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Abstract. We simulate the thermalization process of a high energetic positronium gas trapped in a silica
pore. The gas dynamics is reproduced by using a kinetic approach. Our approach includes the two-body
scattering interaction and the exchange of energy between the atoms and the internal surface of the pore
cavity. We discuss the formation of a quasi-equilibrium state induced by the fast internal thermalization
of the gas and the evolution of the gas temperature. We estimate the time necessary to achieve the total
thermalization of the gas. The reliability of our model is verified by comparing the numerical results with

some experimental data.

1 Introduction

The positron is the most easily produced kind of antipar-
ticle. At low density and temperature, positrons and elec-
trons bound together and form the atom of positronium
(Ps). The ground state of positronium consists of triplet
states with total spin one and a singlet state with total
spin zero. The total angular momentum of the positron-
ium fixes the lifetime and the decay channels of the atom.
The triplet state, the ortho-positronium, has a lifetime
of 142 ns and annihilates into three photons. The singlet
state, the para-positronium, annihilates in 125 ps by emit-
ting two gamma photons. The ortho-positronium can be
quickly turned into the para-positronium by using an os-
cillating magnetic field [1,2].

One of the simplest processes designed for the produc-
tion of a gas of positronium consists in the implantation
of high energetic positrons in a porous medium. During
the last decades, many properties of the positronium have
been investigated by trapping the gas inside porous ma-
terials. In particular, films of porous silica have been em-
ployed for the creation of excited atomic states, the di-
positronium molecule, and the detection of the quenched
lifetime [3-5]. The positrons can be stored in a Surko trap
for a around 1000 s and modern devices are able to accu-
mulate up to 108 particles [6]. The particles stored in the
trap can be compressed and released in a single pulse. It is
possible to generate 4-10 ns pulses with kinetic energy of
few keV (typical values vary in the range of 1-5 keV [7]),
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focused in a spot of 100 pum of radius. The incident beam
that enters in the solid target interacts strongly with the
lattice. At the distance of roughly 100 nm from the exter-
nal surface of the material, the particle motion becomes
diffusive and the positrons are likely to capture an elec-
tron from the solid and form the atom of positronium.
The positronium atoms are easily trapped inside solids
that contain pores or cavities.

The gas inside the pore thermalizes and transfers en-
ergy to the surface of the cavity. Several authors have stud-
ied the evolution of the temperature of positronium gases
in aggregates of silica aerogel and silica powder [8-10].
Measurements performed by the group of Takada indicate
that the time necessary for the full positronium thermal-
ization is around 10 ns for pores with a radius of 5 nm [10].
However, quantum confinement effects could affect the
thermalization time in the case of very small pores. In
particular, for samples containing pores with a radius
of 2.7 nm, no thermalization was observed [11]. In this
case, the number of available energy levels for the positro-
nium atoms is reduced, and the gas cannot reach the
temperature of the silica sample. The details of the pore
structure could affect the capacity to trap the positron-
ium inside the material. If the pores are well separated
the positronium can be efficiently trapped. If they are in-
terconnected, the particles diffuse and escape into the vac-
uum. State-of-the-art techniques of production of porous
silica give the possibility to have a good control of the
pore characteristics. It is possible to produce well-defined
pore structures with, for example, aligned channels in one
or two dimensions [12].

The exact nature of the interaction of the positronium
gas with the wall surface is not yet known. Experimen-
tal data are fitted by simple mathematical models. The
validity range of such empirical models is difficult to es-
timate. In some case they fit only a restricted class of
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experiments. Nagashima et al. developed in reference [13]
a theoretical model that describes the time evolution of
the positronium temperature in a porous material. The
strength of the gas-solid interaction is derived by consider-
ing a uniform gas of particles that collide elastically with
some heavy molecules of mass M. These molecules are
clusters of atoms that cover the surface of the SiO4 pore.
In this approach, the mass M (which is estimated to be
around 70 u [9]) is used as a fitting parameter.

