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Highlights

• A conservation property for the nonlinear Schrodinger equation with wave operator is studied.

• A spectrally accurate space semi-discretization is considered.

• A class of energy-conserving boundary value methods for the induced large-size Hamiltonian ODE
problem is considered.

• The efficient implementation of the methods is studied and numerical tests are reported.
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Abstract

In this paper, we study the efficient solution of the nonlinear Schrödinger equation with wave operator,
subject to periodic boundary conditions. In such a case, it is known that its solution conserves a related
functional. By using a Fourier expansion in space, the problem is at first casted into Hamiltonian form, with
the same Hamiltonian functional. A Fourier-Galerkin space semi-discretization then provides a large-size
Hamiltonian ODE problem, whose solution in time is carried out by means of energy-conserving methods
in the HBVM class (Hamiltonian Boundary Value Methods). The efficient implementation of the methods
for the resulting problem is also considered and some numerical examples are reported.

Keywords: Nonlinear Schrödinger equation, Hamiltonian problem, Wave operator, Energy-conserving
methods, Hamiltonian boundary value methods
MSC: 65P10, 65N40.

1. Introduction

In this paper, we deal with the numerical solution of the following nonlinear Schrödinger equation with
wave operator:

utt(x, t)− c2uxx(x, t) + 2iαut(x, t) + β(x)f ′(|u(x, t)|2)u(x, t) = 0, (x, t) ∈ Ω := [a, b]× [0,∞), (1.1)

where, as is usual, the subscript denotes the partial derivative w.r.t. the given variable. Moreover, i is the
imaginary unit, α and c 6= 0 are real constants, and β and f are real functions, with f ′ the derivative of f .
Equations of this type have many different applications in Physics, such as nonrelativistic limit of the Klein-
Gordon equation [25, 26, 28], Langmuir wave envelope approximation in plasma physics [4], model of planar
light bullets [2, 34] and so forth. For this reason, it has been subject of investigation, both from a theoretical
(see, e.g., [21]) and, more recently, also from a numerical point of view (see, e.g., [1, 19, 20, 23, 24, 29–33]).
We here consider the case where the equation (1.1) is completed with the initial conditions:

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ [a, b], and periodic b.c. (1.2)

Consequently, both u0 and v0 will be assumed to be periodic functions, regular enough (as a periodic
function). We shall also assume β to be periodic and suitably regular, even though the periodicity would
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be not strictly needed (see Remark 3.2 below). Also f is assumed to be suitably regular. It is known by the
following Theorem 2.1 that the solution of problem (1.1)–(1.2) conserves the functional:

H[u](t) =
1

2

∫ b

a

|ut(x, t)|2 + c2|ux(x, t)|2 + β(x)f(|u(x, t)|2) dx, (1.3)

so that
H[u](t) = H[u](0), ∀t ≥ 0. (1.4)

Hence, the conservation property (1.3)–(1.4) is important for the correct numerical simulation of such prob-
lem. As an example, when β(x), f(ξ) > 0, x ∈ [a, b], ξ ≥ 0, the conservation of (1.3) implies the boundedness
of the partial derivatives of the solution. This, in turn, implies the boundedness of the solution, upon reg-
ularity assumptions on β, f, u0, v0 are made (see, e.g., [33] or Corollary 2.4 below). In addition to this, the
conservation of the Hamiltonian functional has proved to confer more robustness on the numerical solution
(see, e.g., [3, 6], for the nonlinear Schrödinger equation and the semilinear wave equation, respectively). For
this reason, in this paper we are concerned with the numerical solution of problem (1.1)–(1.2), while exactly
conserving an arbitrarily high-order approximation to (1.3). We would like to emphasize that we shall here
consider the case where in (1.1) x ∈ [a, b] (i.e., the 1D case), even though the arguments can be naturally
extended to the case where x ∈ [a1, b1]× · · · × [ad, bd], with d ≥ 1 (in which case, uxx becomes ∆u).

With this premise, the structure of the paper is as follows: in Section 2 we cast the problem into real form,
also verifying the conservation property (1.3)–(1.4), moreover, we recast the problem into Hamiltonian form,
by considering a Fourier-type expansion in space; next, in Section 3 we consider a semi-discrete problem,
which amounts to a large-size Hamiltonian system of ODEs; in Section 4 we sketch the basic facts about
Hamiltonian Boundary Value Methods (HBVMs), which we shall use to solve the problem in time while
conserving the energy, and also explaining the details about their efficient implementation for the problem
at hand; in Section 5 we collect some test problems; at last, in Section 6 we report a few concluding remarks.

2. Fourier expansion in space

To begin with, let us pose the problem (1.1)–(1.2) in real form. By setting

u(x, t) = ϕ(x, t) + iψ(x, t), u0(x) = ϕ0(x) + iψ0(x), v0(x) = ϕ1(x) + iψ1(x), (2.1)

the real and imaginary parts of the involved functions, we see that (1.1) can be rewritten as

ϕtt − c2ϕxx − 2αψt + β(x)f ′(ϕ2 + ψ2)ϕ = 0, (2.2)

ψtt − c2ψxx + 2αϕt + β(x)f ′(ϕ2 + ψ2)ψ = 0, (x, t) ∈ Ω.

