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I n t r o d u c t i o n  

Let A = {z E C : Izl < 1} be the unit disc of  C. In [5] Carl Cowen states 

that, under very general conditions, for any f E Hol(A, A), there exists a linear 

transformation ~o (~o E Aut(A) or ~o E Aut(C)) and a function a, analytic in A, 

such that ao f  = Woe. Moreover, under suitable normalizations, ~ and cr are unique. 

This theorem can be considered as a "classification theorem", since it associates 
(uniquely) to any function f E HoI(A, A) a linear fractional transformation ~. 

The investigation of  the behaviour of  the iterates {f~ is then reduced to 

the description of  the (known) behaviour of  {~p~ On the other hand, the 

solutions g of  the functional equation aog = ~boa (with a, as above, such that crof 

= ~ocr and ~b a linear transformation such that ~o~b = ~bo~) give rise to a class of  

analytic functions which can be called "generalized iterates" of  f ;  and this class 

of functions "generated" by f (or, more precisely, by the functional equation of  

f) is closely related to the class of  functions which commute under composition 
with the given function f (see, e.g., [6], [18]). This kind of  study involves 

sophisticated techniques from iteration theory and invokes many geometric tools 

from the hyperbolic geometry of  the disc A. It seems plausible that the techniques 

used to study iteration of  analytic functions on the disc can be applied more widely; 

this paper makes a contribution in this direction. The theory developed by Cowen 

([5], [6]) and others ([8], [13], [16], [18]) for functions holomorphic in A is 

extended to functions holomorphic on multiply connected hyperbolic domains of  

finite connectivity. A nice geometric characterization is provided for the semigroup 

of commuting locally-injective holomorphic maps of  a hyperbolic domain D of 

regular type into itself, with a fixed point in D. 

I thank Graziano Gentili for supervising my work with great attention and for 

valuable suggestions given during many helpful conversations. 
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I Hyperbolic domains  of  regular type 

A (noncompact) domain D of a compact Riemann surface )( is o f  regular type 
if 

(i) every connected component of  the boundary of  D, OD, is either a Jordan 

curve (that is, a simple closed continuous curve) or an isolated point; and 

(ii) for every connected component E of  cgD, there exists a neighborhood V of  

E such that V N OD =Z. 

Hyperbolic domains of  regular type form a large class of(hyperbolic) Riemann 

surfaces which have very good properties for our investigations. 

Let E be a connected component of  0D; we shall say that E is apoint component 

if it is an isolated point, a Jordan component otherwise. Let us immediately note 

the following. 

L e m m a  1.1. Let D c f f  be a hyperbolic domain o f  regular type. Then OD has 

a finite number o f  connected components. 

Proof .  Assume, by contradiction, that {E,~},~N is an infinite sequence of  

distinct connected components of OD. Take z,~ E E,~ for any n EI~. A subsequence 

of  {z,~},~ converges to a point wo ~ OD; but then the connected component of  

OD containing w0 cannot be separated from the other components of  OD. [] 

Thus hyperbolic domains of  regular type are finitely multiply connected hyper- 

bolic domains. However, it is well-known that any multiply connected domain of  

finite connectivity can be mapped univalently onto a domain bounded by closed 

analytic Jordan curves and isolated points (see [11] and [9], p. 262). Furthermore 

the correspondence of  the boundaries of  the domains under such univalent mapping 

is completely understood. Thus it will be sufficient to consider hyperbolic domains 

of  regular type for the study of  all finitely multiply connected hyperbolic domains. 

Since we are interested in hyperbolic domains and, in particular, in the behaviour 

of  holomorphic maps at the boundary of  such domains, we shall make heavy use 
of  the properties of  the universal covering A of hyperbolic domains. To fix 

terminology, let us recall some basic facts concerning covering spaces and maps 

of  Riemann surfaces. 

Let X and Y be two Riemarm surfaces and 

7rx : f ( - ,  X and  Iry : Y - - ~  Y 

their universal covering maps. Any f E HoI(X, Y) admits a lifting, that is, a 

holomorphic function ] E HoI(X, I7") such that f o Zrx = 7rv o ].  The function ] is 
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uniquely determined by its value at one point. In particular, since A is the universal 

covering of any hyperbolic Riemann surface X, if f E Hol(X, X) has a fixed point 

in X (i.e., if there exists zo in X such that f(zo) = z0), we can always lift f to a 

map ] E HoI(A, A) with a fixed point w0 in A, where 7rx(wo) = zo. Suppose now 

that f has no fixed point in D; clearly no lifting ] can have a fixed point in A. But 

since ] is a holomorphic map of A into A, by Wolff's Lemma, [1], ] has a "fixed 
point 7-(]) on the boundary of  A" in the sense of  non-tangential limits, that is to 

say, according to the following definition. 

