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Abstract: In this work a method to apply the eigenfilter approach to the design of IIR filters in the frequency
domain is described. The eigenfilter approach is an appealing way of designing digital filters, due mainly to
the simplicity of its implementation: an error function is expressed as a quadratic form in the filter coefficients
and the search of the eigenvector corresponding to the minimum eigenvalue yields the optimum solution. L'his
technique has been successfully applied to the design of both FIR and IR filters. In this work the [IR case is
addressed: in our approach the error between a desired function and the response of a rational transfer function
1s expressed in the frequency domain. Some examples of numerical design are shown for different types of filters,
lowpass and bandpass, to show the effectiveness of the presented method.

1. INTRODUCTION

The eigenfilter approach 18 a simple and flexible
way of designing digital filters. The method con-
sists in expressing the error between a target and
a digital filter frequency response as a real, sym-
metric, positive-definite quadratic form in the fil-
ter coefficients. 'The error can be referred either to
the time or to the frequency domain, or to both of
them. The eigenvector corresponding to the mini-
mum eigenvalue yields the optimum filter coeflicients
according to the chosen error measure.

"I'he method has been introduced for least-squares
design of a variety of hinear phase FIR digital filters
in [1]. It has been extended to the case of FIR Hilbert
transformers and digital differentiators in [2][3]. In
[4] the eigenfilter approach has been applied to the
design of FIR filters with an arbitrary frequency re-
sponse and not having, in general, a linear phase.

Design of IIR eigenfilters in the time domain has
been addressed in [5]. A desired symmetrical infinite
impulse response is congidered as the sum of a causal
and an anti-causal part. A recursive difference equa-
tion is used to approximate the causal part. The
error between the target function and the impulse
response of the system is expressed as a quadratic
form in the filter coeflicients, so that the eigenfil-
ter approach can be applied. In this case, however,
a noncausal system is necessary to implement the
global desired impulse response. If a causal unple-
mentation is required, thig can be obtained by substi-
tuting poles outside the unit circle with their inverse
conjugate and with a proper scaling of the transfer
function: therefore, stable poles are constrained to
be double. Moreover, the error weighting function
operates 1 the time domain, making more complex
a different consideration of the passbands and of the
stopbands.

In [6][7] the eigenfilter approach is applied to the
design of allpass sections with a given phase re-
sponse. M two allpass sections are designed to be
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in-phase and out-of-phase in the passband and in the
stopband, respectively, then the method can be ap-
plied also to the design of IR filters [7][8]; however,
the degrees of the numerator and of the denomina-
tor are related to the degrees of the allpass functions
composing the system and can not be completely ar-
bitrary.

Design of equiripple IIR filters with an arbitrary
number of poles and zeros 1s dealt with, for exam-
ple, in [9][10]. In [10] the solution of an eigenvalue
problem yields the filter coeflicients, even though the
classical eigenfilter approach, based on the Rayleigh’s
principle [1] and on the search of the minimum eigen-
value of a positive-definite matrix, is not used.

In this work a new and simple method based on the
eigenfilter approach to design causal IR filters with
an arbitrary number of zeros and poles is presented.
It works in the frequency domain so that different
weights can be assigned to the different bands. More-
over, no constraints are posed on zeros and poles of
the system, so yielding more degrees of freedom.

The method is presented in the next section, while
in Section 3 some examples of numerical design of 1IR,
filters are shown.

2. DESIGN OF IIR EIGENFILTERS

The main problem in designing R eigenfilters is
expressing the error between the target and the filter
frequency response as a quadratic form in the filter
cocetlicients. This task is easier in the FIR case, where
the target function is not rational.

Let H(z} be a rational function having M zeros
and N poles (with arbitrary M and N}, ie.,

H(Z): b0+b1271+.‘.+bM.’:7‘u (l)

o+ a1z . Fave N
where a,,n = 0,1,...,N, and b,,n = 0,1,..., M,
are real coefficients. Let H¢(w) be a degired target
function representing, in general, a lowpass, high-
pass, bandpass filter frequency response. Let w; be
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the bounds of each band (passband, transition band,
stopband). For a lowpass filter, for example (0,w1),
(w1, ws) and (wa, w) are a passband, transition band
and stopband, respectively.