Hereafter, for sake of brevity, we often avoid to explicitly mention the arguments (x, t). Finally, the initial
conditions (1.2) become

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), x ∈ [0, 1], (2.3)

with periodic boundary conditions. In a similar way, the functional (1.3) becomes

H[ϕ,ψ](t) =
1

2

∫ b

a

ϕt(x, t)
2 + ψt(x, t)

2 + c2[ϕx(x, t)2 + ψx(x, t)2] + β(x)f(ϕ(x, t)2 + ψ(x, t)2) dx. (2.4)

In the sequel, when not necessary we shall also omit the arguments (x, t) for the functions appearing in the
functional H, for sake of brevity. By using (2.2) one proves the conservation of the fucntional H.

Theorem 2.1. The functional (2.4) is conserved along the solution of problem (2.2)–(2.3).
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Proof. In fact, one has, by using (2.2), integration by parts, taking into account the periodic boundary
conditions, and denoting, as is usual, with the dot the time derivative:

Ḣ[ϕ,ψ](t) =

∫ b

a

ϕtϕtt + ψtψtt + c2[ϕxϕxt + ψxψxt] + β(x)f ′(ϕ2 + ψ2)(ϕϕt + ψψt) dx

=

∫ b

a

ϕtϕtt + ψtψtt − c2[ϕtϕxx + ψtψxx] + β(x)f ′(ϕ2 + ψ2)(ϕϕt + ψψt) dx

=

∫ b

a

ϕt
[
ϕtt − c2ϕxx + β(x)f ′(ϕ2 + ψ2)ϕ

]
+ ψt

[
ψtt − c2ψxx + β(x)f ′(ϕ2 + ψ2)ψ

]
dx

=

∫ b

a

ϕt[2αψt] + ψt[−2αϕt] dx = 0.

This implies the theorem holds.

Next, because of the periodic boundary conditions, we expand the functions ϕ and ψ in space, by using
the following orthonormal basis for periodic functions in L2[a, b],

cj(x) =

√
2− δj0
b− a cos

(
2πj

x− a
b− a

)
, j ≥ 0, sj(x) =

√
2

b− a sin

(
2πj

x− a
b− a

)
, j ≥ 1, (2.5)

with δj0 the Kronecker delta, such that for all allowed values of i and j:

∫ b

a

ci(x) cj(x)dx = δij =

∫ b

a

si(x) sj(x)dx,

∫ b

a

ci(x) sj(x)dx = 0. (2.6)

Consequently, for suitable time dependent coefficients γj(t), ηj(t), αj(t), βj(t), one has the expansions:

ϕ(x, t) = c0(x)γ0(t) +
∑

j≥1
cj(x)γj(t) + sj(x)ηj(t),

(2.7)
ψ(x, t) = c0(x)α0(t) +

∑

j≥1
cj(x)αj(t) + sj(x)βj(t).

Thus, the periodic boundary conditions result to be fulfilled. The expansions (2.7) can be cast in a more
compact form, by defining the infinite vectors

w(x) =




c0(x)
c1(x)
s1(x)
c2(x)
s2(x)

...



, q1(t) =




γ0(t)
γ1(t)
η1(t)
γ2(t)
η2(t)

...



, q2(t) =




α0(t)
α1(t)
β1(t)
α2(t)
β2(t)

...



, (2.8)

as follows:
ϕ(x, t) = w(x)>q1(t), ψ(x, t) = w(x)>q2(t). (2.9)

In so doing, we can easily compute the partial derivatives:

ϕt(x, t) = w(x)>q̇1(t), ϕtt(x, t) = w(x)>q̈1(t),

(2.10)
ϕx(x, t) = w′(x)>q1(t), ϕxx(x, t) = w′′(x)>q1(t),

and similarly for ψ. The following result holds true.
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Lemma 2.2. Let us define the matrices

J2 =

(
0 −1
1 0

)
= −J>2 = −J−12 , I2 =

(
1 0
0 1

)
, (2.11)

and the following infinite matrices:

D̃ =
2π

b− a




0
1 · J2

2 · J2
. . .


 = −D̃>, (2.12)

D = D̃>D̃ ≡
(

2π

b− a

)2




0
12 · I2

22 · I2
. . .


 . (2.13)

Then
w′(x) = D̃w(x), w′′(x) = −Dw(x). (2.14)

Proof. The first equality in (2.14) follows by observing that (see (2.8) ans (2.11)–(2.12))

D̃w(x) =




0
−s1(x)
c1(x)
−2s2(x)

2c2(x)
...



≡ w′(x).

The second equality then also derives, by observing that (see (2.13)) −D = D̃2.

As a consequence of the previous Lemma, the space derivatives in (2.10) can be expressed as

ϕx(x, t) = (D̃w(x))>q1(t), ϕxx(x, t) = −(Dw(x))>q1(t), (2.15)

and similarly for ψx and ψxx. By considering that, because of the orthogonality conditions (2.6),

∫ b

a

w(x)w(x)>dx = I, (2.16)

the identity operator, one easily derives that (2.2) can be recast in the “frequency” space as,

q̈1 + c2Dq1 − 2αq̇2 +

∫ b

a

wβf ′((w>q1)2 + (w>q2)2)(w>q1)dx = 0, (2.17)

q̈2 + c2Dq2 + 2αq̇1 +

∫ b

a

wβf ′((w>q1)2 + (w>q2)2)(w>q2)dx = 0, t > 0,

where, for sake of brevity, we also skip the argument x for the functions β and w. In order to pose the
problem into first order form, let us define the infinite vectors

p1(t) = q̇1(t)− αq2(t), p2(t) = q̇2(t) + αq1(t), (2.18)

so that (2.17) is rewritten as

5
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q̇1 = p1 + αq2,

q̇2 = p2 − αq1, (2.19)

ṗ1 = −c2Dq1 + α(p2 − αq1)−
∫ b

a

wβf ′((w>q1)2 + (w>q2)2)(w>q1)dx,

ṗ2 = −c2Dq2 − α(p1 + αq2)−
∫ b

a

wβf ′((w>q1)2 + (w>q2)2)(w>q2)dx, t > 0,

with the initial conditions:

q1(0) =

∫ b

a

w(x)ϕ0(x)dx, q2(0) =

∫ b

a

w(x)ψ0(x)dx, (2.20)

p1(0) =

∫ b

a

w(x)(ϕ1(x)− αψ0(x))dx, p2(0) =

∫ b

a

w(x)(ψ1(x) + αϕ0(x))dx.

