
23 April 2024

kProbLog: an algebraic Prolog for machine learning / Orsini, Francesco; Frasconi, Paolo; de Raedt, Luc. -
In: MACHINE LEARNING. - ISSN 0885-6125. - STAMPA. - 106:(2017), pp. 1-37. [10.1007/s10994-017-5668-
y]

Original Citation:

kProbLog: an algebraic Prolog for machine learning

Published version:
10.1007/s10994-017-5668-y

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1104795 since: 2017-12-03T12:13:39Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Noname manuscript No.
(will be inserted by the editor)

kProbLog: an algebraic Prolog for machine learning

Francesco Orsini · Paolo Frasconi ·
Luc De Raedt

Received: date / Accepted: date

Abstract We introduce kProbLog as a declarative logical language for machine
learning. kProbLog is a simple algebraic extension of Prolog with facts and rules
annotated by semiring labels. It allows to elegantly combine algebraic expressions
with logic programs. We introduce the semantics of kProbLog, its inference algo-
rithm, its implementation and provide convergence guarantees.

We provide several code examples to illustrate its potential for a wide range of
machine learning techniques. In particular, we show the encodings of state-of-the-
art graph kernels such as Weisfeiler-Lehman graph kernels, propagation kernels
and an instance of Graph Invariant Kernels (GIKs), a recent framework for graph
kernels with continuous attributes. However, kProbLog is not limited to kernel
methods and it can concisely express declarative formulations of tensor-based al-
gorithms such as matrix factorization and energy-based models, and it can exploit
semirings of dual numbers to perform algorithmic differentiation. Furthermore,
experiments show that kProbLog is not only of theoretical interest, but can also
be applied to real-world datasets.

At the technical level, kProbLog extends aProbLog (an algebraic Prolog) by
allowing multiple semirings to coexist in a single program and by introducing
meta-functions for manipulating algebraic values.

Keywords algebraic Prolog, kernel programming, graph kernels, machine
learning

Francesco Orsini, E-mail: francesco.orsini@cs.kuleuven.be
Department of Computer Science, Katholieke Universiteit Leuven
Department of Information Engineering, Università degli Studi di Firenze

Paolo Frasconi, E-mail: paolo.frasconi@unifi.it
Department of Information Engineering, Università degli Studi di Firenze

Luc De Raedt, E-mail: luc.deraedt@cs.kuleuven.be
Department of Computer Science, Katholieke Universiteit Leuven

2 Francesco Orsini et al.

1 Introduction

The field of logical and relational learning has already a long tradition, cf. [50,
11, 43]. In the ’80s and ’90s, the goal of this field was to use purely logical and
relational representations within machine learning and in this way, provide more
expressive representations that allow complex datasets and background knowledge
to be represented. The key challenge at the time was to tightly integrate these
representations with symbolic machine learning methods that were then popular,
such as rule-learning and decision trees [54]. But the field of machine learning has
evolved and broadened; in the last two decades it has focused more on statistical
and probabilistic approaches, on kernel and support vector machines and on neu-
ral networks. These trends in machine learning have inspired logical and relational
learning researchers to extend their goals and to investigate how logical and re-
lational learning principles can be exploited within probabilistic methods, kernel
methods, and neural networks.

This is best illustrated by the success of statistical relational learning and prob-
abilistic programming [13, 27], which combine logical and relational learning and
programming with probabilistic graphical models. Today there exist many frame-
works and formalisms that tightly integrate these two paradigms; they support
probabilistic and logical inference as well as learning. Prominent examples include
PRISM [52], Dyna [19, 18], Markov Logic [49], BLOG [42], and ProbLog [12]. Sta-
tistical relational learning and probabilistic programming have enabled an entirely
new generation of applications.

While there has been a lot of research on integrating probabilistic and logic
reasoning, the combination of kernel-based methods with logic has been much
less investigated with the notable exceptions of kLog [22], kFOIL [39] and Gärtner
et al’s work [25, 26]. kLog is a relational language for specifying kernel-based learn-
ing problems. It produces a graph representation of a relational learning problem
in the spirit of knowledge-based model construction and then employs a graph
kernel on the resulting representation. kFOIL is a variation on the rule learner
FOIL [48] that can learn kernels defined as the number of clauses that succeed in
both interpretations. Gärtner et al developed kernels within a typed higher order
language and used it on some inductive logic programming benchmarks.

Also for what concerns neural networks, there is a stream of research work that
combines neural with logical and symbolic representations, which is often referred
to as neural-symbolic learning and reasoning [23, 24].

This research on probabilistic models, kernel-based methods and neural net-
works shows that it is important for logical and relational learning to integrate
its principles and techniques with those of other schools in machine learning. Fur-
thermore, the power of logical and relational learning is not only concerned with
the expressiveness of the logical and relational representations but also with their
declarativeness. Indeed, it has been repeatedly argued that logical and relational
learning allows one to declaratively specify and solve problems by specifying back-
ground knowledge and declarative bias [11, 43]. This property of logical and rela-
tional learning has turned out to be essential for many successes in applications
as making small changes to the background knowledge or bias allows one to easily
control the learning algorithm. While in the above mentioned probabilistic, kernel-
based and neural approaches to logical and relational learning, it is typically pos-
sible to tune the logical and relational part in a declarative way, the probabilistic,

kProbLog: an algebraic Prolog for machine learning 3

kernel or neural components are typically built-in and hardcoded into the under-
lying formalisms and are very hard to modify. For instance, kLog was designed
to allow different graph kernels to be plugged in, but support to declaratively
specify the kernel is missing. Standard probabilistic programming languages such
as PRISM and ProbLog have clear and fixed semantics (the distribution seman-
tics) that cannot be changed. These limitations have motivated the development
of algebraic logical languages such as Dyna [19, 18] and aProbLog [34]. While
standard probabilistic programming languages such as PRISM and ProbLog label
facts with probabilities, Dyna and aProbLog use algebraic labels belonging to a
semiring, which allows the use of other algebraic structures than the probabilistic
semi-ring on top of the underlying logic programs. Dyna has been used to encode
many AI problems, particularly in the area of natural language processing.

But so far, the expressiveness of these languages is still limited, which explains
why many contemporary machine learning techniques involving probabilistic mod-
els, kernels and support-vector machines or neural networks cannot yet be modeled
in these languages. Although Dyna and aProbLog have already been used to rep-
resent probabilistic models1, and the Dyna papers mention some simple neural
networks, there is — to the best of our knowledge — not yet work on using such
languages for kernel-based learning. It is precisely this gap that we want to fill in
this paper.

The key contribution of this paper is the introduction of kProbLog, an algebraic
extension of Prolog, which can be used to declaratively model a wide range of
problems and components from contemporary machine learning. More specifically,
we shall show that kProbLog enables the declarative specification of four types of
models that are central to machine learning today:

1. tensor-based operations: kProbLog allows to encode tensor operations in a way
that is reminiscent of tensor relational algebra [33]. kProbLog supports recur-
sion and is therefore more expressive than tensor relational algebra and related
representations that have been proposed for relational learning [45].

2. a wide family of kernel functions: Declarative programming of kernels on struc-
tured data can be achieved via algebraic labels in the semiring of polynomials.
Polynomials were previously used in combination with logic programming for
sensitivity analysis by Kimmig et al (2011) and for data provenance by Green
et al (2007). In this paper, we show that polynomials as kProbLog’s alge-
braic labels enable the specification of label propagation and feature extrac-
tion schemas as those used in recent graph kernels such as Weisfeiler-Lehman
(WL) graph kernels [53], propagation kernels [44] and graph kernels with con-
tinuous attributes such as graph invariant kernels [47]. Other graph kernels
such as those based on random walks [31, 41] can be also easily declared in our
language.

3. probabilistic programs: kProbLog is, as we show in Section 6, a generalization
of the ProbLog probabilistic programming language.

4. algorithmic differentiation: kProbLog supports algorithmic differentiation by
means of dual numbers [16]. Many learning strategies (ranging from collabora-
tive filtering to neural networks and deep learning) that combine tensor-based

1 Dyna does not handle the disjoint-sum problem; a more detailed explanation about rea-
soning about possible worlds and the disjoint-sum can be found in Section 6.

4 Francesco Orsini et al.

operations with gradient descent parameter tuning can therefore be imple-
mented within the language.

The ability to define tensors, kernels, probabilistic models and support algo-
rithmic differentiation are essential to contemporary machine learning. By sup-
porting declarative modeling of such techniques in a relational setting, kProbLog
contributes towards briding the gap between logical and relational learning and
contemporary machine learning. We also provide an implementation of kProbLog
and show using a number of experiments that it can be applied in practice, espe-
cially for prototyping.

At the more technical level, the key novelty of kProbLog as compared to Dyna
and aProbLog is the introduction of two simple yet powerful mechanisms: the
coexistence of multiple semirings within the same program, and the use of meta-
functions for combining and manipulating algebraic values beyond simple “sum”
and “product” operations. This allows to use kProbLog for declaratively speci-
fying not only the logical component but also the algebraic one. The underlying
idea being that the logic captures the structural aspect of the problem while the
atom labels capture the algebraic aspect (including counts of substructures). We
shall formally define the underlying semantics, provide an implementation of the
language and prove its convergence properties.

The paper is organized as follows. First, we provide some basic notion of algebra
and logic programming in Section 2. We then introduce kProbLog in Section 3,
first giving a simplified version of the language based on a single semiring and then
describing the full kProbLog language with multiple semirings and meta-functions.
Section 3 also illustrates the relationship with tensor algebra. In Section 4 we then
explain how kProbLog can be used to declaratively specify some complex state-
of-the-art graph kernels, Section 5 shows that it is possible to perform algorithmic
differentiation in kProbLog, while Section 6 shows that kProbLog is a proper
generalization of ProbLog and hence, can be used as a probabilistic programming
language. The work on kProbLog is then evaluated in Section 7: we show that
kProbLog is expressive enough to allow for encoding kernels for some real world
application domains and that the implementation is usable in that we obtain good
statistical performance and runtimes on some benchmarks. Finally, in Section 8,
we offer a comparative analysis of kProbLog and related languages, and draw some
conclusions in Section 9.

2 Background

In this section, we provide some basic notions about algebra and logic program-
ming.

2.1 Algebra

We now review some mathematical definitions.

Definition 1 A monoid is an algebraic structure (S, ·, e), where S is a set and
· : S× S→ S is a binary operation, e ∈ S is the neutral element and the following
properties are satisfied:

kProbLog: an algebraic Prolog for machine learning 5

1. associativity ∀a, b, c ∈ S (a · b) · c = a · (b · c).
2. neutral element ∃e : ∀s ∈ S : e · a = a · e = a.

A monoid is called commutative if ∀a, b ∈ S : a · b = b · a.

Definition 2 A semiring is an algebraic structure S = (S,⊕,⊗, 0S , 1S) which
satisfies the following properties:

1. (S,⊕, 0S) is a commutative monoid,
2. (S,⊗, 1S) is a monoid,
3. distributive multiplication left and right distributes over addition i.e. a⊗ (b⊕
c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

4. annihilating element the neutral element of the sum 0s is the annihilating
element of multiplication: 0s ⊗ a = a⊗ 0s = 0s.

A semiring is commutative if ∀a, b ∈ S a⊗b = b⊗a (i.e. (S,⊗, 1S) is a commutative
monoid).

Definition 3 A semiring S = (S,⊕,⊗, 0S , 1S) is complete if it is possible to define
sums for all families (ai|i ∈ I) of elements of S where I is an arbitrary index set,
such that the following conditions are satisfied [15]:

1.
⊕
i∈∅ ai = 0S ,

⊕
i∈{j} ai = aj ,

⊕
i∈{j,k} ai = aj ⊕ ak for j 6= k.

2.
⊕
j∈J (

⊕
i∈Ij ai) =

⊕
i∈I ai for

⋃
j∈J Ij = I and Ij ∩ Ik = ∅, j 6= k.

3.
⊕
i∈I (c⊗ ai) = c⊗

(⊕
i∈I ai

)
,
⊕
i∈I (ai ⊗ c) =

(⊕
i∈I ai

)
⊗ c.

These properties of a complete semiring S define infinite sums that extend finite
sums, are associative and commutative, and satisfy the distributive law [15].

Definition 4 A semiring (S,⊕,⊗, 0S , 1S) is naturally ordered if the set S is par-
tially ordered by the relation v such that ∀a, b ∈ S : a v b if ∃c ∈ S : a ⊕ c = b.
The partial order relation v on A is called natural order [38].

Definition 5 A semiring (S,⊕,⊗, 0S , 1S) is ω-continuous when: a) is complete b)
is naturally ordered c) if

⊕n
i=1 ai v c ∀n ∈ N then

⊕
i∈N ai v c for all sequences

{an}i∈N in S and c ∈ S.

