Regular Composition for Slice-Regular Functions of Quaternionic Variable

Fabio Vlacci

Abstract

In general (see e.g. Cartan in Elementary Theory of Analytic Functions of One or Several Complex Variables, 1963), given two (formal) power series $g(x)=b_{0}+x b_{1}+\cdots+x^{n} b_{n}+\cdots$ and $f(x)=x a_{1}+\cdots+x^{n} a_{n}+\cdots$ (with $a_{0}=f(0)=0$) it is well known that the composition of g with f, in symbols $g(f(x))$, is a formal power series when coefficients a_{j} and b_{k} are taken in a commutative field. Furthermore, if the constant term a_{0} of the power series f is not 0 , the existence of the composition $g(f(x))$ has been an open problem for many years and only recently has received some partial answers (see Gan and Knox in Int. J. Math. Math. Sci. 30:761-770, 2002). The notion of slice-regularity, recently introduced by Gentili and Struppa (Adv. Math. 216:279-301, 2007), for functions in the non-commutative division algebra \mathbb{H} of quaternions guarantees their quaternionic analyticity but the non-commutativity of the product in \mathbb{H} requires special attention even to define their multiplication (see also Gentili and Stoppato in Michigan Math. J. 56:655-667, 2008). In this paper we face the problem of defining the (sliceregular) composition $g \odot f$ of two slice-regular functions f, g; this turns out to be defined as an extension of the standard composition $g \circ f$ of functions in a noncommutative setting which takes into account a non-commutative version of Bell polynomials and a generalization of the Faà di Bruno Formula.

1 Introduction to Slice-Regularity in \mathbb{H}

We recall that the algebra of quaternions \mathbb{H} consists of numbers $x_{0}+i x_{1}+j x_{2}+k x_{3}$ where x_{l} is real $(l=0, \ldots, 3)$, and i, j, k, are imaginary units (i.e. their square equals -1) such that $i j=-j i=k, j k=-k j=i$, and $k i=-i k=j$. In this way, \mathbb{H} can be considered as a vector space over the real numbers of dimension 4. Given a generic element $q=x_{0}+i x_{1}+j x_{2}+k x_{3}$ of \mathbb{H} we define in a natural fashion its conjugate $\bar{q}=x_{0}-i x_{1}-j x_{2}-k x_{3}$, and its square norm $|q|^{2}=q \bar{q}=\sum_{k \geq 0}^{3} x_{k}^{2}$. The set $\mathbb{S}=\left\{q \in \mathbb{H}: q^{2}=-1\right\}$ will be referred to as the sphere of imaginary units of \mathbb{H}.

[^0]The following is immediate and yet important
Proposition 1 For any non-real quaternion w, there exist, and are unique, $x, y \in \mathbb{R}$ with $y>0$, and an imaginary unit I_{w} such that $w=x+y I_{w}$.

Definition 1 Given any imaginary unit I, the set $\mathbb{R}+\mathbb{R} I$ will be denoted by L_{I}.
Notice that after identifying the imaginary unit I_{w} in \mathbb{H} with the imaginary unit i of \mathbb{C}, the set $L_{I_{w}}$ may be considered as a complex plane in \mathbb{H} passing through 0,1 and w. In this way, \mathbb{H} can be obtained as an infinite union of complex planes (which will be also called slices).

Definition 2 If Ω is a domain in \mathbb{H}, a real differentiable function $f: \Omega \rightarrow \mathbb{H}$ is said to be slice-regular if, for every $I \in \mathbb{S}_{\mathbb{K}}$, its restriction f_{I} to the complex line $L_{I}=\mathbb{R}+\mathbb{R} I$ passing through the origin and containing 1 and I is holomorphic on $\Omega \cap L_{I}$.

In particular any slice-regular function is C^{∞} in $\mathbb{B}(0, R) .{ }^{1}$ Actually, something more is proven in [5]:

Theorem 1 A function $f: B=B(0, R) \rightarrow \mathbb{K}$ is regular if, and only if, it has a series expansion of the form

$$
f(q)=\sum_{n=0}^{+\infty} q^{n} \frac{1}{n!} \frac{\partial_{C}^{n} f}{\partial x^{n}}(0)
$$

converging in B. In particular if f is regular then it is C^{∞} in B.
For an introductory survey on slice-regular functions we refer the interested reader to [7].

