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Abstract 

   The management of vegetation in drainage channels represents one of the main issues for land 

reclamation authorities during spring and summer seasons. In fact, the presence of high concentrations of 

nutrients combined with a constant presence of water enhances the growth of aquatic and hygrophile 

vegetation within the riverbed and banks. On the one hand, the presence of vegetation within the flow 

section can significantly increase the bed roughness reducing the discharge capacity, therefore rising the 

risk of flood. On the other hand, drainage channels constitute a fundamental habitat within the agricultural 

environment, which needs to be preserved as important habitats for a number of animal and vegetal 

species, some of which endangered. Following a precautionary approach, channel managers use to remove 

the entire vegetation cover from the banks and from the bottom of the channel, to maximize the discharge 

capacity of the drainage network. Considering the proximity to the Massaciuccoli Natural Park, and the 

importance of the entire reclamation site for bird migration, fish and amphibia reproduction, a more 

accurate evaluation of the effective need of the vegetation removal is called for. For these reason, a 

fieldbased estimation of vegetation effects on flow conveyance was carried out, in order to estimate the 

bed roughness in presence/absence of vegetation for different vegetation covers. The objective of the work 

is to assess the effect of common reed vegetation, typically growing in drainage channels, on flow rating 

curves (i.e. in terms of reduction in discharge capacity, water level rise, roughness coefficients) and on 

velocity distribution in a given monitoring cross-section. The survey location is a straight stretch of length 

300 m, located at the end of the Bresciani drainage channel in the Versilia-Massaciuccoli reclamation 

area. To estimate the equivalent roughness coefficients for different discharges and different management 

scenarios a control of all the hydraulic variables was set up. Four different discharges were pumped into 

the channel in order to determine the rating curve for a reference section in presence/absence of vegetation. 

Topography, hydraulic and vegetation parameters were monitored along the study reach. The three 

vegetated scenario were chosen taking into account traditional management techniques and a possible 

less-impactful measure for the channel ecosystem. The tested scenarios were 1) full vegetation; 2) half 

vegetation (just on one bank); 3) total removal, as traditionally practiced. First step was the field survey 

of the experimental channel stretch, conducted by a total station. Then, vegetation measures were 

conducted. A number of vegetation parameters (stem diameters, density, height, position within the 

channel) were measured, in order to collect the data required by hydraulic models from literature. Thus, 

for each section the distribution of the natural vegetation parameters along the wetted perimeter was 

available for modelling. To simulate a flood in the study reach, four portable dewatering pumps carried 

by agricultural tractors were adopted. Each pump had a maximum discharge of 300-400 l/s. Measures 

were planned as follows. First, the channel was flooded for four hours to saturate the soil of the banks. 

For each vegetated scenario, four discharges were pumped, activating in sequence the four portable 

pumps. The transition time between one discharge and the next was monitored at the staff gages, taking 
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one hour on average. Velocity measures were carried out when the water level was stable at the three 

gaged sections. The operations were repeated three times, one for each vegetated scenario, for a total 

number of twelve velocity measures. The section located in the middle of the study reach was equipped 

with a mobile bridge for velocity measures. The flow velocities were measured by means of a USGS type 

AA current meter at seven verticals, every 15 cm of depth from the surface for discharge estimation. The 

stability of the water levels and slope were controlled during the velocity measures for each discharge. 

The rating curves for each vegetation scenario were traced. The analysis of the rating curves shows how 

reed affects the flow within the channel, rising the water levels. Differently, the removal of the vegetation 

on one bank and within the channel significantly increases the discharge capacity of the section. As 

expected, the lowest levels are found for the non vegetated scenario. The slight difference between the 

two different management techniques points out the feasibility of a decrease in terms of impact on the 

channel ecosystem. The release of a natural strip on one side of the channel resulted to be sustainable also 

from an hydraulic point of view. In order to give a numerical information to Land reclamation managers, 

we determined the equivalent roughness coefficients for each layout. Results showed how Manning’s 

roughness coefficients varied from 0.08-0.06 for the vegetated scenario, to 0.02 for the cleared scenario. 

An average roughness oh 0.03 for the half vegetated scenario suggested the sustainability of less impactful 

management practices. A methodology to directly measure the equivalent roughness coefficient in 

vegetated channels was presented. The vegetation observed within the channel was mainly composed by 

partially submerged common reed (Phragmites australis), which appeared to decrease its flow resistance 

for increasing flow velocities, reshaping the leafs. A model validation was carried for three different 

resistance models: James (2004), Nepf (2012) and Yang (2009). The input data was represented by the 

vegetation parameters collected before the hydraulic measurements. Models were run using average 

values of vegetation density and dividing the section is subareas with different characteristics. This 

research brings additional knowledge for practitioners, given that commonly used hydraulic modeling 

often does not consider variations along the cross section. The results of this work will be useful for water 

service managers to take decisions about the management of vegetation along the drainage systems of the 

area, and will be the base for upcoming research planned for the next months. 
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Introduction 

   Vegetation dynamics in natural rivers and vegetated channels represent a fundamental aspect of 

environmental hydraulics. The number of studies about the role of vegetation in flood risk management 

increased in the last years, thanks to a growing attention of academy and public authorities for the 

protection of riverine ecosystems and the species that are connected to them. The recent research followed 

different pathways, from fluid mechanics to plant physiology, passing through forestry ad river ecology.  

   If on one hand hydraulic modelling have reached a high level of accuracy, thanks to new technologies 

available for terrain surveying and numerical computation, on the other hand there are still large 

knowledge gaps in environmental hydraulics. One of the most challenging issues concerning the hydraulic 

modelling of natural bed channels and rivers is represented by the effects of the hydrodynamic interaction 

of the natural elements within the flow. These effects are particularly important for predicting flood 

hazards, as normally required in river engineering and land-use planning.  

   Operational methods for predicting the effects of in-stream and floodplain vegetation on floods and for 

assessing optimal river vegetation management strategies are still missing. A few models have been 

proposed for modelling flow-vegetation interaction in open channels, but these are restricted to academic 

studies and experiments with limited applicability in operational river management context.  

   The traditional practice in river management is to account for vegetation as an additional resistance 

factor, contributing to reduce river discharge capacity. Consequently, riparian vegetation management 

have been traditionally carried out with a precautionary approach, thus being applied with the leading 

principle of reducing as much as possible the flood hazards. This traditional management approach clashes 

with the larger attention more recently paid to the positive effects of vegetation on ecology, 

geomorphology and global environmental value of a river. 

This research study has been planned for enhancing the current knowledge about vegetation flow 

interaction, with the aim to identify possible management strategies that could balance the traditional flood 

hazard mitigation strategies with ecological perspective of the river ecosystems. The specific objectives 

were: 

- assessing the hydraulic resistance of a vegetated channel in different management conditions with 

experiments conducted in a real drainage channel; 

- assessing the impact of the vegetation on flood hazard; 

- testing the compatibility of innovative vegetation management strategies, having lower environmental 

impact, with the acceptable flood hazard; 
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- evaluating the accuracy of existing models in the estimation of roughness coefficients; 

   The first chapter is a short review of the state of the art on hydraulic vegetation resistance modelling, 

with a focus on the most recent literature, to highlight the key knowledge gaps about the effects of the 

riparian and aquatic vegetation on river hydraulics. The second chapter presents the case study and the 

experimental setup that was implemented on a real channel located in Northern Tuscany, Italy. The third 

chapter presents the results of the field experiments and the estimation of the roughness coefficients. In 

the fourth chapter, the field data are exploited for evaluating and comparing the accuracies of three models 

recently proposed for predicting the roughness coefficient in vegetated channels. The fifth chapter is a 

summary of the results, with a discussion about the applicability of this research for enhancing vegetated 

channel management.  
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1. STATE OF THE ART 

Since more than half a century scientists tried to understand flow-vegetation interaction, with the aim to 

describe the flow resistance in vegetated streams and channels. The number of different theories that were 

proposed during all these years demonstrates how complex can be this topic. As a matter of fact, riverine 

ecosystems are characterized by enormous variability in terms of morphology, dimensions, vegetation, 

discharge, which leads to a great difficulty in standardizing procedures, comparing or simply generalizing 

results retrieved from specific case studies. A partial solution of this problem was solved using flumes 

with standard, artificial vegetated elements, but again the research had to deal with the difficulties that 

have to be faced to extend the results from the laboratory scale to the field scale. Despite this, in literature 

it is possible to find a number resistance models, able to predict the flow resistance of vegetation with 

specific characteristics. In this chapter, a review of the state of the art concerning models most recently 

published is presented.  

   Vegetation resistance models are drawn from the consideration that flow resistance induced by 

vegetation is the result of the dynamic interaction of the vegetation within the flow and therefore needs to 

be modelled with an approach different from that generally adopted for describing the flow resistance 

induced by granular sediments (e.g. Raupach 1992, Huthoff 2012). Aberle & Järvelä (2013) stated that 

“energy losses due to granular sediments result from viscous drag on the bed surface and form drag due 

to small-scale roughness elements such as grains of the bed material. Energy losses due to vegetation 

elements, on the other hand, are associated with viscous and pressure drag whose proportions depend on 

plant mechanical properties, topology, age, seasonality, foliage, volumetric and areal vegetation 

porosities, vegetation density, and patchiness (e.g. Kouwen and Unny 1973, Järvelä 2002a, Righetti 2008, 

Yang and Choi 2009, Nikora 2010, Folkard 2011, Shucksmith et al. 2011). Flow in vegetated areas has 

generally been separated in nonsubmerged (i.e. emergent) and submerged conditions as the flow field 

changes considerably when the flow depth exceeds the height of vegetation (Nepf and Vivoni 2000, 

Ghisalberti and Nepf 2004, Sukhodolov and Sukhodolova 2010, Nepf 2012a, 2012b). Taking this flow 

division into account, various approaches have been proposed for the estimation of flow resistance by 

subdividing the flow field into layers representing unobstructed surface flow and flow through vegetation 

(e.g. Huthoff et al. 2007, Yang and Choi 2010, Konings et al. 2012).” In this chapter, the traditional 

approach and the state of the art of modelling the riparian and in-stream vegetation resistance are 

presented.  

1.1 The traditional approach to vegetation resistance 
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   The most common hydraulic models are characterized using bulked roughness coefficients for flow 

resistance estimation. As a matter of fact, the most common practice in river modelling is to apply standard 

roughness coefficients (i.e. Manning’s n or Gauckler-Strickler k) obtained by tables attached to the 

hydraulic manuals. Roughness tables present a number of possible cases concerning the grain size of 

sediment, the regularity of the channel, the presence of vegetation, and so on, without implying 

quantitative estimation of any parameter of the effective roughness components. One of the most known 

tables were developed by Chow (1959). 

 
Table 1.1. Roughness coefficients from the HEC RAS User’s Manual (USACE). 

 

In table 1.1 an example of roughness reference tables is provided. When choosing the roughness 

coefficients, an objective description of the study reach is hard to realize through this method. Although 

a description of different natural scenarios is provided, the choice of the right roughness coefficients 

remains strongly debatable, also about the range of variability between minimum and maximum values. 

Consequently, the riparian vegetation management results unlikely to be based on hydraulic modelling. 

In fact, a precise reference to parameters of the vegetation cover is not considered, making the 

quantification of a partial cut impossible to determine. Therefore, a great matter comes out from 

practitioners: how can we decide the best vegetation management practices for hydraulic risk, if we are 

not able to quantify the role of vegetation during a flood? 

   Since the beginning of hydraulic modelling, several authors tried to give an answer to this question. For 

instance, Cowan (1956) proposed an estimation of the global roughness, factoring the Manning’s n in six 

sub-parameters.  
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݊ = (݊଴ + ݊ଵ + ݊ଶ + ݊ଷ + ݊ସ)݉									(1.1) 

  
Table 1.2. Reference table for the Cowan (1956) roughness estimation. The vegetation description is just 

qualitative. 

   The Cowan approach proposed a fractioning of the global resistance in six components (Table 1.2), one 

of which was represented by the vegetation. Despite the method tried to separate the effect of vegetation 

from the others, the quantitative estimation of the vegetation effect was not available yet. Therefore, 

despite the method permitted to have a more accurate estimation, the values were still affected by the 

personal choice of the practitioner, and therefore debatable. 

   An improvement of the comparative method was proposed by Archement & Schneider (1989), who 

realized a volume entitled “Guide for Selecting Manning’s Roughness Coefficient for Natural Channels 

and Flood Plains”, published by United States Geological Survey and adopted by the Federal Highway 

Administration. The guide is composed by a series of photographs of natural vegetated streams, joined 

with a short description of the vegetation which help the practitioner to choose the most suitable scenario 
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and therefore the corresponding roughness coefficient. Although this method is an improvement of the 

roughness tables approach, since the designer finds more easily a reference situation to compare to his 

specific case, there are still limits in describing the real dynamics of riparian vegetation. As an example, 

seasonal variations are not taken into account, as well as the resistance variations with different flow 

levels. 

 
Figure 1.1. Example of reference pictures, from Archement & Schneider (1989). 

1.2 Modelling the vegetation  

   Despite practitioners are still finding difficulties in modelling vegetated streams, academy started 

debating many years ago about possible approaches to vegetation resistance. The studies about riparian 

and aquatic vegetation resistance are related to the development of models able to predict the velocity 

distribution across the channel section, or to determine the drag force or equivalent roughness of plants. 

To obtain this, a quantification of the vegetation flow resistance became necessary. After the proposal of 

a wide number of theories, the vegetation resistance has been divided in different families, according to 

the characteristics of the stems, the submergence ratio and the spatial scale at which it is considered. In 

particular, significant differences in the modeling approach were proposed for rigid/flexible stems, and 

for submerged/emergent vegetation. Moreover, different theories were developed according to the 

different scale of study: the blade scale, the patch scale and the reach scale.  

   The earliest studies of vegetation hydrodynamics focused on the characterization of flow resistance of 

aquatic, herbaceous flexible vegetation (e.g. Ree 1949). The first attempts of modelling have focused on 

characterizing flow resistance in channels with uniform distributions of vegetation, emphasizing the drag 

contributed at the stem and leaf scale (e.g. Kouwen & Unny 1973). In the same period, the first resistance 

models for rigid, emergent vegetation were proposed (i.e. Petryk & Bosmaijan, 1975). More recently, 

research tried to describe also the more complex behavior of flexible woody plants, such as shrubs and 
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young trees (Järvelä, 2002a, 2002b). Nowadays, the most advanced researches on the three typologies of 

riparian and in-stream vegetation are represented by Nepf (2012) for flexible, grass vegetation, Baptist et 

al. (2007) for the rigid leafless stems, and Aberle & Järvelä (2013) for the flexible leafy shrubs. In the 

next section, the three theories are presented. 

   In section 1.2.1, an overview on the theories developed for rigid, cylindrical elements is presented. Such 

approach was one of the first attempts of modeling the hydraulic resistance of floodplain forests. Despite 

its high level of approximation, its application is still feasible when studying the effect of rigid trees with 

a base crown height higher than the water level. In section 1.2.2 an evolution of the first approach is 

presented. describing the more recent models for branched and leafy flexible vegetation elements. These 

further studies shown how the rigid cylinders are not able to describe the complex turbulences which occur 

within a shrub or a tree crown. Starting from this consideration, a few authors proposed innovative theories 

to estimate the global resistance of a tree crown, moreover introducing the possible application of remote 

sensing techniques for the floodplain roughness spatialization. In section 1.2.3 the most important theories 

about the estimation of resistance of submerged grass are presented. In this case, attention must be paid to 

the estimation of bending height of the different grass species subjected to the flow drag. The topic still 

remains an open question for a number of species all over the world. 
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1.2.1 Flow resistance through rigid, emergent vegetation 

   When the vegetation is higher than the water depth, the entire vertical flow profile is influenced by the 

presence of leafs and stems. More in detail, the flow resistance through emergent, rigid stems is related to 

the drag forces that occur within the canopy. To better understand this dynamic, several studies tried to 

describe the flow within arrays of cylinders with different layouts and diameters (Petryk & Bosmajian, 

1975; Pasche & Rouvé, 1985; Baptist et al, 2007). In such conditions, the flow velocity distribution is 

often assumed to be uniform for the whole water depth (i.e. Ricardo et al., 2016). In fact the soil roughness, 

compared to the high resistance induced by the presence of the stems and leaves, results to be some orders 

of magnitude lower, and therefore considered negligible. The scale at which the flow is studied in this 

cases has been defined by Luhar & Nepf (2013) “the patch scale”.  

   Baptist et al. (2007) presented an upgrade of the Petryk & Bosmaijan (1975) theory, which is now the 

reference for modelling the flow through rigid, emergent stems. The balance of horizontal momentum in 

uniform steady flow conditions through an array of staggered rigid cylinders dictates that total shear stress 

is equal to the sum of the bed shear stress and the equivalent shear stress due to the cylinders drag, 

according to the linear superposition principle (Petryk and Bosmajian 1975, Raupach 1992, Yen 2002): 

߬	 = 	 ߬௕ 	+ 	 ߬௩ 	         (1.2) 

where τ denotes the total fluid shear stress assuming the hydraulic radius equal to the water depth h: 

߬௕ 	= 	              (1.3)			଴݃ℎ݅ߩ

τb denotes the bed shear stress: 

߬௕ = 	 ଴݃ߩ
௨మ

஼್
మ	            (1.4) 

and τv is the vegetation resistance force per unit horizontal area: 

߬௩ = ଵ
ଶ
 ଶ            (1.5)ݑℎܦ	஽݉ܥ଴ߩ		

The uniform flow velocity through emergent vegetation follows from the momentum balance and is given 

by: 

௖௕ݑ 	= ට
௛௜

ଵ ஼್
మ⁄ ା(஼ವ௠஽௛)/(ଶ௚)

            (1.6) 
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Once they determined the average flow velocity, Baptist et al. (2007) proposed to determine the Chezy 

coefficient as follows: 

The discharge per unit width is given by 

ݍ = ℎݑ௖௕         (1.7) 

Then, given the Chezy formula: 

ݍ = ℎܥ√ℎ݅          (1.8) 

And inverting it to obtain C: 

ܥ = ௤
௛√௛௜

            (1.9) 

It is possible to express C as follows: 

	ܥ = ට
ଵ

ଵ ஼್
మ⁄ ା(஼ವ௠஽௛)/(ଶ௚)

        (1.10) 

Moreover, assuming negligible the bed resistance compared to the vegetation resistance, the resistance 

coefficient can be reduced to: 

௞ܥ 	= ට ଶ௚
஼ವ௠஽௛

        (1.11) 

   Similarly, Nepf (2012) proposed the modelling of flow through a patch of just-submerged vegetation 

basing on the frontal area per volume. At the patch scale, the vegetation drag can be characterized by an 

average parameter, the frontal area per unit volume, a (e.g. Luhar et al., 2008). When the vegetation has a 

blade-like morphology, the frontal area per unit volume is a = nb, where n is the number of blades per 

unit bed area, and b is the blade width as before. The solid volume fraction occupied by the vegetation is 

therefore ϕ= at, where t is blade thickness. When the vegetation has the shape of a cylinder, the frontal 

area is obtained as a=nd, where d is the average stem diameter, while the solid volume fraction occupied 

by vegetation becomes ϕ= adπ/4.  