Definition 1.2. Let f E Hol(A, C) and let a E 0A. We say that c E C U { ~ }  is 

the non-tangential limit (or angular limit) of f at cr 6 0A, or simply, that f tends 

to c as z tends to a non-tangentially, if f(z) approaches c as z tends to a within the 

Stolz region K(~r, M) = {z 6 A[ [~r - z[/(1 - IzI) < M}, for all M > 1. (See [1] for 

details on the shape of  K(o', M),) We shall also write K- limz--,~ f ( z )  = c. 

Hence ] has a "fixed point r(])  on the boundary of  A" if and only if  

K-lim~r(/) ](z) = T(]). 

Since for topological reasons the universal covering map 7to of  the hyperbolic 

domain D gives a correspondence of  the boundaries of  A and of  D, we have 

to study the boundary behaviour of  r• very accurately. Let ~ be a connected 

component of the boundary of  a hyperbolic domain D of regular type and denote 

by C~ the largest open connected arc (possibly void) of  points of  the boundary of  
A corresponding to Z; Cr. is also called the principal arc associated to ~,. Having 

introduced the terminology we need, we recall the main results concerning the 

boundary behaviour of  the universal covering map 7to to be used in the sequel. 

Theorem 1.3 ([1]). Suppose that D is a multiply connected hyperbolic 

domain o f  regular type, and denote by 7r : A ~ D the universal covering map 

olD. Let ~ be a connected component o f  the boundary o f  D. Then, 

(i)/fE ={a} is a point component ofOD, Cz is empty and i f  T-6 0A is associated 

to ~, then 7r(z) tends to a as z tends to r non-tangentially; 

(ii) t fZ  is a Jordan component o f  OD, Cz is not empty and i f  C c OA is an 

open arc associated to ~, then 7r( z) extends continuously to C and the image o f  C 

through this extension is exactly E. 

For later considerations, it is worth noticing that, by applying the Osgood-- 

Taylor-Carathtodory Theorem [4], [9] we obtain that, if E is a Jordan component 

of OD and if  rE Cz c ~ ,  then 7r extends continuously to a neighborhood of  7- (in 

~) and, furthermore, 7r is locally injective at r. 
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2 Ho lomorph ic  extension of  f E Hol(D, D) on the point  
component s  of  the boundary  of  a hyperbol ic  domain  
D of  regular type 

For our purpose, we recall the following version [1] of  

T h e o r e m  2.1 (Big  P i card  Theorem).  Let X be a hyperbolic Riemann sur- 

face contained in a compact Riemann surface X and let A* = { z E C : 0 < ]z I < 1 }. 

Then every f E Hol(A*, X) extends holomorphically to a function ] E Hol(A,X). 

The first application of the Big Picard Theorem is the following lemma. 

L e m m a  2.2. Let D C f(  be a hyperbolic domain o f  regular type and let f E 

Hol(D~ D). Suppose first that OD, the boundary o f  D, has at least one Jordan 
component, so in particular D ~ ff. Let P denote the set o f  point components oJ 

OD. Then any f E Hol(D, D) extends to f E Hol(D U P, 9) .  

Proof .  Assume first that D is bounded in PC; then Riemann's removable 

singularity theorem [7] allows us to extend f E Hol(D, D) to ] E Hol(D O P, 9) .  
We have only to prove that ](D U P) C_ -D. Assume by contradiction that, i fp  E P, 

f(p) belongs to an unbounded region T delimited by a Jordan component of  OD; 

one can always find a neighborhood U of f(p) such that U c c  T. Since f is 
continuous at p, there exists a neighborhood V ofp  in D O{p} such that f (V) C U. 

But, since f extends f and f (D)  C D, we get a contradiction. 
Assume now that D is unbounded in ~ ;  then the Big Picard Theorem allows 

us to extend f E HoI(D, D) to .f E Hol(D O P,~'). But, again, by continuity o f f  at 

each point of  P, we may conclude that actually f E Hol(D u P, 9) .  [] 

Suppose now that OD has no Jordan components so that OD = {zl,..., zk }; in 

particular D =X. There are three cases: 

(a) ~" is hyperbolic. In this case, since D is hyperbolic, OD may be empty. 
Since, moreover, D is of  regular type and D =X, 3~ itself is of  regular type. 

(b) ~" is a toms. In this case, since D is hyperbolic, OD = {Zl, ..., zk} contains 
at least one point (k > 0). 

(c) 3~ is the Riemann sphere C.. In this case, since D is hyperbolic, OD = 

{xl, ..., xk } contains at least three points (k > 2). 

Let f E Hol(.X,.~) be the extension of f E Hol(D, D) by means of  the Big 

Picard Theorem. Observe that, in general, if  3~ is a toms, .f(3~) =~' ;  indeed, 

if f(.~) =3~ minus at most one point, ] would be constant, since f would be 
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a holomorphic function of a non-hyperbolic Riemann surface onto a hyperbolic 

Riemann surface. For the same reasons, f((:) must be C minus at most two points. 

Summarizing, we can state the following. 

L e m m a  2.3. Let D C fC be a hyperbolic domain o f  regular type. I f  f E 

Hol(D,D) does not have a fixed point in D and is non-constant, the extension f 

(by means of  the Big Picard Theorem or Lemma 2.2) must have a fuced point in D. 

