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Abstract: In the paper some suboptimum adapt-
ive polarisation techniques for the cancellation of
partially polarised disturbances are analysed.
They are based on suitable use of the estimates of
the crosscorrelation between the dual-polarisation
received signals. The performances of these tech-
niques are evaluated and compared with that of
the optimum setting of polarisation on reception.
It is shown that the performances of the sub-
optimum techniques are affected by a quite limited
cancellation loss, and related to the antenna pol-
arisation basis used on reception. Some implemen-
tation aspects of these techniques are also
discussed.

1 Introduction

In conventional radar systems the received backscattered
wave is converted to a scalar signal; in this way the wave
polarisation is not recovered.

To acquire the entire information contents of the
backscattered wave, the wave polarisation information
has to be retained by a vector measurement process. This
can allow for improving target detection probability in
the presence of a disturbance, through dual-polarisation
signal processing [1, 2].

This operation requires that the radar be capable of
decomposing the received wave into two orthogonally
polarised components, which independently feed two
identical and coherent reception channels. In other
words, for the above purpose a dual-polarisation receiver
is needed.

When polarisation diversity is used not only on recep-
tion but also in transmission, the object’s scattering
properties are determined completely, but the system
complexity is significantly increased.

Diversity polarisation techniques can be applied to
adapt polarisation in transmission and/or on reception,
as is needed for disturbance cancellation [1, 3]. Polarisa-
tion adaptation can be implemented by adapting,
through a two-step procedure [3], the antenna polarisa-
tion so that the average received power of a partially pol-
arised disturbance is minimised [3].

Polarisation adaptation can also provide significant
cancellation of stationary and highly polarised dis-
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turbances, when it is applied on reception only [1, 3-5].
The optimum adaptive selection of antenna polarisation
on reception is based on estimation of the averaged
Stokes vector of the received disturbance. The optimum
polarisation is thus determined in terms of the corre-
sponding Stokes vector, which has to be transformed into
the two components of the related canonical polarisation
vector. These two components are the complex weights of
the linear combination of the two orthogonally polarised
signal components, simultaneously available on recep-
tion, providing the minimum output average disturbance
power, subject to a normality constraint for the polarisa-
tion vector on reception.

In this paper some alternative, suboptimum adapta-
tion procedures are considered. They are discussed and
their performances compared with those of the optimum
procedure.

The analysed suboptimum estimation procedures are
based on deriving the linear combination weights directly
from the crosscorrelation estimates of the two orthog-
onally polarised components of the received electromag-
netic (EM) field. This approach recalls that applied for
sidelobe cancellation of disturbances received through an
antenna array [6-8], as well as the scheme proposed by
Nathanson [9] for adaptive polarisation cancellation of
rain clutter.

The results of this analysis show that the suboptimum
procedures achieve slightly inferior disturbance cancel-
lation with respect to the optimum procedure. On the
other hand, the system complexity is reduced.

2 Fundamental concepts

Here some fundamental analytical tools are briefly recal-
led to describe the signal processing techniques proposed
in the following Sections.

2.1 Partially polarised waves

In a right-handed cartesian xyz co-ordinate system, the
EM field vector of a plane, harmonic wave propagating
along the z-axis (positive sense) can be represented by a
complex vector given by

Ey(z, t)

E(, z)] = h(t) exp [j(wt — kz)] (M

Eiz t) = [

where the labels ‘H’ and ‘V’ denote the horizontal and
vertical electric field components, respectively, k is the
propagation constant and A(t) is a time-varying vector,
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which can be expressed as

wo-[24]

where hy(t) and h,(t) are the complex envelopes of the
horizontal and vertical field components, respectively,
considered as outcomes of stationary and ergodic
random processes, with phase uniformly distributed and
independent of moduli. In this condition, the propagating
wave is called ‘partially polarised’.

When the factorisation h(t) = a(t)[hy, hy]" holds,
where the superscript ‘T” means transposition of the
vector, the wave is said to be completely polarised, and
its time-invariant polarisation is specified by the constant
vector h = [hy, h,]".

A partially polarised wave can be described through

the average Stokes vector g, whose components are
defined as follows [10]:

do @ 12> + <017
91| a| ZIm {EOR(0}>
g2 ha@ 12> = <917
gs 2(Re {hE(OmD)})

where the symbol ‘2’ means definition of the parameters
on the left side, and {(.)> denotes ‘time average’. The
total average power associated to the wave, given by g,,
meets the following condition:

95> i + 43 + 43 4)
In expr. 4 the equality holds when the wave is completely
polarised, while g, = g, = g; = 0 when the wave is com-
pletely unpolarised.

In terms of the Stokes vectors, a partially polarised
wave can be uniquely decomposed as [11]

g =[90p> 91, 92, .‘-73]T + [go — 9or> 0, 0, OJT &)
where gop = (G5 + g5 + 33)"* and (g — gop) are the
average powers pertaining to two independent waves, the
former completely polarised and the latter completely
unpolarised.

The ratio between the average power of the completely
polarised wave and the total power is called the ‘degree
of polarisation’ p of the wave, and is thus given by [11]

-2 -2 =-2\1/2

(91 + 92_ + g3) 6)

9o

When a partially polarised wave backscattered by a
target, with average Stokes vector g, is received by an
antenna with polarisation k, (i.e. the antenna transmits
waves with polarisation vector A,), the average received
power is minimised when the normalised antenna Stokes
vector is given by [10]

Z= 3

p 4 (Gor/G0) =

fo 1
fi —91/9op
h) = =
Sk 12 —9g2/9op 0
f3 —93/9or

while the orthogonal polarisation yields the maximum
average power.

The minimum and maximum received powers are,
respectively, given by [10]

Ifml'n = %go(l - p) (8)
Pmax = %gﬂ(l + p)

A useful description of partially polarised waves is also
given by the complex correlation coefficient u between
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the voltages v, and v,, received from two orthogonally
polarised antennas. This is defined as [12]

A <U,. ) U:‘_L

(<o P< 1o, 12512
with0 < |u| < L

It is also convenient to define the transformation of a
polarisation vector A from the polarisation basis AB to
the vector k' represented in a new polarisation basis A'B’.
The latter is obtained through a linear transformation

[13]:

, hy _ _ h,
e I

where the matrix [ 7] can be expressed as [13]

p ©

_ 1 —p* 1
t [,, 1 ]\/(1+Iplz) (Ha)
p L h4(h o)/hg(h ) (11b)

where h,(h,) and hg(h,) are the components of the
vector h, in the A’'B’ basis, while p represents the
complex polarisation ratio of the polarisation A
expressed in the new basis.

