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the setting of complex polynomials to the case of regular polynomials of
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1. Introduction

After Hamilton’s discovery of quaternions, the strange new phenomena which take
place in this non-commutative algebra attracted the interests of many mathemati-
cians. For instance, in the study of quaternions from the algebraic point of view,
it immediately turned out that, in general, the Fundamental Theorem of Algebra
fails to be valid for quaternionic polynomials, as shown in the following example:

Example 1.1. For any n € N and for any quaternion ¢, the polynomial
aq" —q"a+1
(with coefficient the quaternion a) has real part identically equal to 1.

From the analytic point of view, the richness of the theory of holomorphic
functions of one complex variable, along with motivations from physics, aroused
interest in a theory of quaternion-valued functions of a quaternionic variable. In
fact, several interesting theories have been introduced in the last century. The
most famous is the one due to Fueter, [5, 6] of the mid 1930s; the basic results of
this theory are accurately summarized in [22]. Recent work on Fueter-regularity
includes [2, 15] and references therein. In the same years (see [17, 18]) there are the
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first attempts to find techniques to calculate roots of a class of quaternionic poly-
nomials whereas an extensive description of the algebraic properties of polynomials
in a non commutative setting can be found in [16].

A different theory of quaternion-valued functions of one quaternionic variable
has been recently proposed by G. Gentili and D. C. Struppa [12]. The theory is
based on a definition of regularity for quaternionic functions inspired by C. G.
Cullen [4]. Several basic results of the theory are proven in [12], including the
Cullen-regularity of quaternion power series and some nice properties of their ze-
roes. The study of the zero-sets of regular funcions has been further developed in
[9, 24]; in this paper we apply specific techniques from the theory of regular func-
tions and establish a generalization of the Gauss-Lucas Theorem for quaternionic
polynomials.

2. Basic preliminary results for complex polynomials

In this section we will shortly review well-known results® for polynomials whose
coefficients belong to C (the field of complex numbers) usually called complex
polynomials. If p is a complex polynomial, the set of all zeroes of p will be denoted
by Z, and also called the zero set of p.

If p is considered as the holomorphic function z — p(z), then we define p’ to
be the (complex) derivative of p. We recall that, by the celebrated Fundamental
Theorem of Algebra, any non-constant complex polynomial has a root in C and
that any zero of the (complex) polynomial p’ is called critical point of p. The
following geometric definition turns out to be very useful.

Definition 2.1. Given a subset U of C, we denote by K(U) the intersection of all
convex sets which contain U. Clearly the set (U) is convex. It is also called the
convex hull of U.

A geometrical description of critical points in terms of roots of a complex
polynomial p is contained in the famous

Theorem 2.2 (Gauss—Lucas). Letp be a complex polynomial. The convex hull K(Z),)
of the zero-set of p also contains the critical points of p; in particular,

K(Zy) C K(Z,).
The assertion of the previous theorem is equivalent to

Proposition 2.3. Every critical point & of the complex polynomial p is a conver

k
linear combination of all zeroes of p, namely, if p(z) = ¢ [] (z — 2z;)™, then
j=1

k
f = Z )\ij
j=1

I'We refer the interested reader to [20] for a more detailed introduction to the subject and for
the proofs of the results stated in this section.
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E
with \j €R, \; >0Vj=1,...,k such that ) A\j = 1.
j=1
One of the advantages of Proposition 2.3 (compared to Theorem 2.2) is that it
enlights the role played by the zeroes of p for the determination of critical points
of p.

3. The Gauss—Lucas Theorem for regular polynomials in H

Denote by S the two-dimensional sphere of quaternion imaginary units: S = {¢q €
H : ¢*> = —1}. For any imaginary unit 7 € S, let L; = R + IR be the complex line
through 0,1 and I. Any quaternion ¢ which is not real uniquely determines two
real numbers z and y (with y > 0) and an imaginary unit I such that ¢ = = + Iy.

Definition 3.1. Let 2 C H be a domain in H; we say that Q is

e a slice domain if Q@ N R is non-empty and if L; N is a domain in L; for all
I €S;

e an axially symmetric domain if, for all x + Iy € €, the whole 2-sphere x + Sy
is contained in €.

If V is a subset of H, then the set

V= U T+ Sy
x+IyeV

is called the (azially) symmetric completion of V.

Clearly the unit ball B C H is the first example of an axially symmetric
slice domain and, in general, the axially symmetric slice domains turn out to be
the natural domains of definition for an interesting class of functions which are
currently under investigation and known as slice-reqular or simply regular functions
(see [3, 12]).

