converges
weakly to �bG�X .

Proof. We have to prove that for any ' 2 Cb.X/,

lim
k!C1

Z
X�X

1lG.x/'.x; y/ d�k.x; y/ D
Z
X�X

1lG.x/'.x; y/ d�.x; y/:

It follows from Lusin’s theorem that for any " > 0 there exists a closed set F"
such that 1lGbF" is continuous and .�1/]�.X n F"/ < ". As a consequence, for
every " > 0, the restriction of .x; y/ 7! 1lG.x/'.x; y/ to F" � X is continuous
and

lim sup
k!C1

�k..X n F"/ �X/ D .�1/]�.X n F"/ < ":

Then since .x; y/ 7! j1lG.x/'.x; y/j is bounded and hence uniformly integrable
with respect to .�k/k , the claim follows from [2, Proposition 5.1.10].

Lemma 7.3. LetX be a separable metric space and .�k/k be a sequence in P .X/

which converges weakly to some � 2 P .X/. Let f W X ! R be a measurable
and bounded function which is continuous in B for some Borel set B � X such
that �k.X n B/ D 0 for every k 2 N and �.X n B/ D 0, then

lim
k!1

Z
X

fd�k D

Z
X

fd�:

Proof. Let f and Qf be respectively the lower and upper semicontinuous envelope
of f . We have f D f D Qf on B and hence � -a.e. and �k-a.e. for every k 2 N.
It follows that

Z
X

f d� D

Z
X

f d� � lim inf
k!1

Z
X

f d�k D lim inf
k!1

Z
X

f d�k

� lim sup
k!1

Z
X

fd�k D lim sup
k!1

Z
X

Qf d�k �

Z
X

Qf d� D

Z
X

f d�

which proves the claim.
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8 Solution to Monge’s problem

We prove that optimal transport plans in …1.�; �/ that are obtained as weak limit
of solutions of the variational approximations introduced in Section 5 are induced
by a transport, hence giving a solution to Monge’s transport problem as stated in
Theorem 1.1. Note that due to the fact that… is relatively compact in P .Hn�Hn/,
such optimal transport plans do exist.

Theorem 8.1. Let "k be a sequence converging to 0 and �"k a sequence of solu-
tions to .P"k / which is weakly converging to some � 2 P .Hn �Hn/. Then � is
concentrated on a �-measurable graph and hence induced by a transport.

Proof. First we know from Lemma 5.2 that � 2 …2.�; �/. From the previous
sections and using inner regularity of Borel probability measures, one can then
find �-compact sets � and � 0 such that � 0 � � � � and the conclusions of
Lemma 4.3, Lemma 6.2 and Lemma 7.1 hold. We prove here that for any x 2
�1.�

0/ there is a unique y 2 Hn such that .x; y/ 2 � 0.

By contradiction, assume that one can find x0 2 �1.� 0/ and .x0; y0/ 2 � ,
.x0; y1/ 2 � with y0 6D y1. Without loss of generality one can assume that
d.x0; y0/ � d.x0; y1/ and x0 6D y1. Then, by Lemma 6.2 and Lemma 7.1,
for all r > 0 and for all ı > 0 small enough, one can find x0 2 B.x0; ı/ \

��1.B.y0; r// \ T .� \ ŒB.x0;
ı
2
/ � B.y1; r/�/. It follows that one can find y0 2

B.y0; r/ such that .x0; y0/ 2 � and .x; y/ 2 � \ .B.x0; ı2/ � B.y1; r// such that
x 6D y, x0 6D x and x0 lie on the minimal curve between x and y. Then it follows
from Lemma 4.3 that x, x0, y and y0 lie on the same minimal curve ordered in that
way.

Assume first that d.x0; y0/ < d.x0; y1/. We know from Lemma 4.3 that
d.x; y/ � d.x; y0/. On the other hand, we have

d.x; y0/ � d.x; x0/C d.x0; y0/C d.y0; y
0/

� d.x0; y0/C
ı

2
C r

D d.x0; y1/C d.x0; y0/ � d.x0; y1/C
ı

2
C r

� d.x0; x/C d.x; y/C d.y; y1/C d.x0; y0/ � d.x0; y1/C
ı

2
C r

� d.x; y/C d.x0; y0/ � d.x0; y1/C ı C 2r:
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It follows that d.x; y0/ < d.x; y/ provided we take r > 0 and ı > 0 small enough
which gives a contradiction. If d.x0; y0/ D d.x0; y1/, we have

d.x0; y1/ � d.x0; x/C d.x; y/C d.y; y1/

D d.x0; x/C d.x; y
0/ � d.y0; y/C d.y; y1/

� d.x; y0/ � d.y0; y/C
ı

2
C r;

d.x; y0/ � d.x; x0/C d.x0; y0/C d.y0; y
0/ � d.x0; y0/C

ı

2
C r;

d.y0; y/ � d.y0; y1/ � d.y0; y
0/ � d.y1; y/ � d.y0; y1/ � 2r;

hence,

d.x0; y1/ � d.x0; y0/ � d.y0; y1/C 4r C ı:

It follows that d.x0; y1/ < d.x0; y0/ provided we take r > 0 and ı > 0 small
enough which gives also a contradiction.

9 Extension to more general metric measure spaces

First we note that a major part of intermediate steps in the strategy adopted in
the present paper can be naturally extended to Polish and non-branching geodesic
spaces equipped with a reference measure for which the Lebesgue’s differentiation
theorem holds.

Next our choice of approximating costs c" in the approximation procedure is not
the only possible one. This choice could in particular be adapted to fit other con-
texts (for instance concerning the relevant properties of solutions to the transport
problem associated to the approximating cost).

Finally the Measure Contraction Property is here technically very convenient.
We note however that this property is unnecessarily too strong for what is actu-
ally needed in the proof about the lower density of the transport set. Much local
and weaker versions about the behavior of the measure of sets transported along
minimal curves are indeed sufficient as clearly shows up from the proof.

This approach can in particular be adapted to give an alternative proof of the
existence of solutions to Monge’s transport problem in the Riemannian setting
without using Sudakov’s type arguments.

For the reasons listed above it is furthermore very likely that the present strategy
could be adapted and extended to other geodesic metric spaces.
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