2.2 Logic programming

A term t is recursively defined as a constant c, a logical variable X or a func-
tor f applied on terms t_i, yielding f(t_1,...,t_n). An atom takes the form
p(t_1,...,t_m) where p is a predicate of arity m and t_1,...,t_n are terms.
A definite clause h :- b_1,...,b_n is a universally quantified expression where
b_1, . . . , b_n and h are atoms. The atom h is called head of the clause while
b_1,...,b_n is called body. The head h of the clause is true whenever all the
atoms b_1,...,b_n in its body are true. A fact is a clause h :- true whose body
is true and can be compactly written as h. A definite clause program P is a finite
set of definite clauses, also called rules. An expression that does not contain vari-
ables is called ground. A Herbrand base A is the set of all the ground atoms that
can be constructed from constants, functors and predicates in a definite clause
program P . A Herbrand interpretation I of P is a truth value assignment to all

6 Francesco Orsini et al.

the atoms a ∈ A and it is often written as the subset of true atoms. A Herbrand in-
terpretation that satisfies all the rules in the program P is called Herbrand model.
The model theoretic semantics of a definite clause program is given by its least
Herbrand model, that is, the set of all ground atoms a ∈ A that are entailed by the
logic program P . Logical inference is the task of determining whether a query atom
a, is entailed by a given logic program P . The two most common approaches to
logical inference are backward reasoning and forward reasoning. The former starts
from the query and reasons back tower the facts [46] and it is usually implemented
in logic programming by SLD-resolution, while the latter starts from the facts and
derives new true atoms using the immediate consequence operator TP [20].

Definition 6 Let P be a ground definite clause program. The TP -operator is a
function that maps a Herbrand interpretation I to another Herbrand interpretation
TP (I) as follows:

TP (I) = {h|h : −b1, ..., bn ∈ P and {b1, . . . , bn} ⊆ I} (1)

The least Herbrand model of a program P is the least fixed point of the TP -
operator, i.e. the least set of atoms I such that TP (I) = I.

3 The kProbLog language

We introduce kProbLog in three different steps. In the first subsection, we assume
that a single semiring is used; in the second subsection we introduce meta-functions
and allow for multiple semirings; in the third, we present the inference algorithm
of kProbLog, and analyze its convergence in the fourth subsection.

3.1 kProbLogS

kProbLogS is an algebraic extension of Prolog with labeled facts and rules, where
labels are chosen from a semiring S.

Definition 7 A kProbLogS program P is a 4-tuple (F,R, S, `) where:

– F is a finite set of facts;
– R is a finite set of definite clauses (also called rules);
– S is a semiring with sum ⊕ and product ⊗ operations; whose neutral elements

are 0S and 1S respectively;
– ` : F → S is a function that maps facts to semiring values.

Definition 8 An algebraic interpretation Iw = (I, w) of a ground kProbLogS

program P with facts F and atoms A is a set of tuples (a,w(a)) where a is an
atom in the Herbrand base A and w(a) is an algebraic formula over the fact labels
{`(f)|f ∈ F}. We use the symbol ∅ to denote the empty algebraic interpretation,
i.e. {(true, 1S)} ∪ {(a, 0S)|a ∈ A}.

In this definition and below we adapt the notation of Vlasselaer et al (2015).

kProbLog: an algebraic Prolog for machine learning 7

Definition 9 Let P be a ground algebraic logic program with algebraic facts F
and Herbrand base A. Let Iw = (I, w) be an algebraic interpretation with pairs
(a,w(a)). Then the T(P,S)-operator is T(P,S)(Iw) = {(a,w′(a))|a ∈ A} where:

w′(a) =

`(a) if a ∈ F
⊕

{b1,...,bn}⊆I
a:−b1,...,bn

n⊗

i=1

w(bi) if a ∈ A \ F . (2)

Example 1 use of the algebraic TP -operator.

kProbLogS algebraic
TP -operator

numerical example

a :- a, b.

a :- c.

w(a)⊗ w(b)
⊕
w(c)

0.5× 0.3
+
0.9

w(a) = 0.5

w(b) = 0.3

w(c) = 0.9

The least fixed point can be computed using a semi-naive evaluation. When the
semiring is non-commutative the product ⊗ of the weights w(bi) must be computed
in the same order that they appear in the rule. kProbLogS can represent matrices
that in principle can have infinite size and can be indexed by using elements of
the Herbrand universe of the program. We now show some elementary kProbLogS

programs that specify matrix operations:

algebra kProbLogS numerical example

matrix
A

A
1::a(0, 0).
2::a(0, 1).
3::a(1, 1).

[1 2
0 3]

matrix
B

B

2::b(0, 0).
1::b(0, 1).
5::b(1, 0).
1::b(1, 1).

[2 1
5 1]

matrix
transpose

At c(I, J) :- a(J, I). [1 2
0 3]t = [1 0

2 3]

matrix
sum

A+B
c(I, J) :- a(I, J).
c(I, J) :- b(I, J). [1 2

0 3] + [2 1
5 1] = [3 3

5 4]

matrix
product

AB
c(I, J) :-

a(I, K), b(K, J). [1 2
0 3] [2 1

5 1] = [12 3
15 3]

Hadamard
product

A�B c(I, J) :-
a(I, J), b(I, J). [1 2

0 3]� [2 1
5 1] = [2 2

0 3]

Kronecker
product

kron(A,B)
c(i(Ia, Ib), j(Ja, Jb)):-

a(Ia , Ja), b(Ib , Jb). [1 2
0 3]⊗ [2 1

5 1] =

[
2 1 4 2
5 1 10 2
0 0 6 3
0 0 15 3

]

The compound terms2 i/2 and j/2, were used to create the new indices that
are needed by the Kronecker product. These definitions of matrix operations are
reminiscent of tensor relational algebra [33]. Each of the above programs can be
evaluated by applying the T(P,S)(Iw) operator only once. For each program we
have a different definition of the C matrix that is represented by the predicate

2 We use the notation functor/arity for compound terms.

8 Francesco Orsini et al.

c/2. As a consequence of Equation 2 all the algebraic labels of the c/2 facts
are polynomials in the algebraic labels of the a/2 and b/2 facts. We draw an
analogy between the representation of a sparse tensor in coordinate format and
the representation of an algebraic interpretation. A ground fact can be regarded
as a tuple of indices/domain elements that uniquely identifies the cell of a tensor,
the algebraic label of the fact represents the value stored in the cell.

Definition 10 An algebraic interpretation Iw = (I, w) is the fixed point of the
T(P,S)(Iw)-operator if and only if for all a ∈ A, w(a) ≡ w′(a), where w(a) and
w′(a) are algebraic formulae for a in Iw and T(P,S)(Iw) respectively.

We denote with T i(P,S) the function composition of T(P,S) with itself i times.

Proposition 1 (application of Kleene’s theorem) If S is an ω-continuous
semiring the algebraic system of fixed-point equations Iw = T(P,S)(Iw) admits a
unique least solution T∞(P,S)(∅) with respect to the partial order v and T∞(P,S)(∅) is

the supremum of the sequence T 1
(P,S)(∅), T

2
(P,S)(∅), . . . , T

i
(P,S)(∅). So T∞(P,S)(∅) can

be approximated by computing successive elements of the sequence. If the semiring
satisfies the ascending chain property (see [21]) then T∞(P,S)(∅) = T i(P,S)(∅) for
some i ≥ 0 and T∞(P,S)(∅) can be computed exactly [21].

Examples of ω-continuous semirings are the Boolean semiring ({T,F}, ∨, ∧, F, T),
the tropical semiring (N ∪ {∞},min,+,∞, 0) and the fuzzy semiring
([0, 1],max,min, 0, 1) [29].

Example 2 In this example, we show that some classic graph-theoretical algo-
rithms can be described very concisely in kProbLogS. For this purpose, let us
consider the following program:

1:: edge(a, b).
3:: edge(b, c).
7:: edge(a, c).

path(X, Y):-
edge(X, Y).

path(X, Y):-
edge(X, Z), path(Z, Y).

Assuming that S is the Boolean semiring and that all the algebraic labels that
are different from 0S correspond to true∈ S, we obtain the Warshall algorithm for
the transitive closure of a binary relation. If S is the tropical semiring, we obtain a
specification of the Floyd-Warshall algorithm for all-pair shortest paths on graphs.

3.2 kProbLog

kProbLog generalizes kProbLogS in two ways: it allows multiple semirings to co-
exist in the same program, and it enriches the algebraic expressivity by means of
meta-functions and meta-clauses.

Every algebraic predicate in a kProbLog program needs to be associated with
its own semiring S via the built-in predicate declare(P, S) where P is either a
predicate (written in the form name/arity) or a list of predicates and S specifies
a member of the kProbLog semiring library3. For example, the directive

3 The library contains can be extended with the Python language.

kProbLog: an algebraic Prolog for machine learning 9

:- declare(vertex/2, polynomial(real)).

is used to associate vertex/2 with the semiring of polynomials over real numbers.

Definition 11 (meta-function) A meta-function m: S1 × . . . × Sk 7→ S′ is a
function that maps k semiring values xi ∈ Si, i = 1, . . . , k to a value of type S′,
where S1, . . . , Sk and S′ can be distinct sets. If a_1,...,a_k are algebraic atoms,
in kProbLog we use the syntax @m[a_1,...,a_k] to express the application of
meta-function @m to the values w(a_1), ..., w(a_k) of the atoms a_1,...,a_k.

Definition 12 (meta-clause) A meta-clause h :- b_1,...,b_n is a universally
quantified expression where h is an atom and b_1,...,b_n can be either atoms or
meta-functions applied to other algebraic atoms. The head predicate of a meta-
clause, the algebraic atoms in the body, and the return types of the meta-functions
in the body must all belong to the same semiring.

The introduction of meta-functions in kProbLog allows us to deal with other alge-
braic structures such as rings that require the additive inverse @minus/1 and fields
that require the additive inverse and the multiplicative inverse @inv/1.

Definition 13 (kProbLog program) A kProbLog program P is a union of
kProbLogSi programs and meta-clauses.

3.2.1 kProbLog TP -operator with meta-functions

The algebraic TP -operator of kProbLog is defined on the meta-transformed pro-
gram.

Definition 14 (meta-transformed program) A meta-transformed kProbLog
program is a kProbLog program in which all the meta-functions are expanded to
algebraic atoms. For each rule h :- b_1,...,@m[a_1,...,a_k],...,b_n in the
program P each meta-function @m[a_1,...,a_k] is replaced by an atom b’ and a
meta-clause b’:-@m[a_1,...,a_k] is added to the program P .

Definition 15 (algebraic TP -operator with meta-functions) Let P be a
meta-transformed kProbLog program with facts F and atoms A. Let Iw = (I, w)
be an algebraic interpretation with pairs (a,w(a)). Then the TP -operator is TP (Iw) =
{(a,w′(a))|a ∈ A} where:

w′(a) =

`(a) if a ∈ F
⊕

{b1,...,bn}⊆I
a:−b1,...,bn

n⊗

i=1

w(bi)⊕
⊕

{b1,...,bk}⊆I
a:−@m[b1,...,bk]

m(w(b1), . . . , w(bk)) if a ∈ A \ F . (3)

Example 3 of the algebraic TP -operator with meta-functions.

kProbLog algebraic
TP -operator

numerical example

a :- a, b.

a :- @sin[c].

w(a)⊗ w(b)
⊕

sin(w(c))

0.5× 0.3
+

0.78...

w(a) = 0.5

w(b) = 0.3

w(c) = 0.9

Where we used the identity sin(0.9) = 0.78 . . .

10 Francesco Orsini et al.

3.2.2 Recursive kProbLog program with meta-functions

Recursion is a basic tool in logic programming. For our purposes, it is necessary
in most useful computations on structured data such as shortest paths (see Ex-
ample 2), or random walk graph kernels (See Section 4.4.3). Weights need to be
updated whenever the groundings of a predicate appear in the cycles of the ground
program.

Definition 16 A ground program P is cyclic if it contains a cycle. A cycle is a
sequence of rules r1, . . . , rn such that the head of ri is contained in the body of
ri−1 for i = 2, . . . ,m and the head of r1 is contained in rm. A ground rule that is
contained in a cycle is called cyclic rule, otherwise it is called acyclic rule

kProbLog allows both additive and destructive updates, as specified by the
built-in predicate declare(P, S, U) where U can be either additive or destructive.

Definition 17 Additive and destructive updates.
If r1, . . . , rn are all ground cyclic rules with head h, the value of the weight

update value ∆w(h) is computed as:

∆w(h) =
n⊕

i=1

TP (ri). (4)

According to the declaration of the predicate of atom h the update will be either

– additive w(h) = w(h)⊕∆w(h) or
– destructive w(h) = ∆w(h).

The distinction between additive and destructive is only relevant for cyclic
rules. In Section 3.3 we give the evaluation algorithm of kProbLog which uses this
kind of update when necessary.

Programs such as the transitive closure of a binary relation (see Example 2) or
the compilation of ProbLog programs with sentential decision diagrams (SDD) [8]
require additive updates (see Section 6). Destructive updates are necessary to
specify iterated function composition, as shown in the next example.

Example 4 Suppose we wish to compute

lim
n→+∞

gn(x0)

where g ≡ x(1− x) and

gn ≡
{
g◦gn−1 if n>0

g if n=0.
(5)

The value gn(x0) can be obtained in kProbLog as follows:

:- declare(x, real , destructive).
:- declare(x0, real).
0.5::x0.
x :- x0.
x :- @g[x].

