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HIGHER-ORDER THEORIES

ANDRÉ HIRSCHOWITZ AND MARCO MAGGESI

Abstract. We extend our approach to abstract syntax (with binding
constructions) through modules and linearity. First we give a new gen-
eral definition of arity, yielding the companion notion of signature. Then
we obtain a modularity result as requested by [GU03]: in our setting,
merging two extensions of syntax corresponds to building an amalga-
mated sum. Finally we define a natural notion of equation concerning a
signature and prove the existence of an initial semantics for a so-called
representable signature equipped with a set of equations.

1. Introduction

1.1. Modules for modular higher-order syntax and semantics. Many
programming or logical languages allow constructions which bind variables
and this higher-order feature causes much trouble in the formulation, the
understanding and the formalization of the theory of these languages. For
instance, there is no universally accepted discipline for such formalizations:
that is precisely why the POPLmark Challenge [ABF+05] offers benchmarks
for testing old and new approaches. Although this problem may ultimately
concern typed languages and their operational semantics, it already con-
cerns untyped languages equipped with an equational semantics. Indeed,
even at the informal level, there is not yet a universally adopted notion of
higher-order theory.

The goal of this work is to extend, in particular towards equational se-
mantics, our approach to higher-order abstract syntax [HM07], based on
modules and linearity. First of all, we give a new general definition of arity,
yielding the companion notion of signature. The notion is coined in such
a way to induce a companion notion of representation of an arity (or of a
signature) in a monad: such a representation is a morphism among modules
over the given monad, so that an arity simply assigns two modules to each
monad. Then we explain how our approach enjoys modularity in the sense
introduced by [GU03]: in our view, a syntax is or yields a monad equipped
with some module morphisms; such enriched monads form a category in
which merging two extensions of syntax corresponds to building an amal-
gamated sum. Finally, we define a general notion of equation for a given
signature (or syntax) Σ and we prove the corresponding theorem for initial
semantics. As for arities, our notion of equation is coined in such a way to
induce the notion of whether the equation is satisfied by an arbitrary repre-
sentation of Σ in a monad R: this will be when two morphisms of modules
over R coincide. Accordingly an equation assigns to each representation of
Σ a pair of morphisms of modules (with common domain and codomain).
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2 ANDRÉ HIRSCHOWITZ AND MARCO MAGGESI

1.2. Examples. Such a proposal should definitely offer a convincing picture
concerning the paradigmatic example of the lambda-calculus. In our previ-
ous work [HM07] we treated the examples of the untyped lambda-calculus
modulo α-equivalence and αβη-equivalence. In section 6 we revisit these two
examples. We then give various other examples obtained by adding features
to the lambda-calculus: differentiation, parallelism, explicit substitution.

1.3. Future work. In the present work we give a notion of untyped higher-
order theory, and we observe the existence of an initial representation for
algebraic signatures. This has to be extended to more general signatures,
including the signature of the lambda-calculus with explicit substitution, as
pioneered in [GU03], in order to reach a satisfactory state for the untyped
equational setting. The point of view proposed here will also be accommo-
dated to deal with languages with a fixed set of types (for an example see
[Zsi06]), or to model operational semantics through monads on the cate-
gory of preordered sets, or both. It should also be extended to the case of
dependent types.

1.4. Organization of the paper. Section 2 gives a succinct account about
modules over a monad. Our new definitions of (higher-order) arity and
signature are given in section 3. We propose a solution to the problem of
modularity in section 4. Section 5 develops the theory of equations for our
notion of syntax and contains our theorem about initial semantics. Section
6 treats some explicit examples. The last section discusses related works.

2. Modules over Monads

We recall only the definition and some basic facts about (right) modules
over a monad. See [HM07] for a more extensive introduction on this topic.

Let C be a category. A monad over C is a monoid in the category C → C

of endofunctors of C, i.e., a triple R = 〈R,µ, η〉 given by a functor R : C → C,
and two natural transformations µ : R2 → R and η : I → R such that the
following diagrams commute:

R3

µR

��

Rµ
// R2

µ

��

R2
µ

// R

I · R

1R
""EE

EE
EE

EE
E

ηR
// R2

µ

��

R · I

1R
||yy

yy
yy

yy
y

Rη
oo

R

Let R be a monad over C.

