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Abstract 

Infill panels largely affect the seismic response of framed constructions. The wide variety in their mechanical 

and geometrical features has produced many different models and assumptions in their analytical 

representation. In this paper the simplest and more diffuse analytical approach, based on the introduction of 

equivalent struts, has been checked. An overview is presented, focusing on the strut dimensions, strength and 

number. Two case-studies, taken by two different experimental campaigns, have been considered and 

reproduced. The obtained results have been compared to the experimental ones, and some parameters have 

been checked for selecting the model to use for analysis. 



 

INTRODUCTION 

Infilled frame constructions have been extensively built during the last 200 years. The large diffusion of this 

type of buildings induced both an high interest of the scientific community in the evaluation of their seismic 

performance and a wide variety in their properties. The mechanical behavior of an infilled framed structure, 

indeed, depends on the mechanical properties of the structure and of the infill panels, but even on their 

mutual stiffness and the type of adopted connections, which can induce different collapse scenarios. 

Moreover, it is well know that masonry presents itself a wide variety of possible performances, due to the 

multiple combination among the constituting materials, and therefore having a behavior difficult to be 

predicted. As a consequence, many different analytical procedures have been developed to represent the 

seismic behavior of the infilled frames, based on the observation of the mechanical properties of the single 

microelements constituting the system, or on a macroscopic approximated representation.  

Moreover, the “quality” of the infill panels contribution to the seismic response of framed structures is not 

obvious; the infill panels, in fact, increase the lateral stiffness and strength of the buildings, with a 

consequent improvement of their safety. But some of the effects can be detrimental for the seismic response 

of the building, since the collapse – or detachment - of the infill panels can induce a reduction in ductility, 

with a possible activation of local collapse mechanisms. In the representation of the mechanical contribution 

of the infill panels to the seismic response of framed constructions, therefore, the evaluation of the safest 

assumptions is not easy to pursue.  

All the main International Technical Codes state the importance of including the infill panels in the 

representation of the seismic response of framed buildings. Nevertheless they differ with each other about 

the provided instructions for the representation. Eurocode 8 [1] prescribes to take into account the infill 

panels contribution, without specifying the model to adopt to this purpose. The Federal Emergency 

Management Agency Code [2,3] suggests to represent the infill panels contribution by introducing 

equivalent pin-jointed diagonal struts, having the same thickness and mechanical properties than the infill 

panels. Besides, the frame members are required to resist to the further internal forces induces by the 

equivalent strut. 

 



The “equivalent strut” approach is the simplest way to account for the infill panels contribution; it has been 

introduced about 60 years ago [4,5], and it is extensively used right now. The assumed cross section of the 

equivalent strut is usually fixed on the basis of the geometrical and mechanical properties of the infill 

material [6,4], whilst the post-cracking behavior of the strut can be determined on the basis of experimental 

tests [7,8], or by comparing the macro-model results to the ones provided by nonlinear FE analysis [9-11]. 

Since the point-jointed single strut does not provide any information about the distribution of shear force in 

the columns, equivalent multiple-struts models [12-15] have been also developed.  

Many different – single and multiple – strut models have been proposed in these years, providing a large 

range of width for the diagonal strut. Moreover, the strength of the strut can be defined according to different 

assumptions, which refer to alternative collapse mechanisms of the panel. An exhaustive state of art of all 

possible analytical approaches to the problem of the infilled panels representation would be an arduous work, 

and is beyond the aim of this paper. This work is aimed at evaluating a range of variability, and the 

consequent possible reliability, of the standard strut models in representing simple infilled frames. Various 

formulations of strut models and alternative strength values of the infill have been compared, in order to 

evaluate, in term of maximum capacity, the range of results related to the more common assumptions. The 

considered assumptions have been applied to two different case-studies, which have been chosen after two 

different experimental surveys, respectively made by [16] and [17]. The two considered frames present 

different mechanical properties; namely, their ratio between the infill panel and the frame stiffness is very 

different to each other.  

The results found for the considered case-studies have been presented in Chapter 4. The capacity curves 

found by adopting all the considered assumptions in terms of strut width, stress and number have been 

shown and compared to the corresponding experimental curves. The comparison has been checked in terms 

of elastic stiffness and maximum base shear, which can be assumed as the most representative response 

quantities. In Chapter 5 the role of each of the considered assumptions, i.e. the strut width, strength and 

number, has been checked, in terms of amount of scatter in results related to each choice. Finally, a joined 

lecture of the two case-studies has been proposed to evaluate a suitable criterion to select the strut-model to 

use for analysis. 