The following result then holds true.

Theorem 2.3. The system of equations (2.19) is Hamiltonian with Hamiltonian

H(q1, q2,p1,p2) =
1

2

[
(p1 + αq2)>(p1 + αq2) + (p2 − αq1)>(p2 − αq1)

+c2[q>1 Dq1 + q>2 Dq2] +

∫ b

a

βf((w>q1)2 + (w>q2)2)dx
]
. (2.21)

Moreover H is equivalent to the functional H defined in (2.4).

Proof. The first part of the proof is straightforward, since one easily realizes that

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2.

In order to prove that H is equivalent to the functional H defined in (2.4), it is enough to observe that, by
virtue of (2.9)–(2.16) and (2.19):

(p1 + αq2)>(p1 + αq2) = q̇>1 q̇1 =

∫ b

a

(w>q̇1)>(w>q̇1)dx =

∫ b

a

ϕ2
tdx,

(p2 − αq1)>(p2 − αq1) = q̇>2 q̇2 =

∫ b

a

(w>q̇2)>(w>q̇2)dx =

∫ b

a

ψ2
t dx,

q>1 Dq1 = q>1 D̃D̃
>q1 =

∫ b

a

q>1 D̃ww
>D̃>q1dx =

∫ b

a

ϕ2
xdx,

q>2 Dq2 = q>2 D̃D̃
>q2 =

∫ b

a

q>2 D̃ww
>D̃>q2dx =

∫ b

a

ψ2
xdx,

and ∫ b

a

βf((w>q1)2 + (w>q2)2)dx =

∫ b

a

βf(ϕ2 + ψ2)dx.

Consequently, from (2.21) one obtains that

H(q1, q2,p1,p2) =
1

2

∫ b

a

[
ϕ2
t + ψ2

t + c2(ϕ2
x + ψ2

x) + βf(ϕ2 + ψ2)
]

dx.

This completes the proof.

As anticipated in the introduction, the conservation of (2.21) has relevant implications in the solution of
problem (2.19)–(2.20), as stated in the following result.
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Corollary 2.4. Assume that for problem (2.19)–(2.20) one has β, f > 0 and, moreover,

H(q1(0), q2(0),p1(0),p2(0)) <∞.

Then, the solution of the problem is uniformly bounded.

Proof. The statement easily follows from the conservation of (2.21), which implies that ‖qi‖22 and,
therefore, ‖pi‖22, i = 1, 2, are bounded.

3. Fourier-Galerkin space semi-discretization

In order for problem (2.19)–(2.20) to be solvable on a computer, one needs to truncate the infinite
expansions (2.7) to finite sums. Therefore, having fixed a conveniently large value N � 1, one approximates
(2.7) as

ϕ(x, t) ≈ ϕ̂(x, t) = c0(x)γ0(t) +

N∑

j=1

cj(x)γj(t) + sj(x)ηj(t),

(3.1)

ψ(x, t) ≈ ψ̂(x, t) = c0(x)α0(t) +

N∑

j=1

cj(x)αj(t) + sj(x)βj(t).

The truncated expansions (3.1) can be cast in a vector form similar to (2.9), by replacing the infinite vectors
and matrices (2.8) and (2.12)–(2.13), respectively by

w(x) =




c0(x)
c1(x)
s1(x)

...
cN (x)
sN (x)



, q1(t) =




γ0(t)
γ1(t)
η1(t)

...
γN (t)
ηN (t)



, q2(t) =




α0(t)
α1(t)
β1(t)

...
αN (t)
βN (t)




∈ R2N+1, (3.2)

and

D̃ =
2π

b− a




0
1 · J2

. . .

N · J2


 = −D̃> ∈ R2N+1×2N+1, (3.3)

D = D̃>D̃ ≡
(

2π

b− a

)2




0
12 · I2

. . .

N2 · I2


 ∈ R2N+1×2N+1, (3.4)

where we continue to use the same notation for the infinite vectors and matrices and the corresponding
truncated versions, in order not to complicate the notations, even though, hereafter, they will denote the
finite ones. Consequently, one obtains the expansions

ϕ̂(x, t) = w(x)>q1(t), ψ̂(x, t) = w(x)>q2(t), (3.5)

in place of (2.8)–(2.9). Moreover, expressions similar to (2.10) hold true for the partial derivatives of ϕ̂

and ψ̂, as well as the result of Lemma 2.2 continues formally to hold for the truncated vectors (3.2). As a
result, equations (2.14)–(2.16) continue formally to hold for the finite approximations, even though now the

7
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functions (3.5) don’t satisfy the equations (2.2) anymore. However, in the spirit of Galerkin methods, by
requiring the residual be orthogonal to the functional space

VN = span {c0(x), c1(x), s1(x), . . . cN (x), sN (x)} , (3.6)

to which the approximations (3.5) belong for all t, one formally obtains again the equations (2.19), with the
initial conditions formally still given by (2.20). Clearly, (2.19) is Hamiltonian, with Hamiltonian formally still
given by (2.21), even though, this latter is now only an approximation to the functional (2.4). Nevertheless,
it is known from the theory of Fourier methods [17] that, under regularity assumptions on ϕ0, ψ0, ϕ1, ψ1,
β, and f , one has that the truncated approximations to ϕ,ψ, and H converge more than exponentially to
them, as N →∞ (this fact is usually referred to as spectral accuracy).

