UNIVERSITA
DEGLI STUDI

FIRENZE

FLORE
Repository istituzionale dell'Universita degli Studi
di Firenze

A Practical Set of Miniaturized Instruments for Vertical Profiling of
Aerosol Physical Properties

Questa ¢ la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:

A Practical Set of Miniaturized Instruments for Vertical Profiling of Aerosol Physical Properties / Telg,
Hagen; Murphy, Daniel M.; Bates, Tim S.; Johnson, James E.; Quinn, Patricia K.; Giardi, Fabio; Gao, Ru
Shan. - In: AEROSOL SCIENCE AND TECHNOLOGY. - ISSN 0278-6826. - ELETTRONICO. - 51:(2017), pp. 715-
723.[10.1080/02786826.2017.1296103]

Availability:
This version is available at: 2158/1094328 since: 2017-09-09T14:05:29Z7

Published version:
DOI: 10.1080/02786826.2017.1296103

Terms of use:
Open Access

La pubblicazione & resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per I'accesso aperto dell'Universita degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-0a-2016-1.pdf)

Publisher copyright claim:

(Article begins on next page)

16 April 2024



Taylor & Francis
T Taylor & Francis Group
AERDSOIL.
i

Aerosol Science and Technology

ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: http://www.tandfonline.com/loi/uast20

A Practical Set of Miniaturized Instruments for
Vertical Profiling of Aerosol Physical Properties

Hagen Telg, Daniel M. Murphy, Timothy S.Bates, James E. Johnson, Patricia K.
Quinn, Fabio Giardi & Ru-Shan Gao

To cite this article: Hagen Telg, Daniel M. Murphy, Timothy S.Bates, James E. Johnson, Patricia
K. Quinn, Fabio Giardi & Ru-Shan Gao (2017): A Practical Set of Miniaturized Instruments

for Vertical Profiling of Aerosol Physical Properties, Aerosol Science and Technology, DOI:
10.1080/02786826.2017.1296103

To link to this article: http://dx.doi.org/10.1080/02786826.2017.1296103

@ Accepted author version posted online: 21
Feb 2017.

\]
CJ/ Submit your article to this journal &

A
& View related articles &'

View Crossmark data &'

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=uast20

(Download by: [lowa State University] Date: 22 February 2017, At: 13:35 )



http://www.tandfonline.com/action/journalInformation?journalCode=uast20
http://www.tandfonline.com/loi/uast20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02786826.2017.1296103
http://dx.doi.org/10.1080/02786826.2017.1296103
http://www.tandfonline.com/action/authorSubmission?journalCode=uast20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uast20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02786826.2017.1296103
http://www.tandfonline.com/doi/mlt/10.1080/02786826.2017.1296103
http://crossmark.crossref.org/dialog/?doi=10.1080/02786826.2017.1296103&domain=pdf&date_stamp=2017-02-21
http://crossmark.crossref.org/dialog/?doi=10.1080/02786826.2017.1296103&domain=pdf&date_stamp=2017-02-21

ACCEPTED MANUSCRIPT

A Practical Set of Miniaturized Instruments for Vertical Profiling of Aerosol
Physical Properties
Hagen Tel§?, Daniel M. Murphy, Timothy S.Bate%?, James E. Johnsbf, Patricia K. Quinf,
Fabio Giardi, Ru-Shan G&b
aNOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80309, United
States
bCooperative Institute for Research in Environmental Sciences(CIRES) University of
Colorado, Boulder, Colorado 80309, United States
°NOAA Pacific Marine Environmental Laboratory, Seattle, Washington 98115, United
States
dJoint Institute for the Study of the Atmosphere and Ocean, University of Washington,
Seattle, WA 98195

€University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy

Abstract

In situ atmospheric aerosol measurements have been performed from a Manta unmanned
aircraft system (UAS) using recently developed miniaturized aerosol instruments. Flights were
conducted up to an altitude of 3000 m (AMSL) during spring 2015 in Ny-Alesund, Svalbard,
Norway. We use these flights to demonstrate a practical set of miniaturized instruments that can
be deployed onboard small UASs and can provide valuable information on ambient aerosol.
Measured properties include size-resolved particle number concentrations, aerosol absorption
codficient, relative humidity, and direct sun intensity. From these parameters it is possible to
derive a comprehensive set of aerosol optical properties: aerosol optical depth, single scattering
albedo, and asymmetry parameter. The combination of instruments also allows us to determine

the aerosol hygroscopicity.
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1 Introduction