This point which, as already observed, corresponds to the Wolff point on the 

boundary of  A of  the lifting ] of  f must be an isolated point of  OD when OD has no 

Jordan components; when OD has at least one Jordan component, it can be either 

an isolated point of OD or a point of a Jordan component of  OD. 

We now turn to obtaining an extension of holomorphic maps of a hyperbolic 

domain of regular type into itself in order to generalize our studies to the case of 

holomorphic maps of a hyperbolic domain of regular type into itself with a fixed 

point in the closure of this hyperbolic domain (which still has to be a hyperbolic 

domain). We proceed as follows: if f E Hol(D, D) has a fixed point in D, there 

is nothing to do. Otherwise, there are two possibilities: either OD has at least one 

Jordan component or OD has no Jordan components. In the first case, if the fixed 

point of the extension ] E Hol(X,,~) is an isolated point p of OD, we add this point 

p to D and consider D' = D U{p} and .f E Hol(D', D'), the restriction of s / to D', 

where f is as in Lemma 2.2. Observe that D' is still a hyperbolic domain of regular 

type. The case in which the fixed point of the extension s / E Hol(~',X') is not an 

isolated point of OD will be examined later. Suppose now that OD has no Jordan 

components; the extension .f E Hol(X,)~) of f E Hol(D,D) given in Lemma 2.2 

necessarily has a fixed point p which is an isolated point p of OD. But if we now 

consider (as before) D' = D U{p} and )/ E HoI(D', D'), the restriction of ] to D', 

we are not able to conclude that D' is still hyperbolic. To avoid this inconvenience, 

we shall assume that D is properly contained in the Riemann sphere (2 minus three 

points, or in a torus minus two points. In this way, by adding a point to D, we still 

obtain a hyperbolic domain (of regular type). 

With this procedure, we have generalized our considerations to hyperbolic 

domains of regular type D and to maps f E HoI(D, D) with either a fixed point in 

D or a fixed point on a Jordan component of  OD. Let us summarize by means of 

the following 

Propos i t ion  2.4. Suppose that D is a hyperbolic domain o f  regular type 

contained in a compact Riemann surface )(. Assume, furthermore, that D is 

properly contained in the Riemann sphere C minus three points, or in a torus 

minus two points. Then any f E Hol(D, D) can be extended to )/ E Hol(D', D'), 
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where D' is a hyperbolic domain o f  regular type containing D and where ] has 

either a fixed point in D' or a fixed point on a Jordan component o f  the boundary 
D t" 

3 T h e  J o r d a n  c o m p o n e n t  c a s e  

Before considering the case ofholomorphic maps with a fixed point on a Jordan 

component of the boundary of  a hyperbolic domain of regular type D, let us transfer 

the Poincar6 distance w from A to D or, more generally, to any hyperbolic Riemann 

surface. Let X be a hyperbolic Riemann surface and denote by 7rx : A ---, X the 

universal covering map of X. Defining for z, w E X 

wx(z,w) = inf{w(5, d;) : 5 E 7rX-l(z),w E 7rx-l(w)}, 

we get a complete hyperbolic distance on X, which induces the standard topology 

[1]. The main property of this hyperbolic distance on an arbitrary hyperbolic 

Riemann surface is the analogue of the Schwarz-Pick Lemma for the Poincar6 

distance in A, namely [1] 

Proposition 3.1. Let X and Y be two hyperbolic Riemann surfaces and f : 
X --~ Y a holomorphic function. Let wx and a;y be the (induced) hyperbolic 

distances on X and on Y. Then for  all z, w E X we have 

w~,(f(z),f(w)) < wx(z,w).  

Take now a hyperbolic domain of regular type D endowed with the induced 

hyperbolic metric WD. Suppose that OD has at least one Jordan component and 

let f E Hol(D, D) have a fixed point on one of these Jordan components which, 

as already observed, corresponds to the Wolffpoint r( f )  on the boundary of  A of 

the lifting ] of f. Since ] E Hol(A, A) has no fixed points in A, there exists [5] in 

a neighborhood of T(]) a fundamental set for  ], i.e., an open, connected, simply 

connected subset V] of A such that 

(i) f(V]) C V] and 
(ii) for any compact set K in A, there is a positive integer n so that ]~ C V]. 

Moreover, it can be proved that ] is injective on V] [5]. 

Our aim is now to prove the following 

Proposition 3.2. Suppose that D is a hyperbolic domain o f  regular type 

contained in a compact Riemann surface )(. Let f E Hol(D, D). Assume that OD, 
the boundary o f  D, has at least one Jordan component and that neither f nor any 
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extension ] o f  f has a f ixed point in D. Then there exists, in a neighborhood o f  

a fixed point o f f  on a Jordan component o f  OD, a fundamental  set for  f in D on 

which f is injective. 