Let $f(q)=\sum_{n=0}^{+\infty} q^{n} a_{n}$ be a given slice-regular function whose associated quaternionic power series has radius of convergence $R>0$ and consider the quaternionic power series with real coefficients $\sum_{n=0}^{+\infty} q^{n}\left|a_{n}\right|$; it also has radius of convergence R, because, according to Hadamard's Formula (see e.g. [1]),

$$
R= \begin{cases}1 / \lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} & \text { if the } \lim \sup \text { is finite and different from } 0 \\ 0 & \text { if } \lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=+\infty \\ +\infty & \text { if } \lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=0\end{cases}
$$

Therefore the function

$$
z \mapsto \sum_{n=0}^{+\infty} q^{n}\left|a_{n}\right|
$$

[^1](denoted by $f_{a b s}(z)$) is a slice-regular function in $B(0, R)$ with the property that for any $I \in \mathbb{S}$, we have $f_{a b s}\left(L_{I}\right) \subset L_{I}$.

2 Non-commutative Bell Polynomials and Slice-Regular Composition

Let $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ be a given multiindex; we set

$$
\begin{aligned}
k! & :=k_{1}!k_{2}!\cdots k_{n}! \\
|k| & :=k_{1}+k_{2}+\cdots+k_{n} \\
\|k\| & :=k_{1}+2 k_{2}+\cdots+n k_{n} .
\end{aligned}
$$

Then for $n \geq 1$, we define

$$
B_{n}\left(y_{1}, \ldots, y_{n}\right):=\sum_{\|k\|=n} \frac{n!}{k!}\left(\frac{y_{1}}{1!}\right)^{k_{1}} \cdot\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}
$$

where y_{j} are elements of a commutative algebra; we observe that these polynomials satisfy the recursive equation

$$
\begin{equation*}
B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} y_{k+1} \tag{1}
\end{equation*}
$$

with the initial condition $B_{0}=1$. These polynomials are called Bell polynomials. If one decomposes B_{n} into its homogeneous ${ }^{2}$ parts $B_{n, d}$ (with $d=1,2, \ldots, n$), one can write

$$
B_{n}=\sum_{d=1}^{n} B_{n, d}
$$

and obtain

$$
B_{n, d}\left(y_{1}, \ldots, y_{n}\right):=\sum_{\|k\|=n,|k|=d} \frac{n!}{k!}\left(\frac{y_{1}}{1!}\right)^{k_{1}} \cdot\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}
$$

The homogeneous polynomials $B_{n, d}$ appear in the expression of the n-th derivative of the chain rule, namely

Proposition 2 (Faà di Bruno Formula) If $h=g \circ f$, then

$$
\begin{equation*}
h^{(n)}(x)=\sum_{d=1}^{n} B_{n, d}\left(f^{\prime}(x), f^{\prime \prime}(x), \ldots, f^{(n)}(x)\right) \cdot g^{(d)}(f(x)) \tag{2}
\end{equation*}
$$

[^2]for any λ.

In [8], the authors extend the notion of Bell polynomials to the setting of a noncommutative algebra \mathscr{A} with unit and obtain their explicit expressions, namely

$$
\widetilde{B}_{n, d}:=\sum_{n_{2}, \ldots, n_{d}=1}^{n}\binom{n-1}{n_{2}}\binom{n_{2}-1}{n_{3}} \cdots\binom{n_{d-1}-1}{n_{d}} y_{n_{d}} y_{n_{d-1}-n_{d}} \cdots y_{n_{2}-n_{3}} y_{n-n_{2}}
$$

for $n \geq d \geq 2$ and $\widetilde{B}_{0}=1, \widetilde{B}_{1}=y_{1}$. It is then natural to consider

$$
\widetilde{B}_{n}=\sum_{d=1}^{n} \widetilde{B}_{n, d}
$$

These polynomials also satisfy the analogous of Eq. (1); in particular, because of the non-commutativity of multiplication, if instead of

$$
\begin{equation*}
\widetilde{B}_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \widetilde{B}_{n-k} y_{k+1} \tag{3}
\end{equation*}
$$

(with the initial condition $\widetilde{B}_{0}=1$) one considers the condition

$$
\begin{equation*}
\widetilde{B}_{n+1}=\sum_{k=0}^{n}\binom{n}{k} y_{k+1} \widetilde{B}_{n-k} \tag{4}
\end{equation*}
$$

then

$$
\widetilde{B}_{n, d}:=\sum_{n_{2}, \ldots, n_{d}=1}^{n}\binom{n-1}{n_{2}}\binom{n_{2}-1}{n_{3}} \cdots\binom{n_{d-1}-1}{n_{d}} y_{n-n_{2}} y_{n_{2}-n_{3}} \cdots y_{n_{d-1}-n_{d}} y_{n_{d}}
$$