The average flow velocity through dense patches of emergent vegetation has been described by Luhar & 

Nepf (2013), as a function of the frontal area per unit volume, as follows: 

ݑ = 	ටଶ௚௜
஼ವ௔

             (1.12) 
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   Where CD is the drag coefficient. This law resulted to be effective for describing the flow through a 

patch that fills the channel width, so not considering lateral frictions between cross-section areas with 

different velocities. Therefore, it is reliable to apply such a model in the case of a grass-reed cover of the 

entire channel section, as it could happen in the case of absence of management in channels with constant, 

low water depths.  

Substituting u in Eq. (1.12), the Manning’s n for just-submerged or emergent vegetation is: 

݊ = ௛
మ
య	௜

భ
మ

൬ మ೒೔಴ವೌ
൰
భ
మ
              (1.13) 

Symplifying: 

݊ = ቀ஼ವ௔
ଶ
ቁ
భ
మ 		௛

మ
య	

௚
భ
మ
         (1.14) 

 
Figura 1.2. Flow resistance through rigid, emergent vegetation (Petryk & Bosmaijan, 1975). ࣎૙ represents 

the bed shear stress, further ࣎࢈. 

 
Figure 1.3. Flow velocity distribution through a patch of emergent vegetation (Vargas-Luna et al, 2014). 
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   By means of an important experimental setup, using three different vegetation types (rods, reed 

(Phragmites australis) and bulrush (Typha capensis) stems), the authors pointed out that stem’s resistance 

coefficient (F) depends on the diameter, density and drag coefficient of the stems considering also that 

but that stem diameter is a relatively insensitive parameter. The authors purposed as Chezy coefficient: 

2(1
4 (2 )

v D

m D

C g
mDh C



  

   These approaches are not so far to each other. The only difference is given by the different way to 

express the vegetation density, for which Nepf used the frontal area per volume a, while Baptist et al. 

(2007) preferred the parameter mD, which is just the explicit form to express a. Among others, Yang & 

Choi (2010) proposed an analogue formula, proposing a drag coefficient equal to 1.13, instead o the classic 

Cd=1 used for cylinders. These approaches are substantially identical, as they suppose a constant vertical 

distribution of the flow through the stems, assumed to be comparable to an array of staggered, rigid 

cylinders.  

   These models have a strong theoretical base in modelling flow through rigid stems, since the parameters 

were derived directly from laboratory measurements on cylinder arrays. As recently observed by other 

authors (i.e. Aberle & Järvelä, 2013) the natural vegetation rarely presents the features of a rigid cylinder. 

Even assuming a perfect rigidity of the stems, natural trees present branches (leafy or not according to the 

season) which have been demonstrated to have even a stronger effect in terms of drag force. Therefore, 

this approach can be used just in the case of regularly-shaped vegetative elements without branches and 

leaves.  

   In the study case of this thesis, the vegetation was composed by emergent reed (Phragmites australis). 

This plant is characterized by the presence of leaves along the whole stem but, in case of high stem density, 

the leaves in the lower half of the stem die and fall because of the shading of the upstanding canopy. Thus, 

in such conditions, the flow field through the basal part of emergent reed can be successfully described by 

these models.  

1.2.2 Flow through complex emergent elements: considering branches and leaves 

   Most of research on vegetative flow resistance was developed on the study of flow around rigid 

cylindrical elements. The drag coefficient used for vegetation was therefore supposed to be equal to the 

cylinder drag coefficient, Cd=1.  Järvelä (2004) proposed an alternative estimation of Cd, considering 
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bushes and trees with a more complex structure. For these types of vegetation, the cylinder is not accurate 

in describing the interaction between vegetative elements and flow (Aberle & Järvelä, 2013).  

1.2.2.1 Leafless rigid branched elements 

   According to the latest studies (i.e. Aberle & Järvelä, 2013) the cylinder approximation resulted to be 

not effective in describing flow-vegetation interactions, especially when the water depth exceeds the 

crown base height. A first attempt of going deeper in the question was to take into account the branches, 

schematizing the plant as a branched element composed by leafless, rigid cylinders. As a matter of fact, 

branches can contribute more to the total area and volume of floodplain vegetation than the main stem 

(e.g. Järvelä, 2002b, Wilson et al. 2006) and hence the characterization of the characteristic frontal area 

Ac based on the stem diameter cannot be considered adequate for branched leafless trees and shrubs. 

Several studies demonstrated how the frontal area of a leafless plant does not necessarily increase linearly 

with the height, as it happens for a cylinder. Moreover, the flow dynamics through an array of branches 

rarely results comparable to a single equivalent cylindrical element with the same Ac. Since a more 

accurate description of the branched plant can improve the detail in describing the frontal area interacting 

with the flow, detailed measurements of the geometrical structure of trees can be used to determine the 

characteristic area as a function of water depth providing important information for the emergent flow 

situation.  

   As observed by Aberle & Järvelä (2013) “The determination of the global drag coefficients, 

characteristic areas as well as the relevant approach velocities are hampered by the complex plant shapes, 

the plants perviousness, and the lack of approaches to adequately determine the influence of wake flow 

characteristics. Bearing in mind that the drag coefficient is directly linked with the characteristic area 

and the approach velocity, the wide range of drag coefficients reported in the scientific literature for 

complex shaped vegetation elements can, besides the influence of tree morphology, also be attributed to 

the different definitions used for the quantification of these two parameters”. Consequently, most of the 

parameter values are case-specific and may not be used elsewhere. Basing on this considerations and on 

his and other previous research, for leafless shrubs and trees Järvelä (2004) stated that a Cd=1.5 is valid 

for most practical cases for leafless shrubs, which is analogous to the typically made assumption of Cd = 

1.0 for cylinders. 

   It is then reasonable to propose as a modelling solution for the flow resistance of branched elements the 

aforementioned formulae for rigid cylinders, applying instead of the classic drag coefficient CD=1 the 

experimental average coefficient CD=1.5, taking into account also the branches in the determination of the 

characteristic frontal area. Things are getting more complicated when we consider that a) the branches 

often present a flexible behavior, different according to specie-specific features and b) the leaves can play 
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am important role in terms of flow resistance. In the next paragraph, the Leaf Area Index (Järvelä, 2004) 

approach is presented.  
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1.2.2.2 Flexible leafy and branched elements (shrubs and tree crowns) 

Compared with a non-flexible body, the drag force exerted on trees and bushes can no longer be considered 

to be proportional to the squared velocity when the flow attack is large enough to deform them (Aberle & 

Järvelä, 2013).  

   The deformation of riparian vegetation at the plant scale depends on the flexibility of the stem, branches, 

and leaves. Hence, for a description of streamlining and associated drag reduction, plant material 

characteristics such as plant material density ρp, modulus of elasticity E, second moment of area I , flexural 

rigidity EI, and a number of others must be known (Nikora 2010). Kouwen and Li (1980) were among the 

first to derive an approach to relate flexural rigidity per unit area (mEI) to deflected plant height. 

Successively, Fathi-Maghadam and Kouwen (1997) and Kouwen and Fahti-Moghadam (2000) derived a 

functional relationship between the drag coefficient, flow condition, shape, and flow-induced deformation 

of a tree. More recently, Chen et al. (2011) and Kubrak et al. (2012) introduced models to simulate the 

mechanical behavior of simplified vegetation elements exposed to flow. The model of Chen et al. (2011) 

was used by Stone et al. (2011) to investigate the bending behavior of woody riparian vegetation as a 

function of hydraulic conditions. The latter study revealed a high degree of variability in E between and 

within vegetation types (willows, cottonwood, and salt cedars). The difference between flexible and rigid 

plants has been expressed in the literature in a more general way in terms of the Vogel exponent b 

describing the deviation of the drag force - mean velocity relationship from the quadratic law (de Langre 

2008): 

 ௠ଶା௕         (1.15)ݑ~஽ܨ

A value of b = −1.0 was suggested for isolated flexible leafy trees in various wind-tunnel investigations 

(e.g. Cullen 2005, de Langre 2008), indicating a linear relationship between FD and um and hence implying 

that CDAc ∼ ݑ௠ିଵ . Similar results were reported in studies carried out in water flows (Fathi-Maghadam 

and Kouwen 1997, Armanini et al. 2005, Wilson et al. 2010). However, an a priori assumption of a linear 

model (i.e. b = −1.0) for natural plants is not justified as b depends on the flexural rigidity of the plants 

(Vogel 1994, de Langre 2008, Dittrich et al. 2012). In general, reported values of b for natural vegetation 

typically range between −0.2 and −1.2 (de Langre et al. 2012). In the next paragraphs, a formulation that 

takes into account the reconfiguration of plants is presented, as the vegetative drag coefficient is corrected 

by a factor that takes into account flow velocity and the intrinsic characteristics of leaves and stems.” 
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Figure 1.4. Stem and leaves reconfiguration with flow. Percentages are referred to the proportion of the 

frontal area in respect to the no-flow situation (data from Schoneboom, 2011). 

   Starting from the already presented assumption that the total shear stress can be considered as the sum 

of the bed shear stress and the vegetation drag force, Aberle & Järvelä (2013) proposed an alternative 

approach to estimate the effect of this second factor taking into account the effect of branches and leafs. 

Assuming that for floodplain vegetation the plants volume is commonly some order of magnitude smaller 

than the water volume, and that the vegetation basal area per bed unit area is negligible, they assume that 

the total friction factor can be split as follows: 

݂ = ݂ᇱ + ݂′′         (1.16) 

where ݂	 = 	8݃ܵℎ/ݑ௠ଶ 	denotes the Darcy–Weisbach friction factor, ݂’		 = 	8߬௕/(ݑߩ௠ଶ ) the friction factor 

related to the substrate surface and ݂’’ = ௠ଶݑ/〈௖ଶ	ݑ〉〈ܿܣ〉〈஽ܥ〉	4݉ 	the friction factor due to form drag.  

The determination of CD resulted to be a challenging issue, since a branched leafy or leafless element 

cannot be compared to any other standard form. First studies have shown that the pattern and distribution 

of trees and bushes do not have a significant effect on the friction factor, i.e. Cd should be practically 

constant for a given Re range (Fathi-Moghadam, 1996; Järvelä, 2002a). What resulted to make the 

difference is the presence/absence of branches leafs. 

   Several studies have shown that foliage contributes significantly to plants total drag (Vogel 1994, Järvelä 

2002a, James et al. 2008, Wilson et al. 2008, 2010, Västilä et al. 2011, Dittrich et al. 2012), as leaves may 

account for a large portion of the frontal area of riparian plants (up to 78% according to Armanini et al. 

2005) or of the total mass (up to 70% according to the review of de Langre 2008). Studies with foliated 

artificial and natural specimens at different scales (twigs and full-scale trees) showed that the contribution 

of foliage drag Ffol to the specimens’ total drag Ftot depends on flow velocity and involves significant 

natural variability (Armanini et al. 2005, Wilson et al. 2008, Dittrich et al. 2012, Västilä and Järvelä 2012). 

According to the observations of Aberle & Järvelä (2013), the leaves contribute more significantly to total 

drag at low velocities and their contribution gradually decreases with increasing velocity because of the 

reduction of frontal area due to reconfiguration. More in detail, Dittrich et al. (2012) associated the 

reduction of the leaves contribution with the different streamlining mechanisms of leaves and wooden 
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plant parts. They supposed that, when the leaves at a certain velocity reach the maximum streamlining, 

the drag associated with wooden parts dominant but that the contribution of the leaves to total drag remains 

constant (approximately 25%). Similar trends were found also by other authors, Västilä and Järvelä 

(2012), showing the need to distinguish foliated and defoliated conditions. 

   Quoting the review by Aberle & Järvelä (2013): “The recent studies of Schoneboom (2011), Jalonen et 

al. (2012) and Västilä et al. (2012) are a strong indicator that the one-sided leaf area AL, a commonly used 

growth property in agricultural and forestry research, represents a suitable reference measure for the 

characteristic area of foliated vegetation at both plant and reach scale. In fact, the data of Schoneboom 

(2011) and Jalonen et al. (2013) from laboratory investigations with artificial poplars arranged in 

staggered patterns with identical spacing but different stages of foliation suggest that, dividing the spatially 

averaged drag force 〈FD〉 by the spatially averaged one-sided leaf area 〈AL〉, which corresponds to the 

division of the drag force by the momentum absorbing area (Fathi-Maghadam and Kouwen 1997), the 

corresponding 〈FD〉/〈AL〉–um data collapse almost on a single line. As observed by Aberle&Järvelä (2013), 

the advantage of the one-sided leaf area is that it can be upscaled easily to the reach scale by means of the 

leaf area index (LAI).” 

   As the same authors pointed out, the essential physical properties to be considered in formulating a 

resistance equation are density of vegetation and its ability to reconfigure in a flow. Fathi-Maghadam and 

Kouwen (1997) postulated that for emergent conditions, the vegetation density is always a dominant 

parameter regardless of tree species or foliage shape and distribution. The combined effect of vegetation 

density and foliage on flow resistance can be described by the LAI, which is conventionally defined as 

the one-sided leaf area per ground area assuming that the leaves are flat with negligible thickness (Aberle 

& Järvelä, 2013). Järvelä (2004) suggested characterizing flexible leafy woody vegetation based on three 

parameters: (1) LAI; (2) a species specific drag coefficient Cdχ ; and (3) a vegetation parameter χ which 

is unique for a particular species. Järvelä (2004) proposed to determine f’’ for such vegetation in just 

submerged conditions (i.e. where the flow depth is equal to deflected plant height) as: 

݂′′ = ܫܣܮௗ௫ܥ4 ቀ
௎
௎ೣ
ቁ
௫
         (1.17) 

where uχ is used to guarantee dimensional homogeneity of the relationship and is equal to the lowest 

velocity used in determining χ. The vegetation density is considered implicitly in LAI. In order to apply 

the equation for flow situations where the flow depth is smaller than the deflected plant height, this 

formulation may be modified by taking into account the vertical structure of the plants and hence the 

vertical distribution of momentum absorbing area. Until specific data sets become available from 

hydraulic engineering studies, it may be assumed that the one sided leaf area is vertically uniformly 

distributed over the height of vegetation and thus LAI may be scaled by the ratio of the water depth h and 

deflected plant height H (e.g. Järvelä 2004): 
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݂′′ = ܫܣܮௗ௫ܥ4 ቀ
௎
௎ೣ
ቁ
௫ ௛
ு

          (1.18) 

To determine the equivalent Manning’s n, as the global roughness coefficient for a vegetated section, the 

conversion has to be conducted as follows. Note the relation between the Darcy-Weisbach friction factor 

f and the Manning’s roughness coefficient n: 

݊ = 	 ܴ
భ
లට ௙

଼௚
                         (1.19) 

Combining eq. (1.18) with eq. (1.19), and assuming that the bed shear stress is negligible: 

݊ = 	 ܴ
భ
లඨ

ସ஼೏ೣ௅஺ூቀ
ೆ
ೆೣ
ቁ
ೣ೓
ಹ

଼௚
          (1.20) 

From which, simplifying: 

݊ = 	 ඨ
஼೏ೣ௅஺ூቀ

ೆ
ೆೣ
ቁ
ೣ೓
ಹ

ଶ௚
	ܴ

భ
ల             (1.21) 

If a specific (non-linear) vertical distribution of LAI is known, Järvelä’s equation can be easily adjusted 

modifying the h/H factor with the corresponding relation. According to Aberle & Järvelä (2013), this 

approach may currently be seen as the most suitable approach for the determination of flow resistance of 

leafy floodplain vegetation for practical applications. 

1.2.3 Flexible submerged aquatic vegetation 

   The aquatic herbaceous vegetation was the first typology that has been studied, since for artificial 

channels is the most frequent to find. In projecting a drainage channel or similar hydraulic structure, the 

designer has to take into account the development of at least a grass cover on the whole wetted perimeter. 

Therefore, it has been a necessity since the beginning of hydraulic design to understand the role of such 

vegetation with different flow conditions. For conciseness, we will treat just the latest and most advanced 

theories for modeling the flexible vegetation resistance in submerged and emergent conditions. In 

particular, we will discuss the theory of Heidi Nepf and her colleagues. An interesting conceptualization 

that she introduced was the distinction of modelling at three different scales: the blade scale, the patch 

scale and the reach scale. 

   At the blade scale, modeling is focused on the description of turbulences around the single resistance 

element, and the energy losses that are occurring because of those. For our study, the blade scale is even 
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too much detailed, since this work focuses more on the macro-effects of vegetation during a flood. More 

related to the present research is the patch scale, which considers the flow through an homogeneous porous 

medium composed by a patch of submerged or emergent vegetation. The dynamics at the patch scale are 

particularly relevant when a whole part of the flow section is occupied by vegetation, and this occurs 

especially in the conditions of just-submergence or emergence of vegetation. The most common theories 

about this situation are presented in the section treating flow in emergent conditions through rigid stems. 

A focus on the dynamics occurring at the patch scale in case of submerged vegetation is introduced in this 

section. Last, the reach scale approach was developed to conceptualize the case of partial obstruction of 

the stream cross-section by means of dense vegetation patches, alternated with undisturbed flow areas, 

among which the flow velocity is several orders of magnitude different. 

1.2.3.1 Submerged meadows of flexible vegetation 

   The meadow geometry is defined by the size of the single blades and stems, and by their density per unit 

bed area. As already presented for the flow through emergent vegetation, the most important parameter 

are the number of stems per square meter and the frontal area per volume a, which can be determined as 

ܽ = ݀/∆ܵଶ, where d is the average diameter or width of the single elements and S is the average spacing. 

As it happens for shrubs, also herbaceous vegetation can present a non-homogeneous distribution of a 

along the plant height. For simplicity, for short vegetation as grass, this assumption is acceptable. 

 
Figure 1.5 a. Velocity profile through a submerged canopy of high density divided in four different layers 

(Baptist et al., 2007). 
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Figure 1.5b. Velocity distribution at a lower degrees of approximation (Baptist et al, 2007).  

   In Fig. 1.5a the flow velocity is split in four different zones. In zone 1 the bed shear stress is dominant. 

In zone 2, an almost vertically constant velocity is found, influenced by the resistance of stems and leafs. 

In this part of the profile, flow resistance is well described by the law already presented for the flow 

through emergent vegetation (eq. 1.14). In zone 3, the flow velocity profile is influenced by both the 

vegetation layer and the unobstructed flow over the canopy. Zone 4 is the unobstructed part of the profile, 

which present the common logarithmic distribution of velocities, due to the flow resistance exerted by the 

canopy top layer. In Figure 1.5b the flow velocity distribution is simplified in two main areas, one 

influenced by the canopy and one influenced by the shear stress at the canopy top layer. Note that the 

canopy height k is not constant with flow, as flexible meadows vegetation is bending according to intrinsic 

characteristics and flow velocity. For the use of the presented resistance model, the reference height of 

vegetation that should be used is the deflected plant height, which requires the additional knowledge of 

how the vegetation bends in presence of a determined flow condition (i.e Kouwen, 1988). In alternative, 

other authors proposed to determine directly the changes in terms of bed roughness, without taking into 

account changes in the shape of vegetation, but directly in terms of flow resistance (i.e. Whitehead, 1976). 

In the next paragraph a brief reference to this dynamic is exposed. 