2.2 Polar representations of polarisation

Several polar representations of the polarisation state can
be usefully applied to analysing the polarisation proper-
ties of signals [14].

In the Poincaré sphere representation [15], any polari-
sation state of a completely polarised wave can be rep-
resented by a point P with cartesian co-ordinates which
are expressed through Stokes parameters as follows [1]:

P =(92/905 93/905 91/90) (12)

where the parameters involved are not time-averaged
because the wave is supposed to be completely polarised.

Polarisations are thus mapped on to the surface of a
sphere, called the Poincaré sphere (see Fig. 1).

In such a representation the sphere poles correspond
to the circular polarisations; the equatorial circle is the
locus of the linear polarisations.

The extrema of each diameter correspond to a pair of

orthogonal polarisations. Symmetrical points with
z
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Fig. 1 Poincaré sphere
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respect to the equatorial plane change polarisation for
the rotation sense only.

Once the average Stokes parameters are used in eqn.
12, the Poincaré sphere representation is extended to the
general case of partially polarised waves [16]. A partially
polarised wave is thus represented by a point inside the
Poincaré sphere. In fact, from eqns. 6 and 12 it follows
that the degree of polarisation (p < 1) of a partially pol-
arised wave equals the distance of the representative
point P from the centre of the sphere.

3 Optimum polarisation adaptation for
disturbance cancellation

Radar disturbance signals, such as clutter, are partially
polarised. Sometimes, as for example with rain clutter, its
degree of polarisation can be near unity. In this condition
optimum selection of the antenna polarisation both in
transmission and on reception can provide strong selec-
tive attentuation of the disturbance (see eqn. 8a), while
increasing the signal/disturbance power ratio [17]. The
latter achievement derives from different polarisation
behaviour of target and clutter.

Selection of the transmitting polarisation can be
implemented by making use of antenna polarisation
agility or utilising the virtual polarisation adaptation
technique on reception for virtual adaptation of the
transmitting polarisation [3]. The implementation of
these techniques needs either a noticeable increase in the
radar transmitter complexity, or a complex signal pro-
cessing on reception when the VPA technique is used.

For this reason the main core of this paper deals with
the polarisation adaptation on reception only, which
requires the simple linear combination of the signals
present on two orthogonally polarised channels. This
procedure can still achieve significant cancellation when
applied to partially polarised clutter signals characterised
by a high degree of polarisation, such as atmospheric
clutter, jamming and some kinds of ground clutter [3].

The application of the optimum procedure to adapt
polarisation on reception requires the determination of
the average crosscorrelation estimate M 1,2, and the esti-
mation of the average powers P, and P, of two orthog-
onally polarised signal components of the disturbance.
This is typically achieved through averages performed on
signal samples of the observed radar signals, within a
time-space window where stationary behaviour of the
disturbance is expected.

If we denote by s,(i) and s,(i) the generic samples of
the two orthogonally polarised signals available on
reception, the following time averages can then be com-
puted within the said azimuth-range window of the radar
coverage:

- t X
W12 =5 T s30)
~ 1 X
P, =ﬁ =z Sl(’)lz (13)
~ 1 X 2
Pr= L1si0)|

where N is the number of samples within the set window.
Under the following hypotheses:
(a) the observed disturbance has stationary polarisa-
tion behaviour within the set window;
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(b) the signal samples are mainly contributed by the
disturbance to be cancelled (superclutter or super-
jamming visibility condition);

(c) the observed disturbance presents a sufficiently high
degree of polarisation when measured within the set
window;

then the quantities given by eqns. 13 can usefully be
employed for the selective cancellation of disturbances in
the central radar resolution cell contained in the set
window, to enhance the signal/disturbance power ratio.

3.1 Implementation aspects

The following computational steps are then performed

for optimum adaptation of polarisation on reception [3]:
(1) Calculate the estimates of the elements of the wave

average Stokes vector as follows:

g0=ﬁl+ﬁi
g1 =21Im {M,;} 14
g,=P,— P,

gs=2Re {MIZ}

(2) Calculate the Stokes polarisation vector f(h,) of the
optimum polarisation through eqn. 7, with the Stokes
vector elements {g;} given by eqns. 14, i.e.

gor = /@1 + 33 + 33)

fo =1

fi = _gi/QOP i=123
(3) Given f(h,), calculate the optimum canonical pol-

arisation vector h, 2 [h,,, h,,]7 for optimum reception.
This can be obtained through the following relationships:

|y | = [3(fo +12)]

Ihr2| = \/[%(fo _fz)}

arg (h,,) — arg (h,,) = arg (h,, h%) = tan™'(f,/f3)
where arg (h,) or arg (h,,) can be chosen arbitrarily: the
values of h,, and h,, are thus specified.

(4) Adapt correspondingly the polarisation through
the following linear combination of the two

orothogonally polarised signals s,(f) and s,(t) available
on reception:

Se(8) = hy15,(8) + by 55(0) (16)

where s,(t) is the residual output signal after adaptive
polarisation cancellation of the disturbance.

(15)

The above computational steps are summarised in the
scheme reported in Fig. 2. In such a scheme the following
definitions are adopted: (i) CHS = (change sign), and (ii)
a/b = (division). A double-frame box is also used to point
out the operations giving rise to a complex-valued output
quantity or signal.

3.2 Performance evaluation

The performance of any polarisation-based cancellation
procedure can be suitably evaluated through a dis-
turbance cancellation ratio expressed in decibels, and
defined for polarisation adaptation on reception as [1]

L
P,

where P, is the average power of the cancelled output
signal, obtained after adapting the polarisation on recep-
tion, while P denotes the average power received through
the least-powered between the two orthogonally pol-
arised channels.