Consider we are interested only in approximating
the magnitude of the target function #¢(w). In our
approach, however, we will assign also a phase to
the function H%(w): the initial guess will be a linear
phase function. Therefore, if H;f(w) g the target
frequency response in the band (wg,wiy1), we will
assume:

a) Hi{w) = e 989 if (g, wypq) Is a passband

b) Hi(w) = fr(w)e ™59 if (wp,wr+1) 1s a transi-

tion band

¢) Hi(w) = 0if (wy,wsy1) is a stopband

‘The choice of K 1s discussed later. The real func-
tion fi (w) must be chosen so that it joins the ampli-
tudes of the adjacent passband and stopband, i.e.,
it is a decreasing function with flwg) = 1 and
Flowge1) = 0, or, viceversa, an increasing function
with flwg) = 0 and flwep41) = 1. In our examples,
however, we will discuss mainly the case of transition
bands considered as “don’t care” bands.

In the ideal case, the frequency response H{w) and
H%w) coincide, that is

bo + bye ™Y 4 bygeT MY

d L .
W) = - - 2
#5w) Go + are~ Y L ayeiNw (2)

and, therefore, we should have

H“(w)(ao +oage 4+ czl\;e"m‘vw) =
(3)

= ])0 + bl(:"_jw + ..+ bﬂ/] E—]AlLu

However, since the above equation can not be veri-
fied, in general, for all the frequencies, an error func-
tion in the frequency domain can be defined for each
interval (wg,wy41):

-E/c(w) - Hf(w)(ao + (llf_j'w + ...t ayn E_ij)——
by — bremIY — by M

4

A global error function ¢ is given by:
= Budy (5)
k

where f 1s a constant that weighs the A-th band
error function ¢, given by:

g = I T ER) [P W(w)dot
(6)
+ wa'l w) |2 Wi (w)dw
with W (w) a positive weighting function.
1If we congider the definitions of the following vec-
tors

Culw) = [HI(w) H(w)e v .. H{w)e N

1o L e Mt

(7)

A= [ao a1 ... AN bg I)1 bM}T (8)

then the error functions ¢, can be expressed as:

¢ﬁ'~' = f-wk-H (W)CZ(“))A Wi (w) dw+

+ [ ATCL (@) C (W) A Wi (w) dw
(9)
where superscript 1" and * denote transposition and
conjugation, respectively (A* = A since the filter
coefficients are assumed real}. Therefore, ¢y, is given

by:

¢ = ATPLA (10)
where
P = f—j:w W)CL w) Wy, (w)dw+
(11)
+ jw“ C; (w)CL (w) Wy (w)dw

Is a symmetric, real, positive-definite (M + N +2) x
(M + N + 2) matrix. Therefore, the global error
function ¢ can be expressed as:

o= A"(> BPyA (12)
k

By using the eigenfilter approach, the optimal fil-
ter coeflicients that minimize the error function ¢
are the elements of the eigenvector of the matrix

P=>" 5Py (13)
/\:

corresponding to the minimum eigenvalue. The com-
putation of the matrices Py can be performed numer-
ically in each band {(wg, wsy1).

Remarks:

1) Choice of the weight function Wy (w): As can
be seen from the above discussion, we have to intro-
duce a phase for the target function to express the
error as a quadratic form in the filter coeflicients.
However, we are interested only in approximating the
magnitude of the target function: if the error £y (w)
1s small, then the magnitude constraint is approxi-
mately verified. In some previous works [1][4][7] a
recursive updating of the weighting function was in-
troduced to obtain an almost equiripple solution. In
our case, the use of this recursive updating is rec-
ommended for the method to converge to a golution
satisfying the magnitude constraints.

Let A be the solution vector at the n-th itera-
tion and let & ("J(w) be the corresponding frequency
response. The magnitude error in the k-th band is
given by:

e (w) = | | Hiw) | = | HM () | (14)

The weighting function to be uged in the (n-+1)-th
iteration will be:

(n+1‘( ) = H(”‘( )env(egm(w)) (15)
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where env{g(z)) is the envelope of the positive func-
tion g(x) (we used a linear interpolation between the
maxima of g(x)). By using this approach, larger
welghts are assigned to larger errors until the weight
function does not change any more, so that an almost
equiripple solution is obtained at the end [1][4][7].