Aerosols have been singled out as the atmospheric component with the largest uncertainties regard-
ing its direct and indirectféect on the earth radiative budget (Boucher et al., 2013). Ldfge®

have been undertaken to assess thé&gets on a global scale by measuring aerosol burdens using
space-based as well as ground-based remote sensing (Li et al., 2009; Kremser et al., 2016). While
data products and modeling techniques have continuously been improved (Levy et al., 2013; Xu
and Wang, 2015), limited information on vertical variability and physical properties hamper the
progress towards a more precise evaluation of aerosol direct and indirect radi&ote. e

Vertically resolved in situ aerosol properties are commonly studied in aircraft campaigns.
While providing very detailed measurements of aerosol properties, these campaigns are very costly
and for that reason are limited temporally and spatially. Aerosols in the troposphere have lifetimes
of days to weeks. Understanding their evolution requires extensive observations because aerosols
spread far from their sources yet never become well-mixed enough for a few observations to char-
acterize a global distribution of pollutants. Furthermore, aerosols continuously change both chemi-
cally and physically during their lifetimes. Frequent and globally distributed vertical profiles rather
than ground-based measurements alone are highly desired in order to understand the processes that
control aerosols and their subsequefteets on air quality and climate.

Recent progress in the development of small size unmanned aircraft systems (UAS) has cre-
ated alternative platforms for atmospheric measurements. With the prospect of conducting in situ
aerosol measurements at a fraction of the cost of that needed for traditional air campaigns various
research groups are focusing on the development of miniaturized instruments in order to match
the tight restrictions on volume, mass, and power consumption (Ramana et al., 2007; Corrigan
et al., 2008; Bates et al., 2013; de Boer et al., 2016; Murphy et al., 2016; Gao et al., 2016). These
restrictions furthermore put a value on a minimal set of aerosol instruments that can collect a

comprehensive set of aerosol properties at adequate accuracies. Based on these new instrument
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developments, Gao et al. (2015) have proposed a Global Ozone and Aerosol profiles and Aerosol
Hygroscopic Eect and Absorption optical Depth (GAAEAD) network, which will use a fleet
of small UASs equipped with fferent instrument packages for atmospheric profiling.

In this paper we present atmospheric measurements of in situ dry aerosol particle size distri-
butions for diameters between 150 and 2500 nm, in situ aerosol absorption, and changes in sun
radiance with altitude onboard a Manta UAS. These measurements were made using an instrument
package that in combination with ozone measurements is suitable for théHEM® network.

We demonstrate how this particular ensemble of instruments can be used to bound the aerosol hy-
groscopicity values, a property with particularly largéeets on optical properties of atmospheric

aerosols (Haywood et al., 1997; Twohy et al., 2009; Brock et al., 2015).

2 Methods

All measurements were conducted in spring of 2015 outside the research village of Ny-Alesund,
Svalbard, Norway. A Manta UAS was used as a platform for an aerosol instrument package that
contains five instruments: a condensation nuclei counter, a chemical filter sampler, an aerosol
absorption photometer, an optical particle spectrometer, and a sun photometer. Data from the latter
three instruments are used in this work. Here we give a brief introduction to the instruments and

theoretical methods relevant to the present study.