C, 210 log,, a7

IEE PROCEEDINGS, Vol. 135, Pt. F, No. 1, FEBRUARY 1988



The total received power g, is independent of the
receiver antenna polarisation basis; i.e.

go=P,+P,=P_, + P, (18)

In eqn. 18 P, and P, are the average powers received

coherent

(22¢)

where r represents the power ratio between the signals
received through the dual polarisation channels.

exp [j (arg Fﬁz)]

limiter

Re { . } X ()2
M1z 90p

im { } 00— ()2 =O— VO

() -I (. )2 E’
- J
&l
CHS —
92

P
Fig. 2  Computations involved in optimum adaptation procedure

through the actual orthogonally polarised channels;}
P..,and P, , defined in eqns. 8, represent the minimum
and maximum average received powers on the orthog-
onally polarised channels, when the antenna polarisation
basis is the optimum one.

Then we have

P =P, +P,

P2=Pmax—°PA (19)

where P, is a positive quantity that accounts for the mis-
match of the actual antenna basis, with respect to the
optimum one.

If we express the actual and optimum antenna polari-
sation bases through two pairs of orthonormal polarisa-
tion vectors, the basis transformation of eqn. 10 can be
applied to obtain the representation in the new basis of a
generic vector A, , expressed in the optimum basis. in
such circumstances the transformation is completely
specified by an appropriate value, p,, of the complex
parameter p defined in eqns. 11.

Based on this consideration, the expression of the
average power P, can easily be derived (see Appendix
8.1) as a function of pg:

Pa=pR(-0 (20)
where
1— |Po|2]
0l [—_ (21)
1+ |pol?

Note that the parameter a expresses the mismatch
between the actual and optimum antenna polarisation
bases (for |a| = 1, the actual antenna polarisation basis
coincides with the optimum one).

From eqns. 8, 19 and 20 we also obtain

(22a)

(22b)

t Note that P is equal to P, or P,.
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Based on eqns. 22, the condition P, < P, implies
0 < a < 1, while P, < P, implies —1 <« <O0.

When the optimum adaptation procedure is applied
on reception, the output power is given by

5 @ _

Therefore, taking into account eqns. 17 and 22a, the cor-
responding cancellation ratio thus gained on reception is
expressed by

Comax = 10 108, 5 — = 10 log,o [M] 24

min - D

In Figs. 3 and 4 the behaviour of r and C, ,,, (expressed
in decibels) are reported, respectively, as a function of
o > 0, for set values of p. The behaviour of r and C, .,
depicted in these Figures allows a complete evaluation of
the performance that can be attained when optimally
adapting polarisation on reception.

To this end, we note that r expresses the intrinsic dis-
turbance cancellation obtained by merely selecting the
least-powered signal received through the two orthog-

onally polarised channels. The parameter C,,,, instead
Wh——_——e————eee e — — p=0.99
I
15 Ip=095
|
|
o 101 |
3 [
- |
|
|
5r I
|
|
|
|
0 . Ip:O
0 0.5

o<

Fig. 3  Behaviour of r (dB) as a function of a € [0, 1], for set values
of p
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represents the additional cancellation improvement
which can be gained through the linear combination of
the received signals which synthesises the optimum pol-
arisation on reception.

20

Crmax,dB
=

% 0.5 oc 10
Fig. 4  Behaviour of C,,,,. reported as a function of a, for different
values of p

Such an improvement increases as the polarisation
basis mismatch increases (¢ — 0), and at a greater extent
for higher values of p.

We also note that, when a sufficiently high value of r is
observed on reception, the direct selection of the least-
powered signal can be a practical solution, at least when
upper-bounded values of p are expected, as in the case of
the presence of background unpolarised noise.

4 Suboptimum polarisation adaptation for
disturbance cancellation

In Section 3 the optimum procedure for polarisation
adaptation on reception has been described. In this
Section some alternative suboptimum procedures, based
on the estimation of the signal crosscorrelation, are
analysed. The results of the following analysis show that
this achievement is accompanied by a limited loss of can-
cellation ratio with respect to the optimum procedure,
when the hypotheses made for the application of the
latter technique still hold. The system complexity of the
suboptimum procedures is also examined.

4.1 First suboptimum adaptation procedure

On reception, the optimum cancellation procedure con-
sists of linearly combining the dual polarisation signals
5,(t) and s,(t), under a normality condition for the com-
bination weights, so as to reject the signal contributed by
the polarised wave component. Once the crosscorrelation
parameter M, ,, defined as

My, £ (sy(0), s3> (25)

as well as the average powers P, and P, are known a
priori or estimated, suboptimum but significant cancel-
lation ratios can still be attained through the following
alternative linear combinations [1, 5]:

Sc1(8) = 54(t) — wys,(2) (26a)
with

Wy = Af, = (P,/P,) " (26b)
64

or

5:2(t) = 5,(t) — wy s4(2) (27a)
with

wy = M2 _ (5,5 e @76)

P,

It can easily be verified that linear processing, through
eqns. 26 or 27, cancels the component of the unweighted
signal (s,(t) and s,(t), respectively) which is correlated
with the other signal.

This is also the basic approach followed in well known
techniques applied for adaptive single-sidelobe cancel-
lation of jamming signals received through two (main
and auxiliary) antennas [6]. The weights w, and w, can
also be suitably evaluated by means of a closed-loop
crosscorrelation estimator, and this type of solution has
also been proposed for adaptive polarisation cancellation
of rain clutter [9] and jamming.

Whatever be the type of crosscorrelation estimator
used to meet the adaptivity requirements, these cancellers
ideally operate according to eqns. 26. Our objective is
now to evaluate the ideal performance of such an oper-
ation and to compare it with the performance of the
optimum procedure described in Section 3.

With reference to the suboptimum procedures imple-
mented through eqns. 26 and 27, the following attenu-
ation factors (expressed in decibels) are defined:

C, 210 log, (IEI/IECI)
C, £10 logyo (P2/P.;)

where P,; and P, are the corresponding average powers
of the output signals s, (¢) and s,,(t).

Without loss of generality, in the following analysis we
will assume that P, < P, (ie. 0 < a < 1).

Through direct computation we obtain [1]

C;=C,=C,=—10log,o (1 —|ul? (29)

Note that once eqns. 26 or 27 are applied, s,(f) or s,(¢)
are attenuated equally, and the attenuation increases as
| u| approaches unity.