 



2. THE CONSIDERED STRUT MODELS ASSUMPTIONS 

The structural behavior of infilled frames under horizontal actions represented through strut-models depends 

on three main issues [14,18], i.e. the width and the mechanical characterization of the strut, which determine 

the stiffness and strength assumed for the panel, and the model setting, i.e. the number of the introduced 

struts and the consequent description of each of them. In the following sections each of these issues have 

been presented. In Figure 1 a standard scheme of an infilled frame is shown, and the main symbols used in 

the following paragraphs to indicate the main geometrical and mechanical quantities are reported.  

2.1 Strut width, w 

Several contributions have been dedicated to the evaluation of the strut width. An exhaustive gathering of all 

the expressions set in these decades to quantify the width of the equivalent strut in beyond the scope of this 

work. Usually the thickness of the strut, tinf, is assumed to coincide to the panel one, whilst the width of the 

panel is defined after the panel dimension. Holmes [4], as well as Paulay and Priestely [19], proposed to 

relate the strut width directly to the diagonal length (see Table 1). Most part of strut models, however, 

assume more complex relationships to quantify the strut width. An important parameter for infill panels 

classification is the dimensionless quantity h, introduced by Stafford Smith [5], which expresses the ratio 

between the panel and the frame stiffness, where the symbols in formula are described in Figure 1:  
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Based on the experimental and analytical data, Mainstone [6] proposed a relationship between h and the 

strut width, which has been adopted by the FEMA guidelines [2].  

Some other researchers proposed to relate the strut width to the stress attained by the panel. Decanini and 

Fantin [20] observed a correlation between the stress level in the panel and its capacity to carry lateral loads 

[21,22], and they provided two alternative expressions depending on the achievement of the panel cracking 

point. Durrani and Luo [10] also proposed a semiempirical equation, on the basis of the experimental work 

of Mainstone [23] and detailed numerical FEM analyses, by account for the stiffness of both beam and 

column of the frame. 

 

 



2.2 Strut mechanical properties: Em, fm 

According to the strut models, the stiffness of the infill panels depends on the strut dimensions and on the 

modulus of elasticity assumed for the infill material. Different relationships, very different each other (see 

Table 2), are available to quantify the modulus of elasticity (Em) of masonry. The stiffness of masonry 

panels, indeed, can vary very much depending on the mutual properties of bricks and mortar. Due to large 

scatter in the Em evaluation, several researcher converge to the simple equation: Em = 1000 fm, i.e. the same 

relationship adopted for concrete infills. In this work, the values of the elastic modulus of the equivalent strut 

have been defined according to this last relationship. 

The quantification of the strut strength to assume for the infill representation is even more complex and 

controversial, and a large variety of values can be found in the technical literature. This wide scatter of 

strength values depends on the difficult prediction of the physical behavior of the system “frame + infill 

panel”, which depends, in turn, on the specific and mutual properties of bricks, mortar and frame geometry, 

mechanical properties, strength and ductility. Since different collapse mechanisms can occur, a single and 

univocal value able to represent the strut performance is hard to find. This problem is usually faced by 

considering alternative strength values to assume for representing the infill behavior, depending on the 

assumed collapse mechanism.  

The infill collapse is usually related to three different in-plane mechanisms, despite even the out-of-plane 

failure can be possible [2], under certain conditions. Such mechanisms are bed-joint sliding, diagonal tension 

and corner crushing.  

The first cracking is usually related to the shear force in the panel, and it results in a stair stepped pattern of 

cracks in the mortar along the infill diagonal. For strong mortar, comparing to the units, the cracks show a 

linear trend, crossing both mortar and units, along the diagonal (diagonal cracking). For mortar much weaker 

of the units, instead, the cracks can propagate along the horizontal beds instead presenting a diagonal pattern 

(bed-joint sliding), leading to a more diffuse strength transfer between the panel and the surrounding frame. 

When the panel is sufficiently strong in shear, it can contribute to the global capacity of the system even after 

the cracking, until the crushing of the compressive corners along the panel diagonal (corner compression).  

FEMA 306 is one of the International Code more supportive in the analysis of infilled frames by means of 

strut models. It indicates four limit conditions for the infill panel in the plane, referred to as much collapse 



scenarios, respectively related to sliding shear, compression, diagonal tension and general shear. The limit 

conditions are expressed in terms of the ultimate shear of the panel, and they refer to different resistant 

mechanisms.  

The diagonal cracking (DC) failure is expressed by the following expression of the limit shear VDC (FEMA 

396, eq. 8-11) [2]:  
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based on to the Mohr-Coulomb failure theory, after the assumption of a cracking stress equal to 1/20 of the 

expected strength of masonry in the horizontal direction, f’m90, assumed in turn equal to 50% fm. Since in this 

work the numerical analyses are performed on strut-models only, a stress value for the strut has been found, 

by expressing the maximum force in the diagonal strut (DDC) as DDC = VDC /cos  and by assuming an 

uniform stress distribution in the strut, i.e. fDC = DDC /(tinf w). 