2.1 Manta UAV

The Manta is a fixed-wing, gasoline-fueled, medium-duration aircraft. It has a cruise speed of
~ 26 ms!, a total endurance of up to 4.5 h, and can operate in altitudes of up to 3660 m (Bates
etal., 2013). A Cloud Cap (Piccolo) autopilot navigates the aircraft between geographic waypoints

and performs the landing on the runway.
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2.2 Printed Optical Particle Spectrometer (POPS)

Dry aerosol particle size distributions with optical diameters between 150-2500 nm were mea-
sured using a Printed Optical Particle Spectrometer (POPS) (in more recent models the detection
range improved to 140-3000 nm). POPS detects and sizes particles on the single particle level
utilizing the dependence of the scattering intensity on the particles size. It uses a 405 nm laser
diode as a light source and collects light with scattering angles between 38Qaet al., 2016).
Instrument calibration was performed in a lab environment prior to the campaign with dioctyl se-
bacate (DOS) aerosols that were size selected witif@reintial mobility analyzer. In the field we
verified calibrations by conducting single point calibrations using 510 nm diameter polystyrene
latex spheres. During all flights the sampling flow rate was regulated tes3 @t payload bay
pressure and temperature, which for the data analysis was reduced to ambient conditions by multi-
plying with the ratio between absolute temperatures inside and outside the payload bay. Drying of
the sampled aerosols was a byproduct of the strofigrdnce between ambient and payload bay
temperatures of 2C. ThereforeRH values of the sample air inside the POPS instrument never
exceeded 24%. FdRH values no higher than 24% and a residence time of 0.3 s the majority of
aerosol particles likely shrunk to sizes that are smaller than their equilibrium $idd @dlues of

40% (Kerminen, 1997; Chuang, 2003).

2.3 Three-wavelength absorption photometer (BMI ABS)

Dry aerosol absorption is measured at three wavelengths, 450, 525, and 624 nm, using a filter
based absorption photometer. The instrument has two filters, a sampling and a reference filter,
which were both replaced prior to each flight (Bates et al., 2013). Reported absorptibcieois

are reduced to ambient conditions &RH values in the instrument where below 24% (see above).
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2.4 Miniature Scanning Aerosol Sun Photometer (miniSASP)

Sun and sky radiance where measured at fatedint wavelength, 460.3, 550.4, 671.2, and 860.7,
using a miniSASP (Murphy et al., 2016). To record sun intensity and sky brightness the photometer
performs a continuous almucantar scan, during which the telescofieldaatates around the
vertical axis while the telescopes are pointing at the elevation of the sun. While scanning with a
revolution time of~30 s the elevation angle is continuously corrected for the tilt of the underlying

platform, here the Manta UAS.

2.5 Temperature and relative humidity measurements

The Manta is equipped with a HC2 temperature and relative humigit}) probe from Rotronic

Instrument Corporation. Reported values have accuracie8.bfC and+0.8 %, respectively.

2.6 Mie theory

We calculate aerosol optical properties from size distributions using Mie theory as described in
Bohren and Hffman (1983). Input parameters for these calculations are particle diameter, refrac-
tive index of the material the particle is composed of, and wavelength of the scattered light. For
optical properties derived from size distributions measured with POPS the diameter is the center of
the particular diameter bin, the refractive index is that of the calibration matagigd & 1.455),

and the wavelength is, unless statef@letently, that of the green channel of miniSASP (550.4 nm).
When hygroscopic growth is applied to a size distribution the refractive index is adjusted to the
particles water content using a volume-mixing rule, where we use 1.33 for the refractive index of
water. In all calculations the imaginary part of the refractive index is set to zero consistent with

very low observed absorption déieients (see below).
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3 Results and Discussion

We performed a total of nine flights between April the 19th and May 1st over the fjord Kongsfjor-
den. In the following we will discuss in detail one of two flights where conditions (clear sky) and
performance (miniSASP was irrecoverably damaged on the fourth flight) enabled us to record data
with all three instruments, miniSASP, POPS, and BMI ABS. We recorded vertical profiles between
50 and 3000 m by following a spiral flight pattern with a radius of 1 km and a climbing rate of
0.5 ms™ (Fig. 1).

Figure 2 (a) shows a vertical profile with a 30 m resolution of the number size distribution (left)
and the total particle concentration (right) as recorded by POPS. In addition we show on the left the
center position of a normal distribution fit to each size distribution in the vertical profile (magenta
line).

Aerosol number size distributions are important when assessing numbers of potential cloud
condensation nuclei (CCN) and theffext on cloud properties. As illustrated by the magenta line
in Fig. 2 (a) the center of the accumulation mode, when present, is well inside of the detection
range and the total number of particles inside the accumulation mode can be obtained from fitting
a normal distribution to the size distribution.