Proof .  For the construction of  a fundamental set Vf in A, where ] is injective, 

Cowen [5] uses a deep result of  Pommerenke [14], which guarantees that for 

any compact set K in A, there exists an integer N such that ] is injective on 

i,j,oo__.~ ]o,~ (K). This fact is applied to the interior of each compact set of  the family 

of exhaustive compact sets KT = {z E A : ]z I < 1 - 1/r},  and the construction 

of the desired fundamental set is carried out by gluing these unions of  iterates of  

K~; this set is, by construction, open and connected. To obtain a set which is also 

simply connected, one adds the eventual holes to the previous unions of  iterates 

of K~; the enlarged set is still fundamental, since ] is injective on the boundary 

of the holes (see [ 13] for details). The classical Wolff-Denjoy Theorem (see, e.g., 

[19], [1]) asserts that the iterates ]~ of  a compact set K in A converge to 

the Wolff point T(f) E 0A of  ]; then, according to the observation which follows 

Theorem 1.3, one can always find an integer N'  > N in such a way that not only 

] but also the covering map rrD is injective on Un~ , f~ and each step of  the 

construction in [5] can be repeated in the very same way. 

So let V] be the fundamental set for ] where ] and ~rD are injective and let 

V: = 7rD(Vi). First of  all, by definition, we have 

f(Vf) = f(TrD(V])) = 7rD(](VI)) C 7rD(Vf) = Vf. 

Let zo = 71D(0) and let K C D be any compact set in D. Consider r = 

supzega;D(z, zo); clearly r < oo since K is compact. We can always find a 

real number r*, 0 < r" < 1, so that for B(0, r ' )  = {z E A : ~D(Z, 0) < r ' }  we have 

~rD(B(O,r*)) = {w C D : a;o(W, Zo) < r}. Hence K C rrD(B(0,r*)). Now B(0, r*) 

is a compact set in A; thus, since V~ is a fundamental set for f in A, there exists an 

integer no such that for n > n0, f~ C V i. Then 

f~  C f~ r*)) = 7rD(]~ r*))) C rD(V]) = V l for all n > no. 

So V: is a fundamental set for f in a neighborhood of  a fixed point of  a Jordan 

component of  OD; moreover, f is injective on Vf, since ] and 71"O are and since 

f o ~r D = ~r D O ]. [] 

Remark .  The Theorem stated in [5] is actually proved for any f e Hol(A, A) 

with the assumption that the value of  the derivative of  f at the Wolffpoint  r ( f )  is 

not 0; by this we mean that f ' ( r ( f ) )  r 0 if  r ( f )  is a fixed point in A or, otherwise, 

K - l i m ~ ( : )  f ' ( z )  r O. I fT ( f )  e 0A, this assumption is always fulfilled since, by 
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the Julia-Wolff~Sarath6odory Theorem, if cr is a fixed point o f  f on the boundary 

of  A we have K-  limz_~ f ' (z )  = c E II~ +, so in particular, K-  lim~_~(f) f ' ( z )  ~ 0; 

actually, by Wolff 's  Lemma [1], 0 < K-  lim~__,~Cf ) f ' ( z )  < 1. The proof  in the case 

o f  a fixed point in A, when the derivative o f f  is not zero, is an (obvious) application 

o f  the Local Inversion Theorem, and does not involve any other result. Suppose 

f E Hol(D, D) has a fixed point zo in D. Assume that 7rD(w0) = z0 and let f be a 

lifting of  f such that .f(w0 ) = wo. By taking the derivative of  f (TrD (w) ) = 7rD ( f (w)  ) 

in Wo, one gets 

]'(wo) = =  D'(w0) = / ' ( z o ) .  

and, since 7rD is a local homeomorphism at wo, 7fDt(wo) • 0, SO that f ' (wo) = f '(zo). 

Therefore, putting together the results o f  the previous section with Proposition 

3.2, we get 

Proposition 3.3. Suppose that D is a hyperbolic domain o f  regular type 

contained in a compact Riemann surface f(. Let f c Hol(D, D). Assume, in 

addition, that the value o f  the derivative o f f  at the,fixed point (i f  any) in D is not 

0; then there exists a fundamental set for  f in D, on which f is injective. 

This proposition is the first step to extend the theorems proved by Cowen in [5] 

and in [6]. The proof  of  the main theorem of  [5], viz. the classification theorem 

already recalled in the Introduction, starts from the existence o f  a fundamental set 
V: for .f in A, on which f is injective. All (minimal) conditions necessary for 

carrying out a construction similar to the one which appears in the proof  of  the 

main theorem of  Cowen, [5], are also fulfilled in case o f  f E HoI(D, D), where D 

is a hyperbolic domain of  regular type contained in a compact Riemann surface ,~. 

Hence, we can restate the main Theorem in [5] as follows: 

T h e o r e m  3.4. Let D be a hyperbolic domain o f  regular type contained in a 

compact Riemann surface Xand  let f E Hol(D, D) be neither a constant map nor 

an automorphism o f  D. Assume, in addition, that the value o f  the derivative o f f  

at the fixed point in D (i f  any) is nonzero. Then there exist 

(0) a fundamental set Vf for  f in D, on which f is univalent; 

(1) a domain f~, which is either the complex plane C or the unit disc A; 

(2) a linear fractional transformation qD mapping [2 onto f~; 

(3) an analytic map a mapping D into f~; 

such that 

(i) <r is univalent on V/; 

(ii) a(Vf) is a fundamental set for  ~ in [2; 
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(iii) cro f = ~ocr. 