The bed joint sliding (BJS) usually occurs in conjunction with other failure modes and it is quantified 

according to the Mohr-Coulomb failure criteria. The expression provided by FEMA 306, modified according 

to [24], provides the following limit condition:  
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where g is the vertical stress due to the self-weight of the panel and  is the coefficient of friction. Even in 

this case, the axial capacity of the strut, DBJS,  can be determined as DBJS = VBJS/cos , and the strut stress fBJS 

is expressed as fBJS = DBJS /(tinf w). 

The corner compression (CC) failure is defined on the basis of a strut-model, where the width is quantified 

according to the Mainstone [6] proposal, and the compressive stress in the strut, fCC, is assumed to be equal 

to the expected strength of masonry in the horizontal direction, f’m90 = 0.5 fm.  

Several further formulations could be assumed for the width capacity quantification, provided by as much 

researchers. Special attention should be paid to the contribution given by Crisafulli [12], who proposed 

suitable stress formulation based on the Mann and Muller [25] theory, appositely modified. The Mann and 

Muller theory studies the behavior of unreinforced masonry after shear and compressive stresses, based on 



equilibrium considerations. It assumes that stress parallel to the bed joints can be neglected, so that no shear 

stress can be transferred by the head joints and a uniform distribution of shear and compressive stress inside 

the masonry panel. Crisafulli modified this last assumption, suggesting an alternative linear distribution, 

shown in Figure 2.  

The limit stress values provided by Crisafulli [12] refer to three different collapse mechanisms, related to the 

attainment of as much as limit stress values inside the strut, i.e. the shear friction (fSF), the diagonal tension 

(fDT) and the compressive (fC) ones. According to this approach, the stress to assume for the strut is the 

minimum among the three limit values. For standard geometries, i.e. for  below 87° [12] the collapse 

mechanisms are related to shear friction or diagonal tension only, and therefore the possible stress values to 

assign to the strut are provided by the following relationships: 
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where * and * are defined as ([12] eq. 4.17):  
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and Cn and Cs are coefficients determined by means of experimental analyses, and assumed equal to 1.5 and 

2.0 respectively, while d and b are the brick length and height. 

Liuaw and Kwan [26,27] have derived different formulations for the limit stress values to assume for 

analysis of strut models, based on the plastic collapse theory. Even their approach considers three different 

collapse mechanisms, i.e. the corner crushing with failure in the column, the corner crushing with failure in 

the beam and the diagonal crushing mode.  

2.3 Strut number 



The number of struts to adopt in the modeling of infilled frames depends on the purpose of the analysis, and 

on the quality of the expected information. The most common models are made by 1 strut only; they are 

made by 1 strut for each frame diagonal (i.e. two struts for each frame), since they are assumed to be active 

only after compressive forces. The adoption of struts effective after compression only is usually acceptable, 

since the bond strength at the panel-frame interfaces and the tensile strength of the masonry are very low. In 

this case, therefore, only low tensile actions can be transferred. 

The point-jointed 1-strut models can provide affordable information about the increase and distribution in 

shear force in the columns due to the infill panel interaction. To overcome this limitation, multiple-struts 

models [13,14,15] can be adopted, or additional restraints can be introduced at the ends of the strut [28]. 

The need to know the effective stress distribution in the areas next to the corner among column, beam and 

diagonal strut induces to represent the system through multiple struts. The multiple-struts models (see Figure 

3) consist in introducing two or three (for each direction) diagonal struts. In this way the amount of axial 

load in the struts is found together with the effective shear distribution in the members, with a consequent 

consistency between these quantities. 

In multiple-struts models, the mutual distance between two consecutive struts, z, introduced by Stafford 

Smith [5], plays an important role, since it influences the stress distribution in the frame, indicating the areas 

subjected to shear concentration, where an higher ductility is required.  

Usually the total area of all the struts, Ainf, is assumed to be the same of the single strut one, i.e. equal to the 

product of the thickness t and the width, w, quantified according to § 2.1, and each of the lateral struts are 

assume to have the 25% of the total stiffness, whereas the remaining 50% quote is assigned to the central one 

[12,29]. More complex models, having an higher number of struts or different geometry or resistant 

mechanisms [13,30,31]can also be adopted. 

3. THE CASE-STUDIES 

Two different case studies have been considered in this work, belonging respectively to the experimental 

campaigns performed by Al-Chaar et al. [16] and Zhai et al. [17]. The two considered systems differ each 

other very much, as regards geometry, mechanical properties and relative stiffness between infill and frame. 

