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Introduction

Increasing interest has recently been focused on the development of real-time
monitoring systems which are able to improve the flastfiood forecasting capability of
dlassical raingauge networks.

In this concem the use of meteorological radars Is recognized as a necessary step
for implementing an effective real-time monitoring system, because of their inherent,
but not exploited yet, capability in measuring the space-time distribution of rainfall
rate with higher resolution than that obtainable with the presently used raingaugos
networks.

The main problem in this concem Is 1o devise suitable hydrometeorological models,
as wel as suitable data processing techniques which can correct the hydrometeorological
measurement data, acquired by radar systems, which are affected by a lack of accuracy
with respeamu\emasurenmdataoblajnedﬁmghrahgaugea

Recent research studies and applications show also that meteorological radar
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measurements can be considerably improved if multiparametric techniques and
calibration systems are used In the acquisition process of rainfall data.

In this paper the problem of estimating, through a meteorological radar, the
space-time distribution of the rainfall rate with a sufficient precision is discussed.

To this end the following subjects should be deeply analyzed:

i) stochastic modelling and digital simulation of radar derived rainfall field data
associated with critical meteorological events which can cause flashiloods;

adaptive space-time processing of radar derived rainfall measurement data for
estimating the current (filtered) and a-head (predicted) space distribution of the
rainfall rate, so that the dynamic structure of rainfall events can be exploited in
order o reduce the intrinsic non-stationary error of the radar measurements.

=

With reference 1o the above mentioned point i) meteorological phenomena, as well
as the influence of climatology and orography on both rainfali and radar rairfall estimate
errors, call for developing such an analysis.

In this paper, however, more attention is devoted 1o the point ii). Simple stochastic
models are adopted for digital simulation of space-time distribution of rainfall rate
measurements. These simulated data have been just used 1o test the performance and
robustness of a particular adaptive space-time data processing procedure, suitably
devised for improving the radar rainfall quantitative estimate.

The adopted data processing procedure, which refers 1o the above point i), is
derived from the stochastic method proposed by Johnson and Bras /1/ 1o predict rainfall
rate, based upon measurements oblained through a raingauge network.

The extension of such a method and its application to the processing of the radar
rainall measurement data are considered in this paper.

Some results are also presented and discussed. These are obtained through digital
simulations which apply the models and the radar data processing procedure mentioned
above.

The presented results refer to the simulation of simple and critical rainfall events
hypothesized over the Amo basin, wherein the city of Florence is located.
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The model

The method proposed by Johnson and Bras /1/is based upon a non stationary
stochastic multivariate rainfall space-time model, whose parameters are adaptively
estimated through the raingauge network measurement data. The rainfall rate process is
deoomposedinlwoseparmepans:ﬂaaveragevalueandﬁ‘xereslduaio(smapvmm
each time and location; the latter being the difference between the measured and average
rainfall rate. .

I i(t) is the rainfall rate vector, whose elements are the rainfall rates in N
different locations (N raingauges in the prediction scheme), it can be decomposed as:

(1 i) = m() + (1)

where m(t) is the vector of mean values and 1(t) is the vector of residuals, both at
time step 1.

The two parts can be described by two ditferent modals /17,

a) The rainfall rate mean value and variance models.
A deterministic model is devised for both the mean value and the variance: these
quantities are made functions of the storm counter s (Storm Counter Method).
The storm counter ks defined as the number of time steps running from the rainfall
start at a determined location. Such a definition is based on the hypothesis that the
time history of the mean and variance values is identical for all locations, in
relation to the time that storm arrives at each location.
Then, at each time step, the mean value of rainfall rate and the variance are
osﬁmaiedfora!lvabesofsleslhanotoqualloadnsenvaluedlhsiormmm
This is made by taking into account the locations of a proper subset of raingauges,
constituted by all raingauges whose actual storm counter is set at a value grater than
that considered.
Then the estimated mean value can be written as /1/:
(2)

M
- 1 .
Gs) = .Z, qt(i.s))

t(i,s)=0



b)

M) UIDEE 01 I0CAIoNS WiN 810rm counter at least as high as s
(sample size for storm counter s),

t(l,s) time step for storm counter s at gauge i,

qi(t) rainfall rate at gauge i and time step t,

M total number of locations in the considered network.
We can also write the estimated variance 5%(s) for storm counter s:
(3)

; 1
o(s) = n(s)1

M
'Z [q,(1(i.5)) - m(s)]?
1

t(i,s)=0

A negative value of s indicates the number of time steps before the rainfall begins;
such a value can be predicted by applying a linear regression method.

Model for residuals

The evolution of residuals is described by a stochastic, time varying, non-stationary
Markov process, in which the state is represented by the vector of residuals.

The transition state equation is given by /1/:

(4) Ld+1) = o(t.1) L(t) + r(tx) w(t,y)
where ¢(t1) is the transition state matrix; I'(t,x) w(t,x) is the model error term,
which is supposed 1o be zero mean, white and uncorelated.

The vector of measwed residuals is given by:

(5) x(t) = (V) - m) = {t) + x(1)

both in time and with respect to the error term of the model.

These equations can be used 1o obtain a Kalman fitter, which is able to provide the
estimates [(t+t}t) and r(t1), namely: the predicted residual vector and the fittered
residual vector at time t, respectively.