Finally, ~a is unique up to conjugation under a linear fractional transformation 

mapping f~ onto f~ , and the maps ~ and ~r depend only on f and not on the choice 

o(the fundamental set V; that is, i f  ~i and ~rl satisfy (i), (ii) and (iii) then there 

6xists an automorphism p off~ such that q~l = p-1 o qD o p and ~rl = po  a. 

The case of f E Aut(D) (automorphism of D) is excluded in the classification 

0fTheorem 3.4 since we have the following (strong) characterization result of  the 

automorphisms of  D [ 1 ]. 

Theorem 3.5. Let D c f (  be a hyperbolic domain o f  regular type. I f  

i9 is not doubly connected, then Aut(D) is finite. I f  D is doubly connected, 

then D is biholomorphic either to A* = A\{0} or to an annulus A(r, 1) = 

{z E C : r < [z i < 1} for  some real number r, 0 < r < 1. Then every "r E Aut(A*) 

is of the form "r(z) = eiez (0 E R) and every "r E Aut(A(r, 1)) is either o f  the form 

-,(z) = eiOz or o f  the form "r(z) = eierz -x . 

By applying the same techniques used in [5], one can prove that, up to 

conjugation, only four cases may actually occur in the classification given by 

Theorem 3.4. In particular, we have 

Proposition 3.6. Assume that f E Hol(D, D) has a f ixed point  zo in D; let 

rD(wo) = Zo and ] E nol(A, A) be the lifting o f f  such that ](Wo) = wo. Then, 

with the notation o f  Proposition 3.4, f~= C and ~(z) = sz, with 0 < Is[ < 1 i f  and 

only if f has a fi.red point  zo in D and, moreover, f '  ( zo ) = s. 

Proof. As observed in the Remark to Proposition 3.2, f ' (zo) = f'(w0), so the 

proof can be carried out as in [5]. [] 

According to the results of  the previous section, the other three possible cases 

may then occur only if f or any other extension ] of  f on the point component of  

~D has no fixed point in D. 
For all the cases, however, it is possible to extend the definition of  the pseudo- 

iteration semigroup, given in [6] for f E Hol(A, A), to the case of  f E Hol(D, D), 

where D is a hyperbolic domain of  regular type, since this definition essentially 

relies upon Theorem 3.4. Following the definition given in [6] for the case D = A, 

we have 

Definition 3.7. Assume that f E Hol(D, D) is as inthe hypothesis of  Theorem 

3.4 and let ft, cr and go be related to f as in Theorem 3.4. We say that 9 E Hol(D, D) 

is in the pseudo-iteration semigroup of  f E HoI(D, D) if and only if there exists 

~, E Aut(f~) such that ~ro9 = ~bocr and ~bo~=~oak. We write 9 E SPI(f). 
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Not every 9 E SPI(f) commutes (under composition) with f ,  not even when 

the hyperbolic domain is the disc A (see [6], [18]); at the same time, however, if 

a / E HoI(A, A), and if ~ E Hol(A, A) belongs to SPI(.{), then f and ~ commute if 

and only if there is an open set U in A such that 0(U) and ~(f(U)) are contained in 

the fundamental set V i of  f .  

Observe that this condition is always fulfilled when ] E Hol(A, A) has a fixed 

point wo in A. This is so since, on the one hand, ~ E HoI(A, A) commutes with ] 

if and only if ] and ~ have w0 as a fixed point and, on the other, the condition is 

equivalent to the Schwarz-Pick Lemma for f and for ~ [ 1 ]. 

Suppose now that f E Hol(D, D), where D is a hyperbolic domain of  regular 

type, and that 9 E SPI(f). Let ] and ~ be their liftings. Since the Identity Principle 

holds for holomorphic functions, from the definition of  lifting, one immediately 

has that f o 9 = 9 o f if and only if ] o ~ = ~ o s ~. Hence, keeping in mind the 

construction of  the fundamental set V I for f E Hol(D, D), one can easily deduce 

the same condition for the case of  a hyperbolic domain of  regular type, namely 

Proposition 3.8. Let f E Hol(D, D) and let g E Hol(D, D) be in the pseudo- 

iteration semigroup o f f .  Then f and g commute i f  and only i f  there is an open set 

U in D such that g(U) and g(f(U)) are contained in the fundamental set Vf o f f .  

In particular, let f E HoI(D, D) have a fixed point z0 E D and f E HoI(A, A) be 

the lifting of  f such that ](wo) = wo (where 7rz~(w0) = z0). In this case, as already 

remarked, the fundamental set V I for f reduces to a neighborhood of  z0. Therefore, 

as in the case of  the unit disc A, any 9 E SPI(f) commutes with f, according to 

Proposition 3.1 and to the previous considerations. But even more can be said. 