The frame #1 [16] is made of reinforced concrete, and it has an infill panel made of bricks masonry, 

presenting high stiffness and strength. The experimental results have been found by means an in-plane 



monotonic loading, without any additional vertical loads, and the system can be assumed as scaled 1:2 

comparing to the current dimensions if infilled frames. The case-study #2 [17] is made of a reinforced 

concrete frame and a concrete blocks infill. The frame can be considered to be in scale 1:1, and it has been 

subjected to cyclic loading, besides a vertical load. The detailed description of the two case-studies can be 

found in the indicated references. In the following sections the two presentation of the two case-studies is 

limited to the information required for performing the analysis presented in Chapter 4.  

3.1 Geometrical and mechanical description of the case studies  

The experimental responses of the two case-studies, both the bare and the infilled ones, such as the shear 

force (Vbare_exp, Vinf_exp) and the elastic stiffness, measured for shear equal to 60% of the maximum (K60_bare_exp, 

K60_inf_exp), are shown in Figure 4. The two systems evidence a behavior very different each other: in the case-

study #1 the capacity of the infilled system is more than three times the bare frame one. Furthermore, the 

capacity of the system remains much larger of the bare frame’s one even after the infill cracking. The system 

does not achieve large displacement, due to the predominant role of the masonry panel, characterized by a 

brittle behavior. The behavior of the case-study #2 is more typical of a RC frame, with a larger base shear 

and top displacement, and a smaller contribution of the infill panel, which vanishes after the panel collapse. 

The two systems differ each other especially for the different role of the infill panel: in the first case the 

masonry infill plays the main role in the global behavior, whilst in the second one the infill panel, made of 

lighten concrete blocks, does not vanish the frame ductility. In Tables 3 and 4 all the main geometrical and 

mechanical information concerning the infilled systems are listed, while Table 5 shows the data referred to 

columns and beams.  

Furthermore, the stiffness and the shear capacity of the infilled frames have been checked, to relate the 

“intrinsic” mechanical properties of the assumed strut models, compared to the bare frame ones, to the 

corresponding properties of the original system. As regards the frame, the stiffness (Kfr) has been quantified 

through a simplified expression, as the sum of the shear-type columns stiffness: 

 32 12 /fr c cK E I h            (8) 

whilst the shear capacity of the frames, Vfr, has been found as the product of the columns sections and the 

shear stress (c), assumes according to ACI 318-02 [32] ( / 6c cf ): 
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The stiffness of the infill panels (Kinf) , in turn, have been found after the following expression: 
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and its shear capacity (Vinf) has been roughly determined as the product of the panel horizontal section and a 

stress equal to fm /10.  

 

3.2 Data referred to the strut-models adopted for analysis 

In Table 6 the width (w) found according to the considered strut-models, presented in § 2.1, have been listed 

for the two case-studies. Figure 5 shows the stress (fstr) values assumed for the strut. It should be noted that 

some of the considered stress values (provided by FEMA 306 for the diagonal cracking and the bed joint 

sliding collapse mechanisms) are not defined after the strut model, concerning instead the infill cross section 

(Ainf = tinflinf); in these cases, therefore, fstr is defined as the ratio between the compressive strength of the 

strut (DBJS, DDC) and the strut cross section, resulting different for each strut-model. The other stress values, 

instead (provided by FEMA for the CC and by Crisafulli for the BJS and DT), refer directly to the stress to 

give to the strut. As a consequence, some values of stress are constant for all the models, whilst some others 

are different for each considered strut width. As should be noted, the CC stress is larger than all the others, 

despite the BJS stress has similar (or even larger, for the case-study #2) values when the strut model 

proposed by Mainstone is adopted, since it leads to assume a strut with a depth much smaller than the other 

models. 

 

The considered strut-models have been checked even in terms of stiffness (Kstr) and shear capacity (Vstr). Kstr 

has been quantified as the horizontal component of the axial stiffness of the struts (Einf Astr /Dinf), whilst Vstr 

has been found as the horizontal component of their axial capacity (Astr fstr), depending on the assumed stress 

for the strut.  

 



In Figures 6 and 7 the ratios between strut and frame stiffness and shear capacity have been shown, 

respectively. As can be noted in Fig. 6, the strut stiffness is sensitive to the assumed strut width, and 

therefore to the considered strut-models, whilst it is not sensitive to the considered stress values, since the 

same value of Young modulus has been assumed in all cases. In the same figure, the ratio between the 

stiffness of infill and frame, as defined in equations (8) and (10), is even shown. The ratio between the strut 

and the frame shear capacity, instead, is sensitive both to the struts width and stress, as can be observed in 

Fig. 7. 

 

 

4. THE SEISMIC CAPACITY OF THE CASE-STUDIES  

4.1 The numerical analysis 

The Seismostruct platform [33] has been adopted for the analysis. Each frame member has been divided in 4 

branches. A fiber model has been assume for representing the cross sections, where the concrete has been 

described through the Mander et al. [34] relationship and the reinforcement has been represented by a 

bilinear model with a hardening ratio equal to 1%. The diagonal strut behavior has been represented by no-

traction links introduced at its ends, described through asymmetric Takeda model. The pushover analysis has 

been performed by combined force and displacement control.  