   Darby (1999), realizing his Hydraulic Model for estimating the effect of riparian vegetation on flow 

resistance and flood potential pointed out how “Kouwen (1988) demonstrated that the significant stem 

properties are the stem density M and flexural rigidity in bending, given by J = EI, where E is the stem’s 

modulus of elasticity, and I is the stem area’s second moment of inertia. In laboratory experiments of flow 

over flexible plastic strips, where the values of M, E, and I are readily measurable, Kouwen and Li (1980) 

showed that the roughness height varies as a function of the amount of drag exerted by the flow  

݇ = 	ܪ	0.14 ൭
ቀಾಶ಺

ഓ ቁ
బ.మఱ

ு
൱
ଵ.ହଽ

       (1.22) 
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where H is the undeflected height of the strips (m); and ߬ is the local boundary shear stress (N/m2). For 

natural vegetation it is not so easy to measure M, E, and I, and just a few data is available, affected by 

noticeable heterogeneity. Instead, Kouwen and his coworkers viewed the combined effect of the product 

of M, E, and I as a single quantifiable parameter called MEI. According to Kouwen (1988), the combined 

term MEI indicates that an increase in the number of stems M per unit area has an effect similar to 

increasing the stiffness EI of individual elements. This compensating effect between stem density and 

stem stiffness was experimentally verified by Kouwen and Unny (1973), as well as by Temple (1982). 

The use of the single term MEI to reflect the overall resistance to deformation of vegetation as a result of 

a flow passing over it is, therefore, justified (Kouwen, 1988). The key aspect of successful application of 

eq. 1.22 appears to lie in the success of relating the combined parameter MEI to measurable characteristics 

of natural vegetation. This aspect has been researched by Temple (1987), who undertook laboratory 

experiments in which MEI was correlated with vegetation height H for a range of growing and dormant 

grass species  

	ܫܧܯ =  ଶ.ଷ         (1.23a)ܪ319	

	ܫܧܯ  =  ଶ.ଶ଺       (1.23b)ܪ25.4	

where (1.23a) is for green, growing grasses, and (1.23b) is for dormant or dead grass. In Temple’s 

experiments, MEI was back-calculated on the basis of flow measurements. The strong dependency of MEI 

on the height of vegetation stems appears to be due to the way in which the deflection of the vegetative 

mat under shear occurs, namely through vertical compression of the stems as they bend (Kouwen 1988).”  

   A different description of the bending behavior of submerged meadows was presented by Whitehead 

(1976), in which the roughness coefficient of flexible submerged grass was measured for different 

conditions of flow, expressed by the parameter V*R, where V average velocity and R hydraulic radius. 

The author proposed five different laws for the same number of vegetation types (Figura 1.6), expressed 

in terms of qualitative density (Low or High) and average height (Table 1.3). Whitehead’s approach omits 

the determination of the deflected height, since he propose to determine directly the corresponding 

roughness coefficients from laboratory experiments. 
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Figure 1.6. Whitehead (1976) proposal for roughness variation with flow.  

Density Average height (cm) Category 

High 

” 

” 

” 

” 

Low 

” 

” 

” 

” 

>76 

28-61 

15-25 

5-15 

<5 

>76 

28-61 

15-25 

5-15 

<5 

A 

B 

C 

D 

E 

B 

C 

D 

D 

E 

Table 1.3. Vegetation parameters for the use of the Whitehead (1976) curves. 

   Further studies on the same approach kept on describing the flexible behavior of grass bended by the 

water flow, i.e. Morgan & Rickson (1995). The authors presented how the equivalent Manning roughness 

is increasing with flow depth up to the submergence. When the water flow exceeds the plant height, thus 

in complete submergence conditions, the grass resistance falls down because of bending, and stabilizes 

again when the grass is fully deflected (Figure 1.7). 
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Figure 1.7. Flow depth-roughness relation for average-height grass (Morgan & Rickson, 1995). 
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1.3 Flow resistance at the reach scale 

   A different point of view was proposed recently by Luhar & Nepf (2013), introducing the reach scale 

approach based on the blockage factor. The base of this theory is the assumption that, in case of dense 

patches of vegetation distributed within the flow section, the flow velocity is influenced as follows. The 

flow velocity through a dense array of vegetal elements often results several orders of magnitude lower 

than the one in the unobstructed areas (Nepf, 2012). Therefore, the vegetated patches can be considered a 

sort of obstruction of cross section, in which the discharge contribution can be considered negligible, as 

completely blocked. This theory can be applied in those cases where the patches are not covering the most 

of the cross section. The model is valid both for completely submerged vegetation (where the blockage 

factor is a continuous patch at the bottom) both for distributed patches across the channel. 

 

Figure 1.8. (From Luhar & Nepf, 2013). Different schematics of vegetated patches distribution along the 
channel. The grey parts represent vegetation in panels.   
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The portion of the channel blocked by vegetated patches is called Blockage factor, ܤ௫ . The average 

velocity is determined as follows: 

ݑ = ቀ ଶ
஼∗
ቁ
భ	
మ (1− (௫ܤ

య
మ(݃݅ℎ)ି

భ
మ                      (1.24) 

A key parameter for this approach in the coefficient C*, the Drag coefficient of the patch. In fact, 

considering the vegetated patches as blocked areas, it becomes fundamental to determine which are the 

drag forces occurring at the edge of the patches, as they are considered as bulked elements. C∗ = 0.05–

0.13, based on fits to field data (Luhar & Nepf 2013). The same authors showed how the flow resistance 

in a reach with a variable number of patches N but a constant ܤ௫  flow resistance was increased at most 

20%, so that N=1 is a reasonable simplifying assumption. 

Taking into account the Chezy formula, the Manning’s n can be considered as:  

݊ = ௛
మ
య	௜

భ
మ

௨
                       (1.25) 

Substituting 1 in 2 we obtain the Manning’s n as a function of the Blockage factor: 

݊ = ௛
మ
య	௜

భ
మ

ቀ మ಴∗
ቁ
భ	
మ(ଵି஻ೣ)

య
మ(௚௛)ష

భ
మ

                 (1.26) 

Simplifying i and h we finally have: 

݊ = ቀ஼∗
ଶ
ቁ
భ	
మ (1 ି(௫ܤ−

య
మ 	௛

భ
ల

௚
భ
మ
          (1.27)   

   The blockage factor is obtained as the ratio between the patch frontal area and the whole cross section 

interested by the flow. The patch frontal area varies with velocity because of the reconfiguration of stems 

and leafs due to drag forces. The height of deflected vegetation is written as k. Assuming patches of total 

width w, and a channel of width W, the blockage factor can be determined as: 

௫ܤ = ௪௞
ௐ௛

              (1.28) 

Where  

W is the total width of the patches, k is the height of deflected vegetation, W the channel width, h the 

water depth. In the case the vegetation is covering the whole channel bottom, w=W and then:  

௫ܤ = ௞
௛
           (1.29) 
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Substituting Eq. (1.29) in (1.27) we obtain that: 

݊ = ቀ஼∗
ଶ
ቁ
భ	
మ (1 − ௞

௛
)ି

య
మ 	௛

భ
ల

௚
భ
మ
       (1.30) 

Equation (1.30) allows to determine the Manning’s n for channels where the whole wetted perimeter is 

covered by vegetation, where k<<h. 

1.4 Composite roughness calculations 

   The Manning coefficients obtained from the equations presented above must be considered as the 

measure of the total flow resistance of the channel, despite the vegetation was not homogeneously 

distributed along the wetted perimeter. Thus, the obtained values must be considered as equivalent 

roughness coefficients, as they are not describing only the resistance of the vegetated parts, but an average 

among the vegetated and non-vegetated parts of the wetted perimeter. In other words, the channel total 

roughness is comparable to the composition of different roughness coefficients distributed along the 

wetted perimeter, splitting the cross section in subareas with homogeneous sediments and vegetation 

densities. 

   In literature there are a number of different models to compute the composite roughness of a channel 

with heterogeneous resistance elements within the channel, i.e. Lotter, Horton, Pavlovskii, Colebatch and 

so on (Kelly McAtee and Leed, 2012). Here a short presentation of the most common ones is provided. 

Pavlovskii Method 

   The method was developed in 1930s by the Russian professor and engineer Pavlovskii. Its derivation 

was based on the assumption that the total channel resistance force to flow is equal to the sum of subarea 

resistance forces. The method may be used for both irregularly shaped open channels and irregularly 

shaped closed channels. The method calculates the composite Manning’s roughness coefficient for a 

compound channel using the following formula. 

݊௖ = ට∑ (௉ಿ௡ಿ
మ )ಿ

భ
௉

     (3.7) 

Where: 

nc composite Manning’s roughness coefficient; 

P wetted perimeter 
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n sub-areal Manning’s roughness coefficient 

N total number of the subareas 

Horton method 

   The Horton method was developed in the 1930s by the hydrologist Robert Horton. The Horton 

method derivation was based on the assumption that the total cross-sectional mean velocity is 

equal to each and every of the subarea cross-sectional  mean velocities. Since the assumption that 

velocities in the main channel and fllodplains are equal would be very false, tis method should 

be used carefully. 

݊௖ = ቀ∑ (௉ಿ௡ಿ
భ.ఱ)ಿ

భ
௉

ቁ
మ
య
            (3.8) 

Where: 

nc composite Manning’s roughness coefficient; 

P wetted perimeter 

n sub-areal Manning’s roughness coefficient 

N total number of the subareas 

Colebatch method 

   The Colebatch method was developed in 1940s by G.T. Colebatch. It is the same as the Horton 

method except the water cross-sectional area is used instead of wetted perimeter in the calculation 

of a composite manning’s roughness coefficient. The method is normally used for irregularly 

shaped open channels such as natural floodplains. 

݊௖ = ቀ∑ (஺ಿ௡ಿ
భ.ఱ)ಿ

భ
஺

ቁ
మ
య
      (3.9) 

Where: 

nc composite Manning’s roughness coefficient; 

A wetted perimeter 
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n sub-areal Manning’s roughness coefficient 

N total number of the subareas 

Yen method 

   Professor Ben Chie Yen proposed a number of different methods in the early 1990s, part of 

which were based on the premise that total shear velocity should be equal to a weighted sum of 

subarea shear velocities. Different weighting factors were given to the same basic equation based 

on various assumptions, regarding relationships between velocities and hydraulic radii of the 

subdivided areas. This resulted in the hydraulic radii terms being raised to different powers. Only 

the equation with the hydraulic radii terms raised to the 1/6 power is presented here. 

݊௖ =
∑ ቌುಿ೙ಿ

ೃಿ
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      (3.10) 

Where: 

nc composite Manning’s roughness coefficient; 

P wetted perimeter 

n sub-areal Manning’s roughness coefficient 

R hydraulic radius 

N total number of the subareas 

   The methods that are available are various and based on different assumptions. However, we decided to 

use just the presented ones to estimate the roughness coefficient of the vegetated sub-areas, considering 

the experimental channel cross-section as a composite section with different roughness coefficients.  

1.5 Summary 

   Reflecting the variety of different situations that are possible to be found along a natural or artificial 

stream, the academy produced models which can be also far from each other in terms of basic principles. 

The flow through vegetation can be divided into flow through submerged and emergent vegetation. Flow 
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resistance of submerged vegetation can be described by equations that are able to take into account the 

bending, the stem density as well as other vegetation physical parameters (i.e. Kouwen, 1988, Nepf, 2012, 

etc), or to choose the best roughness coefficients basing on flow parameters, as proposed by Whitehead, 

1976 and other authors. An alternative can be represented by not considering at all the flow through the 

vegetation patch, but instead to determine the blockage factor according to the reach scale approach 

proposed by Luhar & Nepf, 2013). Focusing on emergent vegetation, different pathways are available if 

considering the plants as regular, rigid elements or, differently, as flexible elements. In the first case, in 

literature a number of studies about arrays of emergent cylinders are present (i.e. Petryk & Bosmaijan, 

1975; Thompson & Robertson, 1976; Baptist et al., 2007), for which the required input parameters are 

represented by the frontal area, the drag coefficient, the stem density per unit area. These models are 

successful in describing flow resistance through leafless, branchless rigid stems, as floodplain forest of 

tall trees. When the plant characteristics are closer to the shrub form, or the water level reaches the tree 

crown, these models fails since the plants shape is not constant and not regular anymore. In this case, the 

most known proposal is represented by the Järvelä model (2004), recently validated by other authors on 

real-scale plants. This model requires the knowledge of physical parameters of plants which are not easy 

to determine, included the crown frontal area and flexibility coefficients. A strong innovation proposed 

by this model was also the use of the LAI for the determination of vegetation density. The Leaf Area Index 

offers the possibility to use remote sensing techniques, as well as spatialization techniques which enables 

to map the floodplain vegetation roughness also on wide areas (Forzieri et al. 2012).  

   Despite the large choice of possible modelling solutions, the application of the presented theories in 

practice is not yet established. Zahidi et al. (2014) pointed out that “although there is a considerable 

collection of studies done on the subject of vegetation interaction with flow through a number of 

laboratory experiments, there is still a gap in applying the information in the industry”. As a matter of 

fact, the implementation of vegetation modules on the common hydraulic modelling is still affected by 

the lack of input data. The totality of the presented studies need to be applied a number of parameters 

regarding vegetation characteristics, as well as a detailed positioning within the stream sections. Collecting 

those kinds of data requires a) specific knowledge of both hydraulic engineering and botany, as well as 

forestry, geomorphology and so on; b) environmental data collection is characterized by large time 

consumption and data processing, therefore by high costs which are not always affordable. A possible 

development of environmental hydraulic modelling is nowadays represented by the fast improvement of 

environmental surveys with remote sensing techniques, such as LiDar, TLS, Photogrammetry, Satellite 

Image Processing, etc. An additional boost to these methods was given by the outcome of Unmanned 

Aerial Vehicles, which already showed a great potential also in the field of environmental sciences. 
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2. MATERIALS AND METHODS 

2.1. Study area 

   The study area is located right outside of the Migliarino - San Rossore - Massaciuccoli Regional Park, 

a protected area that was established in 1979. It covers approximately 24’000 hectares situated along the 

coast between Viareggio (Lucca province) and Livorno province, on the north-west coast of Tuscany, 

Italy. Water plays an essential role in the Park, as the area covered with marshes, rivers, lakes and ponds 

is of about 3’000 hectares. Although it lies in the middle of a strongly urbanized area, this territory has 

maintained considerable natural features both for wetlands and coastal sites of relevant interest. 

   The Massaciuccoli area was in former times the ancient mouth of the Arno river. It was historically 

known as a marshland, part of which has been drained for cultivation and to contain the diffusion of 

malaria, the marsh fever. The lake and the drainage channels were, up to some decades ago, an important 

site for migratory bird species. Since the soil is composed by a layer of peat with a thickness of several 

meters, lying on a deep layer of sand, the first human impact was characterized by the extraction of peat 

and sand for the industry.  

   The main land use of the non-urbanized area is represented by crops as corn and wheat. An important 

high-value agricultural activity is represented by floriculture and horticulture, both of which need 

greenhouse structures. The drained soil composed by peat results to be very fertile, as the farmers often 

do not practice the traditional rotation with other species different than cereals. The forest areas are 

characterized by the presence of hygrophile species, adapted to a surface water table. A densely urbanized 

area (Viareggio city) is located along the coast nearby, so that the traditional management of the in-channel 

vegetation aims to minimize the risk of flood. Within the Versilian plain the presence of settlements and 

industrial areas is relevant. The flat territory, often below the sea level, crossed by channelized and 

rectified streams coming from the hills, represents a situation of high risk of flood. The agricultural 

drainage system, designed for cultivating purposes, has now also a role of flood prevention for the 

urbanized areas.  
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2.1.a. Location of the study area. 

 

Figure 2.1.b Location of the study area, detail of the Masaciuccoli plain.  

2.1.1 The drainage system 

   The drainage system was implemented in different periods, lastly at the beginning of the twentieth 

century, in order to maintain the water table at a level that allows the cultivation of cereals, and for peat 

extraction. A first reclamation system was realized in the XVth century, without completely solving the 
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problems of malaria and accessibility of this portion of territory. A dense network of channels drains the 

fields, which are in part located below the sea level. The high dunes, combined with the subsidence of the 

peat fields located backwards, are the main reason of the problem of ponding and flooding of the Versilian 

area.  

   The first reclamation works in medieval times aimed at cutting the dune system to open drainage 

channels connecting the fields to the sea. These works did not reach the target completely since the 

beginning of the last century, when mobile gates were installed at the mouths of the main emissary 

streams. In fact, the birth of the first official Reclamation Consortiums was during the Twenties, after the 

First World War. 

   The basal structure of the modern reclamation system of the area was the building of levees along the 

main streams coming from the hills, hydraulically separating the uphill waters from the waters of the flat, 

subsided areas. These territories were then drained by channels (one of which is the experimental site of 

this thesis) that are collecting rain and infiltration waters to lifting pumping stations, located at the dykes 

of the main streams. The drainage waters are thus lifted above the sea level and discharged within the 

diked streams to flow to the sea. In other works, were the ground level was not high enough to move the 

water to the sea, an artificial lifting system needed to be implemented to drain the fields. 

2.1.2 Vegetation and fauna 

   The area is chracterized by the presence of typical marsh species, such as Pragmithes australis, 

Nynphaea spp., Lemna minor, Ceratophyllum demersum, Lemna gibba, Osmunda regalis, Typha 

latipholia, Thypa angustifolia, Iris pseudoacorus. The wetlands of the park are the wider extension of 

Cladium mariscus in Italy, while their value is even increased by the presence of wide area with Sphagnum 

spp. The environmental value of the Massaciuccoli area noticeably diminished because of water 

eutrophization, a problem not solved yet which caused the disappearance of a number of water bird for 

whose the area was famous, and a vegetation alteration. 

   Within the park and in the neighboring areas are present Circus aeruginosus L., Ardea cynerea L., Ardea 

alba L., Bubulcus ibis L., Egretta garzetta L., Gallinago gallinago L., Fulica L., Anas platyrhynchos L, 

Cettia cetti T., Acrocephalus scirpaceus, Acrocephalus arundinaceus, Chlidonias leucopterus (logo of the 

park) and many others. It is noticeable to point out that many of these species are connected at least for a 

part of their life to the presence of vegetation along the water reservoirs and channels. The presence of 

mallard, which is hunted at the borders of the Park, and other bird species reproducing in this area raised 

attention on the environmental and ecological impact of vegetation management. 
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   The waters of the lake and the connected channels are populated both by autoctone and alloctone species. 

Here a list of the most common species: Tinca tinca, Cyprinu carpio, Carassius carassius, Micropterus 

salmoides, Perca fluviatilis, Esox lucius, Anguilla anguilla, Gambusia holbrooki, different species of 

Mugilidae, Ictalurus melas (an alloctone specie which at the moment results the prevalent in the 

Massaciuccoli lake), and others. In the 1990s, the introduction of Lousiana crawfish (Procambarus clarkii) 

impacted the balance of the fish communities, as well documented by the research of prof. Francesca 

Gherardi. Nowadays the specie seems to partially limited by the predating activity of a number of 

predatory birds.  

2.1.3 The traditional vegetation management 

   The management of the drainage channels network has been practiced historically by the Reclamation 

Consortium, as it represents an issue of the whole community of farmers and landowners included in the 

area. From a rational point of view, the drainage network had to be designed in order to subtract the least 

land as possible to the agricultural activities. Moreover, since the construction of the drainage network 

was a cost, the traditional approach has been traditionally oriented to realizing the channels the narrowest 

possible for a given discharge capacity. As a consequence, the channel design was realized taking into 

account the bare soil as the bed surface, minimizing the flow resistance and so maximizing the discharge 

capacity for a given cross section. Therefore, the drainage network has been designed historically 

considering a Manning roughness coefficient of 0.02-0.03, assuming bare soil at the banks and the channel 

bottom. The result of this designing approach is that the growth of natural vegetation within the streams 

is seen as a problem to solve, as it modifies the hydraulic design conditions.  