for $n \geq d \geq 2$ and $\widetilde{B}_{0}=1, \widetilde{B}_{1}=y_{1}$. Moreover the expressions of $\widetilde{B}_{n, d}$ can be also inductively obtained by means of a derivation ${ }^{3} D$ plus the multiplication from the left of an element of \mathscr{A}. In fact, if we adopt the notation $D(y)=y^{\prime}$ and $D\left(y^{(n-1)}\right)=y^{(n)}$, the (non-commutative) Bell polynomials which satisfy (3) are uniquely determined by

$$
\widetilde{B}_{n+1}\left(y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=(D+y) \widetilde{B}_{n}\left(y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right), \quad \widetilde{B}_{0}=1
$$

where

$$
(D+y) \widetilde{B}:=D(\widetilde{B})+y B
$$

[^3]for (non-commutative) Bell polynomials which satisfy (4) one has to consider the action $\underset{\sim}{\text { of }}(D+y)$ on the right. Thus one immediately observes that $\widetilde{B}_{n, 1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=$ y_{n} and $\widetilde{B}_{n, n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=y_{1}^{n}$; more in general
\[

$$
\begin{array}{ll}
\widetilde{B}_{0} & =1 \\
\widetilde{B}_{1}\left(y_{1}\right) & =y_{1} \\
\widetilde{B}_{2}\left(y_{1}, y_{2}\right) & =y_{2}+y_{1} \\
\widetilde{B}_{3}\left(y_{1}, y_{2}, y_{3}\right) & =y_{3}+\underbrace{y_{2} y_{1}+2 y_{1} y_{2}}_{\widetilde{B}_{3,2}\left(y_{1}, y_{2}, y_{3}\right)}+\underbrace{y_{1}^{3}}_{\widetilde{B}_{4,2}\left(y_{1}, y_{2}, y_{3}\right)} \\
\widetilde{B}_{4}\left(y_{1}, y_{2}, y_{3}, y_{4}\right) & =y_{4}+\underbrace{y_{3} y_{1}+3 y_{2}^{2}+3 y_{1} y_{3}}_{\widetilde{B}_{4,3}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)}+y_{2}^{y_{1}^{2}+2 y_{1} y_{2} y_{3}+3 y_{1}^{2} y_{2}}+y_{1}^{4}
\end{array}
$$
\]

In any case, it turns out that

$$
\begin{align*}
\left|\widetilde{B}_{n}\left(y_{1}, \ldots, y_{n}\right)\right| & \leq \sum_{d=1}^{n}\left|\widetilde{B}_{n, d}\left(y_{1}, \ldots, y_{n}\right)\right| \\
& \leq \sum_{d=1}^{n} B_{n, d}\left(\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right)=B_{n}\left(\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right) \tag{5}
\end{align*}
$$

Assume now two slice-regular functions $f(q)=\sum_{n=0}^{+\infty} q^{n} a_{n}$ and $g(q)=\sum_{n=0}^{+\infty} q^{n} b_{n}$ are given. Since $f(0)=a_{0}$ and $\partial_{C}^{n} f(0)=n!a_{n}$, in analogy to (2), we define $g^{\odot} f(q)$ to be the slice regular function

$$
g^{\odot} f(q):=\sum_{n=0}^{+\infty} q^{n} c_{n}
$$

whose coefficients are given by

$$
\begin{equation*}
c_{0}=g\left(a_{0}\right), \quad c_{n}=\frac{1}{n!} \sum_{d=1}^{n} \widetilde{B}_{n, d}\left(a_{1}, 2!a_{2}, \ldots, n!a_{n}\right) \cdot g^{(d)}\left(a_{0}\right), \quad n \geq 1 \tag{6}
\end{equation*}
$$

with $\widetilde{B}_{n, d}$ the corresponding non-commutative Bell polynomial. In particular, if $f(0)=0=a_{0}$, then we have

$$
c_{n}=\frac{1}{n!} \sum_{d=1}^{n} d!\widetilde{B}_{n, d}\left(a_{1}, 2!a_{2}, \ldots, n!a_{n}\right) \cdot b_{d}
$$

Clearly, from (5), for $n \geq 1$, one has

$$
\begin{align*}
\left|c_{n}\right| & \leq \frac{1}{n!} \sum_{d=1}^{n}\left|\widetilde{B}_{n, d}\left(a_{1}, 2!a_{2}, \ldots, n!a_{n}\right)\right| \cdot\left|g^{(d)}\left(a_{0}\right)\right| \\
& \leq \frac{1}{n!} \sum_{d=1}^{n} B_{n, d}\left(\left|a_{1}\right|, 2!\left|a_{2}\right|, \ldots, n!\left|a_{n}\right|\right) \cdot\left|g^{(d)}\left(a_{0}\right)\right| \tag{7}
\end{align*}
$$

and the last sum of the right-hand side in the previous inequality corresponds to the coefficients of the power expansion of $g_{a b s} \circ f_{a b s}$. In other words, we have the following