The above program has the following behavior: the weight w(x) of x is initialized to
w(x0) = 0.5 and then updated at each step according to the rule w′(x) = g(w(x))
(destructive update). An additive update w′(x) = w(x) + g(w(x)) would have
produced an incorrect result in this case.

kProbLog: an algebraic Prolog for machine learning 11

3.2.3 The Jacobi method

We already showed that kProbLog can express linear algebra operations. We now
combine recursion and meta-functions in an algebraic program that specifies the
Jacobi method [28], an iterative algorithm used for solving diagonally dominant
systems of linear equations Ax = b.

We consider the field of real numbers R (i.e. kProbLogR) as semiring together
with the meta-functions @minus and @inv that provide the inverse element of sum
and product respectively.

The A matrix must be split according to the Jacobi method:

D = diag(A) d(I, I) :- a(I, I).

R = A−D r(I, J) :- a(I, J), I \= J.

The solution x∗ of Ax = b is computed iteratively by finding the fixed point of
x = D−1(b − Rx). We call E the inverse of D. Since D is diagonal also E is a
diagonal matrix:

eii =inv(dii) = 1
dii

e(I, I) :- @inv[d(I, I)].

and the iterative step can be rewritten as x = E(b−Rx).
Making the summations explicit we can write:

xi =
∑

k

eik

(
bk −

∑

l

rklxl

)
(6)

then we can extrapolate the term
∑

l

rklxl turning it into the auxk definition:

xi =
∑
k

eik (bk − auxk)

auxk =
∑
l

rklxl

:- declare(x/1, real , destructive).
:- declare(aux/1, real , destructive).
x(I) :-

e(I, K), @subtraction[b(K), aux(K)].

aux(K) :-
r(K, L), x(L).

where @subtraction/2 represents the subtraction between real numbers, x/1 and
aux/1 are mutually recursive predicates. Because x/1 needs to be initialized (per-
haps at random) we also need the clause:

xi = initi x(I) :- init(I).

where init/1 is a unary predicate. This example also shows that kProbLog is
more expressive than tensor relational algebra because it supports recursion.

The introduction of meta-functions makes the result of the evaluation of a
kProbLog program dependent on the order in which rules and meta-clauses are
evaluated. For this reason we explain the order adopted by the kProbLog language.

3.3 kProbLog implementation

Pseudo-code for the interpreter is given in Algorithm 1. A kProbLog program P
is first grounded to a kProbLog program by the procedure Ground and is then
evaluated by partitioning Ground(P) into a topologically ordered sequence of
strata P1, . . . , Pn such that

12 Francesco Orsini et al.

– every stratum Pi is a set of ground atoms which is both is maximal and strongly
connected (i.e. each ground atom in Pi depends on every other ground atom
in Pi);

– a ground atom in an acyclic stratum Pi can only depend4 on the ground atoms
from the previous strata

⋃
j<i Pj ;

– an ground atom in a cyclic stratum can depend on the ground atoms in
⋃
j≤i Pj .

Program evaluation starts by initializing the weight w(a) of each ground atom
a ∈ Ground(P) to 0S , where S is the semiring of the atom. The strata are then
visited in topological order and the weights are updated as follows: if the stratum
Pi is acyclic, then the algebraic TP -operator is applied only once per atom; if Pi
is cyclic then the algebraic TP -operator is first applied to the acyclic rules and
meta-clauses and then, repeatedly until convergence, to the cyclic rules and meta-
clauses. The procedure TpOperator takes as input a rule and the atom weights
w and returns an algebraic value derived from the application of the algebraic
TP -operator.

The update for a weight w(a) of a cyclic atom a is computed by accumulating
the result of the application of the TP -operator to all the cyclic rules with head a.
The new weight is then computed as w(a) = w(a) +∆w(a) (additive updates) or
w(a) = ∆w(a) (destructive updates).

If Pi is a cyclic stratum, then it is the responsibility of the programmer to
ensure convergence of the algebraic TP -operator. Nevertheless if the Pi is a cyclic
stratum in which only rules are cyclic then all the atoms in Pi are on the same
semiring5 S and so Pi has the same convergence properties of a kProbLogS program
(see Theorem 2 on page 14). Whenever we apply the algebraic TP -operator we use
the Jacobi evaluation. Jacobi and Gauss-Seidel evaluations are two alternatives to
perform naive evaluation of Datalog programs and are also well known in numerical
analysis [5]. We choose Jacobi over Gauss-Seidel evaluation because the former
produces side effects on the algebraic weighs w only after (and not during) the
computation of the algebraic TP -operator. In this way the execution of the program
is not affected by the order in which rules and meta-clauses are evaluated.

This program evaluation procedure is an adaptation the work of Whaley et al
(2005) on Datalog and binary decision diagrams. kProbLog was implemented in
Python 3.5 using Gringo 4.56 as grounder. The source code of our kProbLog
implementation is available at https://github.com/orsinif/kProbLogDSL.

Example 4 (continued) Evaluation of a cyclic program. The cyclic program P in
Section 3.2.2 is already ground and contains two ground atoms x0 and x. The
ground atoms x0 and x correspond to two nodes in the dependency graph, while
x0 is a fact and does not have incoming arcs, x has two dependencies/incoming
arcs which are x0 and itself. As shown in Figure 1 P is then subdivided in two
strata P1 and P2: P1 contains x0 and is acyclic, P2 contains x and is cyclic.

The algebraic TP -operator is applied only once for acyclic rules and multiple
times, until convergence, for cyclic rules (i.e. x:- @g[x].)

4 We say that an atom a directly depends on an atom b if a is the head of a rule or a meta-
clause and b is a body literal or an argument of a meta-function in the meta clause. We say
that an atom a depends on an atom b either if a directly depends on b or there is an atom c
such that a directly depends on c and c depends on b.

5 Atoms of distinct semirings cannot be mutually dependent without using meta-clauses.
6 https://potassco.org

kProbLog: an algebraic Prolog for machine learning 13

Algorithm 1 Pseudo-code for the kProbLog evaluation procedure.

kProbLog(P)

1 F = Facts(P)
2 for f ∈ F
3 w(f) = `(f)
4 [P1, . . . , Pn] = TopSort(GetStrata(Ground(P)))
5 for i = 1, . . . , n
6 for a ∈ Pi \ F
7 w(a) = 0s
8 wold = w
9 ACYCLIC = AcyclicRules(Pi)

10 CYCLIC = CyclicRules(Pi)
11 for rule ∈ ACYCLIC
12 h = Head(rule)
13 w(h) = wold (h)⊕ TpOperator(rule, wold)
14 repeat
15 wold = w
16 for rule ∈ CYCLIC
17 ∆w(Head(rule)) = 0s
18 for rule ∈ CYCLIC
19 h = Head(rule)
20 ∆w(h) = ∆w(h)⊕ TpOperator(rule, wold)
21 for rule ∈ CYCLIC
22 if rule is additive
23 w(Head(rule)) = wold(Head(rule))⊕∆w(Head(rule))
24 else // rule is destructive
25 w(Head(rule)) = ∆w(Head(rule))
26 until wold = w

Fig. 1 Cyclic program of Example 4: dependency graph with stratification and corresponding
weight updates.

P1 0.5::x0.

P2 x :- x0.

x :- @g[x].

w(x0) = 0.5

w(x) = w(x0)

repeat

wold = w

�w(x) = g(wold(x))

// destructive update

w(x) = � w(x)

until w(x) = wold(x)

3.4 Convergence analysis of the kProbLog interpreter

In order to analyze the convergence of the kProbLog interpreter on a kProbLog
program P , we assume that all the meta-functions in P terminate and that the
finite support condition [51] holds.

The finite support condition is commonly used in probabilistic logic program-
ming and ensures that the Ground procedure outputs a finite ground program.

The convergence properties of kProbLog are characterized by the following
theorems.

14 Francesco Orsini et al.

Theorem 1 (Convergence of acyclic kProbLog programs) The evaluation
of an acyclic kProbLog program P invokes the algebraic TP -operator exactly once
for each ground rule in Ground(P) and terminates.

Theorem 2 (Convergence of kProbLog programs) The evaluation of a
kProbLog program is guaranteed to terminate only if all the cyclic strata are
kProbLogSi programs where Si are ω-continuous semirings.

The proofs of Theorems 1 and 2 are reported in Appendix Section A.
Theorem 1 can be used to prove the convergence of the elementary programs

that specify matrix operations in Section 3.1 and the convergence of the WL
algorithm that we shall se in Section 4.2. Theorem 2 ensures the convergence of
the cyclic program in Example 2 when an ω-continuous semiring is used for the
algebraic labels, but not the convergence of the program in Example 4. While the
cyclic program in Example 4 actually converges, this property cannot be entailed
from Theorem 2. Indeed the program in Example 4 has a cyclic stratum P2 (see
Figure 1) involving a meta-function (i.e. @g). Stratum P2 is not a kProbLogS

program because kProbLogS programs do not admit meta-functions and for this
reason we cannot apply Theorem 2 to Example 4.

kProbLog programs whose strata are either acyclic programs or cyclic programs
on ω-continuous semirings are guaranteed to converge and it is possible to verify
that these conditions are met at runtime. However, since kProbLog is an extension
of Prolog, which is a Turing-complete language we choose to allow meta-functions
and non-ω-continuous semirings in cyclic strata. In this way we do not restrict the
expressivity of the language.

4 Kernel programming

We now show that kProbLog can be used to declaratively encode state-of-the-art
graph kernels. But before doing so, we introduce the semiring S[x] that can be
used for feature extraction.

4.1 kProbLogS[x]: polynomials for feature extraction

kProbLogS[x] labels facts and rule heads with polynomials over the semiring S.
kProbLogS[x] is a particular case of kProbLogS because polynomials over semirings
are semirings in which addition and multiplication are defined as usual.

While polynomials have been used in combination with logic programming for
provenance [29] and sensitivity analysis [34], we use multivariate polynomials to
represent the explicit feature map of a graph kernel.

Definition 18 (Multivariate polynomials over commutative semirings)
A multivariate polynomial P ∈ S[x] can be expressed as:

P(x) =
n⊕

i=1

cix
ei =

n⊕

i=1

ci ⊗
⊗

t∈T
xeitt (7)

where ci ∈ S are the coefficients of the ith monomial and x, e are vectors of
variables and exponents respectively. The vector x is indexed by ground terms
t ∈ T .

kProbLog: an algebraic Prolog for machine learning 15

M

2 ⇤ xsky+
2 ⇤ xcyan+

xorange

2 ⇤ xmagenta 2 ⇤ xorange@id

1 ⇤ xcyan
1 ⇤ xmagenta+

1 ⇤ xgreen
@id

1 ⇤ xmagenta 1 ⇤ xsky@id

2 ⇤ xgray 1 ⇤ xmagenta@id

1 ⇤ xgray 1 ⇤ xgreen@id

1 ⇤ xmagenta+
1 ⇤ xgreen

2 ⇤ xmagenta

@dot 1 x 0 + 1 x 2 = 2

a) b)

c)

2 ⇤ xgreen+
3 ⇤ xmagenta

2 ⇤ xgreen+
3 ⇤ xmagenta+
2 ⇤ xsky+
2 ⇤ xcyan+

xorange

Fig. 2 Using polynomials for representing multisets: a) multiset union corresponds to sum
over polynomials; b) the inner product (kernel) between multisets corresponds to product over
polynomials; c) multiset compression via the @id meta-function over polynomials.

WL, propagation and neighborhood-subgraph-pairwise-distance kernel features
can all be cast into this representation. These graph kernels propagate messages
through the structure of the graphs, these messages can be represented as mul-
tisets of terms (elements of the Herbrand universe). Indeed we can represent a
multiset µ of terms as a polynomial:

Pµ(x) =
∑

t∈µ
]t · xt (8)

where] counts the number of occurrences of the terms in the multiset µ.

4.1.1 Operations for feature extraction

Sum of polynomials The semiring sum ⊕ between polynomials is used in
kProbLogS[x] to sum features or equivalently compute a multiset union operation
(see Figure 2.a).

Inner product between polynomials The kProbLog @dot meta-function corresponds
to the inner product on multivariate polynomials over S[x]:

〈P(x),Q(x)〉 =
⊕

(p, e) ∈ P
(q, e) ∈ Q

p⊗ q. (9)

For each monomial (uniquely identified by the vector of exponents e) that appears
in both the polynomials P and Q, Equation 9 computes the product between
their coefficients p and q respectively. These products are then summed together
to obtain the value of the inner product. Natural choices for the semiring are
polynomials over integers Z[x] and real numbers R[x], these semirings also ensure
that the inner-product is positive semidefinite.

16 Francesco Orsini et al.

Example 5 The following multivariate polynomials over integers:

P(x1, x2, x3) = 2x1 + 3x1x2 + x2x
2
3

Q(x1, x2, x3) = 4x1 + 3x1x3 + 3x2x
2
3

(10)

can be expressed as two sets of coefficient-exponent pairs P = {(2, [1, 0, 0]),
(3, [1, 1, 0]), (1, [0, 1, 2])} and Q = {(4, [1, 0, 0]), (3, [1, 0, 1]), (3, [0, 1, 2])} respec-
tively. The two polynomials have the vectors of exponents [1, 0, 0] and [0, 1, 2]
in common, each contributes to the inner product by 2× 4 = 8 and 1× 3 = 3 re-
spectively. The value of the inner product between P(x1, x2, x3) and Q(x1, x2, x3)
is the sum of such contributions 8 + 3 = 11.