Definition 2.1 (Right modules). A right R-module is given by a functor
M : C → D equipped with a natural transformation ρ : M · R → M , called
action, which is compatible with the monad composition and identity:

M · R2

ρR

��

Mµ
// M · R

ρ

��

M · R
ρ

// M

M · R

ρ

��

M · I

1Mzzttttttttt

Mη
oo

M

We will refer to the category D as the range of M .
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We say that a natural transformation of right R-modules τ : M → N is
linear if it is compatible with action:

M · R

ρM

��

τR // N · R

ρN

��

M
τ // N

We take linear natural transformations as morphisms among right modules
having the same range D. It can be easily verified that we obtain in this
way a category that we denote ModD(R).

There is an obvious corresponding definition of left R-modules that we do
not need to consider in this paper. From now on, we will write R-modules
instead of right R-modules for brevity.

Example 2.2. Let us show some trivial examples of modules:

(1) Every monad R is a module over itself, which we call the tautological
module.

(2) For any functor F : D → E and any R-module M : C → D, the
composition F · M is a R-module (in the evident way).

(3) For every object W ∈ D we denote by W: C → D the constant
functor W := X 7→ W . Then W is trivially a R-module since W =
W · R.

Limits and colimits in the category of right modules can be constructed
point-wise. For instance:

Lemma 2.3 (Limits and colimits of modules). If D is complete (resp. co-

complete), then ModD(R) is complete (resp. cocomplete).

In particular, we will often make use of the fact that, if the range category
D is cartesian, then the category ModD(R) is also cartesian.

For our purposes, one important example of module is given by the fol-
lowing general construction. Let C be a category with finite colimits and a
final object ∗.

Definition 2.4 (Derivation). For any R-module M with range D, the deriv-
ative of M is the functor M := X 7→ M(X + ∗). Derivation can be iterated,

we denote by M (k) the k-th derivative of M .

Proposition 2.5. Derivation yields an endofunctor of ModD(R). More-
over, if D is a cartesian category, derivation is a cartesian endofunctor of
ModD(R).

In the case C = D = Set, the functor M ′ is given by M ′ := X 7→ M(X+∗),
where X+∗ denotes the set obtained by adding a new point to X. Moreover,
we have a natural evaluation morphism

eval : M ′ × R −→ M.

which is R-linear. This allows us to interpret the derivative M ′ as the
“module M with one formal parameter added”. Higher-order derivatives
have analogous morphisms (that we still denote with eval)

eval : M (b) × Rb −→ M.
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where eval(t,m1, . . . ,mb) ∈ M(X) is obtained by substituting m1, . . . ,mb ∈

R(X) in the successive stars of t ∈ M (b)(X) = M(X + ∗ + · · · + ∗).

We already introduced the category ModD(R) of modules with fixed base
R and range D. It it often useful to consider a larger category which collects
modules with different bases. To this end, we need first to introduce the
notion of pull-back.

Definition 2.6 (Pull-back). Let f : R → S be a morphism of monads and
M a S-module. The action

M · R
Mf
−→ M · S

ρ
−→ M

defines a R-module which is called pull-back of M along f and noted f∗M .
It can be easily verified that a S-linear natural transformation g : M →
N is also a R-linear natural transformation f∗g : f∗M → f∗N and that
f∗ : ModD(S) → ModD(R) is a functor.

It can be easily verified that pull-back is well-behaved with respect to
many important constructions. In particular:

Proposition 2.7. Pull-back commutes with products and with derivation.

Definition 2.8. Given a list of non negative integers (a) = (a1, . . . , an) we

denote by M (a) = M (a1,...,an) the module M (a1)×· · ·×M (an). Observe that,
when (a) = () is the empty list, we have M () = ∗ the final module.

Definition 2.9 (The large module category). We define the large module
category LMod as follows:

• its objects are pairs (R,M) of a monad R and a R-module M .

• a morphism from (R,M) to (S,N) is a pair (f,m) where f : R −→ S

is a morphism of monads, and m : M −→ f∗N is a morphism of R-
modules. The category LMod comes equipped with a forgetful functor
to the category of monads, given by the projection (R,M) 7→ R.

3. Half-arities and signatures

In this section, we improve our approach to higher-order syntax [HM07],
and give a new notion of arity. The destiny of an arity is to have repre-
sentations in monads. A representation of an arity a in a monad R will
be a morphism between two modules dom(a,R) and codom(a,R). For in-
stance, in the case of the arity a of app2, we have dom(a,R) := R2 and
codom(a,R) := R. Hence an arity consists of two halves, each of which
assigns to each monad R a module over R in a functorial way.