In this paper, we investigate the thermalization process
of the positronium in porous silica materials. The dynam-
ical evolution of the positronium gas is described by using
a kinetic approach. Our model is based on the Boltzmann
equation. In particular, we focus on energy the exchange
between the gas and the surface of the pore. This aspect
plays a crucial role in the evolution of the gas tempera-
ture. As an application of our model, we consider a dense
positronium gas in a large pore and we estimate the time
necessary to reach the critical temperature for the Bose-
Einstein condensation process. In the present study, we
consider gas of positronium whose density is in the range
of 1075+ 1072 nm 3.

The paper is organized as follows. In Section 1.1 we
present the kinetic model that reproduces the gas dynam-
ics. It describes the binary collision of the atoms in terms
of the s-wave interaction. We study the internal thermal-
ization of the gas after the injection in the pore. We es-
timate the initial temperature of the gas and the influ-
ence of the initial conditions. In Section 1.2 we propose
a mathematical model that reproduces the particle-wall
interaction. Our model depends on a free parameter. Sec-
tions 1.3-1.4 are devoted to the estimation of this pa-
rameter by the comparison of our theoretical predictions
with the experimental measurements of Chang et al. [9],
Takada et al. [10] and Nagashima et al. [14]. Finally, in
Section 1.5 we reproduce the evolution of the temperature
of a positronium gas in large silica pore. We investigate
the possibility to create a Bose-Einstein condensate made
of positronium.

1.1 Thermalization and initial temperature
of the Ps gas

We consider the evolution of a hot positronium gas. We as-
sume that the gas is constituted by a single population of
ortho-positronium. This can be obtained by using a spin-
polarized gas of positron in the process of positronium
formation described in the introduction. Some radioactive
materials are natural sources of spin-polarized positrons.
The preparation of a fully spin-polarized gas of positro-
nium trapped in a porous material has been achieved by
the group of Cassidy [7].

We reproduce the dynamics of a gas of positronium
by using a kinetic approach. Kinetic models based on the
Boltzmann equation have been used by various authors
for the description of the evolution and the thermaliza-
tion process of boson gases in various regimes [15,16]. In
the kinetic formalism, the gas is described by the distri-
bution function f(r,p,t). It gives the number of atoms
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with momentum p and position r. The evolution of the
distribution function is given by the Boltzmann equation

of p _ f
at_m'vrf_w[f]_T' (1)

The last term on the right side describes the natural decay
process of the ortho-positronium where 7 is the lifetime.
The two-particle scattering kernel W is given by [17]:

Wi =4 [5e) + By~ B - By

x6(P+p1—p2—p3)[(1+ f(P)A+ fi)f2fs
= f(P)fi(1 + f2)(1 + f3)] dp1 dp2 dps. (2)

2
Here, f; = f(pi), E(p) = 5,
E; = 2177;1 and m is the mass of the positronium. We used
physical units where & = 1. The presence in the integral
of the two Dirac’s delta distributions ensures the conser-
vation of the total energy and momentum during each
scattering event. The collision term W describes the two-
particle hard sphere interaction. The collision strength is
g = 4ma/m where a = 0.16 nm is the scattering length of
ortho-positronium [18,19]. According to the calculations
presented in reference [19] where a stochastic variational
method is applied, the triplet-triplet scattering section is
nearly constant in the range p € [0, hiap/10] where ag is
the Bohr radius. This corresponds to an atomic energy
inferior to 5 eV. Since the implantation Ps energy is typi-
cally inferior to 1 €V, in our simulations we use a constant
scattering section.

The complete thermalization of the system proceeds
into two steps. Initially, as a result of the two-particle
collisions, the atoms in the gas thermalize and the gas is
described by a well defined temperature. Afterwards, due
to the contact with the pore surface, the temperature of
the gas decreases. These two phases of the dynamics are
characterized by two different time scales. In this section
we discuss the first part of the thermalization process.