Remark 3.1. A criterion for the choice of N is to check that the residuals (see (2.20))

‖ϕ0 −w>q1(0)‖, ‖ψ0 −w>q2(0)‖, ‖(ϕ1 − αψ0)−w>p1(0)‖, ‖(ψ1 + αϕ0)−w>p2(0)‖, (3.7)

corresponding to the initial conditions, are small enough, and, moreover, the difference of the values of

H(q1(0), q2(0),p1(0),p2(0))

is within round-off error level, when passing from N to N + 1.

Finally, in order to obtain a full space semi-discretization, one needs to conveniently approximate the
integrals appearing in (2.19). For this purpose, as observed in [6], one can use a composite trapezoidal rule,
evaluated at the abscissae,

xi = a+ i
b− a
m

, i = 0, . . . ,m, (3.8)

with m suitably large (see, e.g., [18, Th. 5.1.4] and [22, Th. 1.1]). Hence, the truncated problem (2.19),
having dimension 4(2N + 1), with the integrals approximated via the composite trapezoidal rule at the
abscissae (3.8), define the semi-discrete problem in space to be integrated in time. The corresponding semi-
discrete Hamiltonian is then given formally by (2.21), with the integral appearing in it approximated via
the composite trapezoidal rule based at the abscissae (3.8).

Remark 3.2. We observe that when the function β(x) in (1.1) is not periodic in [a, b], then a different
quadrature has to be used to compute the integrals in (2.19), in place of the composite trapezoidal rule based
at the abscissae (3.8). E.g., a high-order Gaussian formula.

Remark 3.3. As is clear, the proposed Fourier-Galerkin space semi-discretization is tailored for the case
of periodic boundary conditions. For sake of completeness, we mention that for general boundary conditions
different space semi-discretizations should be considered and, moreover, the Hamiltonian functional (2.4)
may be no longer conserved (even though its variation can still be correctly reproduced, as is shown, e.g., in
[6] for the semi-linear wave equation). It must be also emphasized that the used space semi-discretization
greatly affects the efficient implementation of the fully discrete method, as is shown in the next section. In
fact, the chosen space semi-discretization will result in an approximate Jacobian with diagonal blocks, which
allows for a very efficient implementation of the method.

4. Hamiltonian Boundary Value Methods

In order to obtain a fully discrete method, we now need to integrate the Hamiltonian problem (2.19)–
(2.20) with the vectors w, q1, q2 and matrix D defined by (3.2)–(3.4). The fact of obtaining a Hamiltonian
semi-discrete ODE problem, from a PDE with Hamiltonian structure, is important, as observed in [27], if
one uses a suitable geometric integrator, able to take advantage of this property. For this reason, we shall
here consider the energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods
(HBVMs) for numerically solving (2.19)–(2.20). Such methods have been studied in a series of papers
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[5, 8, 9, 11, 12] and have been generalized along several directions, including the application to Hamiltonian
PDEs [3, 6] (see also the recent monograph [7], for a thorough introduction to such methods). In more
detail, a HBVM(k, s) method is the k-stage Runge-Kutta method with Butcher tableau

c IsP>s Ω

b>
, b =

(
b1 . . . bk

)>
, c =

(
c1 . . . ck

)>
, (4.1)

where, by setting {Pj}j≥0 the Legendre polynomial basis, orthonormal on [0, 1],

Pi ∈ Πi,

∫ 1

0

Pi(x)Pj(x)dx = δij,, ∀i, j = 0, 1, . . . ,

(bi, ci) are the weights and abscissae of the Gauss-Legendre quadrature formula of order 2k (i.e., Pk(ci) = 0,
i = 1, . . . , k), and

Ps =
(
Pj−1(ci)

)
, Is =

( ∫ ci
0
Pj−1(x)dx

)
∈ Rk×s, Ω = diag(b) ∈ Rk×k. (4.2)

It is also known that (see, e.g., [7]) a HBVM(k, s) method applied for solving the ODE-IVPs

ẏ = g(y), t ∈ [0, h], y(0) = y0,

with h the considered stepsize, defines a polynomial approximation σ ∈ Πs such that

σ(0) = y0, y1 := σ(h) ≈ y(h), σ̇(ch) =

s−1∑

j=0

Pj(c)γ̂j , c ∈ [0, 1], (4.3)

with

γ̂j :=

k∑

i=1

biPj(cj)g(σ(cih)) ≡
∫ 1

0

Pj(c)g(σ(ch))dc+ ∆j(h), j = 0, . . . , s− 1, (4.4)

and the quadrature error

∆j(h) =

{
0, if g(σ) ∈ Πν , with ν ≤ 2k − 1− j,

O(h2k−j), otherwise.
(4.5)

On the basis of the previous statements, the following result holds true.