   The most common practice for channels management is the removal of the entire vegetation canopy 

from the whole cross section. The cut is conducted at least twice per year on the banks: a first cut in June 

and a second in October, by means of an agricultural mulcher (see Fig.2.2). Every second year, according 

to the vegetation growth, the cut is executed also within the channel by an excavator equipped with a weed 

cutting bucket, able to cut the vegetation under the water surface (see Fig. 2.3). In particular, the 

intervention with this kind of device is oriented to the removal of the reed roots, that are growing within 

the mud at the channel bottom, while the plants growing on the banks are just cut at the ground level. The 

bucket cuts the reeds in the channel at the roots, and removes a part of the mud, restoring the original cross 

section. With this intervention, the growth of the reeds in the central part of the channel is usually very 

slow, so that the cut is not practiced with the same frequency of the banks. At the banks, the roots are not 

removed, since the cut is practiced at the ground level. The common practice, carried on twice per year 

along the whole drainage network, is to cut just the emergent part of the reeds growing from the banks, 

by means of mulchers carried by agricultural tractors. These machines are not able to cut under water, so 
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that the reeds that are growing from the submerged part of the bank are just cut above the water surface, 

while the submerged part of the stem stays untouched.   
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Figure 2.2. Mulching of the vegetation on the banks. The device is not able to work below the water surface. 

 

Figure 2.3. Detail of the cutting bucket mounted on excavator. The device works also under water 

and is able to cut the roots within the mud.  
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   As a matter of fact, the vegetation management resulted to be strongly impactful for the animal 

communities which are living part or the entire life cycle in the reed vegetation. Their habitat is destroyed 

periodically, in some cases even during the reproduction season. The justification of this practice is given 

by the need to maintain the design discharge capacity of the channels, to prevent flooding. In the next 

chapter the materials and methods of the research that we conducted to estimate at the real scale the effect 

of reed are presented. 

2.1.4 The Bresciani channel 

   The survey location is a straight stretch of length 300 m, located at the end of the Bresciani drainage 

channel (Upstream border N 43.884181, E 10.286261; Downstream border N 43.886163, E 10.284005) in the Versilia-

Massaciuccoli reclamation area, Bonifica di Ponente section. The Bresciani main channel has a total length 

of 2790 m, draining a catchment of 55.4 hectares, and is part of the Sinistra Sassaia drainage system. It 

starts draining the fields on the left bank of the Gora di Stiava stream, then it underpasses this stream , 

flowing straight for 900 m. Its mouth is located at the end of this straight stretch, within the Brentino 

Channel, which flows to the pumping station at the Sassaia stream. The cross section at the study site has 

a trapezoidal shape, with quasi-vertical banks, a bankfull width of 5.3 m and a depth of 1 m. The bed slope 

is approximately constant and equal to 0.0004. The bed material is composed by peat. The stretch was 

chosen because of its regular shape and slope, and for the regular distribution of the vegetation along the 

whole reach. In figure 2.2 (Casarosa et al, 2006) the whole Bresciani reach is presented. The experimental 

site is located downstream the bridge.  
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Figura 2.4 (Adapted from Casarosa et al, 2006). Bresciani channel with the 25 years return time discharge 
in design conditions. The bed slope resulted to be homogeneous, allowing the instauration uniform flow 

condition. 

   The Bresciani channel is located below the sea level, thus below the level of the streams that are flowing 

to the coast. Therefore, the water coming from this channel need to be lifted up to the stream connected 

to the sea to be taken away from the reclamation area. To do this, at the end of the drainage network, more 

precisely 1116 m downstream the experimental stretch, a water lifting station was built in the twenties. 

The lifting station is dimensioned to be able to pump the discharge of the connected drainage network in 

case of flood, and is composed by 3 pumps. To maintain the water table below the level that is necessary 

for cultivation, one of the pumps, with a discharge capacity of 0.6 m3/s, automatically starts when the 

water exceeds a determined threshold. The additional pumps are manually activated in case of emergency. 

   The channel vegetation is mainly composed by common reed (Phragmites australis) with a slight 

presence of Iris pseudoacorus. Reeds are growing homogeneously both on the riverbanks and within the 

channel. The stem density is higher on the banks, because at the channel bottom the periodic reshaping of 

the cross section, which every second year needs an intervention with excavators to remove the peat that 

is falling from the banks within the main channel. The continuous income of ground within the channels 

was already pointed out during the last update of the reclamation system in 2006 by Casarosa et al. (2006). 

The authors pointed out that this phenomena is due to the intrinsic characteristics of the ground, which 

has scarce cohesion, but also to the impact of the agricultural machines which moves too close to the 

channel banks.  

2.2 Field surveys 

2.2.1 Topographic surveys 

   A detailed survey of the channel morphology was carried out to collect information about the regularity 

of the cross sections and of the channel slope. In collaboration with the topographer of the Toscana Nord 

Reclamation Office 10 cross section were surveyed from the mobile pumps inlet point and the water lifting 

station at the end of the whole Sinistra Sassaia drainage network. Survey were carried out using a Trimble 

topographic total station with integrated GNSS system (Fig. 3.1). The total station was georeferenced 

using fixed target points located in the surroundings, with a sub-centimetric precision rate.  



41 
 

 

Figure 2.5. Topographic survey be means of the Trimble total station. 

   Because of the constant presence of water within the stream and the absence of a consistent sediment at 

the bottom, the channel bed level was initially hard to determine. After various attempts, the best solution 

was found using an iron rectangular plate (30x30 cm) at the foot of the topographic target rod.  

   To have an additional confirmation of the validity of the surveys carried out with this methodology, the 

experimental stretch of 300 m was closed upstream and downstream by means of ground clogs, and totally 

dried before the survey. This operation was also functional to the measures aimed at characterizing the 

vegetation.  

2.2.2 Vegetation surveys 

   The vegetation survey was fundamental to describe the characteristics of the roughness elements within 

the channel. The measurements were conducted at the three cross sections previously surveyed with the 

total station and gauged with the staff gages, the day before the hydraulic measures. Moreover, the 

measures were conducted three times during the growth season on six control plots, at a distance of 20 

days one from the other. The 1x1 plots were signed with iron pickets in order to return exactly at the same 

point. The aim of these last surveys, conducted during the 2015 vegetative season, was to describe the 

evolution of the vegetative parameters during the growing season, to check if such a monitoring could 

bring useful information in determining the optimal cutting season. 

   The aim of the survey was to collect the data that were found to be related with the flow resistance of 

vegetation (see the State of the Art chapter), in particular the average diameter of the stems, the number 

of stems/m2, the average height, the maximum height of the plants. The diameter of the stems was 
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measured by means of a high precision iron caliper, while the plant height by mean of a metric rod. The 

number of stems in each plot was manually counted.  

 

Figure 2.6. Vegetation survey in plots 1x1 m. 

 

Figure 2.7 Example of plot along the experimental reach. 

   At each surveyed cross section, starting from one bank, the aforementioned parameters were measured 

within a square of 1 m2, that was moved from one bank to the other, without overlays or gaps. Thus, a 

continuous strip of width 1 m, oriented in parallel to each cross section and split in sections of 1x1m was 

surveyed to describe the horizontal distribution of the vegetation along each cross section. To correctly 

position the surveyed strip with the section, the squares located at the banks were georeferenced and 
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reported in planimetry with the channel. In this way, the vegetation distribution was georeferenced and 

positioned correctly within each cross section. 

   A detailed species classification was not conducted, as the dominant specie was the common reed, 

Phragmites australis, which basically formed a mono-specific canopy along the whole channel. An 

exception was represented by sparse groups of Iris pseudacorus, which are considered negligible 

compared to the Phragmites at the reach scale.  

2.2.3 Airborne data acquisition 

   An interesting opportunity in environmental research is emerging in the last years from the use of UAV 

- Unmanned Aerial Vehicles. The availability of compact high-resolution digital cameras mounted on a 

drone allowed to capture detailed images of the survey area. Aerial Imagery was collected along the whole 

experimental reach using two different digital camera: RGB Sony WX 18.3 MP and Near Infrared Camera 

Canon S110 NIR 12 MP attached to the Fixed-Wing UAV eBee Ag SenseFly. (Figure 2.8). Twelve 

Ground control points (GCPs) were positioned the site before image acquisition. GCPs were surveyed 

using a total station and were important for the subsequent georeferencing of the imagery.  

 

Figure 2.8. eBee drone used for the flights. 

   The flights were conducted before and after the cut of vegetation covering the enire experimental reach. 

The elaboration of RGB imagery allowed the production of high-definition ortophotos. By means of the 

SFM (Structure From Motion) procedure, the point clouds before and after the removal of vegetation were 

realized. The elaboration of the point clouds allowed the creation of the Digital Surface Model (the surface 
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of vegetation) and the Digital Terrain Model (the bare ground morphology). Subtracting the DTM from 

DSM it was possible to determine the volume of vegetation along the reach, with a pixel of 5x5 cm at the 

ground.  

   The NIR imagery allowed to capture the NDVI index distribution along the channel. This parameter was 

found to be related to a number of vegetation density indexes, one of which is the LAI – Leaf Area Index. 

The LAI was used by Jarvela (i.e. 2002a) as the most important input parameter in determining the flow 

resistance in vegetated floodplains. Future developments of this work will regard the extraction of a LAI 

map for the experimental channel, and the application of such models to the case study.  

2.2.4 The experimental setup 

   The main question for the Reclamation managers was the estimation of the effects of the natural 

vegetation at its maximum growth rate. As a matter of fact, the managers still do not know the quantitative 

effect of channel vegetation in terms of roughness, thus they apply a conservative approach removing 

from the channel every possible resistance element. Therefore, the hydraulic measures aimed at 

determining the quantitative differences between a channel in condition of full vegetation development, 

and the same channel after an ordinary management cut. For instance, the cut that is traditionally practiced 

along the drainage channels aims at removing the entire vegetation. Thus, the two scenarios were 

established in the two cases: first and after the cut of the entire channel. However, we found these two 

scenarios as the extremes of a situation that could be solved with an intermediate proposal. Thus, we 

proposed to test an alternative, less impactful management technique, aimed at satisfying both 

environmental and hydraulic requirements. In detail, we proposed to cut the vegetation on one bank and 

along the whole channel bottom, saving a buffer of undisturbed canopy covering the entire other bank. 

This solution was unknown by the managers, as its efficacy in terms of discharge capacity and flow 

resistance were never tested before. We found of interest to test this alternative solution as it could 

represent a positive innovation for the whole area.  

   The first hydraulic survey was conducted on vegetation at its maximum development. Then, the first 

partial cut was conducted by means of an agricultural mulcher and an excavator equipped with a cutting 

bucket. The mulcher removed the entire emergent canopy from the left bank along the entire experimental 

segment. Then, the excavator refined the work, removing the submerged stems from the left bank and 

from the channel bottom. The canopy along the right bank, from the emergent top to the submerged toe, 

was left untouched, as the aim of this approach was to leave a buffer for animal refuge and nesting. 
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Figure 2.9. Full vegetated scenario.  
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Figure 2.10. Half vegetated scenario. 

 

Figure 2.11. Non-vegetated scenario.   



47 
 

 

Then, the hydraulic measures were carried out for the half vegetated scenario. The last hydraulic measure 

focused on the totally cleared scenario. Thus, the vegetation on the right bank was removed with the same 

equipment mentioned for the partial cut. Last, the velocity and water level measures were carried out for 

the cleared scenario, as reference situation for the determination of the bed roughness. 

2.2.4.1 The pumping system for artificial discharges 

   To describe the effect of vegetation on flow the measures for just one discharge were not sufficient. 

According to what already presented in the state of the art, the flow interaction of flexible vegetation is 

not constant for different hydraulic conditions, as the plants reconfiguration brings variation in the flow 

resistance due to the plants drag forces. As a matter of fact, the description of the effect of channel 

vegetation on flood risk required to measure the hydraulic parameters of the flow during a condition of 

high discharge. Therefore, we decided to implement a system able to pump into the experimental channel 

different discharges, up the bankfull condition. Thus, to analyze the behavior of the plants for different 

hydraulic conditions, we decided to trace the flow-rate curves for different vegetated scenarios. For each 

scenario, four discharges were pumped gradually increasing up to reach the bankfull condition. 

   The water was taken from the Gora di Stiava channel, an embanked stream coming from the hills and 

flowing directly to the sea (Fig.. 2.12). This stream is flowing about 1 m above the ground level, contained 

by dikes made of earth. The drainage system, part of which is represented by the Bresciani channel, is 

therefore about 2 m below. At one point of its course (Coordinates 43.880134 N, 10.291507 E), 440 m 

upstream the experimental stretch, the Bresciani channel is flowing under the Gora di Stiava, through a 

culvert made of concrete. This point was chosen as the best site to take the water from the Gora di Stiava, 

to pump it into the Bresciani channel. Despite the water was located higher than its destination, pumps 

were needed to lift the water over the levee.  

   The pumping station was composed of four mobile lifting pumps carried by agricultural four-wheel 

tractors (60 to 85 hp). The pumps were located at the top of the levee of the Gora di Stiava. Attached to 

each pump outlet, a rubber pipe of length 5 m was carrying the water down to the Bresciani channel. The 

lifting pumps were powered by the tractor engines. It was not possible to directly measure the discharge 

at the pump outlet, as the discharges were too high to be estimated by common water meters. More 

precisely, every pump had a maximum discharge capacity of 0.3-0.4 m3/s. A constant rpm regime for each 

machine was set, while the four tractors were started one after the other, thus pumping four different 

increasing discharges.  

   The choice of not measuring the water discharges at the pumps outlet was also motivated by the high 

distance between the inlet of the artificial discharge and the experimental stretch, and the possible 
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consequent water losses. In fact, the 440 m long channel segment located between the pumps and the 

experimental site was characterized by permeable banks, moreover interrupted several times by secondary 

drainage canals, along which a part of the discharge could be lost.  

 

Figure 2.12. Aerial view of the study area. The upstream and downstream pumping station are located in 
correspondence of the confluence with the two higher channels delimiting the reclamation area. The 

experimental reach is colored in red. 

   By means of a mobile iron floodgate, the Bresciani channel was clogged at the outlet of the culvert 

through which it passes below the Gora di Stiava. The floodgate was necessary to hydraulically isolate the 

upstream part, located at the left side of the Gora di Stiava stream, from the downstream part, at the right 

of the same stream. With this layout, a rise in the water level in the downstream part have not lost water 

flowing backwards in the upstream part. As a matter of fact, given the low slope gradients in the Bresciani 

channel, this problem could have occurred. Moreover, isolating the upstream part, the only discharge 

getting to the experimental stretch was composed by pumped water, without perturbations from upstream. 

It has to be noticed that the closing time of the Bresciani channel was limited by the necessity to drain the 

water coming from upstream. Therefore, it was possible to keep the floodgate closed just for 7-8 hours 

per day. Anyway, this time was sufficient for tracing a rating curve of four discharges. The installation 

and the fixing of the floodgate was made by an excavator. The same excavator was left in position in order 

to keep the floodgate blocked against the culvert. The four rubber pipes coming from the pumps were 

pointed at the bucket of the excavator, to dissipate a part of the water energy. In this way, the water coming 

out from the pipes was not eroding the channel bottom.  
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Figure 2.13. Mobile pumping devices were taking water from a higher channel to be pumped in the 
experimental reach. 

 

Figure 2.14. Introducing artificial discharges upstream the monitored reach. The bucket was placed to avoid 
the bottom erosion and to fix in position the floodgate closing the culvert, connected with an upstream part 

of the same channel. 

2.2.4.2 Velocity measures 
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   To describe in detail the velocity distribution along the channel cross section a grid of survey points 

distributed along the whole flow section was set-up. An iron footbridge was positioned at the middle cross 

section by means of an excavator, taking care of not to modify the cross section shape of the channel and 

not to occupy the water flow section. The velocity measures were carried out at the middle cross section 

of the experimental reach, by means of a USGS Type AA Current meter. The data was received and 

displayed by an AquaCount 5100 reader, and then manually transcribed on paper blocks. In the appendix 

attached to this chapter a detailed technical information of the used tools is provided. The velocity was 

measured at seven verticals, each 15 cm of depth. Three centimeters below the water surface and 10 cm 

from the bottom two additional points were measured for each vertical. With this approach, the grid was 

not regular, but it was better describing the whole flow field. Each velocity measure took 30 seconds of 

registration time, as the recorded value was an average value on 30 s of measuring. Given a not regular 

depth of the cross section, for each vertical 2-8 measure point were recorded. Therefore, according to the 

water depth, and the necessary number of survey points, the velocity survey took about 20-30 minutes for 

each measure. The verticals were monitored starting from the right bank. For each vertical, a measure just 

below the water surface was taken, moving then deeper of 15 cm each step. Once at the bottom, a measure 

10 cm from the bottom was taken. The current meter position was determined as a reference to the staff 

gage head, which has been leveled during the topographic surveys. The velocity measures were hampered 

by the high turbidity of the water, that was hiding the current meter already at 15 cm of depth. In Appendix 

2.b the distributions of the velocity measures for each discharge are presented. 

 

Figure 2.14. Flow velocity measures by means of the USGS Type AA current meter. 

   In order to monitor the stability of the hydraulic conditions during the time of survey, the water level 

was measured continuously at three sections. The aim of the water level monitoring was to assess the 
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stability of the flow conditions and to monitor the flow variation between one discharge condition and the 

following one. Three staff gages were positioned at three cross sections previously recognized during the 

topographic survey. The elevation of each staff head was recorded, in order to rebuild the water surface 

profile for each discharge and each scenario. The staff gages were located 145 m upstream, at the velocity 

measuring station and 85 m downstream. The water levels were monitored by three people, each of one 

was recording the level each 3 minutes. The velocity measures were starting after 10 minutes of stability 

observed at the three gages. The time required to stabilize the water level between one discharge and the 

following was not constant, and varied for the same discharges for the different vegetation scenarios. 

Given 3 vegetated scenarios, and four discharges per each, a total number of 12 discharges were surveyed. 

 

Figure 2.15. Staff gage positioned at one of the monitoring sections along the experimental channel. 
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3. RESULTS 

   In this chapter the results of the July 2016 survey are reported. The chapter is organized in 4 sections: 

vegetation parameters, velocity distributions, discharge estimations, , and roughness estimation.  

3.1 Vegetation parameters 

   The vegetation surveys took place in two different vegetative seasons, aiming at different scopes. The 

first field campaign was conducted in late spring of 2015, with the aim of describing the vegetation 

development over the course of a vegetative season. The second survey, carried out a few days before the 

hydraulic measures in 2016, was more detailed and focused on the distribution of the vegetation 

parameters along the channel and across the cross sections. 