In actual fact, significant disturbance attenuation can
be achieved because the complex crosscorrelation factor
u, defined in expr. 9, is strictly related to the degree of
polarisation p of the received wave.

It can easily be shown (see Appendix 8.2) that the fol-
lowing relationship holds:

2
nl = 1 | (30)

— a?p?

(28)

which is defined when « and p are not simultaneously
unity. According to eqn. 30, | u| is plotted in Fig. S as a
function of p for different set values of |« |. Note that for
|a| = 1 (optimum polarisation basis) it is | u| = 0; conse-
quently s, (t) = 5,(t) and s, (t) = s,(?).

Therefore, once s,(t) is chosen (i.e. the least-powered
signal), the same performance as that of the optimum
cancellation procedure is achieved if || = 1. This is not
true for |a| # 1, but, as will be shown later, s,,(t) pro-
vides better cancellation than s,(f) in any case. This
latter result is subject to the posed condition that P, <
P,.

A proper performance analysis cannot merely be based
on the evaluation of the attenuation factors defined by
eqns. 28. In fact, we have to take into account that while
the linear combinations expressed by eqns. 26 and 27
perform a polarisation adaptation, they do not generally
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meet the normality requirement for the corresponding
polarisation vectors. In particular, the polarisation set-
tings corresponding to the linear combinations of eqns.

1'0- ————————————————————
|
I
|
|
Y |
— |
& !
¢ |
0.5} Y o [
<} |
|
/ |
|
|
|
|
Joc| =1 !
o] I \ 1
0 0.5 1.0

p

Fig. 5  Absolute value of complex crosscorrelation factor, as a function
of degree of polarisation, for different values of polarisation basis mis-
match parameter |« |

26 and 27 can, respectively, be expressed by the following
complex polarisation ratios:

Z

pr=—Wp = - }312 = —(P,/P;)"*u
2
' 1 P, R 1
= ——= — =t = (P /P2 — 1
P2 W, M*, (P/P3) u* (31)

Exprs. 31 indicate that the polarisation settings associ-
ated with the application of eqns. 26 and 27 are generally
different. These polarisations are also generally different
from the optimum one: this aspect will be discussed in
more detail later.

The evaluation of the cancellation ratio defined by
eqn. 17 requires us to refer to the following canonical
polarisation vectors, which have unitary modulus:

"1 é; 1
r 1+ |W1|2)1/2 —W;

1 —w
Rt — | ™2
2 (1+|W2|2)1/2[ 1] 2

to be associated with the linear combinations of eqns. 26
and 27, respectively. In other words, the disturbance can-
cellation ratio has to be evaluated with respect to the
following normalised output signals:
scl(t)

scln(t) = (33(1)

1
\/(1 + 1w, 1)

sc2n(t) = Scz(t) (33b)

___
VA + Iw, %)
The cancellation ratio, defined according to eqn. 17,
when eqns. 26 or 27 are applied, is thus, respectively,
given by [1]

C, =C;+10logo (1 + |w, |2)
C,; =C; + 10 log,o (1 + |w;[*) — 10 log,, (P,/P,)
(34)
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Through direct computation of eqns. 34 we then obtain
(see Appendix 8.3)

Crl = Cr max Cé(P, a)
Cr2 = Cr max C&(p’ —a)

with 0 <a <1, where C,,,. is the cancellation ratio
obtained with the optimum cancellation procedure (see
eqn. 24), and C; is given by

(1 + p)(1 + ap)
A VTP T ap)
Cs(p, @) £ 10 log,, [ pz ¥ 2up + 1 :|

which is defined for —1 < a < 1. The function Cyp, a) is
always non-negative, and expresses the cancellation loss
with respect to the optimum polarisation adaptation pro-
cedure. The behaviour of Cy(p, «) is shown in Fig. 6 as a
function of a for different set values of p. The following
properties can be demonstrated, which can also be
inferred from Fig. 6:

(i) The cancellation loss C, decreases as « increases.

(ii) The cancellation loss is zero for & = 1, whatever p

(35)

(36)

is.

(iii) The cancellation loss is zero for p =0 and p = 1,
whatever « is.

(iv) For a > 0 the cancellation loss takes on much
lower values than for o < 0. Since the former and latter
cases apply to eqns. 26 and 27, respectively, the cancel-
lation procedure represented by eqns. 26 has possibly to
be selected.

From property (iv) it derives that the best performance is
achieved when the least-powered orthogonally polarised
channel is recognised, and the correspondent linear com-
bination expressed by eqns. 26 is correspondingly and
continuously applied. When the power ratio between the
two orthogonally polarised channels changes with time
and an adaptive operation is thus required, the above
assumption is met, which is based on exchanging one
input signal for the other, when passing from the case
P, < P, to P, < P, or vice versa, while keeping the same
processing scheme, in accordance with eqns. 26. This
approach was proposed for adaptive polarisation cancel-
lation of jamming [4, 18]. When using this switching pro-
cedure, the cancellation loss is given by C4(p, |«|), and it

3.67d8

maximum values
at oc=1

pl=0,l\

10 205 0 0.5 1.0
o<

|
|
|
|
|
|
I
]
|
|
[
1

Fig. 6 Cancellation loss C,, as a function of polarisation basis mis-
match parameter a, for different values of polarisation degree p

For negative values of a the curves approach different limit values of C,, which
are indicated at top left of Figure
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takes on its maximum value. C; for « =0 and p = p, =
J/(2) — 1 (see Fig. 6). Such a value is given by

V@)

Cs0 = 10 log,, 240 =0.81dB
Since the values of p providing large values of cancel-
lation ratio approach unity, then the corresponding
values of C; are still lower than Cy,.

More explicitly, we can observe that for p > 0.75, cor-
responding to C,,,. > 6 dB, the cancellation loss takes
on a maximum of 0.5 dB at « = 0; on average, it ranges
from 0.2 to 0.3 dB, if a is uniformly distributed.

The above results show that disturbance cancellation
by means of the proposed polarisation adaptation is
quite effective.

We now evaluate the difference between the polarisa-
tion set on reception realised through the suboptimum
procedure or the optimum one. If we represent these pol-
arisations on the Poincaré sphere by the points P’ and P,
respectively, a proper measure of their difference is pro-
vided by their angular distance, § > 0, evaluated along
the great circle joining P and P’, regardless of the direc-
tion (see Fig. 7). In other words, é is the angular distance,
on the Poincaré sphere, between the suboptimum polari-
sation and the optimum one, providing the minimum
received power.