Theorem 4.1. For all k ≥ s, the k-stage Runge-Kutta HBVM(k, s) method (4.1):

• is symmetric and has order 2s;

• when k = s it reduces to the (symplectic) s-stage Gauss collocation method;

• it is energy-conserving for problem (2.19)–(2.21) when f is a polynomial of degree

ν̃ ≤ k/s; (4.6)

• in the non polynomial case, by setting, with reference to the Hamiltonian function defined at (2.21),

y :=




q1
q2
p1
p2


 ∈ R4(2N+1), H(y) := H(q1, q2,p1,p2), (4.7)

y0 := y(0), and y1 ≈ y(h) the new approximation, with h the used stepsize, one has that

H(y1)−H(y0) = O(h2k+1). (4.8)
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Proof. For the first two points, we refer, e.g., to [7, 11]. Concerning the last two points, let us rewrite
(2.19)–(2.20), by using the more compact notation (4.7) for the vector of the unknowns, as

ẏ = J∇H(y), y(0) = y0, J =

(
O4N+2 I4N+2

−I4N+2 O4N+2

)
, (4.9)

with O4N+2 and I4N+2 the 4N + 2 × 4N + 2 zero and identity matrices, respectively. Consequently, by
taking into account of (4.3)–(4.5), the method will induce a polynomial approximation σ ∈ Πs such that

σ(0) = y0, σ(h) =: y1, σ̇(ch) =

s−1∑

j=0

Pj(c)γ̂j , c ∈ [0, 1],

with

γ̂j :=

k∑

i=1

biPj(cj)J∇H(σ(cih)) ≡ γj(σ) + ∆j(h), (4.10)

γj(σ) =

∫ 1

0

Pj(c)J∇H(σ(ch))dc,

∆j(h) =

{
0, if J∇H(σ) ∈ Πν , with ν ≤ 2k − 1− j,

O(h2k−j), otherwise.

Thus, by taking into account that (see (4.9)) J>J = I, the identity matrix of dimension 4(2N + 1), one has
that

H(y1)−H(y0) = H(σ(h))−H(σ(0)) = h

∫ 1

0

∇H(σ(ch))>σ̇(ch)dc

= h

∫ 1

0

∇H(σ(ch))>σ̇(ch)dc = h

∫ 1

0

∇H(σ(ch))>
s−1∑

j=0

Pj(c) [γj(σ) + ∆j(h)] dc

= h

s−1∑

j=0

[∫ 1

0

Pj(c)J∇H(σ(ch))dc

]>
J [γj(σ) + ∆j(h)] = h

s−1∑

j=0

γj(σ)>J [γj(σ) + ∆j(h)]

= h

s−1∑

j=0

γj(σ)>J∆j(h) =

{
0, if J∇H(σ) ∈ Πν , with ν ≤ 2k − s,

O(h2k+1), otherwise.

In the second case, (4.8) follows. In the former case, one has that the Hamiltonian is conserved, provided
that J∇H(σ) ∈ Πν with ν ≤ 2k − s, i.e. (see (2.21)), f ∈ Πν̃ with

(ν̃ − 1)2s+ s ≤ 2k − s,

from which (4.6) follows.

Remark 4.1. As is clear from (4.6), by choosing k large enough, one can always gain an exact energy
conservation, in the polynomial case. However, also in the non-polynomial case one can still obtain a
practical energy conservation by choosing k large enough, since it suffices to make the error (4.8) fall within
the round-off error level.

The use of a large value of k, in turn, doesn’t make the implementation of the Runge-Kutta method (4.1)
too much costly, since, as we are going to sketch below, the discrete problem generated by its application has
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(block) dimension s, independently of k. As matter of fact, by considering the formulation (4.9) of problem
(2.19)–(2.20), denoting e = (1, . . . , 1)> ∈ Rk, and setting

Y ≡




Y1
...
Yk


 ∈ R4k(2N+1), ∇H(Y ) :=



∇H(Y1)

...
∇H(Yk)


 , (4.11)

the stage vector for the method (4.1) applied for solving (4.9), and ∇H evaluated at the stages, respectively,
one obtains the nonlinear set of k vector equations

Y = e⊗ y0 + hIsP>s Ω⊗ J ∇H(Y ). (4.12)

However, by further setting the vector

γ̂ ≡




γ̂0
...

γ̂s−1


 := P>s Ω⊗ J ∇H(Y ), (4.13)

containing the vector coefficients (4.10), it follows that (4.12) can be written as

Y = e⊗ y0 + hIs ⊗ I γ̂. (4.14)

By plugging (4.14) into (4.13), one then obtains the equation

G(γ̂) := γ̂ − P>s Ω⊗ J ∇H (e⊗ y0 + hIs ⊗ Iγ̂) = 0, (4.15)

whose (block) dimension is s, independently of k. Once the discrete problem (4.15) has been solved, the
new approximation is then given by

y1 = y0 + hγ̂0.

In fact, taking into account (4.2), (4.10), (4.13), setting e1 ∈ Rs the first unit vector, and considering that
P0(x) ≡ 1, one has

γ̂0 = e>1 P>s Ω⊗ J ∇H(Y ) = e>Ω⊗ J ∇H(Y ) ≡
k∑

i=1

biJ∇H(Yi),

(we refer to, e.g., [7, 11] for full details). Consequently, the complexity for solving the discrete problem
(4.15) generated by the application of the HBVM(k, s) method (4.1) is greatly simplified, w.r.t. solving the
stage equation (4.12). In addition to this, by taking into account that

P>s ΩIs = Xs :=




ξ0 −ξ1
ξ1 0

. . .

. . .
. . . −ξs−1
ξs−1 0



∈ Rs×s, ξi =

1

2
√
|4i2 − 1|

, (4.16)

one has that the simplified Newton iteration for solving (4.15) reads

FOR r = 0, 1, . . . : (4.17)

solve
[
Is ⊗ I − hXs ⊗ J∇2H(y0)

]
∆r = −G(γ̂r)

set γ̂r+1 = γ̂r + ∆r

END

11
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starting, e.g., from γ̂0 = 0. We observe that the coefficient matrix of the linear system in (4.17) has
dimension s times larger than that of the continuous problem (2.19), and we need to factor it at each
integration step. However, we can simplify this procedure along two directions, as below explained.