Definition 3.1 (Arity). A half-arity is a right-inverse functor to the pro-
jection from the category LMod to the category Mon of monads. An arity
is a pair of two half-arities. The arity (a, b) is denoted a → b; a and b are
called respectively the domain and the codomain of a → b.

Example 3.2. (1) The assignment R 7→ R is a half-arity which we denote
by Θ.

(2) The assignment R 7→ ∗, where ∗ denotes the final module over R is
a half-arity which we denote by ∗.
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(3) Given a half-arity a, for each non-negative integer n, the assignment

R 7→ a(R)(n) is a half-arity which we denote by a(n). As usual, we
also set a′ := a(1) and a′′ := a(2).

(4) Given two half-arities a and b, the assignment R 7→ a(R)× b(R) is a
half-arity which we denote by a × b .

(5) For each non-negative integer n, the assignment R 7→ Rn is a half-
arity which we denote by Θn.

(6) For each sequence of non-negative integers s, the assignment R 7→

R(s) is a half-arity which we denote by Θ(s).
(7) The assignment R 7→ R ·R is a half-arity which we denote by Θ ·Θ.

Of course we have plenty of such composite half-arities.

We denote by Ar the set of arities.

Definition 3.3 (Algebraic and raw arities). Half-arities of the form Θ(s)

and arities of the form Θ(s) → Θ(t) are said algebraic. An arity of the form
H → Θ is said raw.

These algebraic arities are slightly more general than those in [FPT99],
which are precisely algebraic raw arities. In particular we have an algebraic
arity (Θ → Θ′) for the app1 construction given in section 6.2.

Definition 3.4 (Signatures). We define a signature Σ = (O,α) to be a
family of arities α : O → Ar. A signature is said to be raw (resp. algebraic)
if it consists of raw (resp. algebraic) arities.

Definition 3.5 (Representation of an arity, of a signature). Given a monad
R over Set, we define a representation of the arity a in R to be a module
morphism from dom(a,R) to codom(a,R); a representation of a signature
S in R consists of a representation in R for each arity in S.

Example 3.6. The usual app : LC2 → LC (see section 6.3) is a representation
of Θ2 → Θ into LC. A representation of ∗ → Θ′′ in LC is given by the app0

construction (app0(X) := app(var(∗X+∗), var(∗X))).

Definition 3.7 (The category of representations). Given a signature Σ =
(O,α), we build the category MonΣ of representations of Σ as follows. Its
objects are monads equipped with representations of Σ. A morphism from
(M, r) to (N, s) is a morphism from M to N compatible with the represen-
tations in the sense that, for each o in O, the following diagram commutes:

(1)

dom(α(o),M) −−−−→ codom(α(o),M)




y





y

f∗ dom(α(o), N) −−−−→ f∗ codom(α(o), N)

where the horizontal arrows come from the representations and the vertical
arrows come from the functoriality of half-arities.

Proposition 3.8. These morphisms, together with the obvious composition,
turn MonΣ into a category which comes equipped with a forgetful functor to
the category of monads.

Definition 3.9. A signature Σ is said representable if the category MonΣ

has an initial object.
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Theorem 3.10. Algebraic signatures are representable.

For more details we refer to our paper [HM07] (theorems 1 and 2).

Remark 3.11. There is a slightly more general notion of arity and signature.
Roughly speaking, a Σ-arity will be a pair of Σ-modules (see below section 5).
Such a Σ-arity may be added to Σ, yielding a bigger signature. This picture
allows to consider partially defined constructions, like the predecessor. We
leave this extension for future work.

4. Modularity

It has been stressed [GU03] that the standard approach (via algebras)
to higher-order syntax lacks modularity. In the present section we show in
which sense our approach via modules enjoys modularity.

Suppose that we have a signature Σ = (O, a) and two subsignatures Σ′

and Σ′′ covering Σ in the obvious sense, and let Σ0 be the intersection of Σ′

and Σ′′. Suppose that these four signatures are representable (for instance
because Σ is algebraic). Modularity would mean that the corresponding
diagram of monads

Σ̂0
//

��

Σ̂′

��

Σ̂′′ // Σ̂

is cocartesian. The observation of [GU03] is that the diagram of raw monads
is, in general, not cocartesian. Since we do not want to change the monads,
in order to claim for modularity, we will have to consider a category of
enriched monads. Here by enriched monad, we mean a monad equipped
with some additional structure.