The atoms that are formed in proximity of the pore
surface and enter into the cavity are highly energetic. We
assume that the initial particle distribution f; that de-
scribes the injection of the atoms in the cavity, is given by
a translated Maxwell-Boltzmann distribution

is the energy of the atoms,

) 1 (p—p0)?

filp) = “e am Emo, (3)

e

where

ne = (ﬁf)w (4)

and ng is the initial particle density. The drift kinetic en-
ergy Fy = 2"5@ is typically very high. It is estimated to be
around 0.1-0.5 eV [13]. In equation (3), Ag is the variance
of the atomic energy distribution around the mean value
Ey. The particle distribution (3) represents a highly out-
of-equilibrium distribution of particles. The two-particle
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Fig. 1. Time evolution of the particle density during the internal thermalization of the positronium gas. The plots correspond
to the following times: panel (a) continuous-blue curve ¢t = 0, dashed-green curve t = 50 fs, dot-dashed-red curve ¢ = 90 fs. Panel
(b) continuous-blue curve ¢ = 100 fs, dashed-green curve ¢ = 200 fs, dot-dashed-red curve ¢ = 400 fs. Panel (c) continuous-blue
curve ¢ = 50 fs, dashed-green curve ¢t = 150 fs, dot-dashed-red curve ¢ = 300 fs. Panel (d) continuous-blue curve ¢ = 1500 fs,
dashed-green curve t = 2000 fs, dot-dashed-red curve ¢ = 5000 fs. The initial particle density is 1072 nm ™3 (panels a, b) and

1072 nm™? (panels c, d).

hard sphere interaction causes a rapid redistribution of
the energy among the particles. As a result, after few scat-
tering events, the gas of positronium is well described by a
Bose-Einstein distribution with a certain temperature Tpg
that depends only on the initial total energy of the gas.
Clearly, we have Tp, > T; where 1} is the temperature of
the substrate. The atoms lose energy by impacting with
the pore surface. At the end, their temperature equili-
brates with the lattice temperature. This process requires
a time interval that is much longer than the time neces-
sary for the internal thermalization of the particles in the
gas. It will be addressed in the next section.

By using equation (2) we simulate the initial gas
thermalization. The main result that emerges from the
simulations is that this process is quite fast (it takes
around 1-100 ps). After this stage, the resulting parti-
cle distribution function is nearly independent from the
profile of the initial configuration. It is determined only
by the invariants of the motion, the initial total energy
and the total number of particles of the gas. This is illus-

trated in Figures 1-2. In Figure 1 we depict the evolution
of the particle distribution in the early stage of the dy-
namics. The continuous-blue curve in the panel a depicts
the initial condition of the gas. In the simulations depicted
in the panels a and b of Figure 1 we used the following
parameters g = 0.2 eV, Ag = 0.1 eV, and the initial
particle density is 1072 nm~3. We plot the evolution of
the particle distribution in the time interval 10-400 fs.

After 500 fs the system is completely thermalized
(the distribution function becomes identical to the Bose-
Einstein distribution). The subsequent modification of the
particle distribution proceeds at the nanosecond time scale
(see Sect. 1.4) and is characterized by the simple variation
of the gas temperature. For the sake of comparison, in the
panels ¢, d of Figure 1, depict the time evolution of a gas
with a density which is one order of magnitude smaller
than the previous one (ng = 1073 nm~2). In this case the
gas is more rarefied and the probability that two particles
collide decreases. Consequently, the time necessary for the
thermalization increases to nearly 5 ps. However, also in
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Fig. 2. Temperature of the gas as a function of the mean
injection energy Ey. The dotted-red curve depicts the the tem-
perature T = gf; The continuous-blue (dashed-green) line
corresponds to Ag = 500 K (Ag = 1000 K).