In addition it is possible to derive aerosol optical properties from particle size distributions, in-
cluding the scattering cdiécient, asymmetry parameter and Angstrom exponent, using Mie theory.
Due to the nonlinear dependence of optical properties on the particle size a detailed assessment of
potential errors and biases is important.

The presence of a coarse mode with particles outside POPS'’s sizing range — diameters larger
than 2500 nm — can have a significant contribution to aerosol optical properties. Figure 3 (a) shows
the average size distribution between an altitude of 0 and 500 m measured by POPS during the
same flight discussed above. In addition we show a size distribution recorded with an aerodynamic

particle sizer (APS) during the same period of time and which was located in the Gruvebadet station
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just outside of Ny-Alesund. The size distribution recorded by the APS shows no distinct coarse
mode, however, number concentrations beyond diameters of 2500 nm are not negligible and will
resultin a bias in derived optical properties. In Fig. 3 (b) we show the calculated bin-wise scattering
codficients for both instruments. To estimate an upper limit for the scattering from the APS size
distribution we assume large particles to consist of sea salt and therefore use a refractive index of
1.53 (Ebert et al., 2002; Weinbruch et al., 2012). The ratio between scattering from particles larger
than 2500 nm and the overall scatteringfti@eent from 150 to 10000 nm is 6 %. Another potential
origin for errors is particles smaller than the lower detection limit of POPS. The small diameter end
of the calculated bin-wise scattering ¢oeent in Fig. 3 (b) illustrates the negligible contribution

of particles smaller than 150 nm to the overall scattering. This is due to the strong dependence of
the scattering cross section on the particle diameter, which is particularly pronounced for particles
in the Rayleigh regime (her¢ < A/7 = 175nm). A well known error source in experiments

and simulations that are based on light scattering is the uncertainty of the index of refraction of
ambient aerosol particles (Kassianov et al., 2015). For optical particle spectrometers with large
collection angles, like POPS, it can be shown that using the index of refraction of the calibration
material, here 1.455, in the calculations of the scatteringficoent will lead to a high bias of

up to 15 %, assuming the actual index of refraction is larger than 1.455 but no larger than 1.53.
Note, this error includes the sizing uncertainty that results from the refractive index mismatch
between aerosol particles and calibration material. We furthermore consider a low bias of 10 %
to calculated scattering cficients due to sampling losses particularly of large particles which we
estimated based on particle loss mechanisms described in Baron and Willeke (2011). Including
the precision of the POPS instrument we estimate the accuracy of scatterifigieots that are
derived from size distribution to bel7 % and+14 %. We assume that the sampled aerosol contain
spherical particles with a uniform refractive index throughout the particle and the refractive index
to be wavelength independent. Further uncertainties will occur if these assumptions are not valid.

Figure 2 (b) shows absorption aerosol optical dep®D,,s accumulated from the top of the
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flight path ceiling measured by BMI ABS. Change®i@D,,sare associated with elevated absorp-
tion codticients and are clearly correlated with elevated particle concentrations (right of Fig. 2 (a)).
Therefore AOD,ys Stays close to zero in the top 1000 m where particle concentrations are very low
and only increases when particle numbers afgsently high. Detection limit and uncertainties of
the absorption cdicient measured by the BMI ABS have previously been estimated to 0.22Mm
and+33 % (Bates et al., 2013). Here we applied an additional correction to account for the scat-
tering of particles deposited on the filter which leads to an improved uncertaiat2&96. Our
results show thahOD,,s as low as 3 10~* can be resolved.