4.2 Experimental and numerical capacity curves 

The capacity curves obtained by performing the numerical analysis have been compared to the experimental 

ones. Figures 8 and 9 show the obtained capacity curves for the two case-studies, respectively. In each 

Figure the capacity curves, obtained by adopting the considered models and stress values, have been shown 

for the models with 1, 2 and 3 struts, respectively. In the same Figures the limit conditions assumed in the 

analysis, i.e. the achievement of the limit values for the concrete strain, chord rotation and shear force, are 

shown. All the limit conditions have been taken after the EC8 provisions: the ultimate concrete strain has 

been assumed equal to 0.0035, the limit chord rotation has been taken as ¾ of the ultimate rotation, defined 

according to Annex A of EC8 (eq. A1)[1], as well as the limit shear (EC8, Eq. A12) [1]. 

As regards the case-study #1, the strut stress which better represents the experimental results is fBJS, provided 

by FEMA 306. Since fBJS, as fDC, has been derived for each strut model by the same horizontal force, all 



models provide the same results in terms of maximum base shear, whilst – as expectable –  they differ each 

other as regards the elastic stiffness. Even the strut stress values proposed by Crisafulli (fDT, fSF), which vary 

very much depending on the considered strut-model, provide an acceptable approximation of the 

experimental results. The number of struts does not affect very much the obtained capacity curves, in terms 

of maximum base shear or top displacement. When the 2-strut model is adopted, however, the collapse 

mechanism of the system changes, and the limit shear force is achieved in the columns for lower loads than 

in the other cases. 

 

The case-study #2 differs very much from the #1, as regards the comparison between experimental and 

numerical results. First of all the stress value more adequate to describe the real behavior of the system is the 

larger one (fCC), representing the corner crushing of the compressive strut. All the other stress values provide 

results well below the base shear found experimentally. Furthermore, except for fCC, the system is not 

sensitive to the strut width, since all the pushover curves are very close each other for all the considered 

strut-models.  

To better compare the numerical results to the experimental one, the elastic stiffness and the maximum base 

shear provided by the numerical analysis have been checked. Figure 10 shows the comparison in terms of 

elastic stiffness. Since the stiffness has a degrading trend at the increasing of the system strain even in the 

first steps of the analysis; the K60,inf values refer to the stiffness corresponding to a base shear equal to 60% of 

the maximum one, i.e. the stiffness of the equivalent bilinear curves. 

As can be noted, all the adopted models underestimate the stiffness of the case-study #1, whilst the stiffness 

of the case-study #2 is approached, especially when fCC and fBJS are assumed. These results are not surprising, 

since they are compatible to the comparison made between Kstr and Kfr, shown in Figure 6.  

In Figure 11 the maximum base shear provided by the adopted models for the two case-studies has been 

shown, together with the experimental values. In the figure, as well as in the following sections, two different 

values of the base shear are shown, referring, respectively, the maximum values provided by the analysis 

(Vmax_inf) and to ones at the achievement of the limit conditions (Vlim_inf). In some cases (case-study #1, 2-

strut), indeed, the limit conditions imposed to the system are achieved much before the complete 

development of the inelastic sourced of the frame. 



 

5. DISCUSSION OF THE OBTAINED RESULTS  

The results obtained in this work underline the uncertainties in choosing a proper strut model to represent the 

behavior of infilled frames. The considered case-studies, in fact, evidence many differences in the 

comparison with the experimental results. As regards the choice of the model, the ones which provide higher 

width for the strut (H, D&F_UN) seem to better catch the initial stiffness of the frames. As regards the 

choice of the stress to assume for the strut, the case-study #1 is better represented by the lowest values (fDC, 

fDT, fSF), whilst the case-study #2 is better simulated by assuming the higher strut stress fCC. Finally, the 

number of struts to represent the panel does not significantly affect the capacity curves, resulting however to 

be important for the evaluation of the collapse mechanisms of the systems. In this section the role of the 

main choices related to the strut model have been discussed, and a joint lecture is proposed for the two 

frames.  

5.1 Effects of the model assumptions on the response quantities 

The effects of each of the considered assumption has been measured in terms of scatter in the response 

quantities, i.e. the elastic stiffness, K60,inf, and the maximum base-shear, Vmax,inf, for the two case-studies. The 

scatter has been measured through the percentage difference (% DIFF), defined, for each quantity, according 

to the following expression:  
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Figure 12 shows the scatter found for the two case-studies as a function of the strut width, quantified by 

considering, for each stress value and number of struts, the maximum and the minimum values provided by 

the considered strut-models. As can be noted, the stiffness of the case-study #2 is sensitive to the strut width 

only when the CC stress is adopted, evidencing a scatter below 10% in all the other cases. The stiffness of 

the case-study #1, instead, is sensitive to the strut width in all cases (scatter between 30% and 55%). As 

regards the limit base-shear, it should be reminded that the BJS and DC stress values have been defined in 

order to have the same strut strength in all models; consequently all the capacity curves achieve the same 

amount of base shear, unless achievement of limit conditions. 