Firstly, by setting I` the identity matrix of dimension

` := 2N + 1, (4.18)

and considering matrix D defined at (3.4), one has

∇2H(y0) =




(c2D + α2I` + F11) F12 −αI`
F12 (c2D + α2I` + F22) αI`

αI` I`
−αI` I`


 ,

with

Fij =

∫ b

a

βww>
[
2f ′′((w>q1)2 + (w>q2)2)(w>qi)(w

>qj) + δijf
′((w>q1)2 + (w>q2)2))

]
dx.

Hence, when N � 1 (see (3.4)), one may assume

(
2πc

b− aN
)2

� ‖β‖(‖f ′′‖+ ‖f ′‖).

Consequently, by setting
D(c, α) := c2D + α2I`, (4.19)

we can consider the approximate Hessian matrix

∇2H(y0) ≈




D(c, α) −αI`
D(c, α) αI`
αI` I`

−αI` I`


 =: M, (4.20)

which is constant.
Secondly, in place of the simplified Newton iteration (4.17) with the simplified Hessian (4.20), we consider

a “splitting-Newton” blended iteration. This iteration, at first devised in [13], has been implemented in the
computational code BiM [15] (which is available at the Test Set for IVP Solvers [35]), and has also been
considered for HBVMs [5, 9], proving to be very efficient when applied to Hamiltonian PDEs, as is shown
in [6] for the semi-linear wave equation, and in [3] for the nonlinear Schrödinger equation. We here sketch
the main facts for the solution of problem (2.19), since each PDE has its own structural properties to be
exploited in order to make efficient the nonlinear iteration. In more details, the iteration (4.17) is replaced
by the following one:

FOR r = 0, 1, . . . : (4.21)

set ηr = −G(γ̂r)

set ηr1 = ρsX
−1
s ⊗ I ηr

set ∆r = Is ⊗ Σ [ηr1 + Is ⊗ Σ (ηr − ηr1)]

set γ̂r+1 = γ̂r + ∆r

END

starting, e.g., from γ̂0 = 0. Here Xs is the matrix defined at (4.16),

ρs = min
λ∈σ(Xs)

|λ|, (4.22)
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(a few values of the parameter ρs are listed in Table 1), and (see (4.9), (4.18), and (4.20))

Σ := (I − hρsJM)
−1 ∈ R4`×4`. (4.23)

This latter matrix, having the same size as that of the continuous problem (2.19), is constant and, therefore,
needs to be computed only once. Moreover, by considering that (see (4.19))

Σ−1 =




I` −δI` −εI` O`
δI` I` O` −εI`

εD(c, α) O` I` −δI`
O` εD(c, α) δI` I`


 , with ε := hρs, δ := αε, (4.24)

and O` the zero `× ` matrix, has a block diagonal structure, the following result holds true.

Theorem 4.2. Let define the permutation matrix P of dimension 4` ≡ 4(2N + 1) such that

P




1
2
...

4`


 = ( 1, `+ 1, 2`+ 1, 3`+ 1, 2, `+ 2, 2`+ 2, 3`+ 2, . . . , `, 2`, 3`, 4` )

>
.

Then

Σ = P>




Σ1

. . .

Σ`


P,

where, by setting as is usual bxc the largest integer less than or equal to x,

Σi =




1 −δ −ε 0
δ 1 0 −ε
ξi 0 1 −δ
0 ξi δ 1




−1

, ξi := ε

[(
2πcbi/2c
b− a

)2

+ α2

]
, i = 1, . . . , `. (4.25)

Proof. From (4.19) and (4.24), one has that

Σ−1 = εc2F +G⊗ I`,

with

F =




O` O` O` O`
O` O` O` O`
D O` O` O`
O` D O` O`


 , G =




1 −δ −ε 0
δ 1 0 −ε
εα2 0 1 −δ
0 εα2 δ 1


 .

The statement then follows by considering that P>(G⊗ I`)P = I` ⊗G and, by virtue of (3.4),

P>FP =




F1

. . .

F`


 ,

with

Fi =

(
2π

b− a

⌊
i

2

⌋)2




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


 , i = 1, . . . , `.

13
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Table 1: Parameter defined at (4.22).

s 1 2 3 4 5 6
ρs 0.5000 0.2887 0.1967 0.1475 0.1173 0.0971

This completes the proof.

As a consequence of Theorem 4.2, in order to perform the blended iteration (4.21), one needs to compute
(see (4.18)) the ` 4× 4 matrices in (4.25). Actually, approximately half of them, since from (4.25) one easily
realizes that

ξ2i = ξ2i+1 ⇒ Σ2i = Σ2i+1, i = 1, . . . , N ≡ (`− 1)/2.

In conclusion, one obtains that the linear algebra cost for performing the iteration (4.21) is linear in the
dimension of the problem (2.19) to be solved, both in terms of required operations and memory requirements.

5. Numerical examples

In this section we provide a couple of numerical examples, aimed at confirming the conservation properties
and accuracy of the proposed method.