Our solution to this problem goes through the following category WRep:

• An object of WRep is a triple (R,Σ, r) where R is a monad, Σ a signature,
and r is a representation of Σ in R.

• A morphism in WRep from (R, (O, a), r) to (R′, (O′, a′), r′) consists of
a map i := O → O′ compatible with a and a′ and a morphism m from
(R, r) to (R′, i∗(r′)), where, for i injective, i∗(r′) should be understood
as the restriction of the representation r′ to the subsignature (O, a).

• It is easily checked that the obvious composition turns WRep into a
category.

Now for each signature Σ, we have an obvious functor from MonΣ to WRep,
through which we may see Σ̂ as an object in WRep. Furthermore, an in-
jection i : Σ1 → Σ2 obviously yields a morphism i∗ := Σ̂1 → Σ̂2 in WRep.
Hence our ‘cocartesian’ square of signatures as described above yields a
square in WRep. The proof of the following statement is straightforward.

Proposition 4.1. Modularity holds in WRep, in the sense that given a
‘cocartesian’ square of signatures as described above, the associated square
in WRep is cocartesian again.
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There is a stronger statement in a category Rep with the same objects
and more morphisms. Roughly speaking, in Rep, a morphism from (R,Σ, r)
to (R′,Σ′, r′) is a compatible pair of a monad morphism and a “vertical”

functor from MonΣ′

to MonΣ. We plan to describe this more carefully in
some future work.

5. The Category of Half-Equations

In this section, we are given a signature Σ, and we build the category
where our equations will live.

Definition 5.1 (The category of half-equations). We define a Σ-module U

to be a functor from the category of representations of Σ to the category
LMod commuting with the forgetful functors to the category Mon of monads.

MonΣ U //

$$HH
HH

HH
HH

H
LMod

zzvvvvvvvvv

Mon

We define a morphism of Σ-modules to be a natural transformation which
becomes the identity when composed with the forgetful functor. We call
these morphisms “half-equations”.

These definitions yield a category which we call the category of Σ-modules
or half-equations.

Example 5.2. To each half-arity a is associated, by composition with the
projection from MonΣ to Mon, a Σ-module still denoted a. In particular
we have a Σ-module Θ. Accordingly, to each construction c ∈ Σ with arity
a → b is associated in the obvious way a morphism of Σ-modules, still
denoted c, from a to b.

Example 5.3. Since derivation is a ”vertical” endofunctor in LMod, it acts
on Σ-modules. In particular we also have a family of Σ-modules Θ(n).

Proposition 5.4. The category of half-equations is cartesian.

Example 5.5. To each application f : [1, . . . , p] −→ [1, . . . , q] is associated a

half-equation: f∗ : T (p) −→ T (q) (which we call renaming along f).

Definition 5.6 (Equations). We define an equation for Σ to be a pair of
half-equations with common source and target. We also write e1 = e2 for
the equation (e1, e2).

Example 5.7. In case Σ consists of the two constructions abs and app1

(cfr. section 6.2) with respective arities Θ′ → Θ and Θ → Θ′, the β equation
is app1 · abs = IdΘ′ , while the η equation is abs · app1 = IdΘ.

Definition 5.8 (Satisfying equations). We say that a representation r of Σ
in a monad M satisfies the equation e1 = e2 if e1(r) = e2(r). If E is a set of
equations for Σ, we say that a representation r of Σ in a monad M satisfies
E (or is a representation of (Σ, E)) if it satisfies each equation in E. We
define the category of representations of (Σ, E) to be the full subcategory
in the category of representations of Σ whose objects are representations of
(Σ, E).
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Theorem 5.9 (Initial representation of (Σ, E)). Given a set E of equations
for a representable signature Σ, the category of representations of (Σ, E) has
an initial object.

Sketch. We build the monad S for our initial representation as a quotient of
Σ̂ (see theorem 3.10). For each set X, we define an equivalence relation rX

on Σ̂(X) as follows: rX(a, b) means that for any representation ρ of (Σ, E)

in a monad M , iX(a) equals iX(b), where i : Σ̂ −→ M is the initial functor
associated to ρ. We check easily that this is an equivalence relation, that
the corresponding collection of quotients inherits the structure of monad,
and that this quotient monad has the required universal property. �

6. Examples

We now illustrate the previous notions through some well-known exam-
ples.