Definition 3.2. Let €2 be a domain in H and let f :  — H. Then f is said to
be slice-regular if, for all I € S, its restriction f; along L; has continuous partial
derivatives and the function 07 f : Q N L; — H defined by

_ 0] 0
ouflo+ 1) = 5 (4 + 150 ) Silo 4 1) )

vanishes identically.

With the notations Q; = QN L; and f; = f‘nl, we may refer to the vanishing
of O;f by saying that the restriction f; is holomorphic on ;. From now on we
will refer to these functions simply just as regular functions. As observed in [12],

a quaternion power series Y ¢"a, with a,, € H defines a regular function in its
neN
domain of convergence, which proves to be an open ball B(0,R) = {¢ € H: |¢| <

R}. In the same paper, it is also proven that
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Theorem 3.3. A function f: B = B(0,R) — H is reqular if and only if there exist
quaternions a, € H such that

flg) = Z q"an (2)

neN
for all q € B. In particular, if f is reqular f € C*°(B).

The zero-set of a regular function is a very interesting geometric object (see
[3, 9, 12]).

Theorem 3.4 (Structure of the Zero Set). Let f : B(0,R) — H be a reqular
function and suppose f does not vanish identically. Then the zero set of f consists
of isolated points or isolated 2-spheres of the form S = x +yS, for z,y € R. In
particular, the set of zeroes of a reqular function whose coefficients are all in Ly
are either sphericals or they are isolated points contained in Ly.

The fact that a regular function f has all the coefficients in L; has the
important geometrical meaning that f maps L; into itself; if the same happens
for at least two different slices L; and L, then necessarily all the coefficients of f
are real and hence f maps any slice Ly into itself (see [12]).

+oo +oo
Definition 3.5. Let f(q) = > ¢"apn and g(q) = > ¢"by, be given quaternionic
n=0 =0

n—
power series with radii of convergence greater than R. We define the regular prod-
n

—+o0o
uct of f and g as the series fxg(q) = > ¢"cn, whose coefficients ¢, = agbn i
n=0 k=0
are obtained by discrete convolution from the coefficients of f and g.
The regular product of f and g has a series expansion with radius of conver-
gence greater than R. It can be easily proven that the regular multiplication * is
an associative, non-commutative operation and that (see [9])

fxg(0) = f@g(f(@) " af(q)). 3)

+oo
Theorem 3.6. Let f(q) = > q"a, be a given quaternionic power series with radius

n=0
of convergence R and let « € B(0, R). Then f(«a) =0 if and only if there exists a
quaternionic power series g with radius of convergence R such that

f(q@) = (¢ — ) * g(q)- (4)

This result (whose proof can be found in [9]) would of course be uninteresting
if the other zeroes of f did not depend on the zeroes of g. Fortunately, this is not
the case: the zeroes of a regular product f x g are strongly related with those of f
and g, as shown by the following (see [9])

Theorem 3.7 (Zeroes of a regular product). Let f,g be given quaternionic power
series with radii greater than R and let « € B(0, R). Then fxg(a) = 0 if and only

if (@) = 0 or f(a) #0 and g(f(a) Laf(a)) = 0.
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+oo

Definition 3.8. Let f(q) = Y. ¢"a, be a given quaternionic power series with
n=0
radius of convergence R. We define the regular conjugate of f as the series f¢(q) =

+oo
> q"ay,.
n=0

We remark that f¢ also has radius R and, in general, if h = f * g, then
h¢ = ¢g°x f°. If we define f* = f % f¢ = f°x f, then f% also has radius R. Notice
furthermore that the coefficients of f* are all real and that if the coefficients of f
are all real, then simply f* = f2.

Something more precise can be actualy proven about the zeroes of f, of f¢
and of f* (see [9]).

Proposition 3.9. Let f be a given quaternionic power series with radius of conver-
gence R and let x,y € R be such that S = x +yS C B(0, R). The zeroes of f in S
are in one-to-one correspondence with those of f€.

+oo
Proposition 3.10. Let f(q) = Z q"a, be a given quaternionic power series with

radius of convergence R. Ifa = :vo + Ipyo (with xo,y0 € R, Iy € S) is such that
fla) = f(xo + Ipyo) =0, then f*(xq + Lyo) =0 for all L € S.

Symmetrization allows us indeed to transform any zero into a “spherical”
zero and these zeroes can not accumulate unless the regular function is constant:
indeed if the spherical zeroes accumulate, then the same happens in each complex
line L7 and this is impossible for the Identity Principle, unless the regular function
is constant.

From now on we will focus our attention to the case of regular polynomials of
quaternionic variable, i.e., according to Theorem 3.3, polynomials with coefficients
in H of the form

P(q) = q"an +q" "an_1+ ...+ qa1 + ao.
First of all, for regular polynomials the Fundamental Theorem of Algebra holds
true (see [14, 17, 18]); furthermore, the following result is proved in [13].