The first problem is

utt − uxx + iut + sin(2|u|2)u = 0, (x, t) ∈ [0, 1]× [0, T ], (5.1)

for which the function f (see (1.1)) is non-polynomial, with the initial conditions

u(x, 0) = exp(2πix), ut(x, 0) = 2πi exp(2πix), x ∈ [0, 1]. (5.2)

The corresponding functional (1.3) is then given by

H[u](t) =
1

2

∫ 1

0

|ut|2 + |ux|2 + sin2(|u|2)dx. (5.3)

Moreover, the solution of problem (5.1)–(5.2) turns out to be in the form

u(x, t) = ρ(t) exp(2πi(x+ ω(t)),

with ρ(t) ≈ 1 and ω(t) real and smooth functions, as is shown in Figure 1. Consequently, choosing N = 1
in (3.1) and m = 3 in (3.8) is enough to have an exact representation of the solution and of the equations.
The corresponding value of the Hamiltonian functional (5.3) turns out to be given by

H[u] ≡ H0 = 4π2 +
sin2(1)

2
≈ 39.83. (5.4)

In Table 2 we list the obtained result by using HBVM(k, s), with s = 1 and k = 1, 2, 3, and 10, when fixing
T = 2 and using a time-step h = 2−n, n = 1, . . . , 10. Similarly, in Table 3 we list the obtained result by
using HBVM(k, s), with s = 2 and k = 2, 3, 4, and 10, when fixing T = 2 and using a time-step h = 2−n,
n = 1, . . . , 8. In both tables, erru denotes the maximum error in the computed solution, which has been
numerically estimated, whereas errH is the error in the numerical Hamiltonian, whose value is known to
be given by (5.4). We also list the corresponding estimated convergence rates (** means that the round-off
error level has been reached), along with the mean number of blended iterations (4.21) per step. From the
figures in the two tables, one easily deduces that the HBVM(k, s) method, according to Theorem 4.1:

• has the prescribed order 2s;
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Figure 1: Real (upper plot) and imaginary (lower plot) parts of the solution of problem (5.1)–(5.2).
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• the Hamiltonian error decreases with order 2k, for the smaller values of k, whereas one obtains a
practical energy conservation, when using k = 10 and time-steps smaller that h = 0.25;

• the mean number of blended iterations decreases with the time-step (as is obviously expected) and,
moreover, it is remarkably independent of k, for s fixed.

We observe that, for this problem, the solution error is approximately the same, for h and s fixed, indepen-
dently of the value of k used. However, this could be no more the case, when one has particular solutions,
which may vary, depending on the value of the Hamiltonian functional, as it has been clearly shown in [6] for
the sine-Gordon equation. Unfortunately, we are not aware of similar situations for the considered equation
(1.1). Nevertheless, the conservation of the Hamiltonian functional may be useful, as the next example
shows.

Let us consider the following problem,

utt − uxx + 2.2iut +
(
|u|18 − 8|u|6

)
u = 0, (x, t) ∈ [0, 1]× [0, T ], (5.5)

for which the function f (see (1.1)) is a polynomial of degree ν = 10, with the initial conditions

u(x, 0) = 0, ut(x, 0) = 9 sin10(πx), x ∈ [0, 1]. (5.6)

The corresponding functional (1.3) is now given by

H[u](t) =
1

2

∫ 1

0

|ut|2 + |ux|2 +
|u|20
10
− 2|u|8dx, (5.7)

whose constant value is now given by

H[u] ≡ H0 =
81

2

∫ 1

0

sin20(πx) ≈ 7.136. (5.8)

The real and imaginary parts of the solution of problem (5.5)–(5.6) are plotted in Figure 2, for T = 6.
Choosing N = 50 in (3.1) and m = 201 in (3.8) is now appropriate for obtaining an accurate numerical
solution: as matter of fact, both the initial value of the Hamiltonian and the initial data turns out to be
approximated to full machine accuracy. We now fix the time-step h = 0.03, thus performing 200 integra-
tion steps, by using the 4-th order methods HBVM(2,2) (i.e., the symplectic 2-stage Gauss method) and
HBVM(20,2). The latter method, according to Theorem 4.1, is energy conserving. This is confirmed by the
computed numerical solution, for which the maximum energy error is ≈ 0.41 for HBVM(2,2) and 1.33 ·10−14

for HBVM(20,2). In the upper plots in Figure 3 we plot the errors in the real part of the computed solution,
whereas in the lower plots are the errors in the imaginary part. Moreover, the plots on the left concern the
HBVM(20,2) method, with maximum errors ≈ 5 · 10−2 and 7 · 10−2, respectively. Similarly, the plots on
the right concern the HBVM(2,2) method, with maximum errors ≈ 7 · 10−1 and 6 · 10−1, respectively. One
then concludes that the solution provided by the energy-conserving method is pretty more accurate (about
one order of magnitude), w.r.t. the one provided by the symplectic 2-stage Gauss method. Consequently, at
least in this case, conserving the energy seems to confer more reliability on the computed numerical solution.

6. Conclusions

In this paper we have considered the numerical solution of the nonlinear Schrödinger equation with wave
operator equipped with periodic boundary conditions. The problem has been, at first, cast into Hamiltonian
form, by means of a Fourier-Galerkin space semi-discretization. Energy-conserving Runge-Kutta methods
in the HBVMs class have then been used for the time integration, while conserving the energy of the system.
The efficient implementation of such methods has been also studied, showing that their computational
complexity per step is linear in the dimension of the semi-discrete problem, and their effectiveness has been
evaluated on a couple of test problems.
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Table 2: problem (5.1)–(5.2), with T = 2, solved by unsing N = 1,m = 3 for th espace semi-discretization, and HBVM(k,1) in
time with stepsize h = 2−n.