2) darget function phase updating: As discussed
above, we try to approximate a lincar phase func-
tion with a rational transfer function. lixact linear
phase is obtained if poles appear in pairs, one the
inverse of the other. By assuming a linear phase
target function at each iteration, we found that one
pole is usually placed in the transition band outside
the unit circle. A causal stable system having the
same magnitude of the designed frequency response
can be obtained by substituting, at the denominator,
the factor (z —p) (where p is the pole outside the unit
circle) with p™(z —1/p™). As a drawback, a narrower
than required transition band can be obtained and
this 1s often accomplished by assuming the transition
bands not to be “don’t care” bands: in other words,
the magnitude and the width of the transition bands
can not be easily controlled. Moreover, the number
of poles that efficiently contribute to the regponse in
the passband is reduced.

An improvement of the method consists in assum-
ing as phase of the target function H%(w) at the
(n+1)-th iteration, the phase of H"(w}. Therefore,
the method to design [IR eigenfilters can be summa-
rized as follows:

Step 1. The phase of the target function is ini-
tialized to be linear in the passbands and in
the transition bands: we used K of the order
of M/2.

Step 2. The matrix P is computed and the eigen-
vector corresponding to the minimumeigenvalue
1s found. An efficient method to accomplish this
task is shown in [1].

Step 3. If unstable poles are found, they are sub-
stituted by their inverse conjugate and the fre-
quency response 13 properly scaled.

Step 4. The target function H¢ "+(w) to be
matched at the (n+1/)-th iteration is given by:
a) HY D) = e LH) f

passhand
b) 1 M (0) = Felw)ed L i (i)
is a transition band
d (n+1) T )
c) H, (w) = 0if (wi,wrt1) 18 a stophand
Step 5. The updating of the weight function

We.Wepr) 18 A

1,;,/‘2.”)((_(}) as shown in (15} is performed.

Step 6. Steps (2)-(5) are repeated until a stop cri-
terion based on either filter coeflicient or mag-
nitude response variation is met.

In the next section some examples of numerical

design are shown and discussed.

3. EXPERIMENTAL RESULTS

The effectiveness of the design method previously
presented 1s shown through some nunierical exam-
ples.

Ezample 1. Lowpass filter with the following char-
acteristics: passband for 0 <| w |< 0.37 and stop-
band for 0.47 <|w |< n. The orders of the numera-
tor and of the denominator used to approximate this
function are M = 9 and N = 5, while the weights
Jo = 1 and 2 = 2 were chosen.

Lrample 2. Passband filter with the following
characteristics: passband for 0.287 <| w |< 0.5d#
and stopbands for 0 <| w |< 0.2% and for 0.627 <|
w |< #. This function is approximated by the fre-
quency response of an [IR filter having M = N = 12.
The weights 5y = #2 = J4 = 1 have been used.

In these examples we have considered the transi-
tion bands as “don’t care” bands. The integrals that
appear into the definition of the matrices P, have
been computed numerically by using a grid of 200
points in each band. The updating of the weighting
function and the searching of a new set of coeffi-
cients stops when max(] AP+ — A} ) < 10~3 or
maxy maxw({[ H,ﬁ"'“)(w) [ — {HIE”J’(W) (() < 1074

T'he results relative to Example 1 and 2 obtained
by using our design method are presented in Fig. 1
and 2, respectively; the frequency response of the fil-
ters and a zoom of the passband detail are shown. As
can be seen, the frequency response of the designed
filters is almost equiripple in each band.

4. CONCLUSIONS

In this work a method for applying the eigenfil-
ter approach, based on the Rayleigh’s principle, to
the design of 1IR digital filters is shown. One of the
most appealing features of the eigenfilter approach
is its simplicity, since the problem is reduced to the
search of the minimum eigenvalue and of the corre-
sponding eigenvector of a real, symmetric, positive-
definite matrix. ‘T'he method includes also an itera-
tive procedure to update the weighting function, so
that an almost equiripple solution is obtained.
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Example 1: (a) Frequency response obtained with

M =9 and N = 5; (b) passband detail.
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Example 2: (a) Frequency response obtained with

M = N = 12; (b) passband detail.
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