Theorem 3.11. Let P be a reqular polynomial of degree m. Then there exist p,mq,
,mp €N, and wn,...,w, € H, generators of the spherical roots of P, so that

P(q) = (¢* = 2qRe(w1) + w1 )™ -+ (¢° = 2qRe(w,) + |w, )™ Q(q),  (5)
where Re(w;) denotes the real part of w; and Q is a regular polynomial with coeffi-
cients in H having only non spherical zeroes. Moreover, if n = m—2(mq+---+m,)
there exist a constant ¢ € H, t distinct 2-spheres S1 = x14+y1S,...,5: = z¢+y:S, t
integers my,...,n; withn;+---+mny =n, and (for any i =1,...,t) n; quaternions
o5 € 8;, 5 =1,...,n4, such that

~HH - e ©)

i=1j=1
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where [ is the analogous of [ in the case of x-product.

Notice that, even though a;; € S; is not necessarily a root of the polynomial
P, the polynomial P certainly has an isolated zero on the sphere S; = x; + v;S.

Definition 3.12. Let P be a regular polynomial with quaternionic coefficients. If
z 4+ yS is a spherical root of P, its multiplicity is defined as two times the largest
integer m for which it is possible to factor (¢? — 2qz + (22 +9?))™ from P. On the
other hand, we say that o € H has multiplicity k as an (isolated) root for P if, in
the factorization (6), there are exactly k quaternions c;; which lie on the sphere
Sa-

Remark 3.13. Since the coefficients of P?® are real, then P#|[,, is a complex polyno-
mial and maps Ly into itself; therefore the Gauss-Lucas Theorem can be applied
to the restriction along L; of the symmetrization P® of a polynomial P; and this
can be done for any I € S. Notice furthermore that, according to Proposition 3.4
and the definition of symmetrized polynomial, if deg P = n, then the zero-set of
P?® when restricted along Ly is a set of (at most) 2n points; these points, when
non-real, are symmetric in pairs, with respect to the real axis. And this geometric
configuration of the zero-set along L; is exactly the same for the restriction of P*
along any L; with I € S.

Thus, recalling Proposition 3.10, we have

Proposition 3.14. Any critical point of a reqular polynomial P with quaternionic
coefficients is in (the azially symmetric completion of) the convex hull K(Zp-) of
the zero set of P%.

Proof. Consider

t ng
P(q) = (¢° — 2qRe(wy) + [wi )™ - - (¢* — 2qRe(wp) + wp )™ [ | (¢ — cig)les
i=1j=1
then, after rearranging indexes, the zero-set of the restriction of P® along L; can
be written as

oy 1T i I I I T I I
Zps|,, = {wl,...,wp,wl,...,wp}U{ozl,...,atlfl,al,...,atlfl}u{atl,...,at}

where al is real for t; < s < t. Thus, according to Proposition 2.3 applied to

P#|r,,, any critical point & of P*|r, can be written in the following way,

» t1—1 t
€= (\wj +Xjw)) + D (o + prafl) + D 7o
Jj=1 k=1 s=t,
with Aj, Aj, pue, g, 7s € Ry A; > 0, A) > 0V = 1,...,p, pe > 0, pj >0

k t—1
Vk=1,...,t1 =1, 74 > 0 Vs = t1,...,t and such that Y (A\; + ) + > (ur +
j=1 k=1
t
He) + 3o s =1 O

S:tl
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We can now provide a different, more direct, proof of the previous result in
the case of quaternionic polynomials with non-spherical zeroes only. Given such a
regular polynomial P with quaternionic coefficients and degree d, then there exist
d quaternions a; and a constant c such that

Pg)=(q—o1)*(q¢—a2)*...(¢ — ag)e

consider the associated polynomial

Plq) =(g—oa)* (¢ —az) ... (¢ — a)
where if a = x, + Iy, the d — 1 quaternions as, ..., ag are uniquely determined
by the conditions

a; =xj+ Ly, Vj, such that 2 <j <d.

The axially symmetric completion Zp of the zero-set Zp of P clearly coincides with
the axially symmetric completion Z5 of the zero-set of P. But since the regular
polynomial P has all the coefficients in L I, » the zero-set of P is contained in L Loy
since P (and hence ]3) has no spherical zeroes. Thus the set Z5 of critical points
of P is contained in the convex hull K(Zp) of the zero-set Zp of P and hence the
set Zp of critical points of P is contained in the axially symmetric completion
IC/(Z\ﬁ) of the convex hull of the zero-set of P.
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