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Abstract 

Adaptive channel eqiializatioti is an effective tool for 
the antenna receiver for  estimating the injoriiiation se- 
quence in severe interference backgrounds. Therefore, the 
pr6bl&i of linear channel distortion has been the focus of 
consideraMe research in the signal processing and coni- 
niunications conimunities. 

The choice of antenna receiver structure is a chulletige 
for next radio communicution systenis, becaiise fr-oni this 
will depen.d niost of the improvement \vi11 be possible with 
efficient dsp devices. The two possible streets are the use 
of omnidirectional antennas or aritentias arr-cry. 

Our paper presents innovative adaptive oyuolizers 
working on in  different not necessary Garissian enviroii- 
mental conditions. 

1 Introduction 

The rapidly increasing demand for pcrsonal mobile coni- 
munications has created an avid interest in innovative 
services and in new robust signal proccssing techniques, 
which could better protect and recover the transrnittcd in- 
formation sequence. Extensive rcsearch effort has been 
directed towards propagation impairment attenuation and 
interference mitigation in order to niakc efficient use of 
the finite spectral resources of a physical channcl. 

The atmosphere and the ocean, playing the role of the 
physical channel in wireless communications, can cause 
signal distortion due to finite bandwidth and signal fading 
due to multipath propagation. In the past, an abundancc 
of adaptive linear equalizers have been proposed, which 
optimize an appropriate performance index to adaptively 
compensate for the effects of the channel [SI. A large por- 
tion of the proposed methods assumes the availability of 

a training sequence at the receiver for the purpose of ini- 
tially adjusting the equalizer coefficients. However, in ap- 
plications such as multiuser communication networks and 
mobile communication systems, it is desirable for the re- 
ceivcr to be able to equalize the channel without the use 
of a training sequence (self-recovering or blind equaliza- 
tion) [2]. 

During the 90s, a great interest in wireless communica- 
tion applications including blind equalization, source sep- 
aration, and antenna beamforming has driven research into 
the development of fast and robust algorithms. Nowadays, 
onc of the most studied and implemented in practice blind 
equalization methods is the Constant Modulus Algorithm 
(CMA). The CMA is based on a criterion that penalizes 
deviations of the modulus of the equalized signal away 
from a fixed value determined by the source alphabet. The 
first major study of the CMA and its properties was per- 
formed by Treichler et al. [ 10, 1 11 who analyzed the cap- 
ture and lock behavior of baud-spaced CMA using an om- 
nidirectional antenna receiver. A further study was done 
by [ I ]  where was analyzed the algorithm performance us- 
ing arrays of antennas at the receiver station. 

By and large, the Gaussian distribution has been the 
favorite noise model commonly employed in radio com- 
munications mainly because it often leads to closed-form 
solutions and to linear processors. However, in wireless 
channels, multiuser interference, atmospheric noise (thun- 
derstorms), car ignitions, and other types of naturally oc- 
curring or man-made signal sources result in an aggre- 
gate noise component that may exhibit high amplitudes for 
small duration time intervals [3, 91. Recent experimental 
measurements have demonstrated that the ambient chan- 
nel noise is decidedly non-Gaussian due mostly to impul- 
sivc phenomena (see [ 121 and references therein). It has 
heen shown that electromagnetic noise in urban mobile- 
radio channels is heavy-tailed in nature and can be better 
modeled by using distributions with algebraic tails rather 
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than the Gaussian or other exponentially-tailed distribu- 
tions [7,5,6]. 

Detection and estimation algorithms designed under the 
Gaussian assumption exhibit various degrees of perfor- 
mance degradation, depending on the non-Gaussian na- 
ture of the noise. This is due to the lack of robust- 
ness of linear and quadratic types of signal processors to 
many types of non-Gaussian environments [4]. On the 
other hand, non-Gaussian noise may actually he beneficial 
to a system's performance if appropriately modeled and 
treated [ 121. For this reason, engineers have recognized 
the need to use more general and realistic non-Gaussian 
models and design robust signal processing techniques 
that take into account the heavy-tail nature of thc data. 

Recently, a statistical model of heavy-tailed interfer- 
ence, based on the theory of alpha-stable random pro- 
cesses, has been proposed for signal processing appli- 
cations [7] .  The family of alpha-stable distributions 
arises under very general assumptions and describes a 
broad class of impulsive interference. It is a parsimo- 
nious statistical-physical modcl defined (in its most gen- 
eral ferm) by only four parameters that can be efficiently 
estimated directly from the data. Furthermore, the alpha- 
stable model is the only one whose members obey the sta- 
bility property and the Generalizcd Central Limit Theo- 
rem. 