In kProbLog, the meta-function @dot/2. computes the inner product between
two algebraic atoms P(x)::a and Q(x)::b. An example is shown in Figure 2.b
where the multisets of terms {{green, magenta}} and {{magenta, magenta}} are
represented by the following two polynomials:

P(xgreen, xmagenta) = xgreen + xmagenta

Q(xgreen, xmagenta) = 2xmagenta
(11)

Another useful meta-function in the context of kernel design is @rbf/3. It takes
as input an atom labeled by a non-negative real value γ and two atoms labeled
with the polynomials P and Q and it computes the radial basis function kernel
exp{−γ‖P −Q‖2}, where ‖P −Q‖2 = 〈P,P〉+ 〈Q,Q〉 − 2〈P,Q〉.

The compression meta-function The @id/1 meta-function @id: S[x] → S[x] is in-
jective. @id/1 transforms a polynomial P(x) to a new term t and returns the
polynomial @id[P(x)] = 1.0 · x(t). This function can be used to compress a mul-
tivariate polynomial to a new polynomial in a single variable. We use the @id

meta-function for polynomial compression as Shervashidze et al (2011) use the
function f to compress multisets of labels. We now show how these functions are
used to specify graph kernels.

4.2 The Weisfeiler-Lehman algorithm

The one-dimensional WL method is an iterative vertex classification algorithm for
the graph isomorphism problem. It begins by coloring vertices with their labels
and, at each round, it recolors vertices by a “compressed” version of the multiset
of colors at their neighbors. If, at any iteration, two graphs have different sets of
vertex colors they cannot be isomorphic. We will use polynomials to represent WL
colors, associating variables with colors and using integer coefficients to encode
the number of occurrences of a color in a multiset.

A colored graph G = (V,E, `), where V is a set of vertices, E ⊆ V × V is
the set of the edges, and ` : V 7→ Σ is a function that maps vertices to a color
alphabet Σ, can be declared in kProbLog as follows:

kProbLog: an algebraic Prolog for machine learning 17

:- declare(vertex/2, polynomial(int)).
:- declare(edge_asymm /3, boolean).
:- declare(edge/3, polynomial(int)).

1 * x(pink):: vertex(graph_a , 1).
1 * x(blue):: vertex(graph_a , 2).
1 * x(blue):: vertex(graph_a , 3).
1 * x(blue):: vertex(graph_a , 4).
1 * x(blue):: vertex(graph_a , 5).

edge_asymm(graph_a , 1, 2).
edge_asymm(graph_a , 1, 3).
edge_asymm(graph_a , 2, 4).
edge_asymm(graph_a , 3, 4).
edge_asymm(graph_a , 4, 5).

1.0:: edge(Graph , A, B):-
edge_asymm(Graph , A, B).

1.0:: edge(Graph , A, B):-
edge_asymm(Graph , B, A).

2

4 5

3

1

where the predicate edge_asymm/3 is implicitly cast to type integer and then to
type polynomial over integers when it appears in the definition of edge/3. The
WL color of vertex v at iteration h can be written as:

Lh(v) =

{
`(v) if h = 0

f(Lh−1(v), {{Lh−1(w)|w ∈ N (v)}}) if h > 0
(12)

where N (v) is the set of the vertex neighbors of v, {{Lh−1(w)|w ∈ N (v)}} is
the multiset of their colors at step h − 1, and f is a variadic injective function
that maps its arguments to a new color in Σ. Equation 12 can be expressed in
kProbLog as shown below, where f is implemented via the @id meta-function:

:- declare(wl_color/3,
polynomial(int)).

:- declare(wl_color_multiset /3,
polynomial(int)).

wl_color_multiset(H, Graph , V):-
edge(Graph , V, W),
wl_color(H, Graph , W).

wl_color(0, Graph , V) :-
vertex(Graph , V).

wl_color(H, Graph , V):-
1 <= H, H <= MAX_ITER ,
@id[wl_color(H-1, Graph , V),
wl_color_multiset(H-1, Graph , V)].

The WL algorithm has been specified as an acyclic program. Indeed, while
wl_color/3 and wl_color_multiset/3 are mutually recursive
wl_color/3 at step H depends on wl_color/3 and wl_color_multiset/3 at step
H-1, therefore is acyclic and we can apply Theorem 1 to verify that it converges.

4.3 Graph kernels

In this section we give the declarative specification of some recent graph kernels
such as the WL graph kernel [53], propagation kernels [44] and graph invariant
kernels [47]. These methods have been applied to different domains such as natural
language processing [47], computer vision [44] and bioinformatics [53, 44, 47].

4.4 Weisfeiler-Lehman graph kernel and Propagation kernels

The WL graph kernel is defined using a base kernel [53] that computes the inner-
product between the histograms of WL colors of two graphs Graph and GraphPrime.

18 Francesco Orsini et al.

φ(h)(G) =
∑

v∈V (G)

P(h)
wl (v)

k
(h)
base(G,G

′) = 〈φ(h)(G), φ(h)(G′)〉

:- declare(phi/2, real).
phi(H, Graph):-

wl_color(H, Graph , V).

:- declare(base_kernel /3, real).
base_kernel(H, Graph , GraphPrime):-

@dot[phi(H, Graph),
phi(H, GraphPrime)].

Where P(h)
wl (v) is the polynomial that represents the WL color of vertex v at

step h.
The WL graph kernel [53] with H iterations is the sum of base kernels computed

for consecutive WL labeling steps 1, . . . ,H on the graphs Graph and GraphPrime:

k
(H)
wl (G,G′) =

H∑

h=0

k
(h)
base(G,G

′)

:- declare(kernel_wl/3, real).
kernel_wl(0, Graph , GraphPrime):-

base_kernel (0, Graph , GraphPrime).

kernel_wl(H, Graph , GraphPrime):-
H > 0, H1 is H - 1,
kernel_wl(H1, Graph , GraphPrime).

kernel_wl(H, Graph , GraphPrime):-
H > 0,
base_kernel(H, Graph , GraphPrime).

The above equation can be rewritten using a recursive definition which is closer
to the kProbLog specification as follows

k
(H)
wl (G,G′) =

{
k
(0)
base(G,G

′) if H = 0

k
(H−1)
wl (G,G′) + k

(H)
base(G,G

′) if H > 0.
(13)

Propagation kernels [44] extend the WL graph kernel and can adopt different
label propagation schemas. Neumann et al (2012) implement propagation kernels
using locality sensitive hashing (lsh). The kProbLog specification is almost iden-
tical to the one of the WL except that the @id meta-function is to be replaced
with a meta-function that does lsh.

lsh discretizes vectors to integer identifiers so that vectors which are similar
have the same integer identifier with high probability.

4.4.1 Shortest path Weisfeiler-Lehman graph kernel

The shortest path WL [53] graph kernel is a specialization of the WL graph kernel
where the base kernel counts the number of common occurrences of triplets of
the form (a, b, d) between two graphs G and G′. The triplet (a, b, d) represents
the occurrence of two vertices v and w at distance d with colors a = L(v) and
b = L(w). To compactly encode the shortest path variant of the WL graph kernel
we begin by computing all-pairs shortest paths using the tropical semiring:

:- declare(distance/3, tropical).
distance(Graph , V, W):-

edge(Graph , V, W).

distance(Graph , V, W):-
distance(Graph , V, U), edge(Graph , U, W).

kProbLog: an algebraic Prolog for machine learning 19

We then introduce predicate triplet_id(Graph, H,V, W) of type polynomial

(real) that associates each pair of vertices V and W of graph Graph with their
Hth-iteration WL color, together with their shortest path distance, d, obtained by
calling the @id/1 meta-function on the distance predicate. Finally, triplet (a, b, d) is
represented as the monomial xaxbxd via auxiliary predicate triplet(Graph, H, V, W)

and compressed to a color by using again the @id meta-function:

:- declare(triplet/4, polynomial(real)).
:- declare(triplet_id /4, polynomial(real)).

triplet(Graph , H, V, W):-
wl_color(H, Graph , V),
wl_color(H, Graph , W),
@id[distance(Graph , V, U)].

triplet_id(Graph , H, V, W):-
@id[triplet_id(Graph , H, V, U)].

This specification fully employs the expressive power of kProbLog using meta-
functions and two distinct semirings that encode distances and vertex colors (the
base kernel for this variant of the WL graph kernel is obtained by replacing
predicate wl_color/3 defined in Section 4.4 with predicate triplet_id/4 defined
above).

4.4.2 Graph invariant kernels

Graph Invariant Kernels (giks, pronounce “geeks”) are a recent framework for
graph kernels with continuous attributes [47]. giks compute a similarity measure
between graphs G and G′ matching them at vertex level according to the formula:

k(G,G′) =
∑

v∈V (G)

∑

v′∈V (G′)

w(v, v′)kattr(v, v′) (14)

where w(v, v′) is the structural weight matrix and kattr(v, v′) is a kernel on the
continuous attributes of the graphs. The kProbLog specification is parametrized
by the logical variable R, which is needed for the definition of the structural weight
matrix w(v, v′).

:- declare(gik_radius /3, real).
gik_radius(R, Graph , GraphPrime):-

w_matrix(R, Graph , V, GraphPrime , VPrime),
k_attr(Graph , V, GraphPrime , VPrime).

where gik_radius/3, w_matrix/5 and k_attr/4 are algebraic predicates on the
real numbers semiring, which is represented with floats for implementation pur-
poses. Assuming that we want to use the rbf with γ = 0.5 kernel on the vertex
attributes we can write:

:- declare(rbf_gamma_const /0, real).
:- declare(k_attr/4, real).
0.5:: rbf_gamma_const.
k_attr(Graph , V, GraphPrime , VPrime):-

@rbf[rbf_gamma_const , attr(Graph , V), attr(GraphPrime , VPrime)].

where attr/2 is an algebraic predicate that associates to the vertex V of a Graph a
polynomial label. To associate to vertex v_1 of graph_a the 4-dimensional feature
[1, 0, 0.5, 1.3] we would write:

20 Francesco Orsini et al.

:- declare(attr/2, polynomial(real)).
1.0 * x(1) + 0.5 * x(3) + 1.3 * x(4):: attr(graph_a , v_1).

while the meta-function @rbf/3 takes as input an atom rbf_gamma_const labeled
with the γ constant and the atoms relative to the vertex attributes.

The structural weight matrix w(v, v′) is defined as:

w(v, v′) =
∑

g∈R−1(G)

∑

g′∈R−1(G′)

kinv(v, v′)
δm(g, g′)

|Vg||Vg′ |
1{v ∈ Vg ∧ v′ ∈ Vg′}. (15)

The weight w(v, v′) measures the structural similarity between vertices and is
defined combining an R-decomposition relation, a function δm(g, g′) and a ker-
nel on vertex invariants kinv [47]. In our case the R-decomposition generates R-
neighborhood subgraphs (as those used in the experiments of Orsini et al (2015)).

There are multiple ways to instantiate giks, we choose the version called lwlv,
which can achieve very good accuracies most of the time as shown by Orsini et al
(2015). lwlv uses R-neighborhood subgraphs R-decomposition relation, computes
the kernel on vertex invariants kinv(v, v′) at the pattern level (local gik) and uses
δm(g, g′) to match subgraphs that have the same number of nodes.

A R-neighborhood subgraph of a graph G from a vertex v is the subgraph
induced by all the vertices in G whose shortest-path distance from v is less than
or equal to R.

In kProbLog we would write:

:- declare(w_matrix/5, real).
w_matrix(R, Graph , V, GraphPrime , VPrime):-

vertex_in_ball(Graph , R, BallRoot , V),
vertex_in_ball(GraphPrime , R, BallRootPrime , VPrime),
delta_match(R, Graph , BallRoot , GraphPrime , BallRootPrime),
@inv[ball_size(R, Graph , BallRoot)],
@inv[ball_size(R, GraphPrime , BallRootPrime)],
k_inv(Graph , BallRoot , V, GraphPrime , BallRootPrime , VPrime).

where:
a) vertex_in_ball(R, Graph, BallRoot, V) is a Boolean predicate which is true
if V is a vertex of Graph inside a R-neighborhood subgraph rooted in BallRoot.
vertex_in_ball/4 encodes both the term 1{v ∈ Vg ∧ v′ ∈ Vg′} and the pattern
generation of the decomposition relation g ∈ R−1(G).