From the classification of  Theorem 3.4, one knows that, in the case examined, one 

has f~= C and ~(z) = f'(zo)z. Now, from the definition, 9 E SPI(f)  if  and only if 

there exists ~p E Aut(f~) such that go 9 = 0o~ and ~bo~=~o~b (where cr is such that 

crof = f'(zo).~r). These functional equations imply that ~,(z) = Az and A = 9'(zo). 

Suppose now that f and 9 are non-constant holomorphic maps of  D into D, not 

automorphisms o lD ,  which commute under composition, i.e., f o 9 = 9 o f. In the 

case o f D  =A and ],  .0 E Hol(A, A) commute, Behan [3] proves that f and t~ have 

the same Wolff point. Moreover, it is possible to show (see [18]) that "almost" 

always ~ E SPI(f): the only exception arises when f has its Wolffpoint r ]  on 0A 

and for any w0 E A ]~ converges to r j  tangentially. If  this is the case, one 

can anyway prove that ~ E SPI(f  o .~) (see [6]). The proof of  the above results 

essentially relies upon the uniqueness of  the map or, which appears in the definition 

of  the pseudo-iteration semigroup of  a map and whose existence and uniqueness 

are stated in the Main Theorem of [5] for the case D =A. Some deeper results 
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are obtained by considering specific geometric properties of the fundamental set 

(see [18]). In the case of a f E HoI(A,A) with a fixed point Wo in A, these 

conditions are easily fulfilled: one has only to consider, as a fundamental set for 

], a neighborhood of w0 in A on which ] and ~ are injective. Assume now that 

D is a generic hyperbolic domain of  regular type. Theorem 3.4, which provides 

the tools for the (generalized) definition of the pseudo-iteration semigroup for 

f E Hol(D, D), asserts that the map ~ is unique. Moreover, it has already been 

remarked that the case of a map f E HoI(D, D) with a fixed point zo is very similar 

to the case of a ] E Hol(A, A) with a fixed point wo in A since, as in the case 

D = 4,  one can take a small neighborhood of zo as a fundamental set of f. Hence, 

one can obtain (see [6] and [18]) 

Propos i t ion  3.9. Let D be a hyperbolic domain o f  regular type. Assume that 

f and 9 are non-constant holomorphic maps o f  D into D, not automorphisms o f  

D, which commute under composition. Then, i f  f has a fi.xed point zo E D, 9 also 

has zo as a f ixed point, and, moreover, 9 E SPI(f). 

Proposition 3.10. Let D be a hyperbolic domain o f  regular type and f E 

HoI(D, D) have a f ixed point  zo E D. A function 9 E Hol(D, D) commutes with f i f  

and only i)c 9 is a solution o f  the functional equation 

a o 9 = 9'(zo) " a, 

where c~ is the "unique "' solution o f  the functional equation cr o f = f '  ( zo ) �9 a. 

R e m a r k .  A functional equation of the form 

S o  f = ; ~ . S  

is called Schr6der's functional equation. We can summarize Proposition 3.10 

by saying that, given a function f E HoI(D, D) with a fixed point z0 E D (D 

a hyperbolic domain of regular type), the set of  functions holomorphic in D 

which commute with f coincides with the set of solutions of Schr6der's functional 

equation in 9, or~ = ),.or, where cr is given by the functional equation aof  = f'(zo).Cr. 

Call this set of functions F. Take 9 E F and let ,q E HoI(A, A) be the lilting of 

9 such that .0(w0) = wo (lrD(wo) = z0). Since 9'(zo) = 0'(wo), by the Schwarz- 

Pick Lemma we have 9'(zo) E ~.  Let )~ : F ---, A be defined by A(9) = 9'(zo). 

Clearly, since zo is a fixed point, for any 9 E F, )~ is multiplicative, that is, 

A(g o h) = A(g). A(f).  
In [16] Pranger shows that given ] E HoI(A, A) locally univalent, such that 

](0) = 0 and 0 < I?'(0)1 < 1, then )~(F) is a closed subset F o f ~ ,  such that 
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(1)0,1 e P and r n A ~ {0}; 

(2) i f t ,  s E F, then t .  s E F; 

(3) C\1" is connected. 

Conversely, given a closed subset F in A with properties (1), (2) and (3) there 

exists a locally univalent f E HoI(A, A) such that ](0) = 0, 0 < [.#'(0)[ < 1 and 

A(F) -- F, where _# is the set of  functions, holomorphic in A, which commute with 

f. (The choice of  0 as a fixed point is arbitrary, since A is homogeneous.)  

Consider f E HoI(D, D) with a fixed point Zo and let ] E Hol(A, A) be the 

lifting of  f such that f(w0) = w0 (TrD(wo) = zo). Since f ' (zo) = fl(Wo), by 
applying the results o f  Pranger to the lifting f o f  f ,  one immediately gets that 

is a closed subset of  A, which has properties (1), (2) and (3). On the other 

hand, consider a closed subset F in /S with properties (1), (2) and (3). Consider 

D = ~(C \ F), where ~(z) = 1/z. Clearly 0 E D; furthermore the domain D is 

hyperbolic since F contains at least three points. Now, given any t E F, i f  w e D 

then t �9 w E D. In fact, i f t .  w r D, there exists s e 1" such that t �9 w = ~(s) = 1Is. 