k = s = 1

n erru rate errH rate it

1 1.979e+0 — 1.406e-02 — 10.0
2 1.072e+0 0.9 8.089e-03 0.8 9.1
3 3.711e-01 1.5 6.902e-03 0.2 7.1
4 9.936e-02 1.9 2.325e-03 1.6 6.3
5 2.521e-02 2.0 6.261e-04 1.9 6.0
6 6.324e-03 2.0 1.595e-04 2.0 5.0
7 1.583e-03 2.0 4.006e-05 2.0 5.0
8 3.957e-04 2.0 1.003e-05 2.0 4.0
9 9.894e-05 2.0 2.508e-06 2.0 4.0

10 2.474e-05 2.0 6.269e-07 2.0 4.0

k = 2, s = 1

1 1.970e+0 — 2.809e-02 — 11.0
2 1.066e+0 0.9 7.653e-03 1.9 9.0
3 3.740e-01 1.5 8.458e-04 3.2 7.6
4 1.009e-01 1.9 6.162e-05 3.8 6.4
5 2.565e-02 2.0 4.000e-06 3.9 6.0
6 6.439e-03 2.0 2.524e-07 4.0 5.0
7 1.611e-03 2.0 1.581e-08 4.0 5.0
8 4.030e-04 2.0 7.913e-10 4.3 4.0
9 1.008e-04 2.0 2.132e-14 ** 4.0

10 2.519e-05 2.0 2.132e-14 ** 4.0

k = 3, s = 1

1 1.972e+0 — 4.375e-04 — 10.0
2 1.067e+0 0.9 1.598e-04 1.5 9.0
3 3.744e-01 1.5 1.235e-05 3.7 7.8
4 1.009e-01 1.9 3.048e-07 5.3 6.4
5 2.565e-02 2.0 5.353e-09 5.8 6.0
6 6.439e-03 2.0 1.421e-14 ** 5.0
7 1.611e-03 2.0 1.421e-14 ** 5.0
8 4.030e-04 2.0 1.421e-14 ** 4.0
9 1.008e-04 2.0 1.421e-14 ** 4.0

10 2.519e-05 2.0 1.421e-14 ** 4.0

k = 10, s = 1

1 1.972e+0 — 2.202e-11 — 10.3
2 1.067e+0 0.9 7.105e-15 11.6 9.0
3 3.744e-01 1.5 7.105e-15 ** 8.0
4 1.009e-01 1.9 7.105e-15 ** 6.9
5 2.565e-02 2.0 7.105e-15 ** 6.0
6 6.439e-03 2.0 7.105e-15 ** 5.0
7 1.611e-03 2.0 7.105e-15 ** 5.0
8 4.030e-04 2.0 7.105e-15 ** 4.0
9 1.008e-04 2.0 1.421e-14 ** 4.0

10 2.519e-05 2.0 1.421e-14 ** 4.0
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Table 3: problem (5.1)–(5.2), with T = 2, solved by unsing N = 1,m = 3 for th espace semi-discretization, and HBVM(k,2) in
time with stepsize h = 2−n.

k = s = 2

n erru rate errH rate it

1 6.417e-01 — 5.007e-03 — 19.3
2 6.317e-02 3.3 1.818e-03 1.5 16.6
3 4.307e-03 3.9 1.570e-04 3.5 13.2
4 2.760e-04 4.0 9.807e-06 4.0 11.0
5 1.736e-05 4.0 6.157e-07 4.0 9.1
6 1.087e-06 4.0 3.853e-08 4.0 8.0
7 6.794e-08 4.0 2.409e-09 4.0 7.0
8 4.247e-09 4.0 1.506e-10 4.0 6.0

k = 3, s = 2

1 6.438e-01 — 4.284e-03 — 19.0
2 6.330e-02 3.3 1.871e-04 4.5 16.8
3 4.386e-03 3.9 4.260e-06 5.5 13.6
4 2.812e-04 4.0 6.826e-08 6.0 11.0
5 1.769e-05 4.0 1.073e-09 6.0 9.3
6 1.107e-06 4.0 1.421e-14 ** 8.0
7 6.922e-08 4.0 1.421e-14 ** 7.0
8 4.327e-09 4.0 7.105e-15 ** 6.0

k = 4, s = 2

1 6.427e-01 — 3.375e-04 — 19.3
2 6.345e-02 3.3 2.068e-05 4.0 16.8
3 4.388e-03 3.9 1.174e-07 7.5 13.6
4 2.812e-04 4.0 5.108e-10 7.8 11.0
5 1.769e-05 4.0 1.421e-14 ** 9.3
6 1.107e-06 4.0 7.105e-15 ** 8.0
7 6.922e-08 4.0 7.105e-15 ** 7.0
8 4.327e-09 4.0 7.105e-15 ** 6.0

k = 10, s = 2

1 6.431e-01 — 1.958e-08 — 19.5
2 6.344e-02 3.3 1.421e-14 ** 17.4
3 4.388e-03 3.9 7.105e-15 ** 14.2
4 2.812e-04 4.0 7.105e-15 ** 11.2
5 1.769e-05 4.0 7.105e-15 ** 9.8
6 1.107e-06 4.0 1.421e-14 ** 8.0
7 6.922e-08 4.0 7.105e-15 ** 7.1
8 4.327e-09 4.0 1.421e-14 ** 6.0
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Figure 2: Real (upper plot) and imaginary (lower plot) parts of the solution of problem (5.5)–(5.6).

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Computed errors in the real (upper plots) and imaginary parts (lower plots) of the solution of problem (5.5)–(5.6)
by using HBVM(20,2) (left plots) and HBVM(2,2) (right plots) with time-step h = 0.03.
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