6.1. Monoids. We first consider an example of first-order syntax with equa-
tions. Given a set X, let us denote by M(X) the free monoid built over X.
This is a classical example of monad over the category of (small) sets. The
monoid structure gives us, for each set X, two maps mX : M(X)×M(X) →
M(X) and eX : ∗ → M(X) given by the product and the identity respec-
tively. It can be easily verified that m : M2 −→ M and e : ∗ → M are
M -linear natural transformations. In other words (M,ρ) = (M, {m, e})
constitutes a representation of the signature Σ = {m : Θ2 → Θ, e : ∗ → Θ}.

In the category MonΣ of representations of Σ we consider the associativity
equation, i.e., the pair of half-equations given by

Θ3
Θ×m

// Θ2 m // Θ

Θ3
m×Θ

// Θ2
m

// Θ

Analogously, we define the left and right identity equations given by the
morphisms

Θ
e×Θ

// Θ2 m // Θ

Θ =
// Θ

and Θ
Θ×e

// Θ2 m // Θ

Θ =
// Θ

and we denote by E the system constituted by these three equations.
The category Mon(Σ,E) is the category of monads with a structure of

monoid and (M,ρ) is its initial object.

6.2. Lambda-calculus modulo α-equivalence. We denote by Λ(X) the
set of lambda-terms up to α-equivalence with free variables “indexed” by the
set X. It is well-known [BP99b, AR99, HM07] that Λ has a natural structure
of monad where the monad composition is given by variable substitution.

It can be easily verified ([HM07]) that application and abstraction are
Λ-linear natural transformations

app := Λ2 −→ Λ, abs := Λ′ −→ Λ.

that is, Λ is a monad endowed with a representation ρ of the signature
Σ = {app : Θ2 → Θ, abs : Θ′ → Θ}.



HIGHER-ORDER THEORIES 9

Again, the monad Λ is initial in the category MonΣ of monads endowed
representations of the signature Σ.

For our purposes, it is important to introduce another interesting, non-
raw, representation on Λ which is defined as follows. Consider the Λ-module
morphism

app1 : Λ −→ Λ′

given by app1(x) = app(x, ∗). Then app1 is a representation of arity Θ → Θ′

and the usual app constructor can be recovered from app1 by flattening, i.e.,

app(x, y) = eval(app1(x), y).

Then we can consider on Λ the representation ρ′ = {app1, abs} of signature

Σ′ = {app1 : Θ → Θ′, abs : Θ′ → Θ}. The categories MonΣ′

and MonΣ

are equivalent through the flattening and (Λ, ρ′) is the initial object of the

category MonΣ′

.

6.3. Lambda-calculus modulo αβη-equivalence. Now we can introduce
the lambda-calculus modulo αβη-equivalence as a quotient of the previ-
ous calculus. We denote by LC(X) the set of lambda-terms up to αβη-
equivalence with free variables “indexed” by the set X. As in the previous
example, the monad LC is endowed with a representation ρ and ρ′ of the
two signatures Σ = {app : Θ2 → Θ, abs : Θ′ → Θ} and Σ′ = {app1 : Θ →
Θ′, abs1Θ

′ → Θ} respectively. Now we want to introduce the equations for
the β and η equivalence relations. This can be done both with ρ and ρ′, but
it looks more natural when it is formulated with respect to ρ′.

We define the β and η equivalence relation as the pair of half-equations
on MonΣ′

given by

Θ′
abs // Θ

app1 // Θ′

Θ′

=
// Θ′

and Θ
app1 // Θ′

abs // Θ

Θ =
// Θ

respectively. We denote by E the system constituted by the β and η equa-
tions. It can be shown that (LC, ρ′) is initial in the category Mon(Σ′,E)

(this has been proved formally in the Coq proof assistant and discussed in
[HM07]).