2 Problem Statement 

Most of the theoretical work on blind equalizers based on 
the CM criterion typically exploit higher (than second) or- 
der statistics or second-order cyclostationary statistics of 
the channel output signal. For this reason thcse methods 
have focused on the case where the channel noise is as- 
sumed to follow the Gaussian model. The Gaussian as- 
sumption is frequently motivated because it often leads to 
mathematically tractable solutions. However, algorithms 
designed under the Gaussian assumption exhibit various 
degrees of performance degradation, depending on the 
non-Gaussian nature of the environment. As we proved 
in the simulation experiments, for thc Constant Modulus 
Algorithm class, the presence of heavy-tail nature noise, 
even though not much impulsive, (i.e. realistic near Gaus- 
sian values), lead to a total lost of performance if used 
with methods optima under the Gaussianity assumption. 

Indeed, experimental results have been reportcd where 
elcctromagnetic noise in urban mobile-radio channels is 
heavy-tailed in nature and cannot be modeled by means of 
Gaussian or other exponential-tailcd distributions ( 5 ,  61. 

Hence, there is a need to use more general and realis- 
tic non-Gaussian models and design efficient equalization 

techniques that take into account the possible heavy-tail 
nature of the data, and simultaneously work well in good 
Gaussian channels. In modeling this type of signals the 
swrnrerric alplia-stable (SaS)  distribution provides an at- 
tractive theoretical tool. It was proven that under broad 
conditions. a general class of heavy-tailed noise follows 
the stable law [71. 

The SaS class of distributions is best defined by its 
characteristic function, depending by three parameters. 
The characteristic exponent cy is the most important pa- 
ramcter of the SOS distribution and it determines the 
shape of the distribution. The smaller the characteristic 
exponent cy is, the heavier the tails of the alpha-stable 
dcnsity. It is this heavy-tail characteristic that makes the 
alpha-stable densities appropriate for modeling noise that 
may be impulsive in nature. We should also note that the 
stable distribution corresponding to a = 2 coincides with 
the Gaussian density. 

A main property of such distributions is that all but 
Gaussian distributions possess finite moments of order p 
only when p is strictly less than a: ElXlP < 00 forp  < a. 
That explains our choice to use the fractional-lower order 
moments as the only possible tool capable to digitally pro- 
cess the analyzing data. 

Our work is devoted to the development of a novel con- 
stant modulus method which makes use of temporal fil- 
ter diversity and array signal processing system for robust 
performance in the presence of noise environments that 
can be modeled according to the alpha-stable law. 

2.1 The CM Algorithm: Background 

Let consider a received signal which is processed by a 
blind equalizer according to a precise cost function. The 
complex filter output y(n) may be written as 

!dn) = X H ( 4 W ( 4  ( 1 )  

where x(n) is the vector of data in the delay line of a N -  
coefficient complex FIR filter in the case of omnidirec- 
tional analysis. If we have an array of antennas, x(n) will 
be the phase-shifted version of the N data signals accord- 
ing to the relative incoming directions. 

The most famous member of the constant modulus fam- 
ily is the Constant Modulus (CM) algorithm [lo, 111, 
whose cost function is given by 

where 6 is the constant modulus value, p and q are two 
positive integers, and whose update equation is given by 

(3) w(n + 1) = w(n> - Px*(n)Y(n)(llY(4112 - 1) 
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Such method allows a set of characteristics The main 
characteristic associated with the standard CMA is that i t  
involves fourth-order moments of the signal. In the pres- 
ence of heavy-tailed noise. the use of second- or higher- 
order statistics in effect amplifies the noise. 

3 Alpha Stable Distributions 

The class of symmetric alpha-stable distributions is best 
defined by its characteristic function: 

= exP(Jfiw - Yl4=), (4) 

where a is thc characteristic exponent restricted to the 
values 0 < a 5 2, 6 (-cc < 6 < 00) is the location 
parameter, and 7 (y > 0) is thc dispersion of the distri- 
bution. The dispersion parameter y determines the spread 
of the distribution around its location parameter 6 ,  much 
in the same way that the variance of the Gaussian distri- 
bution determines the spread around the mean. The char- 
acterisiic exponent U: is the most important parameter of 
the SaS distribution and it  determines the shape of the 
distribution. The smaller the characteristic exponent cy is, 
the heavier the tails of the alpha-stable density. It is this 
heavy-tail characteristic that makes the alpha-stable densi- 
ties appropriate for modeling noise and interference which 
are impulsive in nature. We should also notc here that the 
stable distribution corresponding to 0 = 2 coincides with 
the Gaussian density. 