   As usual, the reed vegetation has been cut in October 2014, that corresponded to the second intervention 

of that year. Therefore, at the beginning of the dormant season the channel resulted totally cleared. The 

reed get through the winter naturally losing the whole aerial parts (stems and leaves), which naturally die 

and rot. The subterranean part, composed by rhizomes and roots, survives and produces new sprouts after 

the coldest season. In the Massaciuccoli area, the new vegetation starts to grow in march, and continue 

developing up to the summer, when the flowering states the end of the growing season. The first cut of 

the year is practiced in June-July, when the development is supposed to be at the maximum.  
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3.1.1 Monitoring the vegetation evolution 

   The survey conducted in 2015 aimed at measuring the growth rate during the season, focusing on the 

parameters related to vegetation resistance. Three surveys were conducted at the same six plots, 

homogeneously distributed along the experimental channel. More precisely, the plots were positioned in 

front of each other, at three cross sections, at the emergent part of the bank. Each plot was delimited by a 

wooden rectangle of size 0.7x1 m, fixed at the ground by means of iron pickets, in order to delimit a 

precise plot within which to repeat the measures after time.  

   The first survey was carried out in late April, when the reed already started to grow, while the third at 

the end of June, right before that the management cut was practiced, as usual every year. The last survey 

was conducted at the beginning of June, when the plants were still in the growth phase, but the cut was 

scheduled.  

 

Figure 3.1. Average height evolution during the 2015 vegetative season. 

 

Figure 3.2. Average stem density during the 2015 vegetative season. 
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Figure 3.3. Average stem diameter during the 2015 vegetative season. 

 

Figure 3.4. Average frontal area per volume (Nepf, 2012) during the 2015 vegetative season. 

   Results showed that the reed vegetation constantly increased in diameter and height, while the stem 

density trend decreased towards the full development season. In other words, the reed tended to select the 

best stems, while the smaller were succumbing because of competition for light. In terms of flow 

resistance, the parameter “frontal area per volume” initially decreased because of the reduction of the stem 

density, but changed in trend when the stem diameter increase more than balanced the loss of stems due 

to competition. Therefore, it is reasonable to assess that the increasing trend would have continued until 

the flowering season, when the plant growth normally stops.  

3.1.2 Describing the vegetation distribution  
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The survey conducted in 2016 aimed at describe the vegetation distribution along the channel and the 

monitoring cross-sections. More precisely, the collection of the most important parameters influencing 

the flow resistance was carried out, in order to obtain the input data for the latest models of vegetation 

resistance. Each cross section was split in six subareas of width equal to 1 m. For each plot the parameters 

“number of stems”, “maximum height”, “average height”, “average diameter” were collected. Results are 

presented in Tables 3.1 - 3.4. 

Tab. 3.1 - Upstream section 
Sub-area [1m2] 1 2 3 4 5 6 
plants/m2 130 70 0 0 28 71 
max height [m] 2.1 2.0 0 0 1.6 1.8 
average height [m] 1.9 1.8 0 0 1.4 1.7 
average diameter [mm] 5.8 5.8 0 0 4.0 3.5 

 

Tab. 3.2 - Middle section 
Sub-area 1 2 3 4 5 6 
plants 105 25 3 45 129 40 
max height [m] 1.6 1.5 2.3 2.3 1.9 2 
average height [m] 1.3 1.3 2 2 1.4 1.4 
average diameter [mm] 3.3 6.3 5.0 6.7 3.2 3.3 

 

Tab. 3.3 - Footbridge section 
Sub-area 1 2 3 4 5 6 
plants 150 120 18 47 40 40 
max height [m] 1.3 1.9 2.2 2.3 2.5 1.3 
average height [m] 1.1 1.7 1.9 2 2.1 1 
average diameter [mm] 2.5 2.0 6.7 3.7 5.4 3.0 

 

Tab. 3.4 - Downstream section 
Sub-area 1 2 3 4 5 6 
plants/m2 90 105 52 17 25 52 
max height [m] 1.5 2.0 2.0 2.2 2.3 1.8 
average height [m] 1.0 1.9 1.9 2.0 2.0 1.5 
average diameter [mm] 3.9 5.4 4.5 4.0 6.0 5.3 

Table 3.1-3.4. Distribution of the vegetation parameters in the four sampling sections. 

These data were used to calculate an average distribution for each subsection of the channel. In other 

words, the surveys at the four section were averaged to obtain an average distribution of the vegetation 

parameters along the experimental reach. As a matter of fact, the roughness values obtained with the 

hydraulic measures must be compared with the average of the ones calculated for each cross section. A 

synthesis of the observed data is presented in the Tables 3.5-3.6: 
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Tab 3.5 - Average stem density [stems/m2] 
sect/subsect 1 2 3 4 5 6 
Upstream 130 70 0 0 28 71 
Middle 105 25 3 45 129 40 
Footbridge 150 120 18 47 40 40 
Downstream 90 105 52 17 25 52 
Average 119 80 18 27 56 

 

Tab 3.6 - Average diameter [mm] 
sect/subsect 1 2 3 4 5 6 
Upstream 5.8 5.8 0.0 0.0 4.0 3.5 
Middle 3.25 6.30 5.00 6.67 3.15 3.25 
Footbridge 2.5 2.0 6.7 3.7 5.4 3.0 
Downstream 3.9 5.4 4.5 4.0 6.0 5.3 
Average 3.9 4.9 4.0 3.6 4.6 3.8 

Tables 3.5-3.6. Average values for stem density and stem diameter. 

3.1.3 Aerial Imagery data extraction 

   Structure-from-Motion Photogrammetry Imagery was processed using SfM software package 

PhotoScan Pro v.1.2.5 (Agisoft LLP), which works by matching conjugate points from multiple, 

overlapping images and estimating camera positions to reconstruct a 3D point cloud of the scene geometry. 

GCPs were used to optimize the image alignment and georeference the dataset. Outputs included an 

orthophoto and a digital surface model (DSM) for each flight– Figure NUMERO. The Four DSM and 

orthomosaic were coregisterd. The difference between DSM with vegetation (19.07.2016) and without 

vegetation (25.07.2016) were calculated to estimate the vegetation volumes. 

N. 
Flight Date Camera Time of 

flight Altitude Overlap - 
Sidelap 

N 
image 

Ground 
Resolution 

1 19.07.2016 Sony WX 18.3 
MP 10‘ 60 m 85%-75% 98 2 cm 

2 19.07.2016 Canon S110 
NIR 12 MP 10’ 53 m 85%-75% 69 2 cm 

3 25.07.2016 Sony WX 18.3 
MP 10’ 60 m 85%-75% 98 2 cm 

4 25.07.2016 Canon S110 
NIR 12 MP 10’ 53 m 85%-75% 69 2 cm 

Table 3.7. Description of the drone flights. 
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DSM were produced from Aerial Photogrammetry, and the height of vegetation was mapped as the Z 

difference between the two surface models. 

 

Fig 3.5. DSM before and after vegetation removal. The difference gives a value of average height of the 
plants for each pixel. 

 

Figure 3.6. NIR imagery before and after vegetation removal. The data is consistent with vegetation density. 
NIR data will provide information about the canopy LAI (work in progress). 
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3.2 Flow analysis 

   The discharges were estimated by  interpolating current meter measurements. The velocity measures 

were taken along a quasi-regular grid composed by 7 verticals. The results of these measurements were 

organized in tables of coordinates XYZ, in which the X axis represents the distance from the left bank, 

the Y axis represents the height above the sea level, while the Z represents the observed point flow 

velocity. Coordinates of the point measurements and the corresponding measured velocities are presented 

in Appendix 2.b. 

   The discharges at the middle cross section of the experimental channel were determined by means of 

two different interpolation methods: the polygonation and the triangular interpolation. The input data for 

both the estimations was represented by the dense grid of point flow velocity measurements that were 

conducted for each discharge and each vegetation scenario. This estimation was fundamental to trace the 

rating curves for the three vegetation scenarios, in order to quantify the increase of the water level due to 

increasing vegetation resistance. Estimated discharges were also used to determine the equivalent 

roughness coefficients through the Manning formula.  

3.2.1 Polygonation Discharge Estimations  

   The surveyed cross section was represented in CAD environment (DraftSight). For each discharge and 

each vegetated scenario, the grid of velocity measurements was represented on the cross section. Basing 

on the measures at the staff gage, the water level during each velocity survey was assessed by the 

measurements at the staff gage.  

   The polygons were traced by combining the lines crossing the middle points between each velocity 

measurement. Given the irregular shape of the channel, the polygons were not always exactly rectangular 

but irregular instead. Moreover, the presence of a dense reed canopy at the borders hindered the velocity 

measurements close to the banks. It has to be noticed that the two external verticals, Vertical 1 and Vertical 

7, were positioned as close as possible to the banks canopy.  
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Figure 3.7. Example of polygonation based on the distribution of flow velocity measure points. The numbers 
refer to the Vertical IDs. 

   The area of each polygon was measured and reported in Excel. Multiplying each reference area with the 

corresponding velocity allowed to determine the discharge for each polygon. The sum of all the discharges 

gave the total discharge in the cross section. Results are shown in table 4.8.  

Scenario Code Polygonation (m3/s) 
Full vegetation 1.1 0.31 
Full vegetation 1.2 0.53 
Full vegetation 1.3 0.75 
Full vegetation 1.4 0.9 
Half vegetation 2.1 0.31 
Half vegetation 2.2 0.67 
Half vegetation 2.3 0.93 
Half vegetation 2.4 1.13 
No vegetation 3.1 0.43 
No vegetation 3.2 0.72 
No vegetation 3.3 1.02 
No vegetation 3.4 1.22 

Table 3.8. Estimated discharges from polygonation method. 

   It has to be noticed that the four discharges were not exactly repeated for the three scenarios. Despite 

the four pumps were actioned in the same conditions for each trial, the discharge measured at the 

experimental section resulted increasing from the 1.n to the 3.n. Our hypothesis is that these differences 

were caused by water losses in the first part of the Bresciani channel, located between the pumping station 

and the study reach. This part was excluded from the experimental measures right because of the presence 

of several lateral ditches connected to it. In fact, the fields facing this segment of the channel are drained 

by numerous ditches, perpendicular to the Bresciani channel and tributaries of it. It is possible that part of 

the pumped water, especially the first day, was lost to fill up this additional ditch network and to saturate 

their bottom. We hypothesize that from the first day to the third day there was an accumulation of water 

in these ditches, which were every day less able to receive more water. These considerations could explain 

the increase of the discharges from the first day to the third day. However, since the roughness estimation 

was conducted in the downstream part, not connected to any lateral ditch, we can assume that there were 

no water losses along the experimental reach, so not influencing our measurements. 

3.2.2 Discharge estimation by flow velocities triangular linear interpolation 

   A further processing of the velocity measurements was carried out by software Surfer, specifically 

developed for spatial interpolation of punctual data. The dataset was organized as a list of coordinates 
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where X= horizontal distance from the left riverbank, Y=water level, and Z=point  flow velocity. To 

delimit the cross section perimeter and the water surface, the original grid of survey points was integrated 

with an additional list of nodes, according to the following criteria. The wetted perimeter was described 

by a list of nodes located along the riverbanks and at the foot of each survey vertical. At these nodes, the 

velocity was set equal to zero. The water surface was traced by means of a horizontal row of nodes. Two 

nodes were located at the riverbanks, with velocity equal to zero. Seven nodes were positioned at the top 

of each vertical, with a velocity equal to the value of the highest survey point at that vertical (located 1-5 

cm below the water surface). In appendix 2.b the input grids for the twelve scenarios are presented.  

   By means of the Triangular linear interpolation method, the interpolation of the surveyed points was 

obtained as a convex surface, with a flat base on the plan XY and an elevation Z. The discharge (m3/s) 

was estimated as the volume delimited between the interpolated surface and the plan Z=0. Results are 

presented in table 3.9.  
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Scenario Code Discharge [m3/s]  
Full vegetation 1.1 0.25 
Full vegetation 1.2 0.42 
Full vegetation 1.3 0.60 
Full vegetation 1.4 0.69 
Half vegetation 2.1 0.27 
Half vegetation 2.2 0.57 
Half vegetation 2.3 0.78 
Half vegetation 2.4 0.95 
No vegetation 3.1 0.34 
No vegetation 3.2 0.56 
No vegetation 3.3 0.81 
No vegetation 3.4 0.97 

Table 3.9. Estimated discharges from the TIN interpolation. 

   The TIN interpolation was not necessarily the best solution method for this study case. Therefore, the 

same dataset was interpolated using other methods, as the kriging or the nearest neighbor. Results showed 

how the differences in term of discharge were substantially negligible (less than 5%), and therefore are 

not presented in this thesis. Conversely, a remarkable difference was found between the triangulation and 

the polygonation method. As a matter of fact, the discharges estimated by polygonation were substantially 

higher than the one obtained with the TIN. A comparison is presented in table 3.10. 

Scenario Code Polygonation (m3/s) TIN (m3/s) Deviation (%) 
Full vegetation 1.1 0.31 0.25 20 
Full vegetation 1.2 0.53 0.42 20 
Full vegetation 1.3 0.75 0.60 20 
Full vegetation 1.4 0.9 0.69 23 
Half vegetation 2.1 0.31 0.27 13 
Half vegetation 2.2 0.67 0.57 15 
Half vegetation 2.3 0.93 0.78 16 
Half vegetation 2.4 1.13 0.95 16 
No vegetation 3.1 0.43 0.34 21 
No vegetation 3.2 0.72 0.56 22 
No vegetation 3.3 1.02 0.81 20 
No vegetation 3.4 1.22 0.97 21 

Table 3.10. Comparison between the discharges obtained with polygonation and TIN methods.  

   Results presented in table 3.10 show how the TIN estimation is constantly lower than the polygonation 

method of about 20%. This deviation was found to be connected to the linear interpolation used by the 

software in determining the velocity distribution in proximity of the wetted perimeter. As a matter of fact, 

since the wetted perimeter was supposed to have Z=0, the linear interpolation drawn almost a straight line 

to link the channel perimeter to the flow velocity measures located within the flow area. On the other 
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hand, the polygonation did not take into account the effect of the boundaries, as the flow velocity along 

the wetted perimeter was supposed to be equal to the observed velocity at the center of each polygon.  

   A further analysis we carried out to better understand the difference between the two approaches was 

conducted modifying the polygon distribution as follows. At the foot of each vertical, a node with velocity 

set equal to zero was positioned. In tracing the polygons, this additional nodes implied the tracing of a 

buffer of the wetted perimeter with zero velocity. Even if the method appears to be coarser, the 

computation of the discharges perfectly coincided with the results obtained by linear interpolation.  

   As stated by the traditional hydraulic studies, the velocity profile at the bottom is well described by a 

logarithmic law, that is somehow in the middle between the polygonation method and the linear 

triangulation. Moreover, according to the latest studies concerning flow through vegetated canopies (i.e 

Nepf, 2012 or Baptist et al, 2007), the vertical flow velocity distribution is quasi homogeneous along the 

water depth, as it is influenced more by the presence of stems and leafs than from the bottom. Therefore, 

we assumed that the discharges estimated with the classic polygonation method were more reliable than 

those obtained with the other methods. 

3.2.3 Tracing the velocity contour lines 

   Another interesting elaboration carried out with the software Surfer was  to map the cross-section flow 

velocity field by spatial contours. Using the Triangulation with linear interpolation, assuming zero velocity 

at the boundary of the cross section, the flow velocity distribution was represented by contour lines 

(Figures 4.8-4.10). As it emerges from all the presented diagrams, there is a lack of data at the two verticals 

closer to the left bank. In fact, for these verticals, the flow velocity was measured just at two points close 

to the water surface. For reasons that were unknown because of the turbidity of the water, the current 

meter was not able to register velocity along the verticals at deeper points, despite the meter was not in 

contact with the channel bottom. Therefore, the zero velocity that was set at the boundary of the cross 

section at the foot of those verticals heavily influenced the velocity interpolation in that area, as it is 

evident in all the plots, vegetated or not vegetated. This, together with the uncertainty regarding the 

velocity profiles close to the channel bottom, was the reason why the two methods (polygonation and 

interpolation) gave different results in terms of discharge. However, the triangular linear interpolation was 

anyway useful to describe the flow velocity distribution across the channel section.  

3.2.3.1 Velocity distribution in full-vegetated conditions  

   Analyzing the images of the full vegetated scenario (Figure 4.8), the flow results strongly concentrated 

in a small portion, that was found to be the less vegetated part of the cross section. The flow velocity 
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reached the highest peak at the fourth discharge (Code 1.4), estimated equal to 0.9 m3/s, though it was the 

smaller discharge of the all fourth discharges pumped for the other two scenarios (2.4 and 3.4).  

 

Figure 3.8. Interpolated flow velocity distribution for the full vegetated scenario. The four discharges are 
increasing from up to down.  

3.2.3.2 Velocity distribution in half-vegetated conditions  

   The half vegetated scenario was obtained by removing all vegetation on the left riverbank and at the 

channel bottom. The vegetation was untouched on the right bank, from the channel bottom to the bankfull 

level. Analyzing the velocity distribution, it is evident how the main flow moved from the left side to the 

right side of the cross section. The influence of the vegetation is higher at the water surface, as the contours 

presents an area of zero velocity, which is not present going deeper towards the bottom, where velocity 

slightly increases. This can be explained by the fact that the flow resistance was higher at the surface 

because of the leaves. In fact, as already mentioned before, the Phragmites presented a leafless stem in the 

lower part, while the upper part was more leafed. Moreover, the area affected by the plants reduces with 

increasing discharges (from up to down in the figure). This can be explained by a partial reconfiguration 

of the leaves, which were observed to bend for increasing velocities. 
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Figure 3.9. Interpolated flow velocity distribution for the half vegetated scenario. The four discharges are 
increasing from up to down.  
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3.2.3.3 Velocity distribution in non vegetated conditions  

   As expected, the non vegetated scenario presented a more homogeneous velocity distribution. The 

contours are regularly expanding from the center to the two banks. The only incongruence was found at 

the left bank, where the lack of data on the two left verticals (Vertical 6 and 7) caused an higher influence 

of the zero values set at the bottom.  

 

Figure 3.10. Interpolated flow velocity distribution for the non vegetated scenario. The four discharges are 
increasing from up to down.  
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3.2.4 Flow conditions 

   The water surface levels were monitored for each scenario and each discharge at the staff gages that 

were preliminarily positioned within the channel. These measurements were fundamental to detect the 

conditions of steady flow for each discharge, and to describe the flow conditions. In fact, for each 

discharge the velocity measurements were started when the water levels were found stable for 15 minutes. 

Observed water surface profiles are presented in Figures 3.11a,b and c.  

 

Figure 3.11 a. Observed water profile for the full vegetated scenario. 

 

Figure 3.11 b. Observed water profile for the half vegetated scenario. 
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Figures 3.11 c. Observed water profiles for the non vegetated scenario.  
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   As it emerges from the figures above, the uniform flow conditions were not found for any discharge of 

the examined vegetation scenarios. In fact, the water surface gradient resulted to be stable in time, but not 

equal tp the bottom slope. Moreover, water surface gradients vary for the different discharges with the 

same vegetation scenario. Analyzing the drainage network structure we realized that the water surface 

gradient was strongly influenced by the downstream boundary conditions, as the slopes are considerably 

low and the flow conditions are always subcritical. As a matter of fact, the water level of the downstream 

channel (Brentino) was influencing the water levels of the entire experimental segment.  

   The part of Bresciani that was used for this survey was chosen because of its straightness and because 

it was one of the few portions of the network that did not present tributaries for an acceptable length. On 

the contrary, the downstream main channel of which Bresciani is a tributary resulted to be too close to the 

experimental cross sections. Therefore, despite a good uniformity of cross section and vegetation 

distribution, the expected conditions of uniform flow were not reached. However, the variations were 

smooth along the channel, as the vegetation distribution was homogeneous, the bed slope was constant 

and the channel morphology was regular. Thus, we can assess with a good grade of approximation that 

the experiment was carried out in gradually varied steady flow conditions.  