The value of é can be interpreted as the polarisation
angle error introduced by the suboptimum procedure in
the estimation of the reception polarisation. The value of
o is related to the cancellation loss associated with the
suboptimum procedure used. This relationship is now
exploited to evaluate J.

Note that for this analysis 6 is meaningful only when
p # 0. Once both the wave decomposition expressed by
eqn. 5 and the relationship between the received power
and the geometric representation of polarisation on the
Poincaré sphere [16] are taken into account, the follow-
ing expression for the output power contributed by the
polarised wave component, after polarisation setting, is
easily obtained:

(37)

1—coséd

Pcp a gOp _2_ = gOp Sinz (6/2) (38)
z
P
P )
//// \\\ Yy

Fig. 7  Angular distance between different polarisations represented on
Poincare sphere
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The total average output power P, can be expressed as

P.=P,+P, (39)
where P, is the average power contributed by the unpo-
larised wave component, which, independently of the pol-
arisation setting on reception, is given by

Pcu = %@o - gOp) (40)
Once the optimum polarisation is set on reception, we
obtain the minimum value of P, (see eqn. 23).

We define the cancellation loss factor as

. |C
Cs & loggo [TS]

Once eqns. 6, 38 and 40 are taken into account, we
obtain

(41)

P,

Ca—}—)'
P P
=—_CL+ _cu
P, P

(42)

=1+( 2 >sin2 ©6/2)
1—p

From the above relations, for p # 0 and p 5 1, we obtain

' 1—p 1/2
§=2sin"! {[ % (cs — 1)] } 43)
Taking into account eqns. 36 and 41, we then obtain
60=90p, )=
- 1—a)l —p? |
2sm‘{[(—-——-— p#0,p#1
2(p? + 2ap + 1) ’
e (@4)

0 p=1

which expresses the polarisation angle error introduced
by the suboptimum polarisation procedure described pre-
viously. In eqns. 44 the same limitations apply for the
range of «, as indicated in applying the expression of
C,(p, ®). The angular polarisation distance ¢ is plotted in
Fig. 8 as a function of « for different set values of p.

The following properties can be demonstrated which
can also be inferred from Fig. 8:

(a) d is a decreasing function of p for any a # 1.

(b) 4 is a decreasing function of « for any p # 1.

(¢) 6 can take on large values for low values of p, cor-
responding to quite limited cancellation losses.

Fig. 8  Angular polarisation distance 6 as a function of « for different
values of p
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(d) Once the least-powered channel is selected and
eqns. 26 are correspondingly applied, the value of 6 meets
the following relation, whatever the value of « > 0 and p:

5 < 90° (45)

while the maximum value of 9, é
(+/(2) — 1) and a = 0, is given by

— a1 A\ (2) _ 1 ) ~ o
o= 2507 (ST ) = 4 o

The above properties show that even when the least-
powered channel is selected for applying this sub-
optimum procedure, a significant polarisation error bias
in § can occur, but only when the degree of polarisation
is low.

attained for p, =

max >

4.2 Second suboptimum adaptive procedure

An alternative procedure can be used, which reduces the
cancellation loss for values of |a| approaching zero (i.e.
large antenna polarisation basis mismatch). The follow-
ing new (but alternative) linear combinations are con-
sidered:

Ser(t) = 5,(8) — wisa(1)

S;2(8) = 55() — whs,(0)

(47a)
(47b)

] -

Fig. 9
Junctions of |a|, for different values of p

a Cancellation loss C,,

Cancellation loss C, , and angular polarisation distance &' as

b Angular polarisation distance ¢’

IEE PROCEEDINGS, Vol. 135, Pt. F, No. 1, FEBRUARY 1988

where —w/, and —w), are chosen so that the correspond-
ing complex polarisation ratios are both equal to p/,
given by the complex geometric average of p; and p, (see
eqns. 31); i.e.

—w) = —(l/wh) =p’ 4 \/(Plpz)
Note that from eqns. 31 we obtain

(48a)

p' = —J(P\/P)) ﬁ
—/(P,/P)) exp [j arg ()]
—/(Py/P,) exp [ arg (M,,)]
_\/(PI/F2) exp [j arg (w,)]
= —/(P,/P,) exp [—] arg (w,)] (48b)
The corresponding cancellation ratio can be expressed as
C, = C,pax — Cs(p, ) (49a)

where C,, is the resulting cancellation loss. Based on eqn.
48a, both the exprs. 47a and 47b set the same polarisa-
tion on reception. Therefore the same value of C, is
achieved, when applying either eqns. 47a or 47b.

Through simple computations we achieve the follow-
ing explicit expression for C4(p, ) [see Appendix 8.4]:

Colp, 0) =

1 —a?p? 1—a? \'2
10 log,, {—1: [1 —p(m) :I} p#0,p#1

0 p=1

(49b)

with —1 < a < 1. Eqn. 49b applies to both procedures
defined by eqns. 47a and 47b.

Once eqns. 42 and 43 are applied again to this case, an
expression for the corresponding polarisation angle error
¢’ is then obtained:

&2 §(p, o) =
l_azpz 1—(12 1/2
2sin™ ' {———| 1 — pl ———
Sl i e
P_II/Z
+—2p—} p#0,p#1 (50)
0 p=1

In Figs. 9a and b, respectively, C;. and &' are plotted as
functions of | «| for different set values of p.

The following properties can be demonstrated which
can also be inferred from Fig. 9:

(a) Cy and ¢’ are symmetrical functions of « for any p.

(b) Cs and &' are increasing functions of |« | for any p
p#0,p1).

(c) C4 is within the bound of 3 dB (this is the limit
maximum value asymptotically attained at |a| =1 for
p—1). :

(d) & is an increasing function of p for any a.

(e) C; and ¢’ are zero for a« = 0 and any p.

In contrast to the suboptimum procedure above, we note
that the performance of this alternative suboptimum pro-
cedure is near-optimum when the antenna polarisation
basis mismatch is near-maximum (|| = 0).