the case of rarefied gases, the internal thermalization time
is small compared with the characteristic time of the evo-
lution of the temperature of the gas. In Figure 2 we plot
the value of the gas temperature at the end of this stage.
The temperature is plotted as a function of the initial
particle mean energy Ejy. The two curves correspond to
different values of the energy dispersion Ag. For the sake
of comparison, the dotted-red curve indicates the temper-
ature T that corresponds to Ey, kpT = gEO where kp
is the Boltzmann’s constant. As expected, as the variance
of the energy increases, the temperature of the gas be-
comes higher. The simulations show that in this prelimi-
nary phase of the dynamics, the total gas energy is nearly
constant. In order to quantify more precisely the particle-
particle thermalization time ?,,, in Figure 3, we depicted
the time employed by the gas to reach the Bose-Einstein
distribution

1
feq(P) = ) ) (5)
I ekBT(2m7#) -1

where p is the chemical potential. We set ¢, equals to the
minimum time at which the particle distribution can be
approximated by fe, with an error smaller than 1%. In the
plot, we depict the variation of ¢,, with respect to the par-
ticle density (left panel) and to the initial injection energy
Ey (right panel). Our simulations show that in the typical
range of energy and density attained in the experiments
where the positronium is trapped in nanometric cavities,
the thermalization time is always smaller than 100 ps. In
particular, we estimate that when the energy of emission
of the Ps gas into the pore is around 0.1-0.3 eV, the gas
thermalizes at a temperature in the range of 1000-3000 K.

In order to appreciate the characteristic length scales
of the problem, we estimate the mean free path A be-
tween two consecutive Ps-Ps binary collisions. We use the
following simple formula [20] A = \/21071 = \/2831'11271’ where
o is the effective cross section (the factor of 87 instead of
the usual 47 arises from the statistical considerations on
the indistinguishability of two scattering bosons [19,21])
and n is the gas density. We obtain that the main free
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Fig. 3. Thermalization time ¢,,. Left panel: ¢, as a function
of the initial atomic density (the density axis is in logarith-
mic scale). Eg = 0.1 eV. Right panel: t,, as a function of the
injection energy Fo. Particle density 1072 nm~2.

path for a gas density of 1072 nm~! (1072 nm~1!) nm, is
around 100 nm (1.0 pm). This value is of the same order
of the distance between to consecutive interactions of the
Ps atom with the pore surface.

1.2 Interaction Ps-surface

In this section we are interested to the evolution of the
gas temperature and we model the interaction between
the cavity wall and the gas. Since the initial temperature
of the gas is nearly two orders of magnitude higher than
the substrate, the main mechanism that can be observed
is the fast decrease of the positronium temperature. The
rate of energy loss of the gas is determined the number
of phonons emitted by the atoms when they hit the pore
surface. According to the kinetic formalism used in our
model, the atom-phonon interaction is described by the
following equation (see for example Refs. [22,23])

af
ot

= o [ 10+ 50D o) = 1) 1+ 1)

oh 82

X (1+qw))]6(Er— E —w) dp

+ o [+ 50D A+ o) - 59)
X (14 1) q@)d (Br— E+w) dpr. ()

Here, g(w) is the phonon distribution, w is the phonon
energy and S is the scattering rate. The phonon distri-
bution is given by the Bose-Einstein distribution ¢(w) =

[e’“Ble —1]71. The scattering rate S describes the strength
of the atom-wall interaction. The exact value of S depends
on the form of the interaction potential at the interface.
The evaluation of this quantity from first principles is a
formidable task. In the present work, we estimate .S in two
different ways. At first (Sect. 1.3), we reduce the complex-
ity of the mathematical description of the gas dynamics,
and we obtain a simple model for the evolution of the mean
energy of the gas. We refer to the estimation of the atom-
surface interaction strength given in references [2,24] and
we obtain S. In Section 1.4 we use S as a fitting parameter
of the complete model and we compare numerical results
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with the experimental data of the positronium thermal-
ization in silica presented in references [10,14].