Figure 13 shows the scatter in the response quantities related to the strength value assumed for the strut. In 

this case the maximum and minimum values considered to find the scatter refer, for each strut model and 

number, to the results provided by the considered stress values. The case-study #1 evidences a difference 

sensitivity to the assumed stress in the two response quantities. In fact, the stiffness K60,inf has a negligible 

sensitivity, except for the M model, which achieves the post-elastic range before 60% of the maximum base 

shear, where the stiffness is measured. The case-study #2, instead, evidences the same sensitivity to the 

stiffness and the base shear, with a scatter ranging between 10% and 40% depending on the assumed model.  

Finally, the effects related to the number of struts assumed in the model has been checked, and shown in 

Figure 14. In this case the maximum and minimum values have been found, for each strut model and stress, 

by considering the three values related to the considered strut number. As can be noted in Fig. 14, this 

assumption is almost negligible for the stiffness, with values of % DIFF below 5% (except for the case-study 

#2, when the CC stress is adopted). The number of struts, instead, plays a crucial role in the evaluation of the 

maximum shear force in the case-study #1. As it was already highlighted, indeed, the number of struts affects 

the attainment of the limit conditions imposed to the systems; namely, in the case-study #1 the 2-strut model 

provides a premature failure of the system, comparing to the other models.  

5.2 Comparison between the results found for the two case-studies 

In order to better understand, and to compare, the results provided by the analysis for the two case-studies, 

they have been expressed in terms of non-dimensional quantities. Namely, the increase in elastic stiffness 

(iK) and in base-shear (iV) provided by the diagonal strut has been introduced to measure the effect of the 

infill panel in the considered models. Such increase has been normalized through the maximum quantities of 

the corresponding experimental test, according to the following relationships:  
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The increase in the response quantities have been related to the amount of stiffness and shear, which have 

been expressed as the ratio between the strut and the frame quantities (Kstr/Kfr, Vstr/Vfr), as defined in § 3.2 

and shown in Figs 6 and 7. The iK and iV values obtained through the analysis for the two case-studies are 

shown in Figures 15-17, together with the “error” of the numerical models. The “error” has been defined in 

non-dimensional terms, as: 

     ( )
 

  ( )

RESPONSE QUANTITY numerical RESPONSE QUANTITY experimental
ERROR

RESPONSE QUANTITY experimental


  

   (14) 

In Figure 15 the increase in stiffness has been shown as a function of the ratio between the strut and the 

frame stiffness. As should be noted, both case-studies evidence an increase in stiffness at the increasing of 

Kst/Kfr ratio, even if the case-study #1 presents an iK amount much larger than the case-study #2. In the same 

figure the error trend is shown. As regards the case-study #1, all the strut models provide a stiffness increase 

well below the experimental value, and the error is over 20% in all cases. In the same diagram the ratio 

between the infill and the frame stiffness – as listed in Figure 4 – is shown. All the strut models have a 

stiffness much smaller than the infilled one. The Holmes model, which has the higher stiffness, provides the 

best approximation of the experimental result. As regards the case-study #2, the strut models provide a 

similar stiffness to the infill panel, and several strut-models approach the experimental result with a 

satisfactory approximation, when the FEMA strut stress values (fCC, fBJS, fDC) are applied. The quality of the 

results can be evaluated even by checking the ratio between the infill and the frame stiffness, evidenced in 

the graphs. In both cases the Kinf/Kfr quantity corresponds to good results comparing to experimental ones.  

Figures 16 shows the increase in base shear provided by the considered strut models. Both the maximum 

shear attained by the whole capacity curves (MAX SHEAR) and the value at the achievement of limit 

conditions (limit shear) are represented. The maximum shear, indeed, is more suitable to express the effects 

of the width and stress assumptions made for the struts, whilst the limit shear provides important information 

about the role plaid by the strut number. As regards the case-study #1, there is a good proportionality 

between iV and Vstr/Vfr for Vstr/Vfr below 3.0. For larger shear strut amount, this proportionality vanishes, and 

the iV keeps the same value, whichever strut stiffness is considered.  