If reliable information on the range of the antenna pol-
arisation basis mismatch is available a priori, then the
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more convenient suboptimum cancellation procedure can
be selected accordingly. On the other hand, when such a
mismatch can vary widely according to the unforeseeable
polarisation behaviour of the disturbance, the first sub-
optimum cancellation procedure provides more bounded
values of cancellation loss and polarisation angle error.

However, a proper choice of the suboptimum pro-
cedure is also to be based on the implementation aspects,
which we now discuss.

4.3 Implementation aspects

Some aspects are now considered with reference to the
implementation of several adaptive polarisation schemes
for disturbance cancellation on reception, based on the
previously described suboptimum procedures.

4.3.1 Open-loop cancellers: An open-loop implementa-
tion of the proposed suboptimum adaptation procedures
is obtained once the estimates, M,,, P, and P,, of the
crosscorrelation parameters are known a priori, or esti-
mated through the avaiable time averages, determined
according to eqns. 13.

The following steps then apply to the first described
suboptimum procedure:

(i) Compute r = P,/P,.

(i) Exchange the inputs if r < 1.

(i) pply eqns. 26.

The resulting computation schemes are reported in Figs.
10a and 10b; they refer to the case where the condition
P, < P, is known a priori and the case where no infor-

mation on the relation between P, and P, is a priori
available, respectively.

As can be inferred from such schemes, the involved
computations are less complex than those of the
optimum adaptation scheme reported in Fig. 2. This is
partially connected with the absence of the normalisation
of the cancelled output signal, which would require the
application of eqns. 33, so as to obtain

sl = 20 651

orthogonally polarised signais

sp(t)  sy(1)

o———=| a/b

with

c=(1+w? (52a)
or

c=(1+|w,?) (52b)

However, owing to the following considerations, the
application of eqn. 51 is not strictly needed:

(a) The ratio between the target signal power and the
disturbance signal power is not sensitive to such a nor-
malisation. _

(b) Taking into account both the relations between P,
and P, and eqns. 26b and 27b, the factor ¢ can vary
within a quite limited range (1 < ¢ < /2).

(c) In the presence of unpolarised background noise
only, « = 1, then s.(t) coincides with one of the input
signals (this is ‘transparent’ operation of the canceller).

(d) In the presence of a partially polarised disturbance
(i.e. clutter, jamming), some sort of constant false alarm
ratio technique is to be adopted, when further processing
the cancelled signal, which can automatically account for
the dynamic range of the processed signal (this technique
is usually applied in the target detection process).

In the second adaptation procedure described in Section
42, the following computational steps are required
instead:

(i) Compute r = P,/P,.

(if) Exchange the inputs if r < 1 (optional operation).

(iii) Compute w} = (1/r)'/* exp [j arg (M,,)].

(iv) Apply eqn. 47a.

In the case that option (ii) is omitted, the resulting com-
putation scheme is that reported in Fig. 11a. Such a
scheme, which refers to the application of eqn. 474, shows
that the necessary computations are simpler than those of
the optimum adaptation procedure, but are slightly more
complex than those of the preceding suboptimum
schemes.

As far as the output signal normalisation is concerned,
the considerations made for the preceding procedure still
apply: some additional considerations need to be devoted

crosscorrelation b
parameters

CHS

cancelled
output

orthogonally polarised signals
sp(t) sy(t)

r 9
M2 sc(t)
cancelled
output
T
crosscorrelation | _ — _‘r—‘scn(t)
parameters Pg optional normalised
operation cancelled
(3] output
=
L r:1 b

Fig. 10 Computations involved in first suboptimum procedure:
a P, <P, b Relation between P, and P, not known a priori
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to point (b). above. We note indeed that the scheme of
Fig. 11a can work with any limitation for the actual

<
coherent

suboptimum procedure is operated, according to the
scheme of Fig. 11a.

51(0 Sz(l)

Mz ——

limiter

~N
=l

orthogonally polarised signals

Py
<
P2
b
exp j arg(M ]
v coherent [ P jarg(My)
2 . .
limiter
crosscorrelation }
parameters
i
a
al/b 7
b
Lﬁz _—_1 a
Fig. 11 Computations involved in second suboptimum procedure

a Canonical scheme
b Scheme limiting dynamic range of cancelled output

value of the power ratio r; this intrinsically implies a
more extended dynamic range of the normalisation factor
¢ and, consequently, of the non-normalised output signal
s.(t). However, under suitable operating conditions of
such a canceller, a significant polarisation basis mismatch
is expected (low values of |«|), which limits the dynamic
range of r (see eqn. 22¢), and consequently of both |w/ |
(see eqns. 31) and c (see eqns. 52, where w' has to be
substituted for w, or w,). If this problem causes some
concern, the alternative scheme of Fig. 11b, which applies
option (ii), can be adopted to limit the dynamic range of
the cancelled output signal. In fact, such a scheme
achieves the same cancellation as that of the scheme of
Fig. 11a, but the normalisation factor would now range
as in the case of Fig. 10 (1 < ¢ < 4/2).

Some consideration has to be devoted to step (ii) of
both procedures (exchange of the input signals when
r<1.

As shown by the expression of w,, w,, w) and w), (see
eqns. 31 and 48), in the case of strong polarisation basis
mismatch (|a|~0), this transient operation can also
determine an abrupt change of both the amplitude and
the absolute phase of the output signal. Under typical
operating conditions such a transient operation is
occasional, and it is caused by slow variations of the pol-
arisation state of the disturbance. Under such particular
conditions the transition typically occurs with a value of
r near unity: according to eqns. 26b, 27b and 48b only
the absolute phase of the output signal can then change
significantly due to the phase conjugation of the weight w
or w’ after that transition.

The above transient behaviour has to be accounted
for, when trying to mitigate its effect, especially when
further coherent processing of the cancelled output is
requested. This problem does not occur when the second
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Sz(t) S](t)

sc(t)

cancelled
output

4.3.2 Closed-loop cancellers: As proposed by Nathan-
son [9] for rain clutter cancellation, a closed-loop imple-
mentation of the first suboptimum procedure is given by
the scheme in Fig. 124, called an-adaptive polarisation
canceller (APC): this corresponds to the closed-loop
adaptation scheme of Fig. 10a.