3.2.4.1 Tracing the stage- discharge rating curves  

   Once the discharges were determined, it was possible to trace the stage-discharge relation. The water 

depth that is graphed corresponds to the average between the upstream and the middle section, as the flow 

was in steady-gradually varied flow conditions. Results are presented in Figure 3.12. 

 

Figure 3.12. Measured stage-discharge relations for the three vegetated scenario for the upstream 

portion of the experimental channel.  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

W
at

er
 d

ep
th

 [m
]

Discharge [m3/s]

Full veg.

Half veg

No veg



69 
 

   The black dots represent the results for the full vegetated scenario. As it is easily appreciable, the full 

vegetation curve is located higher than the other two, pointing out that the full vegetated scenario is 

influenced by the presence of vegetation. Thus, in case of flood, hence in condition of high discharge 

rates, the vegetation plays a key role in rising the probability (or hazard) of overflow. However, 

encouraging results were obtained with the so-called half vegetated scenario, represented by black crosses. 

This vegetation management technique was proposed by the research team as a possible solution to reduce 

the impact on the channel ecosystem, maintaining an acceptable level of discharge capacity, comparable 

to the cleared situation. As expected, the half vegetated scenario resulted to be in between the two extreme 

solutions. Apparently, to keep an untouched reed canopy on one of the banks (from the emergent top to 

the submerged foot) could be a practicable solution in terms of flood hazard. The third curve, represented 

by grey triangles, constitutes the reference situation of maximum discharge capacity, or rather the design 

condition, for the experimental channel.  
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3.3 Roughness coefficients estimation 

3.3.1 Extracting total roughness coefficients for the three scenarios 

   The discharge was estimated by the interpolating the point velocity measurements of the surveyed flow 

cross-section. Although the flow was not in uniform conditions, the determination of average flow 

velocities and discharges for each pumping layout can be considered reliable. The problem that emerged 

during computations was referred to the estimation of roughness coefficients by means of the Manning 

formula. If the flow was in uniform conditions, the Manning n could be obtained as: 

݊ = 	 ோ
మ
య	௜

భ
మ

௏
      (3.1) 

   Where R and V are respectively the hydraulic radius and the average velocity at a cross section 

(assuming that at all the section the conditions are constant), and i is the gradient slope, intended as the 

slope of the channel bottom, equal to the slope of the water surface.  

   Since we found that the flow conditions were not uniform, but steady gradually varied instead, this law 

was not effective anymore. In fact, in such conditions the head loss was not related just to channel energy 

losses J, but also to the loss of elevation I, given by the channel slope. To use the Manning formula in 

steady gradually varied flow conditions, in literature it is considered acceptable to use not the parameters 

of one section, but the average of two sections, located upstream and downstream the study reach.  

   Therefore, we decided to estimate the roughness coefficients taking into account not just the data 

observed at the middle station (named “footbridge”), but also those data at the upstream one (named 

“upstream section”). In other words, we applied the principle of conservation of energy for the upstream 

half of the experimental segment. The choice was motivated by the fact that the upstream part of the 

experimental channel presented a channel slope more similar to the the whole Bresciani ditch, so more 

representative of the entire channel. Moreover, the downstream part was more influenced by the 

downstream boundary conditions, as the last cross section was positioned in proximity of the confluence 

with the main collector, the Brentino channel. The determination of the average Manning coefficients for 

the upstream part was conducted as follows. 

   First, the profiles of the two cross section were traced during the topographic surveys. Then, the 

water levels were registered for each discharge at two staff gages. It was reasonable to assume that the 

discharge was not varying between the two sections, as the experimental segment did not present lateral 

ditches. Then, the discharge was estimated at the footbridge section from the velocity measurements (see 
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chapter on discharges estimations). Last, the average flow velocities at the two cross sections were 

determined as: 

ܸ = ொ
Ω

       (3.2) 

Where V is the average flow velocity, Q is the estimated discharge, Ω is the flow area, determined in CAD 

environment based on the surveyed cross section profiles and the observed water levels. By applying the 

energy equation for gradually varied steady flow between the upstream (2) and footbridge (1) sections, 

we obtain:  

ଶݖ + ℎଶ + ௏మమ

ଶ௚
ଵݖ− − ℎଵ −

௏భమ

ଶ௚
= 	ܮ ௏೘మ

஼೘మ ோ೘
	    (3.3) 

 

Figure 3.13. Energy components in steady flow conditions (adapted from Benini, 1990). 

Where Vm is the average flow velocity between the two sections, Rm is the average hydraulic radius, L is 

the channel length, and C is the Chezy coefficient, which according to the Manning formula can be 

expressed as: 

ܥ = ଵ
௡
ܴ
భ
ల     (3.4) 

Replacing Eq. 3.4 in Eq. 3.3, we obtain:  

ଶݖ + ℎଶ + ௏మమ

ଶ௚
− ଵݖ − ℎଵ −

௏భమ

ଶ௚
= 	ܮ ௏೘మ

ቆభ೙ோ೘
భ
ల ቇ

మ

ோ೘

      (3.5) 

Where the Manning’s n is the only value that is unknown, since all the other parameters were measured 

on field. Finally it was possible to determine the equivalent Manning coefficient for the experimental 

segment, according to the following relation: 
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     (3.6) 

Where J is the slope of the total energy line. Results are presented in Table 3.11. 

Scenario Discharge [m3/s] Equivalent Manning's n 

Full Vegetation 0.31 0.074 

Full Vegetation 0.53 0.069 

Full Vegetation 0.75 0.067 

Full Vegetation 0.9 0.063 

Half Vegetation 0.31 0.030 

Half Vegetation 0.67 0.032 

Half Vegetation 0.93 0.036 

Half Vegetation 1.13 0.034 

No Vegetation 0.43 0.019 

No Vegetation 0.72 0.013 

No Vegetation 1.02 0.022 

No Vegetation 1.22 0.021 

Table 3.11 Estimated total roughness coefficients and discharges for the three scenarios. 

   As expected, the estimated roughness coefficients in the three vegetation scenarios are very different. 

The full vegetated scenario presented the highest Manning’s n, confirming that the vegetation influenced 

the flow along the experimental segment. The flow resistance showed a decreasing trend for increasing 

discharges, probably due to a partial reconfiguration of the vegetation elements caused by the flow drag. 

The half vegetated scenario presented lower resistances, as most part of the channel cross section was 

cleared by a partial cut. Moreover, the roughness varied without a precise trend, presenting small variation 

between different discharges. The totally cleared scenario presented the lowest Manning coefficients for 

all the discharges. The values are comparable with those proposed by literature for regular channels with 

natural bed. In the chapter “Discussion”, a more detailed analysis of these results is provided. 

   As already observed in other works, (i.e. Gwinn & Ree, 1980; Rhee et al, 2008), a good parameter that 

was found to be used to express the variations of vegetation roughness is the parameter V*R, where V is 

the average flow velocity and R is the hydraulic radius. The obtained total Manning’s n are plotted over 

this parameter in 3.14. The presence of vegetation raised the roughness coefficients, and presented a 

decreasing resistance for increasing VR. This behavior was probably related to the reconfiguration of the 
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flexible parts of the plant, as already observed by other authors for the Phragmites and other flexible 

species. In the Discussion section this argument is examined more in depth.  

 

Figure 3.14. Manning’s n –VR retardance curves for the three vegetated scenarios. 
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3.3.2 Extracting the roughness from vegetated subareas 

   Basing on the vegetation surveys in full-vegetated conditions, that were conducted splitting the 

cross section in six sub areas of width equal to 1 m each, we built up a simplified model to 

schematize the composite section. More in detail, we simplified the vegetation distribution as 

follows: the main channel was represented by a central sub-area of width 2 m, while the rest of 

the cross section was supposed to be covered by a homogeneous distribution of reeds.  

   To apply the various methods, the hydraulic parameter of each sub-area (i.e. PN, RN, AN) had 

to be measured for each one of the four discharges that were pumped for the full-vegetated 

scenario. The bed roughness was assumed to be equal to the average of the four values observed 

for the cleared scenario, thus equal to 0.02. results are presented in Table 3.12. 

 
Horton Pavlovskii Colebatch Yen AVG 

1.1 0.100 0.0879 0.1139 0.102 0.101 

1.2 0.090 0.0805 0.1032 0.092 0.091 

1.3 0.088 0.0786 0.1003 0.089 0.089 

1.4 0.082 0.0740 0.0936 0.082 0.083 

Table 3.12. Manning’s n of the vegetated part of the section obtained by means of four different averaging 
methods, for each discharge in full-vegetated conditions. 

This scheme must be considered a simplification, as the vegetation surveys showed how there was a sort 

of variability in terms of stem diameter and density between the different vegetated sections. However, 

this approach allowed to estimate the role of vegetation more precisely than the bulked roughness 

coefficients that were estimated directly from field observations. Moreover, the obtained values could be 

used in other situation where, for example, the channel width is different but the vegetation characteristics 

are comparable to the ones of this case study. 

The Manning’s n values presented in Table 3.12 represent the total resistance of the vegetated part of the 

channel. However, as proposed by Cowan (1956), the total resistance can be split in sub-components, as 

it is affected by different factors. Given an absent meandering effect (m=1), and a negligible effect of the 

small cross section shape variations (n2=0), the total resistance of the vegetated channel is represented by 

the sum of: 

݊ = ݊ଵ + ݊ଷ + ݊ସ                                            (3.11) 

Where: 
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n1 is the bed resistance 

n2 is the obstruction resistance  

n3 is the vegetation resistance 

To determine the resistance due to vegetation, we subtracted the bed roughness n1 from the total roughness 

of the vegetated patch. The resulting coefficients are taking into account the effect of vegetation due to 

flow resistance and channel obstruction. The average Manning’s n values become therefore: 

Discharge n vegetation 

1.1 0.0797 

1.2 0.0704 

1.3 0.0678 

1.4 0.0619 

Table 3.13. Manning’s n for the vegetated patches, once subtracted the bed roughness. 

The values are comparable with the ones that are suggested by Cowan for densely vegetated channels with 

low obstruction. As suggested by Rhee et al. (2008), the reed must be considered both for its effect of 

obstruction (due to the frontal area occupied by stems) and for flow resistance due to friction. 
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3.4 Comparing results to hydrologic studies 

3.4.1 Hydrology of the Bresciani catchment 

   The reclamation drainage system design was updated in 2006 after a study conducted by Casarosa et al.. 

The designers started from the determination of the critical rainfall for different return times. Then they 

estimated the water losses of the basins by means of the Curve Number method, and last, the discharges 

for the return times of 25 and 100 years for each channel of the network. The rainfall distribution analysis 

was conducted on the series of the maximum rainfalls for different durations at the Viareggio rain gauge, 

located 1 km far from the reclamation area. The DDF were traced and validated using the Gumbel 

distribution method, for the return times of 10-25-50-100-200 years. Formulas are reported below. 

10 years: ℎ = 	56.7 ∙  ଴.ଶ଺଺                                                                                  (3.12)ݐ

25 years: ℎ = 	67.7 ∙  ଴.ଶ଻                                                                                    (3.13)ݐ

50 years: ℎ = 	75.9 ∙  ଴.ଶ଻                                                                                    (3.14)ݐ

100 years: ℎ = 	84 ∙  ଴.ଶ଻                                                                                        (3.15)ݐ

200 years: ℎ = 	92 ∙  ଴.ଶ଻ସ                                                                                        (3.16)ݐ

The DDFs can be summarized by the following equation, taking into account the variation of the a 

coefficient related to the return time, and assuming n as a constant equal to the average of the five 

presented values: 

ℎ = 	39.79 ∙ ଴.ଵ଺ଵݎܶ ∙  ଴.ଶ଻                                                                                            (3.17)ݐ

Where Tr is the return time expressed in years, and t is the event duration time. The formula NUMERO 

allows the estimation of the total rainfall height for a determined return time and a determined rainfall 

duration, for the Viareggio area.  

   The direct runoff was estimated according to the Curve Number method, through the determination of 

all the parameters influencing permeability (land use, soil characteristics, lithology). The curve number 

for the Bresciani catchment was estimated equal to 71. The runoff coefficient, for a return time of 25 years, 

was estimated equal to 0.4.  
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   The discharges of assigned return time were then determined, assuming as critical rainfall the event of 

duration equal to the catchment concentration time. In table 3.14 the discharges calculated for the 

Bresciani channel, closed at the end of the experimental segment, are presented. 

Tr [years] Q [m3/s] 

25 0.91 

100 1.70 

200 2.16 

Table 3.14. Discharges of assigned Return time at the downstream section of the experimental reach. 

Based on the data obtained by means of the reservoir method, the return time-discharge relation is the 

following: 

 

Figure 3.15. Peak flow discharges graphed over the return time. 

Last, the design of the cross section was carried out assuming a bank slope equal to 1, and a maximum 

velocity of 0.6 m/s. The design roughness was expressed by the parameter ߛ, which is included in the 

Bazin formula for the determination of the Chezy resistance coefficient: 

߯ = 	 ଼଻
ଵା ം

√ೃ
       (3.18) 

Taking into account a ditch in bad conditions of maintenance, assuming as the worst situation “the period 

that is farther from the last management operation”, the designers adopted the value of ߛ = 1.75	which is 

comparable to a Manning’s n equal to 0.029. The maximum sustainable flow velocity was estimated equal 

to 0.6 m/s, according to the characteristics of the substrate. A comment of this design choice will be 

provided in the Discussion section. 

3.4.2 Hydraulic design and experimental discharges 
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   The pumped discharge were obtained increasing the number of working pumps from one to four. The 

discharge estimation was carried out by means of the flow velocity measurements and the subsequent 

interpolation of the point velocity data. Given the relation between the return period and the peak flow 

discharge, we estimated the return period of each pumped discharge, in order to make considerations about 

the effects of vegetation on the potential flood frequency. Results are presented in table NUMERO. 

Discharge  Scenario Discharge (m3/s) Return time (Yrs) water depth (m) 
1.1 Full veg 0.31 2 0.65 
1.2 Full veg 0.53 7 0.69 
1.3 Full veg 0.75 15 0.72 
1.4 Full veg 0.9 24 0.75 
2.1 Half veg 0.31 2 0.66 
2.2 Half veg 0.67 12 0.69 
2.3 Half veg 0.93 26 0.73 
2.4 Half veg 1.13 41 0.78 
3.1 No veg 0.43 4 0.62 
3.2 No veg 0.72 14 0.64 
3.3 No veg 1.02 32 0.7 
3.4 No veg 1.22 49 0.76 

Table 3.15. Return times of the experimental discharges. 

   In Table 3.15 the experimental discharges obtained by means of the polygonation, their return period 

and the related water depth are presented. While the discharge-return time relation is independent from 

the channel conditions, the water level is obviously influenced. Therefore, it is interesting to remark the 

differences between the different scenarios, to express the effect of vegetation in terms of return time. 

 

Figure 3.16. water level over return time for the three experimental scenarios. 
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In Figure 3.16 the return time-water depth relation is presented. An important remark is that, in bankfull 

conditions, for the representative Bresciani cross section the maximum water depth is equal to 0.93 m. For 

the full-vegetated scenario, this depth is reached with a return time of 25 years, while for the same 

discharge, in condition of half vegetation there is a tolerance of more than 20 cm, while in the totally 

cleared condition more than 25 cm.  

From another point of view, fixing a maximum water level of 0.73 m (assuming a tolerance of 0.2 m), the 

return period varies from less than five years in full vegetated condition from 50 years in non vegetated 

conditions. The half vegetated conditions are in the middle, with a return time of approximately 25 years. 
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3.5 Modeling the vegetation resistance 

   As presented in the State of the Art, in the last years the academy proposed several different models to 

predict vegetation resistance . Nonetheless, these models were divided in “families”, of which the main 

distinction was the submergence level of plants. More precisely, all the models make a precise distinction 

between resistance of totally submerged plants and emergent-just submerged plants. For totally submerged 

meadows or patches, the flow resistance is comparable to the effect of a boundary layer roughness, as the 

effect of plants modifies the vertical profile of the water flow. On the other hand, the just-submerged-

emergent conditions imply that the whole vertical profile of the flow is somehow influenced by the 

presence of vegetal elements, subjected to drag forces. 

   Most of theories about submerged meadows take into account the progressive bending of plants, which 

reduce their height and therefore their flow resistance for increasing V*R rates. On the other hand, plants 

in emergent conditions present a flow resistance that is increasing with flow depth, as the flow disturbance 

are increasing because of turbulences. An intermediate behavior was observed and modelled by Jarvela 

(2002a, 2002b) for flexible shrubs and branches. The author proposed a model based on various 

parameters of the vegetation, describing the density with the LAI – Leaf Area Index. Another fundamental 

factor that needed to be estimated for each specie was the χ, a coefficient that expresses for each specie 

the capacity to modify the frontal area due to the flow drag force. These values are not available in 

literature for the Phragmites australis. Moreover, we have not yet surveyed them on field. Therefore, the 

applicability of this third approach is not yet possible. In the next paragraphs the modelling of vegetation 

based on various approaches is presented. 

   At a first glance, the observed “n” trend for increasing Q seems to assume a “submerged vegetation” 

behavior for the full vegetated condition and “emergent vegetation” behavior for half vegetated condition 

(Pasquino V., personal communication). Bearing in mind that our vegetation arrangement was emergent 

for all the eight discharges (1.1-2.4) the observed decreasing trend can be due to the combined effect of 

stems and leaves. While the rigid stems increased the flow resistance with increasing discharges, the 

submerged leaves presented a flexible behavior. Since the total plant resistance was a combination of those 

two opposite effects, it is reasonable to assume that the leaves had an important role in terms of drag.  

   We decided to test three models developed for emergent vegetation, in order to assess which is better 

fitting with the field observations: Nepf (2012), James et al. (2004) and Yang & Choi (2010). The three 

models are presented in the State of the Art of this thesis. Different modelling approaches were adopted 

for the full vegetated scenario and the half vegetated scenario. 

Hereafter, in order to evaluate which model presents the best performance considering our n measured we 

choose the average of EF statistical factor (ERROR FACTOR): 
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%ܨܧ = ௡೘೚೏೐೗ି௡೚್ೞ೐ೝೡ೐೏
௡೚್ೞ೐ೝೡ೐೏

     (3.19) 

3.5.1 Modeling the full vegetated scenario 

The modeling of the full vegetated scenario was conducted with two different approaches. The first 

approach was the use of an average value of the vegetation parameters for the total cross section, assuming 

a homogeneous distribution of the plants along the wetted perimeter. More in detail, the average number 

of stems/m2, the average stem diameter and the average hydraulic radius were used as input in the models. 

The second approach was the subdivision of the cross section in subareas, corresponding to the survey 

plots that were delimited to measure the vegetation parameters. Thus, the cross section was divided in six 

sub areas of width 1 m (from A to F). For each subarea, the vegetation parameters were averaged from the 

values of the four surveyed cross section. Then, the models were run for each subarea, considering the 

hydraulic radius of each. After, the sub-area Manning’s n were averaged according to the composite 

section roughness calculation, by means of the four different methods already used for the determination 

of the experimental roughness of the vegetated patch. 

 

Figure 3.17. Surveyed distribution of the vegetation parameters across the section. 