6.4. HOcore. HOcore is a higher-order calculus for concurrency introduced
by Lanese, Pérez, Sangiorgi and Schmitt [LPSS08]. The syntax of HOcore
is as follows

P ::= x | a(x).P | ā.〈P 〉 | P || P | 0

where a ranges over the sort of names (or channels) and x denote a process
variable. In the input prefix process a(x).P the variable x is bound in the
body P . In our framework the HOcore syntax is represented by the signature

ΣHOcore = { ∀a. recva : Θ′ → Θ, ∀a. senda : Θ → Θ,

parallel : Θ2 → Θ, zero : ∗ → Θ }

where recv and send are families of constructors parametrized over the names
a. Let us denote by HOcore the monad Σ̂HOcore.
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To spell out a concrete example, consider a pair of concurrent processes
where the first process sends a message P through the channel a to the
second process:

ā〈P 〉 || a(x).Q

In our formalism such process is represented by the syntax tree

parallel(sendaP, recvaQ)

where P ∈ HOcore(X) and Q ∈ HOcore(X+∗) for some set of name variables
X. Now consider the reduction rule

ā〈P 〉 || a(x).Q ≡ 0 || Q[x := P ]

which models the exchange of a message P through a channel a between two
concurrent processes. This can be stated as the equality of the two linear
morphisms of kind HOcore × HOcore′ −→ HOcore given by

(P,Q) 7→ parallel(sendaP, recvaQ)

(P,Q) 7→ parallel(zero, eval(Q,P ))

Once abstracted over the representation ρ, the previous pair of morphisms
gives a pair of half-equations on the category MonΣHOcore .

6.5. Lambda calculus with explicit substitution. We now consider an
example of non algebraic signature. On the monad Λ(X) of lambda calculus
(modulo α-equivalence) given in 6.2 the substitution operator

subst : Λ · Λ −→ Λ

given by the monad composition (or join) is a representation of the arity
Θ · Θ → Θ (Θ · Θ has a natural structure of module thanks to 2.2 (2)). We
then have a representation ρ of the signature

Σ := { app : Θ2 → Θ, abs : Θ′ → Θ, subst : Θ · Θ → Θ }.

In the monad Λ, substitution interacts with the app and abs constructors in
the following way. Let us denote by subst′ : Θ ·Θ′ = (Θ ·Θ)′ → Θ′ the linear
transformation induced by subst. Given any monad P we have a natural
transformation swapX : P (X) + ∗ −→ P (X + ∗). Then (Λ, ρ) satisfies the
system E constituted by the two equations

Θ · Θ × Θ · Θ
app·Θ

// Θ · Θ
subst // Θ

Θ · Θ × Θ · Θ
subst×subst

// Θ × Θ app
// Θ

and

Θ′ · Θ
abs·Θ // Θ · Θ

subst // Θ

Θ′ · Θ
Θ·swap

// Θ · Θ′

subst′
// Θ′

abs
// Θ

We call MonΣ the category of lambda-calculi with explicit substitution. We
claim that (Λ, ρ) is its initial object in Mon(Σ,E).
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6.6. Lambda-calculus with explicit differentiation. Inspired by [ER03]
we sketch the definition of what we call Lambda-calculus with explicit differ-
entiation (LCED). The syntax of LCED is given by the signature

ΣLCED := { app : Θ2 → Θ, abs : Θ′ → Θ, 0 : ∗ → Θ, +: Θ2 → Θ,

partial : Θ′ × Θ → Θ′, ∀k ∈ N
∗. diffk : Θ2 → Θ }.

We use the notations ∂t · u for partial(u, t) (the “linear” substitution — in
the sense of [ER03] — of u for the first variable in t) and Dkt ·u for diffk(t, u)
(the differential of t with respect to the k-th variable applied to u).

The link between differentiation and linear substitution is essentially given
by the rule

D1(abs t) · u = abs (∂t · u)

The explicit linear substitution has its set of associated rules. E.g., for the
substitution of an application we have

∂(app(s, t)) · u = app(∂s · u, t) + app(D1s · (∂t · u), t).

We omit the complete set of rules of the calculus which will be treated in
a future work.

7. Related Works

The idea that the notion of monad is suited for modelling substitution
concerning syntax (and semantics) has been retained by many recent con-
tributions concerned with syntax (see e.g. [BP99a, GU03, MU04]) although
some other settings have been considered. Notably in [FPT99] the authors
work within a setting roughly based on operads (although they do not write
this word down). Our main specificity here is the systematic use of the
observation that the natural transformations we deal with are linear with
respect to natural structures of module (a form of linearity had already been
observed, in the operadic setting, see [FT01], section 4).

The signatures we consider here are slightly more general than the signa-
tures in [FPT99], which allows us to give a signature to our app1. On the
other hand, our signatures ‘reduce’ (by flattening) to those in [FPT99]. In
some future work, we plan to recover signatures as in [MU04] in terms of
modules and to extend our initial semantics to this setting.
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