1.3 Estimation of S: approximated model

As discussed in the previous section, when the gas is in-
jected in the pore, its temperature is high compared to
the bulk material. Under this condition, the phonon ab-
sorbtion process can be neglected. As a further simplifica-
tion of the model, we assume that the particle distribution
function is independent on the direction of the momentum
(isotropic approximation). In this case, equation (6) can
be approximated as follows

of

o] = S\/E+w ([1+ f(B)] F(E +w)g(w)

oh T 2m
—f(E) 1+ f(E+w)][1+qw)]), (7)

where we changed the variables of the distribution and we
substituted the momentum with the energy.

By assuming that during each collision the atom has
the probability P to emit a phonon with energy w, the
rate of energy loss of the gas is given by:

ATR3 nwP  Oe 1 / p? Of(p)
3 1 Ot oh (2m)3 ) 2m Ot

= A7 R*R; dp,
ph

(8)

where n is the particle density, e is the energy density, 1/7¢
is the collision frequency with the wall, R is the pore radius
and R; is the range of the potential at the surface. We
derived the right side of the equation, by integrating the
time derivative of the distribution function over the spatial
region where the gas stays in contact with the surface. We
assume that the gas interacts with the wall in the small
region away from the pore surface delimited by the range
of the van der Waals potential. The time of flight 77 can
be estimated as:

m

~R .
Tf 3kpT
In the limit of high temperature, equation (8) gives

Oe
ot

nd4R?R; SV 2n(mfps)>/?

2
ph m=m

e Bpsw 1
% (eﬁl“’ -1 1 —e—ﬁL“’)
X /E3/2\/E+we_5P3E dE

N 7’L8R2R1‘S\/27T(mﬁps)3/2

m27T(BPs)3
e Bpsw 1
% (eﬁl“ -1 leﬁl‘*’)7
where we have defined 3 = (kgT;)~! and Bps =

(kpTps)~t. We can now provide a first estimate of S. Ac-
cording to references [2,24] we assume that the probability
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Fig. 4. Temperature evolution of the Ps gas in silica (fit of the
experimental data). Continuous-blue curve: equation (9) with
2R = 5.6 nm (from Ref. [10]). Dotted green curve: equation (9)
with 2R = 70 nm [9].

P to emit a phonon with energy w = 2 meV is 1%. We ex-
pand the exponentials and we use equation (8). We finally
obtain

wPm?

S ~ =11x10"2 nm!
2R\ 61k (T — T))

)

where the gas temperature is chosen equal to 500 K and
the range of the potential R; = 0.2 nm [23].

1.4 Estimation of S: full model

In this section we provide a more accurate estimation
of S by comparing our numerical results with some ex-
perimental data. In Figure 4 we plot the measurements
of the gas thermalization presented in references [9,10].
The continuous-blue curve fits the evolution of the en-
ergy of a positronium gas in a porous silica with den-
sity of 1 g cm™2 (that corresponds to an atomic mean
free path of around 5.6 nm) [10]. The dotted-green curve
fits the Ps energy evolution in a porous silica with den-
sity of 1.0 g ecm ™2 (that corresponds to an atomic mean
free path of around 70 nm) [9]. The temperature of the
substrate is 300 K. The curves are obtained by the fol-
lowing equation and are in good agreement with the
measurements

1+ Ae 2 3
po= (Y Sn

The parameters A and b are given in reference [10], and
are quoted here for the sake of clearness

1
b= kT,
RM\/?)m BT

_ VE* = /1.5kpT,
VE* + V1.5kpTi
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Fig. 5. Evolution of the temperature of Ps obtained with
our model. Left panel. Continuous-blue curve: equation (9)
for 2R = 5.6 nm (see Ref. [10]). Dashed-green curve: our
model with S = S;. Dotted-dashed red curve: our model with
S = So. Right panel. Continuous-blue curve: equation (9) for
2R = 70 nm (see Ref. [9]). Dashed-green curve: our model with
S = 5. Dotted-dashed red curve: our model with S = Sg.

The value of the energy E* is chosen equal to 0.6 eV.
M = 70 u is the mass of the SiOs clusters that cover the
pore surface.