Within each revolution of miniSASP’s telescopes one distinct peak is recorded in each of the
channels with its maximum representing the intensity of the direct sunlljghkbich can be de-

scribed by:

| = IO . e—OD-AMF , (1)

wherelg is the unattenuated intensity of the sun light at a given wavele@iithe optical depth

of the atmosphere (the combination of light scatterings by atmospheric gases and aerosol particles),
and AMF the air mass factor (the ratio of the slant column to the vertical column). Figure 2(c)
shows a vertical profiles of the logarithm lofvhich is proportional t@D - AMF. We furthermore

offset values in each channel so tlidD - AMF is approximately zero at the ceiling of the flight

path. Data in the figure is therefore represen@ig- AMF of the atmospheric layer from the top

of the vertical profile to the given altitude. Note that the chang&lrbetween two altitude levels

as measured by miniSASP are absolute even though the miniSASP was not calibrated absolutely.
Data for all four wavelengths shown in Fig. 2 (c) appear to be significantly noisier than data col-
lected when the instrument is on a fixed platform (Murphy et al., 2016). We attribute the noise to
insuficient attitude compensation during flight, in particular during rapid changes of the plane’s
roll, which changed of up to 15 degrees at frequencies larger than 0.5 Hz. Assuming all short term

variations in the peak intensities to be due to incomplete sun transitions an envelope that connects
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only the smallesDD-AMF values in Fig. 2 (c) describes the actual behavior of the direct sun inten-
sity. Starting at the top of each profi@D - AMF increases approximately linearly with decreasing
altitude until about 1100 m. Below 1100 ®D - AMF increases more drastically. Apparent from
Fig. 2(a) this altitude marks the beginning of higher particle concentrations which results in an
increased contribution 0AOD to the overallOD. Note that an elevated aerosol layerai 800

m has, despite its significant particle load, almost no impad®bn AMF. In part this is related

to a smaller diameter of the accumulation mode center, which is indicated by the magenta line in
Fig. 2 and reflected in a reduced asymmetry parameter of the elevated layer as shown in Fig. 5 a).
In addition, particles in the elevated layer are le§saed by hygroscopic growth as discussed in
more detail below. A comparison of the four wavelengths channels (four plots in Fig. 2(c)) reveals
an overall increase i@D - AMF with decreasing wavelength. This finding is consistent with the
wavelength dependence of scattering cross sections of non-absorbing molecules and particles.

In the previous paragraphs we discussed aerosol properties that are obtained by each instru-
ment independently. However, the unique combination of instruments allows us to derive more
properties.

One of these properties is the hygroscopicity of aerosol particles, which is typically measured
by running a dried and a humidified aerosol sample through two separate instruments, a practice
that is unpractical for UAS deployments. In order to estimate the aerosol hygroscopicity, we derive
from recorded size distributions and sun intensities the accumulated aerosol optical depth from the
top of the flight path as a function of altitude. The scatteringtoment is calculated from each size
distributions at the four miniISASP wavelengths using Mie theory. Accumula@i is obtained
by integrating over the scattering dhieient from the flight path ceiling to the particular altitude
and addingAOD,ps as recorded by the BMI ABS. Due to the small contribution fra@D,ps
( 2 %) we refer to thisAOD as POPS derived. From sun intensities we can retded® by
subtracting the contribution of Rayleigh scattering (Bucholtz, 1995) fronbthe AMF data and

normalizing to the airmass factor, which we simplify tosify), wherey is the solar elevation
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angle.

Figure 4 shows the resulting accumulae@D, with miniSASP and POPS derived data given
by symbols and lines, respectivelhOD values based on the as measured size distributions are
given by dashed lines. Although, the dashed lines follow the general trend of the amBient
they underestimate those by a factor of about two. This deviation can mainly be contributed to the
hygroscopic growth of aerosol particles. The larg@edence between ambient and payload bay
temperatures ensures that air sampled by POPS stays below 24 % relative humidity at all times
during the flight. TherefordOD in Fig. 4 that is related to the as-measured size distributions is
labeled as dry. Having measured dried and humidified (ambient) aerosol properties allows us to
estimate the hygroscopic growth thus the hygroscopicity of the aerosol particles. As discussed
above the scattering from aerosols is dominated by particles larger than 150 nm. This allows us
to use an expression for the growth facth/dqry that is independent of the particle diameter