In contrast to the latter scheme of Fig. 10a, the closed-
loop scheme embodies the crosscorrelation parameter
estimation process. This is achieved by recursively pro-
cessing the dual-polarisation signals along the sweep
time, based on the locally stationary behaviour of the dis-
turbance in the range domain. This behaviour is indeed
typically shown by rain clutter and barrage jamming.
When a significant antenna polarisation mismatch can

15c(t)

; lowpass ' lled
|con1. X h Icancelle
sy(t) I - O:E filter | output
e ————————————— y
a
o -—= -9
I
| power
) I average
! —e—
| power sclt)
Tlaverage[] cancelled
Sz(t): outpul
e e — g 4

Fig. 12  Adaptive polarisation canceller (APC) and symmetric adaptive
polarisation canceller (SAPC)

a APC b SAPC
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occur (for example with jamming), the adaptation scheme
of Fig. 12b is preferred [19], which is called the sym-
metric adaptive polarisation canceller (SAPC): that is the
closed-loop implementation of the scheme of Fig. 10b.

Note that, together with the cancelled output, the
open-loop cancellers inherently provide, through w and
w', the estimated complex ratio of the polarisation pro-
viding the maximum cancellation: this recursive estimate
can also be a useful first step to be exploited in devising
more complex adaptive polarisation procedures, such as
those proposed by Poelman and Guy [20]. In particular,
such an estimate can be exploited for the application of
the second suboptimum procedure, according to the
scheme of Figs. 13a and b, derived from that of Figs. 11a
and b, respectively, based on the relationships of eqns. 48.

On account of the possibility of significant antenna
polarisation mismatch, assumed in both schemes of Figs.
13a and b, the SAPC is used: this ensures more stable
operation of the closed-loop estimator, and consequently,
more limited errors of the estimate of the polarisation
ratio p’ associated with w' [6].

When comparing the schemes of Fig. 12 with those of
Fig. 13, we note that the former are less complex than the
latter. Furthermore, based on the results of performance
analysis of the first and second suboptimum adaptation
procedures, evaluated in terms of cancellation loss, the
former schemes achieve a quite limited loss, even in the
case of a significant antenna polarisation mismatch (i.e. «
around zero).

Therefore these considerations, based on the steady-
state operation of the adaptive cancellers, suggest the use
of the adaptation schemes of Fig. 12, which operate
according to the first suboptimum procedure.

orthogonally

polarised
signals

sa(t)

Sy (t)

SAPC -w coherent

timiter

+

7\
N ()

a cancelled
output

orthogonally
polarised
signals

51(')
sa(t)

SAPC | W coherent

limiter

O

C

s¢t)

b cancelled
output

Fig. 13  Closed-loop implementation of second suboptimum procedure

a Canceller obtained by scheme of Fig. 11a
b Canceller obtained by scheme of Fig. 11
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However, some additional considerations are to be
accounted for in the case that time nonstationary polari-
sation behaviour of the disturbance is expected with time,
accompanied by a high antenna polarisation mismatch
(i.e. « around zero). Under this condition the transient
behaviour of the adaptive canceller should be considered.
Some insight is obtained when considering the results of
the polarisation angle error (see Figs. 8 and 9b). Note
that such an error can take on large values only for low
values of the degree of polarisation.

Generally this error is not of concern, since under a
low degree of polarisation the disturbance cannot be ade-
quately cancelled, even by the optimum polarisation
adaptation procedure. However, while the polarisation
error bias is not of concern to the stationary, fairly pol-
arised disturbance, it can perhaps degrade the transient
behaviour of closed-loop adaptive polarisation cancellers
devised to track the polarisation of a limited nonsta-
tionary disturbance. In particular, the above polarisation
error bias can result in an enhanced cancellation loss,
when the degree of polarisation of the disturbance
changes with time (range) at a rate that is comparable
with the adaptation time of the crosscorrelation estimate
performed by the APC or the SAPC. This can sometimes
occur both for fast variation of the intrinsic polarisation
behaviour of the disturbance as well as for the variation
of the disturbance/background power ratio, which affects
the degree of polarisation of the observed signals. In
these cases reducing the polarisation angle error could
then be advisable, even in the case of a low degree of
polarisation. These considerations would suggest the use
of the schemes of Fig. 13.

5 Comparisons and conclusions

The analysis carried out in this paper shows that the pro-
posed suboptimum procedures of adapting polarisation
on reception for the cancellation of a disturbance intro-
duce a quite limited cancellation loss with respect to the
optimum adaptation procedure, while presenting several
advantages for actual implementation.

The proposed suboptimum adaptation procedures
perform a linear combination of the orthogonal polarisa-
tion signals available on reception, based on the esti-
mated crosscorrelation parameters of such signals, while
removing the normality constraint for the polarisation
vector correspondingly synthesised on reception.

The performance analysis carried out shows that the
antenna polarisation basis mismatch plays a dominant
role in the cancellation loss with respect to the optimum
procedure, as well as in the proper choice between the
alternative suboptimum schemes.

In the case that a limited polarisation basis mismatch
is expected, application of the first suboptimum pro-
cedure is more convenient, in terms of both cancellation
loss and system complexity (the schemes of Fig. 10). For
example, this condition applies to the case of rain clutter
cancellation, when the antenna polarisation basis is circu-
lar.

In the case that a strong antenna polarisation basis
mismatch is expected, application of the second sub-
optimum procedure (the schemes of Fig. 11) generally
provides minimum cancellation loss.

The antenna polarisation basis mismatch, represented
by the parameter a, can be quite variable, due to the non-
stationary polarisation behaviour of the disturbance spe-
cifically being handled. This condition usually applies to
the case of ground clutter and barrage jamming. Under
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such a condition, application of either the first or second
suboptimum procedure can be considered (the schemes in
Figs. 10 and 11). A proper choice between the different
schemes can be made when accounting for the following
features:

(a) Application of the first suboptimum procedure
strictly requires a switching operation to exchange the
input signal when the average power of one set signal
overcomes that of the other signal.

(b) Through operation (a) the first suboptimum pro-
cedure attains a more bounded cancellation loss
(<0.81 dB) than the second procedure.