Then w = 1/t �9 s = ~( t .  s) and t �9 s E F, so that w ~ D, which is a contradiction. 

Define f t (w)  = t .  w Vt E 1". Clearly, Vt E F, ft  E Hol(D,D),  ft(O) = 

0, f~(0) = t e 1" and {fther is a family of  locally univalent commuting holomor- 

phic maps. 

So we have extended the results o f  Pranger, namely, we have proved 

T h e o r e m  3.11. Let D be a hyperbolic domain o f  regular type, let f E 

Hol(D, D) be a locally univalent map and let zo E D be such that f (zo)  = zo 

and that 0 < I f ' (zo) l  < 1. Let  F be the set o fholomorphic  self-maps o f  D which 

commute with f and define A : F ~ ?~ by A(9) = 9'(zo). Then F = A(F) is a closed 

subset o f  ?X such that 

(1) o,~ e r, r n ~  ~{o} ,  
(2)~t, sEr ,  t.sE1", 
(3) (Z \ r is connected. 

Conversely, given a closed subset F C Zx with properties (1), (2) and (3), there 

exist a hyperbolic domain D which contains 0 and a fami ly  o f  locally univalent 

holomorphic maps {ft  : D ---, D} ter  such that ft(O) = 0 and f[(O) E F Vt E F. 

Theorem 3.11 gives rise to a great number o f  examples and possibilities: F may 

be a closed segment, a finite number of  closed segments, a spiral, a closed disc 

and a finite set of  points, which all fulfill properties (1), (2) and (3). In particular, 

1 1 1 , 1}, Pranger shows that there exists a locally univalent taking F = {0, 7, ~, ~ , . . .  

map f E Hol(A, A) such that the only maps which commute with f are its natural 

iterates. 
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An example of  such functions is known in the -set o f  entire functions, namely 

f(z) = e ~ - 1. No explicit examples for holomorphic functions in hyperbolic 

domains D have been exhibited, even in the case D = A. For instance, Cowen in 

[6] first shows that i f f  E Ho l (A ,A)  and s u p { l f ( z ) l  : z e / x )  = II[flII < 1, then 

there are infinitely many functions besides the natural iterates o f  f that commute 

with f and then gives an example (but not an explicit one) o f  a map g E Hol(A, A) 

such that the only functions commuting with g are its natural iterates. O f  course, 

one immediately deduces that [[[g[[[ = 1; but since g(z) is essentially defined by 

considering the action o f  the map t .  w up to conjugation o f  the Riemann map o f  A 

onto a suitable domain D with countably many cuts, it is rather difficult to study g 

without the interwining Riemann mapping. 

Although the techniques used by Pranger in A ([16]) and here, applied for any 

holomorphic map with a fixed point in a hyperbolic domain D of  regular type, 

cannot be considered a direct method for obtaining explicit examples for each kind 

of map, one can give a precise definition o f  the map in some particular cases. Take, 

for instance, E= [0, 1] as in Theorem 3.1 1 and let ~p(z) = 1/z. Let V = C\~(F)  and 

S = {z E C : 0 < Imz < 27r}. Then S is a one-sheeted covering o f  V by means o f  

the (invertible) map w ---, e ~~ + 1. Let  p be the Riemann map o f  A onto S such that 

p(0) = in. Take c E F and define 

re(z) = p-l(log(c(eP(Z) + 1) - 1)). 

One immediately verifies that for any c E F, ]c(0) = 0 and f~(0) = c; moreover  

] c ( h ( Z ) )  = p-l(log(c(eP(P-l(l~ H- 1) -- 1)) = f-cb(Z). 

Hence {]c}~Er is the set of  locally univalent maps whose existence is proved in 

[16]. 

This example has an explicit formulation since the domain V can be easily 

covered. Slight modifications to this example give the following generalizations: 

(1) F=  {z E C : Izl < ~, 0 < r < 1} u{t  E IR : 0 < t _< 1}, V = q~\qo(I'), S = 

{z E C : 0 < Imz < 27r, Rew < log(1/r-1)}and]c(z)  = p-l(log(e(eP(~) + l )  - l ) ) ,  

where p is the Riemann map o f  A onto S such that p(0) = iTr; 

(2) F =  { t - e i }  " : s E N,k = 0,1, ..., 2s, t E [0,1]}, V = ~:\~(F), S = 

{z E C : 0 < Imz < 2rr}\{z E C : Imw = } r r } a n d ~ ( z )  = p-l(log(c(eP(")+l)-l)), 
where p is the Riemann map o f  A onto S such that p(0) = iTr. 