In order to compare the measurements with our nu-
merical results, we display in Figure 5 the evolution of
the temperature of the gas obtained with our model for
the same cases of Figure 4. Our results are obtained by
the numerical discretization of the full kinetic model of
equation (2). We use a deterministic method [25-27]. We
simulate the evolution of the atomic distribution inside a
spherical pore. We assume that the spherical symmetry
of the system is preserved. Under this condition, we have
that f depends on the three variables (p, p, ), where p is
the distance from the center of the pore, p is the mod-
ulus of the momentum and ¥ is the angle between the
momentum and the radius of the sphere. The boundary
conditions for p = R are provided by equation (6).

In order to find good agreement between our numer-
ical solutions and the experimental data, we use S as a
fitting parameter. We find that a S varies in the range
[So, S1], with Sg = 1072 nm~! and S; = 0.5x 1072 nm~ L.
In the left panel of Figure 5 we depict the results of our
calculations applied to a sample of silica with a density
of 1 g cm™3. The continuous blue curve fits the experi-
ments (Eq. (9)). In order to show the sensitivity of our
model to the parameter S, we depict the results that cor-
respond to the two extremal values S = S (dashed-dotted
red curve) and S = S; (dashed-green curve). In the right
panel we consider the case of a silica sample with density
of 0.1 g cm™3. In particular, when the parameter S spans
in the range [Sp, S1] the gas thermalization time changes
by a factor of around two. When the temperature is el-
evated, a classical model reproduce the evolution of the
particle in the gas in a large cavity as soon its de Broglie
wavelength is small in comparison with the dimension of
the pore. When Ps energy decreases, the quantum me-
chanical description of the pore surface becomes necessary.
As can be clearly seen by comparison with the experimen-
tal data, our model overestimate the cooling process in
the final part of the process. We ascribe this discrepancy
to the fact that our modeling of the phonon generation-
absorption process is not sufficiently accurate at low tem-
perature (the inability to reproduce the correct behavior

Eur. Phys. J. D (2014) 68: 84

of the evolution of the gas energy by a classical model a low
temperature was already observed in Ref. [14]). A possible
improvement of our results could be obtained by modeling
the phonon interaction with the bulk phonon structure. In
this case, the deformation potential is proportional to the
exchanged momentum and, consequently, the cooling pro-
cess decreases at low temperature.

1.5 Study of the Ps thermalization time: Bose-Einstein
condensation

For the cases presented in the previous section we con-
sidered silica samples maintained at room temperature.
In this section, we apply our kinetic model to predict the
evolution of the temperature of a positronium gas trapped
in a nanometric cavity at low temperature. This study has
an interesting application: the creation of a Bose-Einstein
condensate made of positronium atoms trapped in a silica
pore.

The positronium is constituted by two particles with
spin one-half. Consequently, its total spin is one and it is
a boson. One interesting property of a gas of bosons is
that below a critical temperature 7T, it undergoes a phase
transition called Bose-Einstein condensation process. The
main concept at the origin of this phenomenon is that
a macroscopic fraction of bosons collapses into the low-
est energy state: the zero momentum state in free space
or the ground state for a system in a confining poten-
tial [28]. The Bose-Einstein condensate is an extended
state where Broglie wavelength of the single state particle
is comparable to or greater than the average interparti-
cle spacing. The detailed description of the mechanism of
the formation of a Bose-Einstein condensate should re-
quire a fully quantum formalism. The interaction between
two low energy bosons can be modified by the presence of
the condensate. However, the simple particle-particle hard
sphere interaction is usually considered sufficiently accu-
rate to capture the main physics of the problem (see for
example the studies of the condensate formation for the
sodium and for the polaritons presented respectively in
Refs. [29,30]). The modification of the condensate growth
rate induced by the correlation between the condensate
and the free positronium wave functions, is investigated
in reference [17].