:- declare(vertex_in_ball /4, bool).
vertex_in_ball (0, Graph , Root , Root):-

vertex(Graph , Root).

vertex_in_ball(R, Graph , Root , V):-
R > 0, R1 is R - 1,
vertex_in_ball(R1 , Graph , Root , V).

vertex_in_ball(R, Graph , Root , V):-
R > 0, R1 is R - 1,
edge(Graph , Root , W),
vertex_in_ball(R1 , Graph , W, V).

b) delta_match(R, Graph, BallRoot, GraphPrime, BallRootPrime)

matches subgraphs with the same number of vertices

:- declare(delta_match /5, real).
:- declare(v_id/3, polynomial(real)).
:- declare(ball_size/3, int).

delta_match(R, Graph , BallRoot , GraphPrime , BallRootPrime):-
@eq[v_id(R, Graph , BallRoot), v_id(R, GraphPrime , BallRootPrime)].

v_id(R, Graph , BallRoot):- @id[ball_size(R, Graph , BallRoot)].

ball_size(R, Graph , BallRoot):- vertex_in_ball(R, Graph , BallRoot , V).

kProbLog: an algebraic Prolog for machine learning 21

c) @inv[ball_size(Radius, Graph, BallRoot)] corresponds to the normaliza-
tion term 1/|Vg|. @inv is the meta-function that computes the multiplicative inverse
and ball_size(Radius, Graph, BallRoot) is a the float predicate that counts
the number of vertices in a Radius-neighborhood rooted in BallRoot.
d) k_inv(R, Graph, BallRoot, V, GraphPrime, BallRootPrime,VPrime)

computes kinv using H_WL iterations of the WL algorithm to obtain vertex features
phi_wl(R, H_WL, Graph, BallRoot, V) from the R-neighborhood subgraphs.

:- declare(k_inv/7, real).
:- declare(phi_wl/5, polynomial(real)).
wl_iterations (3). % constant

k_inv(R, Graph , BallRoot , V, GraphPrime , BallRootPrime , VPrime):-
wl_iterations(H_WL),
@dot[phi_wl(R, H_WL , Graph , BallRoot , V),

phi_wl(R, H_WL , GraphPrime , BallRootPrime , VPrime)].

phi_wl(R, 0, Graph , BallRoot , V):-
wl_color(R, Graph , BallRoot , 0, V).

phi_wl(R, H, Graph , BallRoot , V):-
H > 0, wl_color(R, Graph , BallRoot , H, V).

phi_wl(R, H, Graph , BallRoot , V):-
H > 0, H1 is H-1,
phi_wl(R, H1, Graph , BallRoot , V).

where wl_color/5 is defined as wl_color/3, but has two additional arguments
R and BallRoot that are needed to restrict the graph connectivity to the R-
neighborhood subgraph rooted in vertex BallRoot.

4.4.3 Random walk graph kernels

Vishwanathan et al (2010) propose generalized random walk kernels. The similarity
between a pair of graphs is computed by performing random walks on both graphs
and then counting the number of matching walks.

Counting the number of matching random walks between two graphs Ga =
(Va, Ea) and Gb = (Vb, Eb) is equivalent to counting the number of walks in
G× = (V×, E×), where G× is the direct product between the graphs Ga and
Gb [55].

The direct product graph G× is defined in terms of G and G′ as follows:

V× = {(va, vb)|va ∈ Va ∧ vb ∈ Vb}
E× = {((va, ua), (vb, ub))|(va, ua) ∈ Ea ∧ (vb, ub) ∈ Eb}

(16)

To encode the product graph in kProbLog, we start from an edge connectivity
predicate edge_asymm/3 such that edge(Graph, V, U) is true whenever there is
an edge between vertices V and U in graph Graph. In a similar way we define the
vertex predicate vertex/2.

:- declare(vertex/2, bool).
:- declare(edge_asymm /3, bool).
:- declare(edge/3, real).

Predicate edge/3 when its first argument is graph_a (graph_b) represents the
adjacency matrix Wa ∈ R|Va|×|Va| (Wb ∈ R|Vb|×|Vb|) of graph Ga (Gb).

We shall now consider the same example graphs used by Vishwanathan et al
(2010) starting from two graphs Ga and Gb encoded with the kProbLog symbols
graph_a and graph_b.

22 Francesco Orsini et al.

2

1 3
graph_a

vertex(graph_a , 1).
vertex(graph_a , 2).
vertex(graph_a , 3).

edge_asymm(graph_a , 1, 2).
edge_asymm(graph_a , 1, 3).
edge_asymm(graph_a , 2, 3).

4

1

3

2

graph_b

vertex(graph_b , 1).
vertex(graph_b , 2).
vertex(graph_b , 3).
vertex(graph_b , 4).

edge_asymm(graph_b , 1, 2).
edge_asymm(graph_b , 2, 3).
edge_asymm(graph_b , 3, 4).
edge_asymm(graph_b , 1, 4).

we then define edge/3 as the symmetric closure of edge_asymm/3.

:- declare(edge/3, real).
edge(Graph , V, W):- edge_asymm(Graph , V, W).
edge(Graph , V, W):- edge_asymm(Graph , W, V).

The kernel definition also includes starting pa ∈ R|Va| (pb ∈ R|Vb|) and stop-
ping qa ∈ R|Vb| (qb ∈ R|Vb|) probabilities associated to the vertices of the graph
Ga (Gb), that we shall assume to be uniform.

:- declare(prob_start /2, real).
:- declare(prob_stop/2, real).
:- declare(graph_size /1, real).

graph_size(G):- vertex(G, V).

prob_start(G, V):- % uniform initial probability
vertex(G, V), @inv[graph_size(G)].

prob_stop(G, V):- % uniform stopping probability
vertex(G, V), @inv[graph_size(G)].

The product graph G× can be specified following Equation 16. When the first
argument of predicate edge/3 is kron(graph_a, graph_b) it represents the adja-
cency matrix W× = Wa ×Wb ∈ R|Va||Vb|×|Va||Vb| of G×.

According to Vishwanathan et al (2010) also the initial (stopping) probabilities
p× (q×) of the vertices V× can be obtained as the Kronecker product between the
initial (stopping) probabilities of Ga and Gb, i.e. p× = pa × pb (q× = qa × qb).

edge(kron(Ga , Gb), i(Va , Vb), i(Ua , Ub)):-

edge(Ga , Va , Ua), edge(Gb, Vb , Ub).

vertex(kron(Ga , Gb), i(Va , Vb)):-

vertex(Ga , Va), vertex(Gb , Vb).
11 21 31

33 23 13

34

24

14

12

22

32

kron(graph_a, graph_b)

prob_start(kron(Ga, Gb), i(Va, Vb)):-

prob_start(Ga, Va), prob_start(Gb, Vb).

prob_stop(kron(Ga, Gb), i(Va, Vb)):-

prob_stop(Ga, Va), prob_stop(Gb , Vb).

The above definition of Kronecker product differs from the Kronecker product
given in Section 3.1, only in the parametrization of the connectivity with graph
identifiers.

The generalized random walk kernel [55] is expressed as:

k(G,G′) =
∞∑

k=0

µ(k)q>×W
k
×p× (17)

kProbLog: an algebraic Prolog for machine learning 23

where W k
× is the kth power of W×. The element related to the i(Va, Vb)th-row

and i(Ua, Ub)th-column of W k
× represents the similarity between simultaneous

length k random walks [55]. While µ(k) is a factor that weighs the contribution,
that the paths of length k give to the similarity.

Different definitions of the parameter µ(k) lead to different instances of random
walk graph kernels. We specify in kProbLog the geometric variant. The geometric
random walk graph kernel between two graphs G and G′ is obtained by setting
µ(k) = λk.

k(G,G′) = q>×
∑

k=0

λkW k
×p× = q>×(I − λW×)−1p×. (18)

Vishwanathan et al (2010) propose different methods to compute such kernel
value. For our kProbLog specification we choose fixed-point iterations in which
Equation 18 is rewritten as:

k(G,G′) = q>×x (19)

(I − λW×)x = p×. (20)

where x is an unknown and can be solved using the iterative update rule [55]:

xt+1 = p× + λW×xt. (21)

until the fixed point is reached. We shall assume that λ = 0.5 and specify the
iterative update of Equation 21 as:

:- declare(lambda/0, real).
:- declare(x_sol/2, real , destructive).
:- declare(geometric_rw_kernel /2, real).
0.5:: lambda.
x_sol(kron(Ga, Gb), i(Va, Vb)):-

vertex(Ga, Va), vertex(Gb, Vb), randn(0, 0.001).

lambda_w_product_x(GraphKron , I):-
lambda , edge(GraphKron , I, J), x_sol(GraphKron , J).

x_sol(GraphKron , I):-
@addition[lambda_w_product_x(GraphKron , I),
p_product(GraphKron , I)].

The geometric random walk graph kernel is then specified according to Equation 21
as:

geometric_rw_kernel(Ga , Gb):-
q_product(kron(Ga, Gb), I),
x_sol(kron(Ga, Gb), I).

5 kProbLogε: dual numbers for algorithmic differentiation

The need for accurately computed derivatives is ubiquitous and algorithmic dif-
ferentiation (AD) [30] has emerged as a very useful tool in many areas of Science.
In particular, AD has occupied a special role in machine learning [3] since the in-
troduction of the Backpropagation algorithm for training neural networks. Recent
advances in deep learning have led to a proliferation of many frameworks for AD

24 Francesco Orsini et al.

such as Torch [6], Theano [2] and TensorFlow [1]. While it is beyond the scope
of this paper to develop an alternative to these frameworks for deep learning, we
show in this Section how to use the semiring of dual numbers and the gradient
semiring (a generalization of dual numbers) [16, 34] in kProbLog for AD.

A dual number x+ εx′ consists of a primal part x and a dual part x′ where ε
is the nilpotent element (i.e. ε2 = 0). In the case of variables x′ = 1 while in the
case of constants x′ = 0.

Example 6 Let f(x) and g(x) be two real valued functions over reals with deriva-
tives f ′(x) and g′(x) respectively. We have the following rules for the derivative of
combined functions:

1. sum rule d
dx (f(x) + g(x)) = f ′(x) + g′(x),

2. product rule d
dx (f(x)g(x)) = f(x)g′(x) + f ′(x)g(x).

We use dual numbers and represent f and g together with their derivatives as
y = f(x) + εf ′(x) and z = g(x) + εg′(x).

According to the algebra of dual numbers we have that:

1. sum y + z = f(x) + g(x) + ε(f ′(x) + g′(x)),
2. product yz = f(x)g(x) + ε(f(x)g′(x) + f ′(x)g(x)).

We observe that the dual part of y+z and yz are the combined-function derivatives
that we obtained with the sum rule and the product rule respectively.

Dual numbers are generalized to gradients by introducing multiple nilpotent
elements ε1, . . . , εn such that εiεj = 0, ∀i, j. The gradient number x+ ε1x

′
1 + . . .+

εnx
′
n combines the primal part x with n partial derivatives x′1, . . . , x

′
n.

In kProbLog we denote the nilpotent element ε with the compound term
eps(index_term), where the argument index_term is some term that is used to
index distinct partial derivatives. The meta-function @grad/2 takes as inputs a
dual number y and a nilpotent element εx and outputs the partial derivative ∂y

∂x .

Example 7 Differentiation of a quadratic form. Let us assume that we have a
quadratic form f(x) = x>Ax where A = [2 1

6 3] and we want to compute its gradient
∇f in x0 = [21].

:- declare ([x0/1, a/2], float).
:- declare(grad_f/1, float).
:- declare(dim/1, term).
:- declare ([x/1, f/0], grad).

2::a(0, 0). 1::a(0, 1).
6::a(1, 0). 3::a(1, 1).

2::x0(0). 1::x0(1).

x(I):- x0(I).
eps(I)::x(I):- range(I, 0, 2).

f :-
a(I, J), x(I), x(J).

eps(Dim)::dim(Dim):-
range(Dim , 0, 2).

grad_f(I):-
range(I, 0, 2),
@grad[f, dim(I)].

query(grad_f(_)).

Where we defined x(I) as x0(I)+ε.
The output of this program is:

20.0:: grad_f (1).
15.0:: grad_f (0).

kProbLog: an algebraic Prolog for machine learning 25

The gradient semiring adds to kProbLog support for AD and can naturally be
employed for gradient descent learning.

A very natural task to express in kProbLog is matrix factorization [45, 37, 33].

Example 8 Koren et al (2009) propose a basic factorization model. Users and items
are mapped to a joint f -dimensional factor space. The interaction between an item
and a user is modeled as the inner-product between their representations in the
factor space.

Each user u is associated with a vector qu ∈ Rf while each item i is associated
with a vector pi and rui is the rating given by user u to item i. The goal is to
approximate the rating rui with a score derived by the inner-product between qu
and pi. Koren et al (2009) use the mean squared error between the predicted score
and the rating rui and regularize the factor representations of users and items (qu
and pi) with the `2-norm.

In kProbLog we can represent qu, pi and rui declaring the predicates:

:- declare ([q/2 p/2], grad).
:- declare(r/2, real).

The rating predicate r/2 is initialized according to the available data, while
the initial weight of q/2 and p/2 will be a dual number whose primal number is
initialized with small random values (to break symmetries) and whose dual part
εf is identified by a nilpotent element indexed by the factor index i.e.:

p(Item , Factor):- randn(0, 0.001).
eps(Item , Factor)::p(Item , Factor).

q(User , Factor):- randn(0, 0.001).
eps(User , Factor)::p(User , Factor).