Proposition 3 Given two slice-regular functions $f(q)=\sum_{n=0}^{+\infty} q^{n} a_{n}$ and $g(q)=$ $\sum_{n=0}^{+\infty} q^{n} b_{n}$ in \mathbb{H}, if the composition $g_{a b s} \circ f_{\text {abs }}$ of the corresponding associated abspower series exists and have radius of convergence R then it is possible to define the slice-regular function $g{ }^{\odot} f$ for q such that $|q|<R$ in terms of the power series

$$
g^{\odot} f(q)=\sum_{n=0}^{+\infty} q^{n} c_{n}
$$

where the coefficients are given in (6).
Proof Indeed, the coefficients given in (6) satisfy inequality (7) and this guarantees the convergence of the series $\sum_{n=0}^{+\infty} q^{n} c_{n}$ for any q such that $|q|<R$. Finally, because of Theorem 1, the function

$$
q \mapsto \sum_{n=0}^{+\infty} q^{n} c_{n}
$$

is slice-regular.
Remark 1 The functions $f_{a b s}$ and $g_{a b s}$ have power series expansions whose coefficients are real numbers, so all the classical results in [1] (and more recent ones in [3]) which provide sufficient conditions for the existence of the composition of formal power series with coefficients in a commutative field apply. In particular the composition $g_{a b s} \circ f_{a b s}$ exists if $a_{0}=0$.

Remark 2 Since apparently associativity of the product is never applied, a similar result should hold true also for slice-regular functions of octonionic variable (see [6]).

Acknowledgements The author has been partially supported by Progetto MIUR di Rilevante Interesse Nazionale Proprietà geometriche delle varietà reali e complesse and by G.N.S.A.G.A (gruppo I.N.d.A.M).

References

1. Cartan, H.: Elementary Theory of Analytic Functions of One or Several Complex Variables. Addison-Wesley, Reading (1963)
2. Cullen, C.G.: An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32, 139-148 (1965)
3. Gan, X.-X., Knox, N.: On composition of formal power series. Int. J. Math. Math. Sci. 30, 761-770 (2002)
4. Gentili, G., Stoppato, C.: Zeros of regular functions and polynomials of a quaternionic variable. Mich. Math. J. 56, 655-667 (2008)
5. Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279-301 (2007)
6. Gentili, G., Struppa, D.C.: Regular functions on the space of Cayley numbers. Rocky Mt. J. Math. 40(1), 225-241 (2010)
7. Gentili, G., Stoppato, C., Struppa, D.C., Vlacci, F.: Recent developments for regular functions of a hypercomplex variable. In: Hypercomplex Analysis. Trends in Mathematics, pp. 165-186. Birkhäuser, Basel (2009)
8. Schimming, R., Zagloul Rida, S.: Non commutative Bell polynomials. Int. J. Algebra Comput. 6(5), 635-644 (1996)

[^0]: F. Vlacci (\boxtimes)

 Department of Mathematics "U. Dini", University of Florence, Viale Morgagni 67/A, 50134 Florence, Italy
 e-mail: vlacci@math.unifi.it

[^1]: ${ }^{1}$ This smoothness is considered with respect to the so called Cullen derivative ∂_{C} (see also $[2,5]$) which is well-defined for slice-regular functions as follows: if $f(q)=\sum_{n=0}^{+\infty} q^{n} a_{n}$ then $\partial_{C} f(q):=$ $\sum_{n=1}^{+\infty} n q^{n-1} a_{n}$.

[^2]: ${ }^{2}$ A polynomial $B_{n, d}$ is homogeneous of degree d if

 $$
 B_{n, d}\left(\lambda y_{1}, \lambda y_{2}, \ldots, \lambda y_{n}\right)=\lambda^{d} B_{n, d}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
 $$

[^3]: ${ }^{3} \mathrm{~A}$ derivation is an endomorphism

 $$
 D: \mathscr{A} \rightarrow \mathscr{A}
 $$

 of an associative (generally non-commutative) algebra \mathscr{A} with unit 1 , such that $D\left(y_{1} \cdot y_{2}\right)=D\left(y_{1}\right)$. $y_{2}+y_{1} \cdot D\left(y_{2}\right)$. In particular $D(1)=0$.