 



By comparing the diagrams of iV to the ones expressing the “error”, it can be noted that the numerical results 

which better approach the experimental results have Vstr/Vfr values between 0.8 and 1.5. By comparing the 

diagrams expressing the error values for “max” and “limit” base shear, shown in Figure 17, it can be noted 

that the results obtained by the 3-strut models are “better”, i.e. closer to the experimental ones. Even when 

the “stronger” strut mode is adopted (H model combined to fCC) the overestimation of the system capacity is 

corrected by the achievement of the introduced limit conditions.  

 

In the case-study #2, Vstr/Vfr keeps always below 1, and the proportionality between iV and Vstr/Vfr works for 

all the obtained results. Even in this case, the fBJS and the fDC results do not follow strictly such 

proportionality, since at the varying of the strut width the contribution of the infill remains constant, due to 

the already mentioned stress quantification. Even for the iV, the obtained results can be compared to the 

Vstr/Vfr ratio. In the case-study #1 this quantity corresponds to unacceptable results; this evidence suggests 

that, whichever the panel capacity can be, the adoption of a strut model requires a strut capacity below the 

double of the frame capacity. The iK and the iV values obtained for the two case-studies have been compared 

in Figure 18. As regards iV, only Vstr/Vfr values below 2.5 have been considered. As should be noted, both iK 

and iV – when expressed in terms of Vmax - evidence a strong proportionality to the assumed reference 

quantities. As can be noted, each case-study presents a different proportionality factor; this difference is not 

surprising, since they differ very much for the relative contribution of the infill.  

3. CONCLUSIVE REMARKS 

In this work a numerical analysis has been performed to simulate the seismic response of two different 

infilled frames, differing for dimensions and mechanical properties and – above all – for the relative stiffness 

and strength of the infill panel comparing to the frame ones. Various strut models have been considered in 

the analysis, and the obtained numerical capacity curves have been compared to the experimental ones; the 

global response parameters of the systems, i.e. elastic stiffness and maximum base shear, have been carefully 

analyzed. The effects of the variation in the main properties of the strut model, i.e. the strut width, stress and 

number, have been checked on the two selected response quantities.  

The effects of the strut width affected both stiffness and base-shear, especially in one of the case-study, 

where the scatter in the results achieved almost 60%. The assumption regarding the strut stress has resulted 



the most important one, with a consequent scatter in the base shear until 120% (case-study #1). The number 

of struts in the model has not affected very much the capacity curve of the case-studies, but it made a 

difference in the achievement of the limit conditions of the frame, i.e. the limit strain in the concrete, chord 

rotation and shear force. When the three-strut models are adopted, the contribution of the infill approaches 

the experimental one much better that in the other cases, whilst the two-strut models have evidenced, in some 

cases, a premature failure. 

 

The two considered case-studies evidence a behavior - and a role of the infill in the seismic response -very 

different each other. In order to understand how to represent at best infilled frames with general properties, 

considering the several possible choices available in literature, a joint lecture of the two case-studies has 

been made, and some suitable quantities to drive the choice have been checked.  

 

Namely, the survey has been focused on the relative stiffness and strength of the panel compared to the 

columns of the frame. Stiffness and shear strength of the two compared elements have been roughly 

quantified by simplified numerical equations, in order to be related to the obtained results. The comparison 

has shown a good correspondence between the selected “input quantities”, i.e. Kinf /Kfr and Vinf /Vfr and the 

output results, i.e. the increase in shear and stiffness provided by the introduced struts in the numerical 

models. 

According to the obtained results, the following observations can be made:  

- all the checked parameters, i.e. strut width, stress and number, affect very much the obtained results; 

- the adopted strut-model should fit as much as possible the replaced panel in terms of relative stiffness and 

shear capacity between panel (strut) and bare frame; 

- the shear capacity of the strut cannot exceed a value equal to 2-3 times the one of the bare frame; 

- the three-strut models provide a better representation of the panel contribution, reducing eventually the 

overestimation of its capacity, when a too high stress is assumed for the strut. 

In order to achieve more general results, the suggested “input quantities” should be checked on a larger 

number of samples. 
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- Various strut models, differing for width, stress and number have been applied 

- Two different case-studies have been assumed for comparison 

- Some mechanical parameters expressing the infill contribution have been selected 

- The response of each frame has been checked in terms of stiffness and shear 

- The suitability of each model has been checked through the selected parameters 
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GEOMETRICAL QUANTITIES 

hc, bc = column dimensions 

hb, bb = beam dimension 

Ic, Ib  = moment of inertia of 
columns and beam 

As, A’s = top and bottom 
reinforcement 

tinf = infill thickness 

w = strut width 

MECHANICAL QUANTITIES 

 fm = limit stress of masonry 

 fc  = limit stress of concrete 

Efr = Young modulus of frame  

Ec = Young modulus of concrete 

Es  = Young modulus of steel 
Em = Young modulus of masonry 

infill 
Gm = Shear modulus of masonry 

infill 

 

 

Figure 1. Scheme of a standard frame and notation of the main quantities. 
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Figure 2. Stress distribution in the masonry infill panel suggested by Crisafulli (1997). 
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where z = H/2H is the contact lenght, H is found according to eq. (1) and Ainf  is the masonry strut area (tinf w) 

 

 

 

Figure 3. Strut models: a. 1-strut b. 2-strut c. 3-strut 
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Figure 4. Experimental behavior of the two case-studies. 
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Figure 5. Assumed stress in the strut-models, fstr. 
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Figure 6. Ratio between the strut and the frame stiffness. 
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Figure 7. Ratio between the strut and the frame shear capacity. 
 