The possibility to create a Bose-Einstein condensate
made of positronium has been firstly addressed in ref-
erence [2]. The mass of the positronium is considerably
smaller than the typical mass of the atoms usually em-
ployed in the condensation experiments. Since the conden-
sation temperature is inversely proportional to the atomic
mass, a gas of positronium should condensate at a temper-
ature that is several orders of magnitude greater than the
critical temperature of, for example, rubidium. However,
the positronium lifetime is not sufficiently long to ensure
that the condensation process can be completed before
the total annihilation of the particles [17]. For that rea-
son, the question whether it is technically possible or not
to observe the condensation of a positronium gas trapped
inside some porous medium, is still open (see for example
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Fig. 6. Time evolution of the temperature of the Ps gas. Pore
radius: left panel R = 100 nm, right panel R = 300 nm.
Continuous-blue curve: S = S» Dotted-green curve: S = S;.

Ref. [31]). In reference [32] Mariazzi et al. presented some
experiments where a gas of positronium is cooled down
at a cryogenic temperature. They considered a regular ar-
ray of silica nanochannels (a series of parallel cylinders of
diameter of 5-8 nm). Under this condition, they showed
that a fraction of around 10% of the injected positrons
is converted into a positronium gas at the temperature
of 150 K (we note here difference with the cases that we
are considering: the pores are connected with the surface
and the gas is not trapped inside the silica). The cooling
time is estimated to be shorter than 15-20 ns.

We estimate the time necessary to attain a tempera-
ture that is sufficiently low to produce a Bose-Einstein
condensate. In Figure 6 we display the time evolution
of the temperature of a gas injected in a pore of ra-
dius 100 nm maintained at the temperature of 30 K.
The continuous-blue curve is obtained with the inter-
mediate value of the interaction strength S = S, =
0.8 x 1072 nm~!. We estimate that the time neces-
sary to reach the temperature of 100 K (t100 x) 1is
around 7 ns. The dashed-dotted curve is obtained with
the more “pessimistic” estimate of S = Sy (“pessimistic”
for the formation of a condensate, since lower values of
S give longer thermalization times). In this case, t100
is around 13.5 ns. The curves displayed in Figure 6 are
evaluated with a density of 0.01 nm~—3. The correspon-
dent critical temperature for the Bose-Einstein condensa-
tion process is 66 K. We find that the evolution of the
gas temperature is quite independent from the particle
density. The reason should be ascribed to the fast internal
thermalization of the atoms described in Section 1.1. Since
the gas is always close to the equilibrium, the frequency
of the particle-particle collisions (which is proportional to
the gas density), has little influence on the modification
of the atomic temperature.

In Figure 6 (right panel), we display the simulations
for a pore of size 300 nm. The continuous-blue curve
corresponds to S = S5 and the dot-dashed green curve to
S = S1. In order to ease the reading of the plot, the hor-
izontal black (red) dashed line indicates the temperature
of 100 (200) K. The simulations show that a temperature
close to the critical value is attained in the interval be-
tween and 10 and 35 ns for t9gg k and 20-70 ns for ¢190 k-
In this case, the thermalization time is comparable to the
lifetime of the ortho-positronium.
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In summary, in this paper we simulated the thermaliza-
tion process of a high energetic positronium gas trapped in
a silica pore. We have discussed the formation of a quasi-
equilibrium state of the gas and the time evolution of the
gas temperature. We have found that the thermalization
process proceeds in two steps. The first is characterized
by the formation of a quasi-equilibrium gas state with a
well defined temperature. We estimated the characteristic
time of the internal thermalization of the gas for different
atomic densities and injection energies. We have found
that the thermalization time is strongly dependent on the
gas density. It is estimated to be equal to few fs for high
density gases (with density of 1072 nm~2) and 80 ps for
rarefied gases (with density of 107° nm™3). After having
compared the results of our simulations with some exper-
imental results, we used our model to simulate the evolu-
tion of the gas in a large trap maintained at a cryogenic
temperature. We find that the creation of a Bose-Einstein
condensate is compatible with the ortho-positronium
lifetime.
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