An important difference between the Gaussian and the 
other distributions of the alpha-slable family is that only 
moments of order less than Q exist for the non-Gaussian 
alpha-stable family members. That is the main reason of 
the need to change the cost function and the relative re- 
cursive'equation. We actually did not use the same cost 
function with p and q fractional because we referred to 
one fundamental tool used for the SaSdistribution repre- 
sented by the signed pokver defined as 

z<P' = I:cy-'x* (5  ) 

Using the FLOM and the signed power operators. we 
came up with a new cost function. 

3.1 Fractional Lower Order CM Filter and 
Array 

We propose a new cost function that points out mainly 
two aspects. First, we are processing signals with con- 
stant modulus modulation, so this characteristic is what 

wc eventually desire; second, we suppose to have to deal 
with a larger and more realistic class of noise distribu- 
tions. which may give origin to some impulsiveness totally 
disruptive if managed with the standard CMA. What we 
prescnt, is a modified version of the error function which 
takcs into account this heavy-tailed nature of the noise, 
trying to mitigate its impulsiveness by means of fractional 
lower-order moments. The new cost function has the ex- 
pression 

where 6 is a pth-1 power version of the constant signal 
modulus, assuming p < cy. The pair ( p ,  q )  takes frac- 
tional values between 0 and a, where a is the character- 
istic exponent of the alpha-stable distribution that best de- 
scribes the statistics of the noise vector. Furthermore, the 
product p . q must be less than a. The equations we came 
out is 

One difference between the two parallel analysis is the 
capability to discriminate two lock and capture zones for 
the temporal system only if the incoming signals are tones. 
Adversely, in the case of antennas array it is always possi- 
ble to find a more efficient expression due to the presence 
of another information term carried out with the signals 
represented by the angular spatial arrival direction. 

4 Simulations Results 

In this section, we test and validate the new FLOS-CM 
tcmporal-spatial adaptive algorithms and compare their 
performance with that of the conventional CM algorithms 
in a noisy environment. 

For the spatial model, let consider two independent 
transmitted signals, QPSK modulated, impinging on the 
array uf dimension two. 

For the temporal model, let suppose a filter length of 
two taps, and consider a received signal which is a scalar 
sum of the direct signal and a delayed version of itself. 

The number of snapshots available to the array is M = 
100,000, M = 500,000 or M = 1,000,000 depending 
on the expected BER and we performed 10 Montecarlo 
runs. 
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Figure 1 :  Bit error rate curves for the filter receiver 
system in configuration for cy = 1.85 and Q = 2. 

We model the complex amplitudes of the noise as com- 
plex Symmetric-Alpha-Stable random variables. In our 
simulations, we define the EfSective Fractional SNR (EF- 
SNR) to be the ratio of the fractional signal power of LY 
over the fractional noise power of cy. 

We had to use such unusual parameter since the stan- 
dard SNR, which uses second order powers, is not defined 
for impulsive noise. 

In the Figures 1 and 2 we plot the Bit Error Rate versus 
the EFSNR for the original CM and the proposed FLOS- 
CM algorithms for both the filter and the array solutions. 
In Figure 1 the noise component is modeled as an alpha- 
stable process with CY = 1.85. Figure 1 demonstrate that 
occurrences of noise outliers during the adaptation, have 
an adverse affect to the learning curve of the original CM 
method, as the quasi horizontal curves can testify. On the 
other hand, the proposed FLOS-CM Filter and FLOS-CM 
Array cost function can suppress the noise components 
and results in a much deeper bit error rate curve. The 
difference between the two performance behavior for the 
FLOS CM filter and array is due to the capability for the 
array system to opportunely initialize the algorithm in or- 
der to obtain a more stable and faster convergence. 

In the presence of Gaussian channels, Figure 2, the CM 
performs better than the FLOS-CM for both the spatial 
and the temporal models, as we could expect, since the 
CM gives the optimum solution. 
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Figure 2: Bit error rate curves for the filter receiver 
system in configuration for cy = 1.85 and cr = 2. 

5 Conclusions 

In this paper we have developed a new cost function and a 
new relative update equation for the treatment of constant 
modulus signals over a heavy-tailed noise channel. The 
key feature of this new cost function is its robustness and 
reliability in the presence of different noise environments. 
The capability of an array system to steer a beam in the 
direction of the signal while suppressing interference and 
noise is resulting in a better performance in terms of bit 
error rate respect to the equivalent FIR temporal filter case. 
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