(Rissler et al., 2006),

; RH
gf_\/l’LK'loo—RH ’ (2)

wherex is a measure for the particles hygroscopicity and which can vary between the two extremes
0 and 1.4 for particular organic and pure sodium chloride particles, respectively. Based on
Kohler approximation we calculate growth factors according to ambient relative humidity values
(right most plot in Fig. 4) and three fierentx values,x = 0.4, k = 0.6, andx = 0.8 (Petters

and Kreidenweis, 2007). Applying the resulting growth factors to the respective size distributions
results inAODs given by the solidq = 0.6), dotted k = 0.4), and dash-dotted lines & 0.8) in

Fig. 4. The best agreement between the two instruments is achieve when assuwaihgesof 0.6,

which agrees well with typical values measured at the Zeppelin station (Silvergren et al., 2014).
Results for the other twe values illustrate the sensitivity &OD on «. Apparently, a variation of

k by 30 % causes the calculata@Dto vary aboutr 15% (shaded area in Fig. 4). In the described

retrieval of thex value we applied a single growth factor to each size distributions which assumes
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internally mixed aerosols. In case of externally mixed aerosols the result would lfEeative
kappa value with limited meaningfulness in particular with respect to cloud condensation nuclei
activity. It has been shown that arctic haze measured at Ny-Alesund is predominantly internally
mixed (Covert and Heintzenberg, 1993; Engvall et al., 2009). In our approach we furthermore
applied only one& value to the entire vertical column. In Fig. 2 (a) we clearly séketent aerosol
layers and it is possible that hygroscopicity varies between layers (Brock et al., 2011) and one
could consider applying fferentk values to diferent layers. Figure 4 suggests that only when
ambientRH is suficiently high and the dierence between ambient and calcula#gdDs large
enough & value can be reliably estimated. Here this is only the case for the boundary layer up to
1000 m wherdRH reached up to 80%. An elevated aerosol layer 4800 m and 40 YRH does

not result in enough deviation of ambient and &®D to make conclusions on its hygroscopicity.

It is important to note that good agreement between theA@® retrievals is achieved for all
wavelength channels without any wavelength-dependent scaling factors. This result gives confi-
dence in the validity of our approach and the absence of significant numbers of large or absorbing
particles, which would decrease and increase the wavelength dependencOtihespectively.

In Fig. 5 we show further aerosol properties that can be derived from either one dataset or the
combined datasets. Considering the result on the aerosols hygroscopicity we are able to derive
those properties not only for dry but for ambient conditions, where we applied hygroscopic growth
to the size distribution using ambieRH and« = 0.6.

Figure 5 a) shows the dry and ambient asymmetry parargeter

g= %foﬂ cosp) P(0) sin@) do 3)

whereg is the scattering angle am{6) the mean scattering phase function as calculated from Mie
theory. Larger particles result in more forward scattering which is associated with an increase in
g. Thereforeg is larger for ambient conditions compared to dry conditions, which is particularly

pronounced in the more humid boundary layer up to 1000 m.
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Figure 5 b) and c) show the absorption and extinctiorftfoment, where the prior was measured
by the BMI ABS and the latter is the sum of the scatteringfitcoent calculated from measured
particle size distribution and the measured absorptioffictent. These two parameters are the
derivative of the accumulatedOD and AOD,,s as a function of altitude which we introduced
above. Together with the single scattering albedethe quotient of scattering and extinction co-
efficient — which is shown in Fig. 5 d) the absorption and extinctiorffaments illustrate variations
in aerosol absorption. Note, the enhanced variability above~ 2000 meters is the result of very
low particle concentrations and noise in the absorption measurement.

Above we demonstrate the value of a combined aerosol dataset in an arctic environment. If
deployed in a worldwide network as the proposed GBBAD concept aerosol properties can be
very different from those encountered in this study. In the following we discuss requirements and
assumptions that need to be met in order to derive the aerosol properties we introduced above.
Several of the presented measurements willftected by the atmospheric state. A UAS can only
be operated under certain weather conditions depending on the particular model. Retrievals that
contain miniSASP data like ambient extinction and aerosol hygroscopicity will only be available
in daylight and at sunny conditions or above thick clouds. Size distribution and aerosol absorption
measurements by POPS and BMI ABS, respectively, need to be conducted on dry aerosols or at
least at a known relative humidity in order to be meaningful. In some UAS configurations the
difference between ambient and payload temperature will notfieisnt to dry aerosols and an
additional drying system will be necessary. Aerosol hygroscopicity can only be retrieved when the
difference between ambient and &§Ds is large enough, which impliesféigiently high ambient
RH and high aerosol loading. Ambient temperature Riitimeasurements are needed for several
calculations. In the present study we used Mie theory to derive aerosol scatterffigieos and
phase functions from particle size distributions. These properties as well as properties that are
derived from them, like dry extinction céiecients, dryAOD, single scattering albedo, asymmetry