The cost predicate cost/0 is defined in terms of q/2 and p/2 and then is differen-
tiable.

:- define(lambda/0, real).
:- define ([score/2, cost_mse/2, cost_reg_user /0, cost_reg_item /0, cost/0], grad).

1:: lambda. % COST HYPERPARAMETER
score(User ,Item):-

q(User , Factor), p(Item , Factor).

cost_mse(User , Item):- % MEAN SQUARED ERROR
@square[@subtract[r(User , Item), score(User , Item)]].

cost_reg_user:- % L2 - REGULARISER
@square[q(User , Factor)].

cost_reg_item:- % L2 - REGULARISER
@square[p(Item , Factor)].

cost:- cost_mse(User , Item).
cost:- lambda , cost_reg_user.
cost:- lambda , cost_reg_item.

In the above program we specified the cost cost/0 function to minimize as a
sum of the mean squared error cost_mse(User, Item) and an `2-norm regularizer
cost_reg(User, Item) weighted by a hyper-parameter lambda that we set to 1.
by default. We can express cost/0 using mathematical formulae as follows:

cost =
∑

ui

(rui − scoreui)2︸ ︷︷ ︸
cost_mse(User, Item)

+ λ

(∑

u,f

q2uf

︸ ︷︷ ︸
cost_reg_user

+
∑

i,f

p2if

)

︸ ︷︷ ︸
cost_reg_item

. (22)

26 Francesco Orsini et al.

The optimization of such a cost function can be performed with gradient descent.

6 kProbLogD[S]: ProbLog and aProbLog as special cases

We now clarify the relationship between kProbLog and Problog, and we show that
the ProbLog implementation using SDDs of [56] can be emulated by kProbLog.
ProbLog is a probabilistic programming language that defines a probability dis-
tribution over possible worlds (Herbrand interpretations). A ProbLog program
consists of a set of definite clauses ci and a set of facts labeled with probabilities
pi. While a Prolog query can either succeed or fail, ProbLog computes the success
probability of a query. The success probability of a query is the sum of the proba-
bilities of all the possible worlds I in which the query q is true, it thus corresponds
to the probability that it is true in a randomly chosen possible world.

Fig. 3 Example of a ProbLog program (on the left) with the enumeration of the possible
worlds and their probabilities (on the right).

0.5::p(a).
0.6::p(b).
p(c) :- p(a), p(b).
p(d) :- p(a).
p(d) :- p(b).

query(p(_)).

Worlds in which p(c) is true.
{p(a), p(b)} 0.6× 0.5 = 0.3

p(c) = 0.3

Worlds in which p(d) is true.
{p(a)} 0.5× (1− 0.6) = 0.2
{p(b)} (1− 0.5)× 0.6 = 0.3

{p(a), p(b)} 0.6× 0.5 = 0.3
p(d) = 0.8

Example 9 In Figure 3 (on the left) we show a ProbLog program in which there
are two facts p(a) and p(b) with probability labels 0.5 and 0.6 respectively. p(c)
and p(d) are defined as the conjunction p(a) ∧ p(b) and the disjunction of p(a) ∨
p(b) respectively. On the right we show two tables which compute the probabilities
of p(c) and p(d). For p(c) we have one possible world while for p(d) there are
three possible worlds. For both p(c) and p(d) we enumerate the worlds in which
they are true and compute their weighted model count.

To compute the probabilities of queries, ProbLog compiles the logical part of the
program into a Boolean circuit and then evaluates this circuit on the probabilities
pi. The circuit is evaluated by replacing disjunctions and conjunctions with sums
and products respectively. The compilation process is necessary to cope with the
disjoint-sum problem [12, 34]. For instance, to compute P (p(d)) we cannot sim-
ply sum up P (p(a)) and P (p(b)) (two possible explanations/proofs for p(d)) as
this would lead to a value that is larger than one, but rather we need to compute
P (p(a)) + P (p(b) ∧ ¬p(a)). The disjoint-sum problem can be solved by repre-
senting the Boolean circuit either as a decision diagram. In practice this can be
an ordered binary decision diagram (OBDD) [4] or as an SDD [8]. While the first
version of ProbLog [12] was using OBDDs a more recent work [56] used SDDs.

The key property that makes OBDDs suitable to handle the disjoint-sums
problem is determinism [9] which guaranties that conjunctions in OBDDs are

kProbLog: an algebraic Prolog for machine learning 27

mutually exclusive. SDDs are a strict superset of OBDDs which maintains their
key property such as determinism, canonicity and polytime composability [8].

Algebraic model counting (AMC) generalizes probabilistic model counting to a
semiring S. In kProbLog it is possible to employ a semiring D[S] to specify AMC
tasks on an arbitrary commutative semiring S. The semiring of valued decision
diagrams D[S] can be represented using an SDD whose variables are labeled with
elements from the commutative semiring S. Valued decision diagrams are similar
to PSDD [36], except that values are not necessarily probabilities and they do not
necessarily encode probability distributions.

Any ProbLog program can be directly translated into a kProbLogD[R] pro-
gram using the semiring of SDDs labeled with probabilities. This is a direct con-
sequence of the fact that the evaluation algorithm of kProbLog generalizes the
TP -compilation with SDDs of Vlasselaer et al (2015) to arbitrary semirings. If we
label kProbLog facts with SDDs we recover the compilation algorithm of Vlasselaer
et al (2015).

Example 10 We now compare the same program specified in ProbLog with the
probability semiring (i.e. ProbLog) and in kProbLogD[R] with SDDs labeled with
probabilities:

ProbLog kProbLogD[R]

0.5::p(a).
0.6::p(b).
p(c) :- p(a), p(b).
p(d) :- p(a).
p(d) :- p(b).

query(p(_)).

:- declare(p, sdd(real)).
sdd(0.5, p(a))::p(a).
sdd(0.6, p(b))::p(b).
p(c) :- p(a), p(b).
p(d) :- p(a).
p(d) :- p(b).

query(p(_)).

The semiring values sdd(0.5, p(a)) and sdd(0.6, p(b)) represent parametrized
SDD variables and are in one-to-one correspondence with kProbLog facts.

The notation sdd(Value,Atom)::Atom used for kProbLog is cumbersome and
can be replaced by the syntactic sugar Value::Atom. In this way the kProbLogD[R]

program becomes syntactically identical to the ProbLog one.

So far we have shown that kProbLogR can perform probabilistic model count-
ing. This behavior is not enforced by the language as in ProbLog, but is optional
(i.e. it is induced by the type declaration :- declare(p, sdd(real))).

While kProbLogD[R] is equivalent to ProbLog, it is also straightforward to
represent aProbLog on a semiring S as kProbLogD[S] using SDDs labeled with
semiring values.7

Algebraic model counting is useful for inference tasks and reasoning about pos-
sible worlds, but there are some tasks which are nontrivial to express in aProbLog.
Examples are linear algebra operations and explicit feature extraction as explained
in Section 4.1.

7 Probabilities have neutral sums (i.e. for each atom a we have that p(a) + p(¬a) = 1)
but this property is not verified for semirings in general. This issue is known as the neutral-

28 Francesco Orsini et al.

7 Experimental evaluation

We now experimentally evaluate kProbLog and show how it can be used as a
declarative language for machine learning. The choices that a kProbLog program-
mer needs to make in order to satisfy a requirement are quite different from the
ones that an imperative programmer would do. While an imperative programmer
would have to use different data structures to meet the software requirements, a
kProbLog user can just specify the requirements with logical rules. For instance,
when moving from a directed to an undirected graph, imperative programmers
would have to change their data structure, while in kProbLog it suffices to simply
add an extra rule to capture the symmetry of undirected graphs.

kProbLog is well suited for prototyping. As we will show below with an exam-
ple of graph kernel (cf. E2), kProbLog makes it easy to compose existing programs
in order to construct new ones. Different graph kernels take into account different
structural aspects. For example, the WL subtree kernel can capture degree central-
ity while shortest path kernels do not. On the other hand, shortest path kernels are
a natural choice if one wants to capture patterns with distant nodes. Even though
the WL subtree patterns can capture distant nodes, the number of iterations re-
quired to do so could lead to diagonal dominant kernels. Since both these kernels
can easily be specified in kProbLog (as we will show), it is also straightforward to
create a hybrid graph kernel combining the strengths of both underlying kernels.

Another powerful construct of kProbLog are the meta-functions. In a machine
learning context, meta-functions can be exploited as a flexible and expressive in-
strument for describing rich families of kernels. In this sense, meta-functions can
be interpreted as a powerful generalization of common kernel hyperparameters,
lifting them from simple numbers to functions. We will show in E1 how meta-
functions can be exploited to explore multiple feature spaces against the same
logical specification and provide a rich class of feature spaces.

Our experiments address the following questions:
Q1 Can we use meta-functions to explore multiple feature spaces against the same
kProbLog specification and increase the classification accuracy?
Q2 Can kProbLog produce hybrid kernels that combine the strengths of existing
ones?
Q3 Are the results obtained with kProbLog in line with the state of the art?

7.1 Datasets

We empirically validate some kProbLog specifications on the following natural
language and chemical datasets:

QC [40] is a dataset about question classification and contains 5500 training and
500 test questions from the trec10 qa competition. Question classifiers are
often used to improve the performance of question answering systems. Indeed,
they can be used to provide constraints on the answer types and determine
answer selection strategies. qc labels questions according to a two-layer taxon-
omy of answer types. The taxonomy contains 6 coarse classes (abbreviation,

sums problem [34]. Kimmig et al (2011) explain how to overcome the neutral-sums problem
by modifying the evaluation of a Boolean circuit.

kProbLog: an algebraic Prolog for machine learning 29

entity, description, human, location and numeric value) and 50 fine
classes.

Example 11 The sentence “What films featured the character Popeye Doyle
?” is labeled in qc as entity since we expect films in the answer.

In order to be comparable with the existing literature, we adopted the coarse
grained labels as classification targets.

MUTAG [14] is a dataset of 188 mutagenic compounds labeled according to whether
or not they have a mutagenic effect on the Gramnegative bacterium Salmonella
typhimurium.

BURSI [32] is dataset of 4337 molecular compounds subdivided in two classes
(2401 mutagens and 1936 nonmutagens) determined with the Ames in vitro
assay.

7.2 Experiments

E1 This experiment was designed to provide an answer to Q1 and, in particular,
to illustrate the expressiveness of kProbLog’s meta-functions in an NLP context,
where a large number of options are typically available to describe the feature
space. It also aims to answer Q3 since question classification is a typical task where
good results using graph kernels have been reported in the literature [40, 58]. Each
sentence in the qc dataset is represented as a sequence of tokens. For this purpose,
we define a predicate token_labels/1. token_labels/1 is a unary relation that
associates to each token t an algebraic label which encodes word, lemma and part
of speech (pos) tag of token t.

We then use a dependency parser [10]8 to extract typed dependency relations
between tokens and encode them using the predicate dep_rel/2. dep_rel/2 en-
codes an edge in the graph of the dependency relations of a sentence, the type of
the dependency relation is encoded as algebraic label. The dependency relations
between the tokens of the sentence in Example 11 are encoded as:

x(det):: dep_rel(1, 0).
x(nsubj):: dep_rel(2, 1).
x(dobj):: dep_rel(2, 6).
x(punct):: dep_rel(2, 7).

x(det):: dep_rel(6, 3).
x(compound):: dep_rel(6, 4).
x(compound):: dep_rel(6, 5).

We then define a predicate dep_rel_edge/2 that casts dependency edges
dep_rel(V, W) to the shortest path semiring and defines shortest paths on the
dependency graph with the predicate spath/2 (see the definition of the shortest
path semiring in Appendix Section B).

:- declare ([spath/2, dep_rel_edge /2], shortest_paths , additive).
dep_rel_edge(V, W):- @cast_to_shortest_path[dep_rel(V, W)].
spath(V, W):- dep_rel_edge(V, W).
spath(V, W):- V != W, dep_rel_edge(V, U), spath(U, W).

We used the @cast_to_shortest_path/1 meta-function to cast dep_rel/2 to the
shortest path semiring predicate dep_rel_edge/2.

We extract unigram and shortest path features with the rules:

:- declare ([feature_blocks /0], polynomial(polynomial(real))).
feature_blocks:- @decorate_vertices[token_labels(V), config].
feature_blocks:- @decorate_paths[spath(V, W), v2labels , config].

8 We used the spaCy Python library to extract lemmas, pos tags and dependency relations.

30 Francesco Orsini et al.

the meta-functions @decorate_vertices and @decorate_paths replace the token
indices in unigrams and paths with token labels (i.e. words, lemmas, pos tags
or no label) according to the information specified by the algebraic label of the
config atom. The config atom also specifies whether or not edge labels should be
placed in the decorated shortest paths. Since the algebraic label of the config

atom encodes a set of configurations, the output of @decorate_vertices and
@decorate_paths is a multiset of feature blocks represented by the semiring
polynomial(polynomial(real)) that associates a block of features to each possi-
ble configuration specified by the algebraic label of config.

Finally all the feature blocks are aggregated together into the algebraic label
of final_features which corresponds to the feature vector of the sentence.

:- declare ([final_features /0], polynomial(real)).
final_features:- @aggregate_feature_blocks[feature_blocks].