3.5.1.1 First approach: averaged vegetation parameters 

A simplified method to assess vegetation resistance by means of resistance models could be represented 

by the survey of vegetation along one or more channel cross sections, to determine an average value of 

stem density (stems/m2) and an average stem diameter for the whole reach. Basing on the vegetation 

surveys conducted just before the hydraulic measurements, we calculated these two parameters for the 

experimental channel and we run the three resistance models mentioned above. Note that modeling results 

are giving a resistance value that must be considered comprehensive of the bed resistance, as the models 

are neglecting the bed shear stress from the computation, considering it negligible. A comparison between 

the experimental total n values and the computation results of the three models is presented in Table 3.16. 
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n measured n Nepf %error N James  %error N Yang %error 
0.0740 0.0772 4% 0.0856 16% 0.0820 11% 
0.0690 0.0816 18% 0.0905 31% 0.0867 26% 
0.0670 0.0850 27% 0.0944 41% 0.0904 35% 
0.0630 0.0876 39% 0.0972 54% 0.0931 48% 

avg EF%  22%  36%  30% 
Table 3.16. Error factors for the predicted manning’s n assuming homegenously distributed vegetation. 

   As evident in Table 3.16, the use of the average parameters for the entire cross section resulted in a 

noticeable EF%. The best values was obtained by the use of the Nepf model, which anyway still presents 

a 22% of  Error compared to the observed data. To increase the correspondence between reality and model 

scenario, the cross section was divided in sub areas with different vegetation distribution, as observed 

during the field surveys. 

3.5.1.2 Second approach: composite Manning’s n  

   The section was divided in six sub areas, in which the vegetation parameters were averaged among the 

four sections. The same resistance models were run for each sub-areas, obtaining a different Manning’s n 

for each sub-area and each discharge. The following Tables show the predicted sub-section Manning’s n 

for the four discharges in full vegetated scenario.  

Nepf Manning’s n A B C D E F 
1.1 0.040 0.085 0.043 0.052 0.073 0.023 
1.2 0.043 0.089 0.045 0.054 0.076 0.025 
1.3 0.045 0.093 0.046 0.056 0.079 0.026 
1.4 0.047 0.096 0.048 0.057 0.081 0.027 

 

Yang Manning’s n A B C D E F 
1.1 0.057 0.085 0.043 0.052 0.073 0.033 
1.2 0.061 0.089 0.045 0.054 0.076 0.035 
1.3 0.063 0.093 0.046 0.056 0.079 0.037 
1.4 0.066 0.096 0.048 0.057 0.081 0.039 

 

James Manning’s n A B C D E F 
1.1 0.063 0.094 0.048 0.058 0.081 0.036 
1.2 0.067 0.099 0.050 0.060 0.085 0.039 
1.3 0.070 0.103 0.052 0.062 0.088 0.041 
1.4 0.074 0.107 0.053 0.063 0.090 0.043 

Tables 3.17a,b and c. Predicted Manning’s n for each sub-area of the cross section in full vegetate 
dconditions. 
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   Then, the determination of the equivalent roughness coefficient for the whole section four different 

models were used to average the values: Pavlovskii, Lotter, Horton, Yen and Colebatch. Results are shown 

in Tables 3.18-3.20. 

 



84 
 

Table 3.18. Nepf composite roughness estimation for the full vegetated scenario. 

Discharge n Lotter EF% n Pavlovskii EF% n Horton EF% n Yen EF% n Colebatch EF% 
1.1 0.052 -28.7% 0.061 -17.2% 0.059 -19.4% 0.058 -21% 0.0615 -16.2% 
1.2 0.053 -20.2% 0.063 -5.1% 0.062 -7.7% 0.060 -10% 0.0644 -3.5% 
1.3 0.057 -15.1% 0.065 -2.3% 0.063 -5.0% 0.062 -7% 0.0665 -0.4% 

1.4 0.058 -6.9% 0.067 7.0% 0.065 4.0% 0.064 2% 0.0686 9.3% 

 Average EF -17.7%  -4.4%  -7.0%  -9%  -2.7% 
 

Table 3.19. Yang composite roughness estimation for the full vegetated scenario. 

Discharge n Lotter EF% n Pavlovskii EF% n Horton EF% n Yen EF% nColebatch EF% 
1.1 0.056 -23.2% 0.066 -9.5% 0.065 -11.2% 0.065 -11% 0.0660 -10.1% 
1.2 0.057 -13.9% 0.070 4.2% 0.068 2.2% 0.068 2% 0.0692 3.7% 
1.3 0.061 -8.2% 0.072 7.5% 0.070 5.5% 0.071 6% 0.0716 7.2% 

1.4 0.063 0.8% 0.074 18.1% 0.073 15.8% 0.073 16% 0.0739 17.8% 

 Average EF -11.1%  5.1%  3.1%  3%  4.6% 
 

Table 3.20. James composite roughness estimation for the full vegetated scenario. 

Discharge n Lotter EF% n Pavlovskii EF% n Horton EF% n Yen EF% n Colebatch EF% 
1.1 0.059 -21.3% 0.069 -6.9% 0.068 -8.6% 0.068 -9% 0.0689 -7.5% 
1.2 0.060 -12.7% 0.073 6.0% 0.071 3.9% 0.071 4% 0.0723 5.5% 
1.3 0.064 -4.9% 0.075 11.8% 0.074 9.6% 0.074 10% 0.0747 11.4% 

1.4 0.066 3.8% 0.077 22.2% 0.076 19.8% 0.076 20% 0.0772 21.9% 

 Average EF -8.8%  8.3%  6.2%  6%  7.8% 
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   In Tables 3.18-3.20 the error factor is for each discharge of the full vegetated scenario is presented. Analyzing 

the data, it is evident how the average errors (obtained as the average of the error calculated for the four 

discharges) are reduced by the division of the cross section in sub-areas and the composition of the Manning’s 

n. All the three models predicted values with an average error of below ±10%, which is an excellent result 

considering the uncertainties that could affect as the vegetation surveys, the ability of the model in predicting 

the resistance, as the averaging assumption of each composition approach. It has to be noticed that the Nepf 

and the James models showed an excellent ability in predicting the Manning’s n for the highest discharges, 

while the Yang method was more accurate for the lower discharges. Since in most cases the hydraulic design 

concerns the peak discharges for flood risk assessment and reduction, we can assess that Nepf and James 

should be preferred for the estimation of roughness in high flow conditions. The best prediction was obtained 

by the use of the Nepf model, averaged by means of the Colebatch method, with an average error of 2.7%.  

3.5.2 Modelling the half vegetated scenario 

3.5.2.1 The blockage factor Bx 

   For the case of vegetation that does not cover the whole channel width, Luhar and Nepf (2012) and in 

particular Nepf (2012), proposed a formula based on the Blockage factor Bx, which can be obtained as the ratio 

between the patch frontal area on the total flow area. The model is based on the assumption that the flow 

velocity through the patch is some orders of magnitude lower than the undisturbed flow. In these conditions, 

the portion of the cross section that is occupied by the patch can be considered obstructed, or in other words, 

blocked.  

For ܤ௫ < 1:           ݊ = ቀ஼∗
ଶ௚
ቁ
భ
మ (1 − ି(௫ܤ

య
మ	ܴ

భ
ల             (3.20) 

In which C+( 0.05-0.13 from experimental tests) represents the drag coefficient related at the external surface 

of the vegetated patch.  

   In our study, the experimental half vegetated scenario represented a case that could be well described by this 

model, as the channel was cleared by vegetation on the bottom and on one of the banks, and almost blocked 

by a dense canopy on a small, lateral portion of the section. The Nepf model was run considering as blocked 

the sub-section E, as presented in Figure 3.18. The best results were obtained with the minimum value of the 

C* variation range, C*=0.05. Results are presented in Table 3.21.  
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Discharge n measured n Nepf HV EF% 
2.1 0.0297 0.0444 49.2% 
2.2 0.0323 0.0448 39.0% 
2.3 0.0363 0.0455 25.3% 
2.4 0.0336 0.0459 36.7% 

  avg % 37.5% 
Table 3.21. Predicted Manning’s coefficients for the half vegetated scenario by means of the Blockage factor 

formula (Luhar & Nepf, 2012). 

   As shown in Table 3.21, the blockage factor model resulted overestimating the roughness coefficients. In 

fact, the average Error Factor % was equal to 37.5%. It is probable that the assumption that the velocity through 

the patch was some orders of magnitude lower than the undisturbed flow was not correct for this study case. 

Moreover, the sensitivity to the drag coefficient C* suggests that further studies are required to improve the 

use of this approach. However, the current meter used in this research was not able to measure the flow velocity 

within the dense patches of reed, thus we do not have experimental confirmation of this theory. 
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3.5.2.2 Composite section roughness  

 

Figure 3.18. Vegetation distribution in the half-vegetated scenario. 

   As already presented for the full vegetated scenario, the composite section analysis was carried out to 

estimate the composite roughness coefficients. The Manning’s n experimentally determined for the cleared 

scenario was assigned to the subsections A-B-C-D, while for E-F the Manning’s n was predicted by means of 

the three models presented before.  

Nepf – half veg 1 2 3 4 5 6 
2.1 0.021 0.021 0.021 0.021 0.0730 0.0230 
2.2 0.021 0.021 0.021 0.021 0.0764 0.0248 
2.3 0.021 0.021 0.021 0.021 0.0789 0.0260 
2.4 0.021 0.021 0.021 0.021 0.0814 0.0272 

Yang - half veg 1 2 3 4 5 6 
2.1 0.021 0.021 0.021 0.021 0.0776 0.0346 
2.2 0.021 0.021 0.021 0.021 0.0812 0.0372 
2.3 0.021 0.021 0.021 0.021 0.0839 0.0391 
2.4 0.021 0.021 0.021 0.021 0.0866 0.0410 

James - half veg 1 2 3 4 5 6 
2.1 0.021 0.021 0.021 0.021 0.0810 0.0362 
2.2 0.021 0.021 0.021 0.021 0.0848 0.0389 
2.3 0.021 0.021 0.021 0.021 0.0876 0.0408 
2.4 0.021 0.021 0.021 0.021 0.0904 0.0428 

Tables 3.22a, b and c. Predicted Manning’s n for the half vegetated scenario.  

The average experimental n of the bed was assumed to be constant for the non-vegetated sub-areas.Then, the 
averaging aimed at determining the global Manning’s n for the cross section was determined by the five models 
of roughness composition. Results are presented in tables 3.23-3.25. 
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Table 3.23. Nepf composite roughness estimation for the half vegetated scenario. 
Discharge n Lotter EF% n Pavlovskii EF% n Horton EF% n Yen EF% n Colebatch EF% 

1.1 0.024 20.8% 0.039 30.2% 0.035 19.1% 0.033 11% 0.0365 22.7% 
1.2 0.023 28.7% 0.040 23.7% 0.036 12.6% 0.033 4% 0.0376 16.4% 
1.3 0.024 34.3% 0.041 12.4% 0.037 2.0% 0.034 -6% 0.0384 5.7% 
1.4 0.024 28.9% 0.042 24.1% 0.038 12.3% 0.035 3% 0.0391 16.6% 

 Average EF 28.2%  22.6%  11.5%  3%  15.4% 
Table 3.24. James composite roughness estimation for the halfl vegetated scenario. 

Discharge n Lotter EF% n Pavlovskii EF% n Horton EF% n Yen EF% n Colebatch EF% 
1.1 0.024 20.0% 0.043 44.0% 0.039 30.9% 0.036 21% 0.0394 32.6% 
1.2 0.023 27.9% 0.044 37.3% 0.040 24.4% 0.037 14% 0.0407 26.1% 
1.3 0.024 33.6% 0.045 25.2% 0.041 13.1% 0.038 4% 0.0416 14.7% 
1.4 0.024 28.1% 0.047 38.7% 0.042 25.0% 0.039 15% 0.0426 26.8% 

 Average EF 27.4%  36.3%  23.4%  14%  25.1% 
Table 3.25. Yang composite roughness estimation for the half vegetated scenario. 

Discharge n Lotter EF% n Pavlovskii EF% n Horton EF% n Yen EF% n Colebatch EF% 
1.1 0.024 -20.2% 0.041 38.9% 0.038 26.9% 0.035 18% 0.0382 28.6% 
1.2 0.023 -28.1% 0.043 32.5% 0.039 20.5% 0.036 12% 0.0395 22.3% 
1.3 0.024 -33.8% 0.044 20.7% 0.040 9.6% 0.037 1% 0.0404 11.2% 
1.4 0.024 -28.3% 0.045 33.7% 0.041 21.0% 0.038 12% 0.0412 22.8% 

 Average EF -27.6%  31.4%  19.5%  11%  21.2% 
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   The average Manning’s roughness coefficients of the composite section estimation resulted 

significantly more effective than the blockage factor method in predicting the experimental values. 

However, the prediction was not as precise as happened for the full vegetated scenario, as the Error 

Factors resulted higher for all the methods. Again, the best result was obtained by the use of the Nepf 

model, this time averaged by the Yen method, with an EF% equal to 3%. Nevertheless using James-Yen 

and Yang-Yen the predicted error was very low, meaning that Yen model of roughness composition 

better perform for quasi boundary layer model  
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4. DISCUSSION 

   Comparing the experimental conditions of the previous studies with the present (i.e. the papers cited 

by Vargas-Luna et al, 2015), it has to be noticed how just a few works were realized at the real scale. In 

fact, this type of experiments are hindered by the difficulties of finding appropriate locations with the 

availability of high amounts of water in well controlled conditions. The majority of the studies about 

vegetation resistance were realized in flumes or in laboratory, with a reduced scale and a number 

differences compared to a real channel. Moreover, the discharges that were used in this study were 

significantly higher than what found in literature. In this chapter the discussion of the most relevant 

results is provided. 

4.1 Flow conditions 

   As already presented in the results, the experimental flow conditions were not comparable to the 

uniform flow. Despite the bed slope, as well as the channel cross-section, were approximately constant, 

the water surface gradient was not constant for varying discharges and not equal to the bed slope. This 

condition was found to be influenced by the downstream boundary condition, that was represented by 

the water level of the main channel of which the experimental reach was a tributary. However, the 

conditions of steady flow were fulfilled thanks to the absence of discharge variations along the 

measurement reach. Moreover, given the regularity of the channel and the good homogeneity of the 

vegetation distribution along the reach, computation were conducted considering steady gradually 

varied flow conditions. 

   The design of the reclamation ditches has been traditionally referred to the uniform flow conditions. 

Thus, the boundary conditions are not taken into account. This assumption is considered acceptable, as 

the average flow conditions in such channels can be reasonably close to uniform flow. Moreover, it has 

to be considered that, with high probability, the uniform flow conditions were reached in another part 

of the channel, most probably located upstream the experimental reach. Therefore, from an engineering 

point of view, the rating curves observed in experimental conditions are not useful for the channel 

design, as they are not referred to the average condition that can be found in this kind of projects. 

   This observation raised by modelling the water surface profile with HEC RAS, to validate the accuracy 

of the steady flow simulation in reproducing the measured data. The channel geometry was defined 

according to the topographic survey, and extended up to the upstream end of the Bresciani channel, 
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where the pumping station was positioned. A cross section was appositely surveyed also there, in order 

to have a real measure of the bed slope also 400 m upstream the measurement reach, delimited by the 

red staff gages (Figure 4.1). 

    

Figure 4.1. Predicted water profiles for the experimental reach and upstream. The flow conditions tend to 
the uniform flow conditions. 

   The roughness coefficients were set equal to the values calculated over the experimental measures. 

The simulation was conducted using the measured discharges, varying the roughness coefficients with 

the discharge, as observed in field. Since the flow conditions were subcritical, we needed to set the 

downstream boundary conditions, located at the downstream end of the experimental reach. The DBC 

were set equal to the water levels that were observed during the hydraulic measurements. 

The model predicted with excellent accuracy the water profiles along the experimental reach, with 

deviations lower than 1 cm from the observed stages at each staff gage. This result can be considered as 

an additional confirmation that the field measurements and the roughness coefficients estimation were 

consistent with reality.  

   An additional useful result of the steady flow modelling was represented by the tracing of the stage-

discharge rating curve for the upstream part of the channel, upstream the experimental stretch, in which 

the flow conditions were basically uniform (Figure 4.2). This simulation aimed at describing the effects 

of the experimental roughness values in condition of uniform flow, as a support for the hydraulic design, 

which is conducted in this condition. Despite the experimental stretch was not in uniform flow 

conditions, it is probable that in the upper part of the Bresciani channel, as well as in longer stretches of 

the other channel of the drainage network. 
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Figure 4.2. The stage-discharge curve obtained in the upper part of the channel can be considered 
representative of uniform flow conditions. 

It has to be noticed that the rating curve computed in uniform flow conditions is significantly different 

from the experimental one. In fact, the difference between full vegetated and non-vegetated scenarios is 

considerably higher, reaching the bankfull level (0.95 m) with a discharge equal to 0.9 m3/s. On the 

other hand, the half vegetated scenario resulted almost equal to the non-vegetated one, suggesting that 

its use should be taken in consideration as a possible improved management technique.  

   Looking at the project realized in 2006 for the design of the drainage network in which the Bresciani 

channel is included, we see that the designers chose the uniform flow as design condition. The choice 

was motivated by the regularity of the channel and the unknown variability of the downstream boundary 

conditions, represented by the water level of the Brentino channel. Therefore, the stage-discharge curves 

that must be taken into account in the design of channel colonized by Phragmites australis with the 

observed characteristic are probably the uniform flow curves. Moreover, it has to be noticed that the 

non-vegetated and half vegetated scenarios are well defined in terms of resistance distribution. Higher 

uncertainties can concern the full-vegetated scenario, which can be influenced by the presence of 

different species, or simply by different characteristics of the Phragmites canopy. Indeed, even without 

defining a precise full-vegetated scenario, the half-vegetated scenario resulted to be comparable to the 

non-vegetated scenario from an hydraulic point of view, but it presented a great advantage in terms of 

environmental quality, as an important component of the habitat is partially preserved. 
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4.2 Observed roughness coefficients 

   The present study aimed at evaluating the roughness coefficients of three different scenarios of 

possible vegetation management. As already commented before, the experimental values referred at an 

average value that was representative of the average resistance of the cross section, without dividing the 

wetted perimeter in sub-section with homogeneous characteristics. This approach is partially in contrast 

with all the previous experimental studies about vegetation resistance. In fact, peculiarity of all the 

studies conducted in flumes or channels were analyzing artificially-designed vegetation layouts, in 

which the variables such as stem density, diameter, height etc.were regularly distributed along the wetted 

perimeter, with smooth, vertical banks and flat bottom (i.e. Rhee et al., 2008; Nepf and Vivoni, 2000; 

Baptist et al, 2007; Järvelä 2012a, 2012b; etc.). In such conditions, the assumption that R=h (hydraulic 

radius equal to water depth) was often proposed. 

   In the present study case, the channel characteristics were significantly different. Considering the full-

vegetated conditions, it was evident how the vegetation was not homogeneously distributed along the 

wetted perimeter of each section. Moreover, there were slight differences between the surveyed sections, 

as the vegetated patches were not perfectly regular in the flow direction. The Manning’s n that were 

obtained for this scenario must be considered an “equivalent” roughness coefficient, representative of 

the global resistance of the study reach. These findings represent the answer to the question that 

animated the present study, as the reclamation authority was interested in estimating exactly this 

situation, that was representative of the unmown scenario for the local drainage network. 