(c) The superior limit of the cancellation loss with the
second procedure is 3 dB, attained with a matched
antenna polarisation basis. However, even with only a
slight antenna polarisation basis mismatch, such a loss
decreases significantly for a high degree of polarisation.

(d) The switching operation described in (a) can deter-
mine an abrupt change of both the amplitude and the
absolute phase of the output signal.

(e) The switching described in (a) is not required for
application of the second suboptimum procedure.
However, in such an application the switching operation
may be desirable to limit the dynamic range of the output
signal.

(f) Application of the first suboptimum procedure
generally results in a less complex implementation
scheme.

An advantage of the proposed adaptation procedures is
also given by the possibility of their direct implementa-
tion through closed-loop cancellers, which perform recur-
sive processing of the orthogonally polarised signals
along the sweep time (the scheme in Fig. 12), while intrin-
sically estimating the necessary crosscorrelation para-
meters. This type of implementation is of interest for the
cancellation of rain clutter [9] and barrage jamming [5].
The resulting schemes derived from the first procedure,
called APC (see Fig. 12a) and SAPC (Fig. 12b), are quite
simple. They also intrinsically provide an ‘estimate of the
polarisation ratio of the polarisation providing the
minimum output signal power. This estimate can also be
used to device alternative schemes operating according to
the second suboptimum procedure (see Figs. 13a and b).

A polarisation angle error has been defined, and
explicitly evaluated for both the suboptimum procedures,
which expresses the difference between the polarisation
actually set and that providing the minimum output
power on reception. This error can take large values only
for low values of the degree of polarisation. Therefore
such an error is not generally of concern. However, such
an error may cause a transient performance degradation
of the closed-loop adaptive polarisation cancellers, as in
the case where the polarisation state of the disturbance is
not stationary.
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8 Appendix

8.1 Demonstration of eqn. 20
When considering a backscattered wave with polarisa-
tion h(z) (defined in the target co-ordinate system), the
voltages vy,, and v,,, and the average powers P,;, and
P,.. received by the optimum orthogonally polarised
antennas (with polarisation vectors i,,, and i,,,) are
given by

vlapt = hs ’ ilop! U20p! = hs ! iZopl (53)
Pml’n = <Ulopt vropt> Pmax = <020pt v:apt>

where v,,,, and v,,, are the components of the vector A
in the optimum antenna polarisation basis. This basis
gives rise to the minimum and maximum average powers
received by the orthogonally polarised channels.

When operating a transformation of the optimum pol-
arisation basis to the i; — i, basis of the actual antenna,
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through eqn. 10, we obtain

i, = [”J =[117'h,
Uy

=[1+ |pol*1 1/2|:vlapx P8 Va0p :I (54)

Po vlopt + vZopr

where p, is the proper value of the complex polarisation
ratio in the optimum basis, given by eqn. 11b. It follows
that the average powers P, and P,, received through the
actual orthogonally polarised channels, can be expressed
as

<'vlopt| >+ 10l <Iv20ptl D

P, =
e 1+ pol?
Fmin+lp0|2Pmax
T 1+]po
° (55)
P, = 02050 12> + 196 12 D10 12
2
1+ |pel

=Pmax+ |p0|2Pmin
L+ 1pol?

where we have accounted for incorrelation between the
signals received through the optimum orthogonally pol-
arised channels.

From eqns. 55, once both the definition expr. 21 and
eqns. 19 are taken into account, eqn. 20 is then derived.

8.2 Demonstration of eqn. 30

Here we derive the expression for |u| as a function of
both the polarisation degree p and the parameter a.
From eqn. 9 we have

2a <o, 080 12

56
S R P o ] 9
Moreover, from eqns. 8, 20 and 21 it follows that
o,y = Py =22 (1 —op)
(57)

o> =P, =2 (1 +ap)

Based on the definition of the average Stokes vector, we
can write

gi + 33
4
which, through the definition of p given by eqn. 6,

becomes

oot =

(58)

P45 — 43
4
Moreover, from the definition of the Stokes vector it
results that

g3 =[P, — P\]* = o®p?g} (60)
Finally, from eqns. 56, 57, 59 and 60, eqn. 30 is derived,
which is defined when « and p are not both unity.

[<o 03> 1 = (59)
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8.3 Demonstration of eqns. 35 and 36
Eqns. 35 are directly derivable from eqns. 34 when eqn.
29 is substituted in eqns. 34, thus giving

Cr 1
Cr2

—101og,o (1 — 1% + 10 log,o (1 + |w, ?)
—10log,o (1 = |p?) (61)
+ 10 log,, [(1 + |W2|2)(1’—)1/P2)]

Then the expressions for w, and w,, given by eqns. 26b
and 27b, can be substituted in eqns. 61:

P
Cri =10 log,g [(1 - |u|2)‘1(1 +5, w)]
2
2\-1 Pl 2
Ca=10log o | (1 —[1l%) p—+|u| (62)
2

Because | 4 |2 can be expressed as in eqn. 30, while P, and
P, are given by eqns. 22a and b, respectively, it follows
that

(1 + 2ap + p)1 — ap)}

Cri = 10logso [ - +p)

—20p + pz)] 63)

1
C,, =10 log,, I:( =7

where a is positive for the posed hypothesis.
Then, because eqn. 24 holds, eqns. 35 are obtained,
where C,(p, o) is defined as in eqn. 36.

8.4 Demonstration of eqns. 49
The expressions for C,, and C,, derive from those of
eqns. 34 defining C,, and C,,, and can be written as

P,
C,=10 log10 (P ) + 10 log,o (1 + | W} )
cl

P, P,
c,2_1010g10< P) 10 log,o (1 + |w31%)  (64)
2

The expressions for P;l_and P., can be calculated as
functions of | u|, P, and P, from eqns. 47:

F21=(1—|#|)2P1

_ ~ 65
Py = (1 — | ul)2P, 639

When substituting in eqns. 64 the expression obtained for
| 1| (see eqn. 30), P, and P, (eqns. 22), and P, and P,,
(eqns. 65), it follows that

C.=C,=C,=—10log,o [2(1 —|ul)]
+10 log,, [(P, + P,)/P,]

= —10 log,, [(1 + ocp)(l - P\/ [11—_;;2])]

(66)

Through these equations the expression for Cs (eqn. 49b)
is easily derived from eqn. 49a.
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