We used the above kProbLog specification to extract features for 127 different
configurations (i.e. value assignments of the algebraic label of atom config). We
considered two kinds of structural features: unigrams and shortest paths. Tokens
can be labeled with words (w), lemmas (l), pos tags (p) or not labeled at all ().
There are 8 ways of generating features by combining blocks of unigrams labeled
with words, lemmas and pos tags. The possible unigram configurations correspond
to the power set of {w, p, l}. Similarly we have 16 possible ways of combining blocks
of shortest path features in which the token indices are replaced by an appropriate
token label of type {w, p, l, }, for the p and types we also include the edge label
information (we add the edge label between labels of consecutive tokens). From the
Cartesian product of unigram and shortest path configurations we obtain a total
of 128 from which we skip the one without feature blocks. We ran classification
experiments using a linear svm classifier with the C parameter set to 104. In
Table 1 we report the classification accuracy of the top 16 best configurations.

Table 1 List of the 16 configurations that achieve the highest classification accuracy on qc.

unigram shortest path test
features features accuracy
lw lp 91.6%
lpw lp 91.2%
lw lpw 91.0%
lw lw 90.6%
lw lp 90.6%
lpw lpw 90.6%
lw lpw 90.4%
lpw lpw 90.4%

unigram shortest path test
features features accuracy
lpw pw 90.4%
lpw lp 90.4%
pw l 90.2%
lw pw 90.2%
lpw pw 90.2%
lw pw 90.0%
lpw lw 90.0%
w pw 89.8%

We measured the runtime of the feature extraction and we found that none
of the 127 runs on qc exceeds 32 seconds. The measurement of the runtime was
performed on a 16 cores machine (Intel Xeon CPU E5-2665@2.40GHz and 96gb
of ram).
E2 In this experiment we mainly aim to answer Q2 and, in particular, to test
the ability of kProbLog to hybridize two well known graph kernels in a context
(molecule classification) where they are known to perform well. In order to capture

kProbLog: an algebraic Prolog for machine learning 31

the complementary advantages of the WL subtree and shortest path kernels, men-
tioned at the beginning of this section, we shall specify a hybrid kernel. We extract
histograms of shortest paths and decorate them with WL labels. This is where we
hybridize the two kernels. The reader should not confuse this kernel with the WL
shortest path kernel [53] (explained in Section 4.4.1) which takes as features pairs
of WL labels together with their shortest path distance.

We encode each molecule in the mutag dataset with the vertex/1 and
the edge_asymm/2 predicates which represent atoms labeled with atom symbols
and chemical bonds labeled with their type respectively. Differently the graph of
the dependency relations of a sentence, molecules are naturally represented as
undirected graphs so we define the predicate edge/2 as the symmetric closure of
edge_asymm/2.

:- declare ([edge/2], polynomial(real)).
edge(V, W):- edge_asymm(V, W).
edge(V, W):- edge_asymm(W, V).

We use the @cast_to_shortest_path/1 meta-function to cast edge/2 to the short-
est path semiring and generate shortest paths.

:- declare ([spath/2, edge_sp /2], shortest_paths , additive).
edge_sp(V, W):- @cast_to_shortest_path[edge(V, W)].
spath(V, W):- edge_sp(V, W).
spath(V, W):- V != W, dep_rel_edge(V, U), spath(U, W).

We generate the WL labels of the vertices in the graph.

:- declare ([wl/2, wl_multiset /2], polynomial(real)).
wl(0, V):- @id[vertex(V)].
wl_multiset(H, V):- edge(V, W), wl(H, W).
wl(H, V):- 0 < H, H <= MAX_ITER , @id[wl(H-1, V), wl_multiset(H-1, V))].

We create a predicate v2wl/1 whose atoms v2wl(H) associate to the Hth iteration
of the WL algorithm a dictionary that maps vertices V of the graph to their WL
feature at step H.

:- declare ([v2wl/1], polynomial(polynomial(real))).
v2wl(H):- wl(H, V), @poly_var[V].

where the meta-function @poly_var/1 creates a polynomial variable xV indexed
by the term V.

We decorate vertices and shortest paths in a molecule with WL labels.

:- declare ([feature_blocks /0], polynomial(polynomial(real))).
feature_blocks:- @decorate_vertices[wl(H, V)].
feature_blocks:- @decorate_paths[spath(V, W), v2wl(H)].

And this is the step in which the hybridization happens.
Finally we aggregate the resulting feature blocks using a normalize sum nor-

malize schema.

:- declare ([normalized_features /0], polynomial(real)).
normalized_features:- @block_normalize_sum_normalize(feature_blocks)

For bursi we use the same kProbLog specification of mutag, but we impose
K_SP_MAX= 2 as maximum path length. So, we updated the shortest path predicate
spath/2 to spath/3 as follows:

:- declare ([spath/3, edge_sp /2], shortest_paths).
edge_sp(V, W):-

@cast_to_shortest_path[edge(V, W)].
spath(1, V, W):-

32 Francesco Orsini et al.

edge_sp(V, W).
spath(K, V, W):-

V != W, 2 <= K, K <= K_SP_MAX , edge_sp(V, U), spath(K-1, U, W).

Consequently the feature_blocks/0 predicate is updated to:

:- declare ([feature_blocks /0], polynomial(polynomial(real))).
feature_blocks:- @decorate_vertices[wl(H, V)].
feature_blocks:- @decorate_paths[spath(K, V, W), v2wl(H)].

For both mutag and bursi we set maximum number of WL iterations to
MAX_ITER= 1 and ran our kProbLog specification. We made classification experi-
ments using 10 fold cross-validation and measured the classification accuracy and
area under the roc curve for mutag and bursi respectively. We repeated 10 times
the 10 fold cross-validations and we obtained an average accuracy of 91.1% with
a standard deviation of 0.9% for mutag and an average area under the roc curve
of 0.902 with a standard deviation of 0.001 for bursi. For both datasets we used a
linear svm classifier with the C parameter set 1. We measured the runtime on the
same hardware used in E1. The runtime for mutag was 32 seconds while bursi
was 5 minutes and 7 seconds.

All the experiments can be reproduced by running the code provided with the
kProbLog implementation (see Section 3.3).

7.3 Discussion

We now answer the experimental questions:

A1 In E1 we explored a parametrized feature space for qc, using different combi-
nations of words, lemmas, pos tags we could list the 16 best parameterizations in
Table 1. Since the best results are in line with the results reported by [40] and [58],
we conclude that meta-functions are a valid language construct to parametrize the
feature space. The 91.6% of accuracy obtained on qc with the experiments in E1
is in line with the results reported by [40] and [58].

A2 Shervashidze et al [53] experimented on mutag with 8 different graph kernels
and achieved the highest accuracy (87.3±0.6) with shortest path kernels, while the
accuracy obtained with the WL subtree kernel is 82.1± 0.4 (see Table 1 [53]). As
anticipated in the beginning of this section, the WL subtree kernel and the shortest
path kernel capture different topological aspects. In experiment E2, thanks to the
declarative nature of kProbLog, we made a hybrid and labeled shortest paths with
WL colors. We experimented with this kernel on mutag and obtained an accuracy
of 91.1±0.9%, which is significantly higher than the ones individually achieved by
the shortest path and WL subtree kernels. In E2, we also experimented on bursi
with the same hybrid kernel and obtained 0.902 ± 0.001 of area under the roc,
this result is line with those reported in Table 1 of [7].

A3 The 91.6% of accuracy obtained in E1 on qc are in line with the ones reported
by [40] and [58]. The 91.1 ± 0.9% of accuracy obtained with our hybrid kernel in
E2 on mutag is significantly higher than the ones obtained with 8 different graph
kernels in [53]. Also the 0.902 ± 0.001 area under the roc curve obtained in E1
on bursi is in line with the results reported by Costa and De Grave (2010). For

kProbLog: an algebraic Prolog for machine learning 33

these reasons, we conclude that kProbLog can be used to specify kernels that work
well on real-world application domains. The runtimes measured are reasonable and
show that kProbLog is usable in practice. Feature extraction on qc and mutag
took less than a minute while on bursi took less than 6 minutes.

In principle we could reimplement any kProbLog program in a declarative
language such as Prolog or an imperative language such as Python, but we would
loose flexibility and elegance in both cases. Prolog easily expresses relational data,
but in order to handle mathematical labels the user would be forced to code inside
the rules not only the relational aspect, but also the algebraic aspect. In this sense,
kProbLog is advantageous because it decouples the relational aspect from the
algebraic aspect and avoids to write boilerplate code. Imperative languages such
as Python, C++ and Java offer rich libraries for scientific computing and machine
learning, but do not have builtin support for logical variables and unification.
In particular each meta-function in a kProbLog program can be put into one-
to-one correspondence with functions (e.g. a Python function). However, these
imperative languages do not have the equivalent of meta-clauses which are first-
order constructs and support logical variables.

8 Related work

In the introduction, we claimed that kProbLog can express models for tensor-
based operations, for kernels, and for probabilistic programs; we also mentioned
approaches such as Dyna and aProbLog. We now discuss related work along these
lines.

First, kProbLog is able to combine logic with tensors and can express tasks such
as matrix factorization. As such kProbLog is related to Tensor Relational Algebra
[33], which combines tensors with relational algebra and which was successfully
employed for tensor decomposition. However, tensor relational algebra does not
support recursion and is therefore less expressive than kProbLog.

Secondly, and perhaps most importantly, kProbLog can be used to declara-
tively specify a wide range of relational and graph kernels and feature extraction
problems using polynomial semirings. As such it is related to the kLog system [22],
which has focused on the specification of relational learning problems and provides
a framework to map them into graph-based learning problems via a procedure
called graphicalization. In conjunction with a graph kernel, kLog can construct
feature vectors associated with tuples of objects in relational domains. However,
kLog does not provide support for programming the kernel itself, it uses a built-in
kernel (the NSPDK [7]) or defers the kernel specification to external plugins. kLog
and kProbLog are therefore complementary languages. Furthermore, by adopt-
ing kProbLog in kLog one would obtain a statistical relational learning system
in which the kernel could be declaratively specified as well. Also Gärtner et al
contributed kernels within a typed higher-order logic in which individuals (the ex-
amples) are represented as terms and the kernel definitions, specified in a lambda
calculus, exploit the syntactic structure of these example representations. While
this also yields a declarative language for specifying kernels on structured objects,
it does neither involve the use of semirings nor was it applied to other modeling
tasks such as those involving probabilistic reasoning.

34 Francesco Orsini et al.

Finally, kProbLog is an algebraic logic programming system building upon
aProbLog [34] and Dyna [19, 18]. The relationships to these languages are quite
subtle and more technical. Nevertheless, distinguishing features of kProbLog are
that it supports A) multiple semirings, B) meta-functions, C) additive and de-
structive updates, D) algebraic model counting, and E) its semantics are rooted
in logic programming theory (using an adaptation of the TP -operator [56]).

On the other hand, aProbLog [34] is a generalization of the probabilistic pro-
gramming language ProbLog [12] to semirings. ProbLog and other statistical re-
lational learning formalisms are based on a possible world semantics on weighted
model counting. The key contribution of aProbLog is that it generalizes weighted
model counting to algebraic model counting [35] based on commutative semir-
ings instead of the probabilistic semiring. kProbLog extends aProblog in that it
supports multiple semirings (A), meta-functions (B) and destructive as well as
additive updates (C). Furthermore, kProbLog (in particular the kProbLogD[S])
replicates aProbLog by performing AMC on a semiring S using the semiring of
SDDs whose variables are labeled with values which belong to the semiring S. Fur-
thermore, aProbLog was conceived for algebraic reasoning about possible worlds,
while kProbLog main design goal was the specification of tensor algebra and fea-
ture extraction problems.

A second closely related language is Dyna [19, 18], a language that was initially
conceived as a semiring weighted extension of Datalog for dynamic programming.
Dyna has been developed for quite a while and is a fairly complex language sup-
porting many different extensions of the basic algebraic Datalog. While kProbLog
builds upon Dyna’s ideas, Dyna does not support meta-functions (B), destruc-
tive updates (C), and algebraic model counting (D). Concerning (D), Dyna has
not dealt with the disjoint-sum problem occurring in probabilistic and algebraic
logics such as ProbLog and aProbLog. Furthermore, the semantics of Dyna have
been specified in a more informal way in [17] using the definition of a valuation
function and although [17, 18] relate Dyna’s semantics to a TP -operator; Dyna’s
TP -operator is not formally defined in these papers (E).

9 Conclusions

We proposed kProbLog, a simple algebraic extension of Prolog that can be used for
declarative machine learning, most importantly, for kernel programming. Indeed,
using polynomials and meta-functions allows to elegantly specify many recent ker-
nels (e.g. the WL graph kernel, propagation kernels and giks) in kProbLog.

We further introduced in the language the semiring of dual numbers so that
kProbLog can also express gradient descent learning, while the semiring of dual
numbers allowed us to specify matrix factorization. We showed how the semiring
of decision diagrams allows to capture aProbLog (and so ProbLog and, hence,
probabilistic programming) as a fragment of kProbLog.