 

 

Figure 8. Capacity curves found for the case-study #1 
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Figure 9. Capacity curves found for the case-study #2. 
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Figure 10. Elastic stiffness of the case-studies. 
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Figure 11. Base shear of the case-studies. 
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Figure 12. Effect of the strut width  
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Figure 13. Effect of the strut stress  
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Figure 14. Effect of the strut number. 
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Figure 15. Increase in stiffness of the two case-studies. 
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Figure 16. Increase in the base shear of the two case-studies (max shear) 
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Figure 17. Increase in the base shear of the two case-studies (LIMIT shear). 
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Figure 18. Comparison between the two case-studies.  



 

Table 1. Width quantification according to the considered models. 
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Table 2. Em quantification 

 

 

FEMA 306 suggestion (1998) Em = 550 fm 

Paulay and Priestley (1992) Em = 750 fm 

Hendry (1990) Em = 2116 fm
0.50 

Sinha and Pedreschi (1983) Em = 1180 fm
0.83 

Pauley and Priestley 1992, Sahlin 1971Smyrou (2006) Em = 1000 fm 

 
 
 
 



 

Table 3. Geometrical data of the case-studies 

 L H Linf Hinf tinf θ H/L 
 mm mm mm mm mm rad dimensionless 
case-study #1 2032 1425 1829 1327 57 0.628 0.75 
case-study #2 3150 3000 2800 2600 190 0.748 0.95 

 
 

Table 4. Mechanical data of the case-studies 
 fc c Ec fs Es fm Em 
 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 
case-study #1 38,4 1.03 29992 338.5 200000 18.57 18590 
case-study #2 27.7 0.88 24754 472.0 182000 1.90   1900 

 
Table 5. Main data referred to the frame’s members 

 COLUMNS BEAM
 cross section reinforcement cross section reinforcement 
 bc hc As stirrups bb hb Atop Abottom stirrups 
 mm mm No, diam. diam./spacing mm mm No, diam. No, diam diam./spacing 

case-study #1 127 203 410 5/152 127 197 310 210 5/76 
case-study #2 350 350 816 8/100 (150) 350 400 216 216 8/100 (150)
 
 

Table 6. Strut width (w) of the strut models of the case-studies (in mm) 

models H M D&F_UN D&F_CR P&P L&K D&L C&A 
case-study #1 753 234 645 451 565 528 337 360 
case-study #2 1274 457 1427 1080 955 1124 650 705

 
 



 

Brief description of the paper contents 
Infill panels largely affect the seismic response of framed constructions. The wide variety in their 
mechanical and geometrical features has induced, in the last decades, many different models and 
assumptions in their analytical representation. In this paper the simplest and more diffuse analytical 
approach, based on the introduction of equivalent struts, has been checked. Some of the main strutmodels 
have been presented and compared as regards the number, the dimensions and the strength to 
assume for the equivalent strut. The numerical results provided by the considered models by performing a 
nonlinear static analysis have been checked with reference to two different case-studies, differing to each 
other for the ratio between the infill and the frame stiffness and strength. The comparison between 
experimental and numerical data, expressed in terms of stiffness and strength, has pointed out the role of 
each considered assumption in the effectiveness of the models. 
 
 
 
Short summary about the research activities of the research group 

The authors deal with the seismic assessment of existing buildings, both historical and modern ones, 
constructed before the current seismic legislation was passed. In Italy most part of buildings have been 
constructed without attending anti-seismic prescriptions; therefore, a reliable evaluation of their seismic 
performance is an essential step for a convenient choice about their use and maintenance. The research 
group deals with the main issues related to the numerical modeling of pre-normative buildings, such us: i) 
mechanical properties of materials, ii) inelastic involvement of the structure, iii) effects of the uncertainties 
affecting the constructive process, iv) effects related to nonstructural components and v) role of the soil on 
the effective seismic input. This paper is focused on the role of the masonry infill panels on the seismic 
performance of RC framed constructions. Infill panels, indeed, largely affect the seismic assessment of 
constructions, despite they have been usually neglected in the modeling; furthermore, their contribution is 
still quantified without a strict procedural prescription. 