   Anyhow, the collected data were also analyzed to extract information extendable to other case studies. 

The reverse composite section analysis that was conducted with different methods to estimate the 

average resistance of the lateral vegetated patches was part of these. The simplified vegetation layout 

allowed to estimate the roughness of the lateral patches, considering them as patches of vegetation with 

a regular distribution of resistance between left and right bank. Results showed that, as was observed 

for the equivalent roughness coefficients, the full-vegetated scenario presented a Manning’s n 

decreasing with increasing discharges.  

   The observed trend was in contrast with the classic models of emergent vegetation, and with the study 

of Rhee et al. (2008) regarding the Phragmites communis, a species with similar characteristic to the P. 

australis. In fact, the flow resistance of emergent vegetation was expected to increase with the water 

level. Typically, the vegetative drag force increases with the water level up to the full submergence 

conditions, which corresponds to the point of maximum resistance. For further increases in water level, 

the resistance assumes a decreasing trend, well described by a number of studies (i.e. Whitehead, 1976; 
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Kouwen, 1988; Morgan&Rickson, 1995; Nepf, 2012). A comparison between the observed data 

(subtracted of the bed resistance nb, as proposed by Cowan,1959) and the findings of Whitehead (1988) 

is proposed in figure 4.3. 

  

Figure 4.3. Comparison between the estimated roughness coefficients for the studied vegetated patches 
and the Whitehead models. C, D and E are three of the five grass stiffness cathegories proposed by the 

authors.  

Our experimental values presented a lower decreasing trend compared to the curves found by Whitehead 

for grasses of different stiffness and densities (C medium stiffness, E low stiffness). However, 

Whitehead models were developed for submerged meadows of grass, while our case was constituted by 

emergent reed. Our hypothesis about this difference is that a combined effect of stems and leaves 

occurred for raising water levels. In other words, it is possible that the increase in flow resistance of the 

most rigid, emergent stems somehow compensated the reduction of frontal area due to the leaves 

reconfiguration and bending of the smaller plants. A further discussion is proposed below.  

Rhee et al. (2008) described the roughness variation of three different species, one of which was the 

Phragmites communis, both in emergent and submerged, in steady gradually-varied flow conditions. 

The most relevant result to be compared to this work regards the Manning’s n-VR retardance curve, that 

was developed both for green and dormant reed. 
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Figure 4.4. Adapted from Rhee et al. (2008). Manning’s n for Phragmites communis in dormant state. 

 

Figure 4.5. Adapted from Rhee et al. (2008). Manning’s n for Phragmites communis in Green state for 
different water stages. 

   Starting from the presented experimental data, the authors subtracted from the observed Manning’s n 

values the roughness factors not related to vegetation, according to the Cowan (1956) approach. The 

resulting roughness coefficients were related just to the vegetation resistance, as they were obtained 

subtracting from the total Manning’s n the nb. The curves that were obtained are different in dormant 

and green condition: 

Dormant: ݊ = 0.0013/ܸܴ + 0.005                                                                                (4.1) 
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Green: ݊ = 0.0025/ܸܴ + 0.013                                                                             (4.2) 

The equation that was better describing the retardance law total n-V*R for the full-vegetated scenario 

in our study case, subtracting from the total Manning’s n the average n observed for the non-vegetated 

scenario (nb = 0.021), the retardance curve was: 

݊ = 0.0015/ܸܴ + 0.055                                                                                       (4.3) 

   It is interesting to see how the observed retardance coefficient lies in the middle of the ones proposed 

by Rhee et al. (2008). The authors presented two different retardance curves for the “green” state and 

the “dormant” state. Citing the authors, “‘Green’ state means that the tested grasses are fully green and 

in active growth state. ‘Dormant’ state means that the tested grasses are inactive and starting to be wilted 

or dead.” Our study case resulted somehow in the middle between of these two scenarios. In fact, looking 

at the plant height and stem densities used by Rhee et al., the green state appears a younger stage of 

growth compared to ours. On the other hand, our vegetation was not yet in dormant season, as the 

surveys were conducted at the maximum development before flowering. Considering the retardance 

coefficient as a measure of the reconfiguration of flexible elements, our findings are coherent with the 

ones obtained by Rhee et al. for the same species.  

   A more evident difference concerns the value of the horizontal asymptote, which is markedly higher 

in our study case (0.055) than in the two scenarios presented by Rhee et al. This parameter represents 

the minimum roughness coefficient that is related to the canopy when this is forced by a flow with high 

V*R. For submerged meadows, this number tends to decrease until the maximum bending is reached. 

For emerged plants, this value stabilizes at the minimum frontal area that can be assumed by the 

submerged portion of the plant. In the Korean experiment, the plants presented a maximum height of 

0.7-0.8 m and were flooded by a maximum depth of 0.4 m., while in our case the same specie was 1.3-

1.9 meters high, and were flooded up to 0.9 m. It is probable that the stem diameters were higher in our 

case, and that the flexible parts were representing just a part of the total resistance. Indeed, for low 

velocities the resistance was represented by a combined effect of the plant components. For the higher 

discharges, or at high V*R rates, the resistance was mainly represented by the rigid stems, as the leaves 

started to bend, contributing to decrease flow resistance. In presence of rigid stems, it is coherent to have 

higher resistances also in case of high velocities and water depths, as the emergent stems are not 

modifying their shapes, how probably happened in the study case of Rhee et al. 

   Comparing the observed results with modeling, we can assess that the observed resistance exerted by 

reed is in the middle between the flexible behavior of a rigid cylinder (represented by the emergent 

stems) and a bending grass (represented by the leaves). Therefore, the reed resistance should be 
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described as the one of a shrub. Moreover, the leaves distribution along the stem is varying with the 

season, as the higher the plants the less leaves will survive at the lower part of the stem. Thus, as already 

observed by Rhee et al.(2008), it is correct to assess that the reed presents a seasonality that varies the 

flow resistance within the year.  

   An interesting aspect that should be further studied is the bed resistance in vegetated channels. In fact, 

it is possible that the bed resistance that is measured in absence of vegetation would not be equal to the 

bed resistance in a vegetated channel, as the vegetation itself strongly modifies the flow-bed interaction. 

According to this theory, it is even more correct to compare directly the two global coefficients than to 

extrapolate a vegetative roughness that could be affected by other kinds of errors, i.e. the estimation of 

a bed resistance that could be not correct. Additionally, the loamy soil that was used in the research of 

Rhee et al. (2008) probably did not have a great difference in terms of bed resistance. The variation 

range of the V*R parameter were comparable, with the one of our study slightly higher (0.06-0.16 for 

the full vegetated scenario).  

4.3 Modelling 

   The vegetation parameters obtained by the field surveys were used to test the prediction capacity of 

different models available in literature. In particular, the full vegetated scenario and the half vegetated 

scenario were modeled by the use of the Nepf formula, the James formula and the Yang formula.  

   The section was first modeled considering an homogeneous distribution of plants along wetted 

perimeter, and then decomposing the cross section in six sub-areas, according to the vegetation surveys 

carried out before the hydraulic measures. While the prediction was not excellent with the first approach 

(40-50% of Error), the composite section model was more accurate, in some cases with an error lower 

than 10%. The best results were obtained by the combined use of the Nepf model, averaged along the 

wetted perimeter by the Colebatch method for the full vegetated scenario, and by the Yen method for 

the half-vegetated scenario. Thus, our results pointed out that well conducted vegetation surveys, aimed 

at estimating the distribution of resistance elements along the wetted perimeter, could represent a valid 

solution in estimating the roughness coefficients for vegetated channels.  

   Three resistance models were developed for the estimation of roughness of emergent vegetation. The 

used models assumed the stems as rigid cylinders. As a consequence, the modeled Manning’s n resulted 

increasing with the flow depth. This trend was found to be in contrast with our findings, as the plants in 

our study case were leafed. The effect of leaves was probably the reason of the decreasing trend. The 

results of the full vegetated scenario showed that the predicted values were often underestimated for the 
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lower discharges, and overestimated for the higher discharges. For the half vegetated scenario, most of 

predictions resulted overestimated for all the discharges. However, the reed stems resulted to be 

correctly comparable to rigid cylinders, given their regular shape and stiffness, at least when submerged 

for a small part of their height. The modelling predictions confirmed this supposition, as the average 

errors within the experimental interval were very low, despite the trends over discharges were not the 

same. Finally, we can consider that an opportune sharing of channel section, combined with different 

models can predict very well the flow resistance of the channel. Moreover, the general overestimation 

of roughness coefficients represents a precautionary approach which can just raise the safety in case of 

flood risk reduction projects.  

   Future research have to deepen this aspect considering additional recent models that include flexure 

rigidity and LAI of the vegetation, and probably an averaged value of drag force along the channel. This 

aspect can be considered as fundamental to obtain better formula at the reach scale and to reduce the 

error of total roughness height in vegetated channels.  
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5. SUMMARY AND CONCLUSIONS 

   An experimental study was realized aimed at estimating the roughness coefficients of a 

vegetated reclamation channel at the real scale. The vegetation was represented by common 

reed (Phragmites australis (Cav.) Trin ex. Steudel). Hydraulic measures were conducted in 

unmown conditions, after a partial cut, and after the complete removal from the whole channel section. 

Four increasing artificial discharges were pumped for each scenario within the channel to measure the 

total resistance for different water depths up to the bankfull condition. The velocity distribution at the 

middle cross section was measured by means of a current meter for the discharge estimation. 

Additionally, the vegetation was accurately surveyed to collect information about the distribution of 

parameters such as the stem diameter, plant height and stem density throughout the experimental reach. 

Three resistance models were tested to assess their prediction accuracy as compared with the observed 

values. 

   The roughness coefficients were calculated by analyzing the hydraulic variables observed during the 

field experiments under the assumption of steady-gradually varied flow. The full vegetated scenario 

resulted in the highest Manning’s n, with values varying between 0.074-0.063, presenting a decreasing 

trend for increasing discharges. The half-vegetated scenario was evaluated as possible management 

strategy of the channel vegetation which could reconcile the need to ensure an efficient hydraulic 

conveyance with the environmental protection needs. The vegetation was left untouched on one of the 

banks, while totally removed from the main channel and the other bank. The experimental total 

Manning’s n varied in the range 0.030-0.036, without showing a precise trend with increasing 

discharges. The cleared scenario was obtained removing the vegetation also from the other bank, and it 

was representative of the maximum conveyance of the channel. Manning’s n varied between the values 

0.013-0.022, without a trend with the discharges. The values of the cleared scenario were assumed as 

the bed resistance of the experimental reach.  

   The vegetation density was not homogeneously distributed along the wetted perimeter, but reed was 

significantly denser at the sides than in the central channel. Schematizing the cross section as a central 

channel of width 2 m without vegetation, and two lateral patches of homogeneous vegetation at the 

sides, the values of total resistance for the full vegetated scenario were processed to extract the 

Manning’s n due to the only vegetation. By means of four different composite roughness estimation 

methods, we obtained the corresponding Manning’s n for the vegetated subareas, given the roughness 

of the bed and the total roughness. Then, the obtained values were subtracted of the bed resistance to 

calculate the value to be attributed only to the vegetation resistance. The vegetation Manning’s n varied 
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between 0.080 and 0.062. The retardance law Manning’s n-V*R was produced for these values, and 

compared to other studies about vegetation resistance. 

   The vegetation surveys aimed at collecting the input parameters for three different resistance models: 

Nepf, James et al. and Yang & Choi. The resistance models were run with different rates of 

approximation. Averaging the vegetation parameters along the wetted perimeter, the models resulted 

affected by significant errors, but the use of the composite channel section raised up the prediction 

capacity of the three models to an excellent level, showing errors lower than 10% compared to the 

observed values. In any case, the best prediction were obtained by the use of the Nepf (2012) model for 

emergent vegetation. However, a discrepancy between observed and predicted values was found in the 

trend of Manning’s coefficients with discharges. In fact, all the models developed for emergent 

vegetation do not take into account the plant reconfiguration, resulting in increasing Manning’s n for 

increasing discharges. This was not observed in reality, since the measured n resulted slightly decreasing 

for increasing V*R values, while the models were slightly increasing. However, the predicted values 

can be considered acceptable as the discrepancies for a given discharge were not high. Moreover, the 

prediction error resulted to be lower for the higher discharges, which are the most relevant to be taken 

into account for flood risk management. 

      The present study was funded by the Toscana Nord reclamation consortium with the precise scope 

to assess the rise in terms of flood risk related to vegetation. The analysis of the variation in terms of 

return time demonstrated how the presence of dense vegetation increases the flood risk, as the frequency 

of the bankfull condition increases significantly because of the rise of the water level due to the higher 

flow resistance. However, the results obtained for the so-called half vegetated scenario demonstrated 

how it could represent an innovative solution able to combine multiple advantages both in terms of 

environmental protection, cost efficiency and flood risk reduction. 

   The results of the present research demonstrated also how a good level of prediction is feasible also 

by the use of existing models, which were found to have a good prediction capacity. From this 

perspective, the limitation could come from the high costs related to the field surveys on vegetation, that 

are complex and time consuming. A possible solution could be represented by the fast development of  

remote sensing techniques, as the UAV that was tested I this study. Future developments will include 

the estimation of vegetation parameters from aerial imagery, aimed at realizing roughness maps for 

management planning.  

   As a matter of fact, the management of natural streams and drainage networks has to deal with the 

reduction of flood risk and the protection of the riverine-aquatic ecosystems. Since the reclamation 

system were realized by humans to allow the cultivation of wetlands, the management of natural aquatic 
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and riparian vegetation along the drainage channels has been historically practiced without taking into 

account the environmental protection. Indeed, channel and ditches were realized with the only aim to 

drain the fields and protect crops and human infrastructures from ponding and flooding.  

   The progressive reduction of the environmental quality of aquatic habitats such as rivers, channels, 

lakes and wetlands led in the last years to a growing attention for these ecosystems. Therefore, 

environmentalist associations and the scientific community started to remark the high impact of 

management practices on the aquatic and riparian vegetation. This phenomena called for the better 

comprehension of the effective role of vegetation on flood risk, aimed at optimizing the management 

strategies to reduce the environmental impact of an indispensable practice as it is flood protection. 

   From this perspective, the present study contributed to the essential knowledge of the real effect of 

vegetation on flood risk. Results will contribute to plan management strategies oriented to a reduction 

of the impact on the environment.  
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2.a Appendix  

The current meter 

   This current meter, commonly known as the Price-type current meter, is suspended in the water using 

a cable with sounding weight or wading rod (taking the tail section off) and will accurately measure 

streamflow velocities from 0.1 to 25 feet per second (0.025 to 7.6 meters per second). The main features 

of this meter are the uniquely designed bucket wheel shaft bearings and the two post contact chamber. 

The bucket wheel has six conical shaped cups, is five inches (12.7 cm) in diameter and rotates on a 

vertical axis inside the yoke. The tungsten carbide bearings for the bucket wheel shaft are located in 

deeply recessed inverted cups. When the meter is in use, these cups become air chambers and the 

entrapped air effectively excludes water and silt from the bearing surfaces giving extremely low starting 

velocities and minimal friction in the bearings. 

 

Figure 2.16. USGS Type AA current meter. The meter was suspended at various depth by means of a 
wading rod. 

   The contact chamber houses a penta gear and two binding posts, each having a fine platinum alloy 

contact wire. One wire makes contact with the bucket wheel shaft once during every revolution; the 

other is used when fast velocities are encountered, and makes contact with the penta gear once during 

every five revolutions of the bucket wheel. 

   Each current meter is provided with a U.S. Geological Survey approved standard rating table to 

convert bucket revolutions to stream velocity in either English units (feet per second) or metric units 

(meters per second), spare parts, instrument oil, cleaning cloth, screwdriver and an instrument case with 

a water tight o-ring seal that floats if dropped in the water and provides proper protection of the meter 

during transportation and storage. 
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   The meter is made from brass and stainless steel and all exposed surfaces are chrome plated for 

corrosion-free service. The standard Type AA was designed for use with all of the counters as well as 

the AquaCalc 5000 Digital Flow Computer. No conversion kits or replacement contact chambers are 

necessary to use the latest digital technology with this meter. 

The Aquacount 

   The data measured by the meter was receveid by a AquaCount - Model 5100 Price-Type Current Meter 

Digitizer. The AquaCount provides a digital readout for Price-type AA and Pygmy current meters. It 

eliminates use of the headphone and stopwatch while it is a simplified version of the AquaCalc 5000 

flow computer. The AquaCount not only counts the revolutions, calculates and displays velocity in feet 

per second or meters per second, but time, revolutions and velocity are all simultaneously displayed on 

the LCD display. The AquaCount can be used with no modification or retro-fit of a standard Price-type 

current meter. Just plug it into the same connector you have for your headphone and immediately start 

reading velocity, revolutions and time. The AquaCount can be used with wading rods or cable suspended 

systems. It uses the same advanced CMOS circuitry as the AquaCalc 5000 which has proven itself in 

the USGS to be the accepted standard. 

 

Figure 2.17. Aquacount digitizer. It was used to read the measurements of the current meter. 

Features: 

Directly compatible with any existing Price-type current meter. No retrofit or modification required. 

Advanced CMOS circuitry with crystal based timing for accu- rate and reliable measurements. 

Display simultaneously shows velocity, revolutions and time. No need to wait until the end of a 

measurement cycle. 
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Easy to read 32 character LCD display reading 4 significant figures. 

Uses a single 9 V battery with power conserving standby circuitry for long battery life. 

Sealed membrane buttons and water resistant sealed circuitry. 

Physical Characteristics: 

Size:7" x 4" x 1" (18 cm x 10 cm x 3 cm) 

Weight:1 lb. (.4 kg) 

Velocity Range: 0 to 25 ft/sec. (0 to 7.6 m/sec.) 

Temperature Range:- 20 degrees C to + 70 degrees C 

Display Resolution: 0.001 
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2.b Appendix 

 

Figure A.1. Flow measures distribution for the full vegetated scenario. The Y axis is expressed in m a.s.l. 
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Figure A.2. Flow measures distribution for the half vegetated scenario. The Y axis is expressed in m a.s.l. 
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Figure A.3. Flow measures distribution for the non vegetated scenario. The Y axis is expressed in m 

a.s.l.
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List of symbols 

ܽ Frontal area per volume  

 Frontal area ܿܣ

ܾ Vogel exponent 

 ௫ Blockage factorܤ

 Vegetational patch drag coefficient ∗ܥ

 ஽Vegetal drag coefficientܥ

  ௕Bottom drag coefficientܥ

 Chezy coefficient ܥ

 Wetted perimeter ܥ

Cdχ = drag coefficient of a leafy bush or 
tree 

 Stem diameter ܦ

 ஽ Drag forceܨ

݂ Darcy-Weisbach Friction factor 

݂ᇱ Bed friction factor 

݂′′ Vegetation friction factor 

݃ Gravitational accelerationℎ water depth 

 Plant height ܪ

 

 

 

݅ water surface gradient 

LAI Leaf Area Index 

݉ Number of stems per m2 

MEI Vegetational stiffness parameter 

Ω Flow area 

ܴ Hydraulic radius 

ܵ Bed slope 

߬	 Total shear stress  

߬௕	Bed shear stress 

߬௩ Vegetation shear stress  

 Flow velocity ݑ

Uχ = lowest velocity used in determining χ 

 Patch width ݇ݓ

ܹℎ Channel width 

 ଴Water unit weightߩ

χ Species-specific vegetation parameter 
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