All these features make kProbLog a language in which the user can combine rich
logical and relational representations with algebraic ones to declaratively specify
models for machine learning. Our experimental evaluations showed that kProbLog
can be applied to real world datasets, obtaining good statistical performance and
runtimes.

kProbLog: an algebraic Prolog for machine learning 35

Acknowledgements We would like to thank Angelika Kimmig and Anton Dries for the
fruitful discussions about ProbLog.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard
M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga
R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I,
Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden
P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale
machine learning on heterogeneous systems. URL http://tensorflow.org/,
software available from tensorflow.org

2. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow IJ, Bergeron A,
Bouchard N, Bengio Y (2012) Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop

3. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2015) Automatic differ-
entiation in machine learning: a survey. arXiv preprint arXiv:150205767

4. Bryant RE (1992) Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys (CSUR) 24(3):293–318

5. Ceri S, Gottlob G, Tanca L (1989) What you always wanted to know about
datalog (and never dared to ask). IEEE Trans Knowl Data Eng 1(1):146–166,
DOI 10.1109/69.43410, URL http://dx.doi.org/10.1109/69.43410

6. Collobert R, Bengio S, Mariéthoz J (2002) Torch: a modular machine learning
software library. Tech. rep., IDIAP

7. Costa F, De Grave K (2010) Fast neighborhood subgraph pairwise dis-
tance kernel. In: Proceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp 255–262, URL
http://www.icml2010.org/papers/347.pdf

8. Darwiche A (2011) SDD: A new canonical representation of propositional
knowledge bases. In: IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-
22, 2011, pp 819–826, DOI 10.5591/978-1-57735-516-8/IJCAI11-143, URL
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-143

9. Darwiche A, Marquis P (2002) A knowledge compilation map. Journal of Ar-
tificial Intelligence Research 17(1):229–264

10. De Marneffe MC, Manning CD (2008) The stanford typed dependencies rep-
resentation. In: Coling 2008: proceedings of the workshop on cross-framework
and cross-domain parser evaluation, Association for Computational Linguis-
tics, pp 1–8

11. De Raedt L (2008) Logical and relational learning. Springer Science & Business
Media

12. De Raedt L, Kimmig A, Toivonen H (2007) Problog: A probabilistic prolog
and its application in link discovery. In: IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pp 2462–2467, URL http://ijcai.org/Proceedings/07/

Papers/396.pdf

36 Francesco Orsini et al.

13. De Raedt L, Kersting K, Natarajan S, Poole D (2016) Statistical relational
artificial intelligence: Logic, probability, and computation. Synthesis Lectures
on Artificial Intelligence and Machine Learning 10(2):1–189

14. Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Han-
sch C (1991) Structure-activity relationship of mutagenic aromatic and het-
eroaromatic nitro compounds. correlation with molecular orbital energies and
hydrophobicity. Journal of medicinal chemistry 34(2):786–797

15. Droste M, Kuich W (2009) Semirings and formal power series. Springer
16. Eisner J (2002) Parameter estimation for probabilistic finite-state transducers.

In: Proceedings of the 40th annual meeting on Association for Computational
Linguistics, Association for Computational Linguistics, pp 1–8

17. Eisner J, Blatz J (2007) Program transformations for optimization of parsing
algorithms and other weighted logic programs. In: Proc. of Formal Grammar,
pp 45–85

18. Eisner J, Filardo NW (2011) Dyna: Extending datalog for modern ai. In:
Datalog Reloaded, Springer, pp 181–220

19. Eisner J, Goldlust E, Smith NA (2004) Dyna: A declarative language for im-
plementing dynamic programs. In: Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics (ACL), Companion Volume,
Barcelona, pp 218–221

20. van Emden MH, Kowalski RA (1976) The semantics of predicate logic as a
programming language. J ACM 23(4):733–742, DOI 10.1145/321978.321991,
URL http://doi.acm.org/10.1145/321978.321991

21. Esparza J, Luttenberger M, Schlund M (2014) Fpsolve: A generic solver for
fixpoint equations over semirings. In: Implementation and Application of Au-
tomata - 19th International Conference, CIAA 2014, Giessen, Germany, July
30 - August 2, 2014. Proceedings, pp 1–15, DOI 10.1007/978-3-319-08846-4 1,
URL http://dx.doi.org/10.1007/978-3-319-08846-4_1

22. Frasconi P, Costa F, De Raedt L, De Grave K (2014) klog: A language for logi-
cal and relational learning with kernels. Artif Intell 217:117–143, DOI 10.1016/
j.artint.2014.08.003, URL http://dx.doi.org/10.1016/j.artint.2014.08.

003

23. Garcez Ad, Besold TR, de Raedt L, Földiak P, Hitzler P, Icard T, Kühnberger
KU, Lamb LC, Miikkulainen R, Silver DL (2015) Neural-symbolic learning and
reasoning: contributions and challenges. In: Proceedings of the AAAI Spring
Symposium on Knowledge Representation and Reasoning: Integrating Sym-
bolic and Neural Approaches, Stanford

24. Garcez AS, Lamb LC, Gabbay DM (2008) Neural-symbolic cognitive reason-
ing. Springer Science & Business Media

25. Gärtner T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and
efficient alternatives. In: Learning Theory and Kernel Machines, Springer, pp
129–143

26. Gärtner T, Lloyd JW, Flach PA (2004) Kernels and distances for structured
data. Machine Learning 57(3):205–232

27. Getoor L, Taskar B (eds) (2007) Introduction to statistical relational learning.
Adaptive computation and machine learning, MIT Press, Cambridge, Mass

28. Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press
29. Green TJ, Karvounarakis G, Tannen V (2007) Provenance semirings. In: Pro-

ceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium on Prin-

kProbLog: an algebraic Prolog for machine learning 37

ciples of database systems, ACM
30. Griewank A, Walther A (2008) Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation, Second Edition, 2nd edn. Society for
Industrial and Applied Mathematics

31. Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled
graphs. In: ICML, vol 3, pp 321–328

32. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores
for mutagenicity prediction. Journal of Medicinal Chemistry

33. Kim M, Candan KS (2011) Approximate tensor decomposition within a tensor-
relational algebraic framework. In: Proceedings of the 20th ACM Conference
on Information and Knowledge Management, CIKM 2011, Glasgow, United
Kingdom, October 24-28, 2011, pp 1737–1742, DOI 10.1145/2063576.2063827,
URL http://doi.acm.org/10.1145/2063576.2063827

34. Kimmig A, Van den Broeck G, De Raedt L (2011) An algebraic prolog for
reasoning about possible worlds. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011, URL http://www.aaai.org/ocs/index.php/AAAI/

AAAI11/paper/view/3685

35. Kimmig A, Van den Broeck G, De Raedt L (2012) Algebraic model counting.
CoRR abs/1211.4475, URL http://arxiv.org/abs/1211.4475

36. Kisa D, Van den Broeck G, Choi A, Darwiche A (2014) Probabilistic sentential
decision diagrams. In: Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning (KR)

37. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for rec-
ommender systems. Computer pp 30–37

38. Kuich W (1997) Semirings and formal power series: Their relevance to formal
languages and automata. In: Handbook of formal languages, Springer, pp 609–
677

39. Landwehr N, Passerini A, De Raedt L, Frasconi P (2006) kfoil: Learning simple
relational kernels pp 389–394

40. Li X, Roth D (2002) Learning question classifiers. In: Proc. of the 19th inter-
national conference on Computational linguistics-Volume 1, Association for
Computational Linguistics

41. Mahé P, Ueda N, Akutsu T, Perret JL, Vert JP (2004) Extensions of marginal-
ized graph kernels. In: Proceedings of the twenty-first international conference
on Machine learning, ACM, p 70

42. Milch B, Marthi B, Russell SJ, Sontag D, Ong DL, Kolobov A (2005)
BLOG: probabilistic models with unknown objects pp 1352–1359, URL http:

//ijcai.org/Proceedings/05/Papers/1546.pdf

43. Muggleton S, Raedt LD, Poole D, Bratko I, Flach PA, Inoue K, Srinivasan
A (2012) ILP turns 20 - biography and future challenges. Machine Learn-
ing 86(1):3–23, DOI 10.1007/s10994-011-5259-2, URL http://dx.doi.org/

10.1007/s10994-011-5259-2

44. Neumann M, Patricia N, Garnett R, Kersting K (2012) Efficient
graph kernels by randomization. In: Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2012,
Bristol, UK, September 24-28, 2012. Proceedings, Part I, pp 378–
393, DOI 10.1007/978-3-642-33460-3 30, URL http://dx.doi.org/10.1007/

978-3-642-33460-3_30

38 Francesco Orsini et al.

45. Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th international conference
on machine learning (ICML-11), pp 809–816

46. Nilsson U, Maluszynski J (1990) Logic, programming and Prolog. Wiley
47. Orsini F, Frasconi P, De Raedt L (2015) Graph invariant kernels. In: Proceed-

ings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp 3756–3762,
URL http://ijcai.org/Abstract/15/528

48. Quinlan JR (1990) Learning logical definitions from relations. Machine learn-
ing 5(3):239–266

49. Richardson M, Domingos PM (2006) Markov logic networks. Machine Learning
62(1-2):107–136, DOI 10.1007/s10994-006-5833-1, URL http://dx.doi.org/

10.1007/s10994-006-5833-1

50. Sammut C (1993) The origins of inductive logic programming: A prehistoric
tale. In: Proceedings of the 3rd International Workshop on Inductive Logic
Programming, J. Stefan Institute, pp 127–147

51. Sato T (1995) A statistical learning method for logic programs with distribu-
tion semantics. In: Logic Programming, Proceedings of the Twelfth Interna-
tional Conference on Logic Programming, Tokyo, Japan, June 13-16, 1995, pp
715–729

52. Sato T, Kameya Y (1997) PRISM: A language for symbolic-statistical model-
ing. In: Proceedings of the Fifteenth International Joint Conference on Arti-
ficial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes,
pp 1330–1339, URL http://ijcai.org/Proceedings/97-2/Papers/078.pdf

53. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM
(2011) Weisfeiler-lehman graph kernels. Journal of Machine Learning Research
12:2539–2561, URL http://dl.acm.org/citation.cfm?id=2078187

54. Van Laer W, De Raedt L (2001) How to upgrade propositional learners to first
order logic: A case study. In: Machine Learning and Its Applications, Springer,
pp 102–126

55. Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM (2010)
Graph kernels. The Journal of Machine Learning Research 11:1201–1242

56. Vlasselaer J, Van den Broeck G, Kimmig A, Meert W, De Raedt L (2015)
Anytime inference in probabilistic logic programs with tp-compilation. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp
1852–1858, URL http://ijcai.org/Abstract/15/263

57. Whaley J, Avots D, Carbin M, Lam MS (2005) Using datalog with binary deci-
sion diagrams for program analysis. In: Programming Languages and Systems,
Springer

58. Zhang D, Lee WS (2003) Question classification using support vector ma-
chines. In: SIGIR 2003: Proceedings of the 26th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, July
28 - August 1, 2003, Toronto, Canada, pp 26–32, DOI 10.1145/860435.860443,
URL http://doi.acm.org/10.1145/860435.860443

kProbLog: an algebraic Prolog for machine learning 39

A Appendix: proof of Theorems 1 and 2

Proof (of Theorem 1) In line 4 of Algorithm 1 the ground program Ground(P) is subdi-
vided into n strata, where n is finite and never exceeds the total number of ground atoms in
Ground(P). Strata are visited in sequence (lines 5-26), for each stratum the for loop (lines 14-
26) applies the algebraic TP -operator exactly once for each ground acyclic rule, then the loop
at lines 14-26 produces no side effects Algorithm 1 and terminates. The loop on cyclic rules
(lines 14-26) does not produce side effects on w, because the loops at lines 16, 18 and 21 are
never executed since CYCLIC is empty for acyclic programs.

Proof (of Theorem 2) The proof of Theorem 2 is identical to the one of Theorem 1 except
that CYCLIC is not empty for some strata. We just need to prove that when a stratum
Pi is a cyclic kProbLogSi program on an ω-continuous semirings Si the loop at lines 14-26
terminates. Since when there are no meta-functions, lines 15-25 implement an update of the
atom weights w according to Eq 2 which corresponds to a step of the Kleene iteration in a
system of polynomial equations. Because Si is ω-continuous the termination of the loop at
lines 14-26 is guaranteed by Proposition 1.

B Shortest path semiring

The shortest path semiring is a variant of the tropical semiring that keeps track of the set of
shortest paths corresponding to a given shortest path distance.

The elements a ∈ S of the shortest path semiring (S,⊕,⊗, 0s, 1s), are sets of strings over
the vocabulary V of the vertex identifiers. All the strings in a must have the same length
len(a)

Let a, b ∈ S sum and product are defined as follows:

a⊕ b =

 a if len(a) < len(b)
b if len(a) > len(b)

a ∪ b if len(a) = len(b)
(23)

a⊗ b = {concat(sa, sb)|sa ∈ a ∧ sb ∈ b} (24)

where concat is the string concatenation operator.
Additive and multiplicative identity are the empty set ∅ and the singleton set {ε} containing

the empty string ε respectively.