The Kalman filter parameters can be determined by calcutating {t.x) and the second
order moment properties of the noise terms.

The filter is initialized before the rainfall start, when j(0)=0. Then the filtered
residual takes on zero value in the starting time at time t~0 and the covariance
matrix of the predicted residual errors is equal to the covariance matrix of the
measurement errors at the same time.

The covariance matrices of the noise terms, pertaining to different windows, are

expressad according o the foflowing hypotheses:

The covariance matrix Q(t.1), of the noise state term Is obtained as:
Qtx) = T (F(tex, tx) - Fltar, ) F 101 F T(tar, ))5(ter)
where: () is a diagonal matrix; each term of which is the variance of the
corresponding r(.), computed through the expression (5);
F{(...) is the covariance matrix of residuals, normalized with respect to
the variance, varying in accordance with an exponential law.
The covariance matrix of the measurement errors is assumed to be dagonal:
E () vj(0] = S; &(i.j)
where i,j are range cell indices, & (i.j) is the Kroenecker function.
In the case of raingauge measurements, the quantity S; can be considered as constart
with respect to their locations.

¢) Mode! extension to radar measurements affected by noise and dutter emrors.

The above model has been directly extended 1o the radar case. Errors in the radar
derived rainfall measurements include clutier induced errors beyond the background
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noise already considered with raingauge measurements. It is assumed that the
resolution cells atfected by clutier are a-priori known.

In the present paper some results are indeed presented which refer to rainfall data in
the presence of clutter noise. Such a disturbance can be localized by using dry maps
of the radar coverage. In this condition the data processing method described for the
raingauge case is still applied, but in u:lose locations where high probability of
clutier presence is expecied, the corresponding quantity S in eq. (7} is adapted by a
suitable factor, in order to decrease the measured residual weight in the filtered
estimate.

ication of .

As previously highlighted, radar data have been obtained by digitally simulating the
space-time distribution of rainfall rate measurements.

The radar data were simulated with the following specific assumptions:

- the radar data are acquired within resolution cells whose size is 0.9 km range x 1°
azimuth, the time resolution is about 6 min.

- the radar coverage is: 360° azimuth, 100Km range;

- the radar system Is supposed to acquire data at a proper site within the Arno basin,
which is placed within the Tuscany region (TALY) [See map reported in Fig.1, where
the evolution of rainfall events is aiso shown).

In the performed analysis, we have supposed that radar data be acquired within a
sector of the total radar coverage, whose size is about one fourth of the total monitored
area. Since, in this condition a great lot of data still need 1o be processed, some problems
can arise in applying the mentioned Markov model, to overcome these problems a
simplified model of residuals has been implemented by applying the Kalman filter to
small windows, with a maximum size of 7x7 radar resolution cells. They have been
analysed sequentially to cover the entire area under observation.

The storm counter method can be instead directly applied, in order to oblain a
deterministic model of the mean value and variance of the rainfall rate.
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The sector scanning is thus made by moving a samplg witkdow tirsl in tange arxl
then in azimuth o as no superpositions can occur betwoen adjacont gurlncna Tha dsta
acquired from each window within the scanned sector are procossad lrxinpardantly, In
time, and sequentially, in space.

The described method is applied only when the processed window Is classlifiod ns
affected by rainfall: i.e. rainfall is present in a number of cells oversteping a sot
threshold. This test is made for reducing the total processing time. .

The simutated date refer to critical rainfall events, which are supposed to occur
in a sector within the Arno Basin. It is located within Tuscany Region whose map Is
reported in Fig. 1, where the evolution of rainfall event is also shown.

The rainfall rate pertaining to each resolution cell is simulated by supposing that
its evolution in time be well described by a Gaussian curve, corresponding to a
bidimensional space distribution of rainfall rate, moving with constant speed (m/s)
along a set direction. The rainfal! data, measured by radar, are obtained by
superimposing a white, Gaussian and zero mean process 10 real data (true rainfall rate).

In Fig. 2 rainfall rate Is reported as a function of time steps in a sample
resolution cell: the Gaussian curve refers to the real data. In such a figure are also
reported the measured rainfall rate curve and the behaviors of the filtered and predicted
rainfall rate distributions obtained by applying the over described procedure.

it can be noticed that the filter improved the required estimate with respect to the
measured data behavior, while the estimate is degradated in the predicted data curve.

In Fig. 3 the curves refer 1o real, measured, filtered and predicted rainfall rate
in a resolution cell, as a function of time steps. They are obtained by accumulating
rainfall values, recorded in the same resolution cell during a predetermined time
interval. Better behavior of filtered and predicted estimates than the previous ones can
be noticed.

In Fig. 4 measured rainfall rate is supposed 1o be affected by a non-stationary
error, due 1o clutter, within a sample window. Such a disturbance can be attributed to
clutter noise in the observed area. The clutter distribution in space is known through a
simulated clutter map.

The measured rainfall rate curve is thus obtained in the case of the presence of
both white, Gaussian noise and dutter noise. The reported curves show that even in this
case the filter works satisfactorily.
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Fig. 6: Rainfall rate estimates vs. time over a set radar cell in the presence of several
radar reflectivity error sources.