Consider now the domain D = C \ { - 1 ,  0, 1, oo}; this domain is strictly contained 

in the thrice-punctured Riemann sphere (2 \{ -  1, 1, oo} and in this sense it represents 

the "minimal"----even though the widest---hyperbolic domain o f  regular type for 

which the considerations o f  the previous sections may be applied. (Let us remark, 
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before turning to details, that the thr ice-punctured Riemann sphere is in some sense 

the optimal domain, because any meromorphic self-map on a bounded domain can 

be extended to the removable singularities by means o f  the Riemann Theorem. 

On the other hand, the Picard theorem asserts that a holomorphic map f maps a 

neighborhood o f  an essential singularity onto a domain which omits at most  two 

points in C; moreover, any meromorphic map defined on ~ is a rational map.) 

The domain D'  = ~;\{0, 1, oo}, which is hyperbolic, may be covered (see [2] 

and [12]) by H + by means of  the elliptic m o d u l a r  f unc t i on  z ~ d(z ) ,  defined by 

1 -{'- e ( 2 n - 1 ) ' i z  

This map is generally studied because it is invariant under the action o f  the modular 

group G, that is, the group of  transformations o f  H + 

a z + b  

- c z  +-----d' 

with a, d odd integers and b, c even integers such that ad - bc = 1. 

In particular, it can be shown that the function J effects a one-to-one conformal  

mapping from the region R bounded by the imaginary axis, the line Re(z) = 1 and 

the circle Fz - 1/2! = 1/2 onto the upper half  plane H +. By reflection, the region 

R' symmetric to R with respect to the imaginary axis is mapped one-to-one onto 

the lower half  plane H - ;  moreover, each point o f  D'  = C\{0, 1, oc} is covered 

by H + infinitely many times, and J has no branch points. Finally, J cannot be 

holomorphically extended across the real axis; indeed, by invariance, J o g = J for 

any # in G, and, since the set {b/d  : b even, d odd } o f  zeros o f  transformations 

in G is dense in R, i f  J were defined on the real axis it would be constant. Any 

transformation # in G defines the identity map on D'  by means o f  the relation 

J o # = J, but if  one considers a map ~ : H + ~ H +, such that for any Zo E D 

there exists w0 E D such that f ( J - l ( z o ) )  C_ J - l ( W o )  , it is possible to define a 

holomorphic map f : D ~ D such that f o J = J o ~a. For instance, the map 

~a(z) = z + 1 defines f ( z )  = z / ( z  - 1). 

We can then define the functions Q(z)  which is related to J ( z )  by the relation 

Q(z)  = J ( ~  logz) .  The function Q is defined in A* = {z E C : 0 < [z[ < 1}, but 

it is not difficult (see [12]) to see that actually l imz~0Q(z) = 0, so that Q can be 

considered defined and holomorphic in A. In accordance with that, one can find 

the product expansion 

oe ( l+z2 ,~  ,~s 

Q(z) = 16z l-I 17z(  -1) / 
r t :  l 
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The same properties o f  J can be proven for Q; in particular, Q has no branch 

points and ,5 covers C\{0, 1, oc} by means o f  Q-- inf ini te ly  many times. 

If we now define Qt(z)  = v / - Q - ~ ,  we get a function which is holomorphic 

in A, with no branch points but such that it covers D = C \ { - 1 , 0 ,  1, c~}, since 

Q12(z) = Q(z2).  Moreover,  the function Q1 is odd, as can be easily observed from 

the product expansion 

Q l ( Z ) = 4 z l - [  1+z(4 , ,_2) ]  �9 
n=l 

NOW, if ~2 is a map such that f o Q1 = Q1 o ~, according to the rcsult o f  Section 2, 

f can be extended to a holomorphic map ] ,  defined in D and on a point component  

of OD, which coincides with f in D. In this particular case, it is very easy to 

see this when ~o(0) C Q~-I (0); indeed, i f  Wo is any neighborhood o f  0 in D, since 

Q1 is continuous and l i m ~ 0  Q t ( z )  = o, there exists a neighborhood V0 o f  0 in 

b such that Ql(Vo)  c Wo. Then, since f o Qx = Qt o r necessarily the map f 

is continuous at 0 and then bounded. The Riemann theorem then allows us to 

extend f holomorphically to 0. The point 0 is moreover fixed for the map ] ,  and 

all the theorems for this case can be applied. The example given above, namely 

the map ~o(z) = z + 1, perfectly fulfills all such properties; indeed, a map f ,  such 

that f o Q~ = Q~ o ~p, is the map f ( z )  = - z ,  which has a fixed point at 0. 

The map Q1 gives rise to another covering; specifically, the map z E A 

P(z) = 2/7r arcsin Q l ( z )  covers C \ Z u { ~ } ,  which is hyperbolic but not o f  regular 

type, since the connected components  o f  the boundary accumulate to c~. 

Finally, an explicit example o f  a family o f  self-maps, parameterized by 7r 

holomorphic in H +, such that none o f  them commutes with any other o f  this 

family, has already been provided in [8]; this result makes use o f  the geometric 

properties of  the fundamental set and gives a direct application o f  its construction. 
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