parameters, hygroscopicity and the correction factor applied to aerosol absorption measurements,
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will be affected if the Mie theory's assumptions of spherical and homogeneous particles is not cor-
rect. In this case it might be necessary to increase uncertainty estimates or replace Mie theory with
a more adequate model (e.g. Mishchenko et al. (1997)). The quality of the hygroscopicity retrieval
will furthermore depend on the aerosol mixing state where externally mixed aerosols will pro-
vide merely an ffective kappa value. Ground based aerosol measurements that provide additional
aerosol properties are of great value to ensure assumptions are correct and narrow uncertainty

intervals at least for the boundary layer.

4 Conclusions

In this work we have presented a set of miniaturized instruments that are capable of producing
science-quality data of aerosol physical properties. We show how a unique combination of instru-
ments including an optical particle spectrometer (POPS), a sun photometer (miniSASP), and an
absorption photometer (BMI ABS) is capable of providing a valuable set of aerosol parameters
necessary to estimate aerosol radiatiffecs. This includes properties that determine direct ra-
diative dfects — vertically resolved ambient extinction, single scattering albedo, and asymmetry
parameter — and properties that determine indiréieices — particle concentrations and aerosol
hygroscopicity. Our results show that sensitivities of all measurementsféi@est to provide re-

liable data for arctic condition and it can be assumed that signal to noise levels improve for higher
particle concentrations. Note, the retrieval of some aerosol properties will require additional mea-

surements of temperature and relative humidity.
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Figure 1: Topview (a) and 3d view (b) of flight paths plotted on a map of Kongsfjorden and the
surrounding terrain. Elevation data is taken from ASTER GDEM (ASTER GDEM is a product of

METI and NASA).
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Figure 2: (a)(left) Vertical profile of particle size distributions and (right) particle concentration

derived from size distributions recorded by POPS. (b) Accumula®@d,,s from the top of the

flight pass for the three wavelengths measured by BMI ABS. (c) Accumu@i2d AMF from

the top of the flight path measured by miniSASP. Each plot shows results for one of the four
wavelength channels.
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Figure 3: lllustration of the absence of a coarse mode and the limited contribution of particles
outside POPS’s detection range to the overall scatterinflicieat.(a) Size distributions collected

by POPS during flight (blue) and an APS instrument located in the Gruvebadet ground station (or-
ange). (b) Bin-wise scattering déieients of the two size distributions at a wavelength of 550 nm.
Note, narrow features in (a) and (b) are artifacts intrinsic to optical sizing techniques. They are
particularly pronounced in POPS measurements due to the short laser wavelength. See Gao et al.

(2016) for details.
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Figure 4: Comparison of vertical profiles B0D measured by miniSASP (symbols) and derived
from size distributions measured by POPS (lines). Subplots are results foffdrent wavelength
channels with the wavelength given in the title and the relative humidity. We assulffiexctoli
hygroscopicities for the size distribution derivA®D values, nonglry (dashes)x = 0.6 (solid),

k = 0.4 (dots), anck = 0.8 (dash-dot). Shaded areas mark the uncertainty interval for the size
distribution derivedAOD values in case of = 0.6.
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Figure 5: Vertical profiles of further aerosol properties that can be derived from measured
datasets, a) asymmetry parameter, b) absorption coefficient, c) extinction coefficient, and d)
single scattering albedo. Blue and orange lines are for dry and ambient conditions, respectively,
where the latter was considered by applying hygroscopic growth according to ambient RH and «

=0.6.
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