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Abstract On February 14, 2010, a large landslide affected the
urban centre of San Fratello town (Sicily Island, Southern Italy),
causing severe damage to buildings, roadways, and infrastructure,
as well as about 2000 evacuees. This large complex landslide,
covering more than 1 km* in extension, represents one of the
major phenomena that ever occurred in Sicily. In order to manage
the landslide risk, the civil protection system was activated as part
of the initial response to the emergency (the “emergency phase”).
This involved the Civil Protection Departments both at national
(DPC) and regional (DRPC) levels, as well as scientific institutions
(namely “Competence centres”, CdCs), local administration per-
sonnel, and technicians. On March 8, 2010, during the post-event
recovery phase, a ground-based synthetic aperture radar (GB-
InSAR) system was installed in order to monitor the ground
surface deformation, assess the landslide residual risk, and analyse
its displacement trend. Accurate field surveys and building inspec-
tions were also performed for a validation of the GB-InSAR data,
in order to map the ground deformation, plan building evacua-
tion-demolishment, as well as check the efficiency of the landslide
mitigation works. This paper describes the outcomes of the
57 month monitoring campaign (March 2010-December 2014),
reporting the use of GB-InSAR data for near real-time monitoring,
mapping, and post-emergency/recovery management activities.
The final aim was to provide the civil protection personnel with
a reliable, rapid, and easy communication system of the monitor-
ing results, designed to an enhance understanding of the landslide
phenomena, and to support the decision-making process.

Keywords GB-InSAR - Landslide - Long-term monitoring - Post-
emergency management - Residual hazard

Introduction

When landslides interact with human settlements, the availability of
new remote-sensing technologies may improve the production of
landslide maps, reducing costs, and optimizing field work by allowing
for systematic data acquisition over wide areas (Guzzetti et al. 2012). In
Italy, historical settlements are often built on hilltops suffering from
stability issues, therefore requiring the implementation of monitoring
systems, as well as expensive maintenance and restoration works
(Ciampalini et al. 2012; Bianchini et al. 2015). In the last two decades,
amongst the many new methods used in landslide investigation,
terrestrial-based technologies such as digital photogrammetry
(Zhang et al. 2004; Sturzenegger and Stead 2009), light detection and
ranging (LiDAR; Oppikofer et al. 2009; Fanti et al. 2013), infrared
thermography (Gigli et al. 2014a, b; Frodella et al. 2015), and ground-
based radar interferometry (GB-InSAR) (Luzi et al. 2004; Lombardi
et al. 2016) are increasingly being recognized as efficient remote
surveying techniques for the characterization and monitoring of
landslide-affected areas, in terms of resolution, accuracy, data visual-
ization, management and reproducibility. GB-InSAR systems in par-
ticular, for their capability of measuring displacements with high
geometric accuracy, temporal sampling frequency and adaptability to
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specific applications (Monserrat et al. 2014), represent powerful de-
vices successfully employed in engineering and geological applications
for detecting structural deformation and surface ground displace-
ments (Tarchi et al. 2003; Antonello et al. 2004; Casagli et al. 2010,
2017), for the monitoring of volcanic activity (Di Traglia et al. 2014a, b),
and for analysing the stability of historical towns built on hilltops (Luzi
et al. 2004; Nolesini et al. 2016). In recent years, GB-InSAR technique
has developed to an extent where it can significantly contribute to the
management of major technical and environmental disasters
(Broussolle et al. 2014; Frodella et al. 2016; Bardi et al. 2017).

The San Fratello February 14, 2010 landslide

On February 14, 2010, the urban centre of San Fratello town
(north-eastern Sicily, Southern Italy) was affected by a large land-
slide developing along the entire eastern hillslope of the town,
which severely damaged the urban fabric and roadways, causing
about 2000 evacuees (out of a total population of 4500 inhabi-
tants), also disrupting the local transportation.

In this context, the civil protection system was activated in
order to manage the landslide emergency phase, by involving the
national (DPC) and regional (DRPC) Civil Protection Depart-
ments, in cooperation with scientific institutions (namely
“Competence centres”, CdCs), local administration personnel,
and technicians (Bertolaso et al. 2009; Pagliara et al. 2014). During
the post-emergency phase, several remote-sensing techniques,
such as LiDAR and satellite- and ground-based SAR, were used,
combined with detailed field surveys, in order to provide the civil
protection authorities with advanced products to be used for
landslide risk management, such as the following:

- building deformation analysis (Ciampalini et al. 2014);

- basin scale landslide pre- and post-event ground deformation
assessment (Bardi et al. 2014);

- implementation of an accurate geo-database to produce maps
(e.g., susceptibility, ground deformation velocities, damage as-
sessment, risk zonation) (Ciampalini et al. 2015);

- multi-temporal and spatial investigation of active and dormant
landslide effects on historical buildings (Bianchini et al. 2015);

- improvement of landslide inventory (LiM) and susceptibility
maps (Ciampalini et al. 2016a; Raspini et al. 2015);

- testing the effectiveness of high-resolution DEMs as tools for an
accurate PSI post processing analysis (Ciampalini et al. 2016b).

This work focuses on the outcomes of the 57-month GB-InSAR
monitoring campaign (March 2010-December 2014) carried out during
the post-event recovery phase. In this time, span operative methodolo-
gies have been implemented to assess the landslide residual risk by the
following: (i) mapping the slope surface deformation pattern; (ii)
analysing the landslide deformation trend; (iii) evaluating post-
emergency recovery measures (stabilisation works, products for
updating landslide inventory). In this context, various field activities
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were carried out bylocal civil protection operators and technicians for a
validation of the remotely sensed data (accurate geomorphological
mapping and building inspections).

Such a long-monitoring campaign represents an interesting
case study in order to test the potential and versatility of GB-
InSAR data, applied to both short- and long-term landslide post-
disaster management within a populated urban area.

Study area

The town of San Fratello is located in the north-eastern sector of Sicily, on
the northern hillside of the Nebrodi mountains, a 70-km-long ridge
trending ENE-WSW which is part of the Southern Apennine chain (Fig.
1a). The geomorphology of the area is characterized by steep slopes rising
from the Tyrrhenian coastal plain, deeply cut by creek valleys trending N-
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NW (Fig. 1b). The town area stands in a mid-mountainous-hilly area at
about 700 m a.sl,, on top of a N-S-oriented ridge which separates two
watersheds: the Furiano creek valley to the West and the Inganno creek
valley to the East (Fig. 1c). The geology of the area (part of the N-E sector of
the Apennine-Maghrebian orogenic belt) is characterized by the tectonic
overriding of the Kabilian-Calabrid units, occurring as dolomitic lime-
stone and sandstone, overlaying the Apenninic-Maghrebid units, formed
mainly by marlstone and claystone (Lentini et al. 1990, 2000). The San
Fratello relief mainly consists of a thick terrigenous sequence (Lower
Cretaceous in age) interbedded with claystone, marlstone, and sandstone
(from bottom to top: Mt. Soro Flysch, Argille Scagliose unit), widely
cropping out along the gentle ridge slopes (Fig. 1d). The northern sector
of the town, characterized by a rough morphology, is formed by a
Giurassic-Eocenic sequence of pelagic dolostone and limestone (San
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Fig. 1 a Location of the study area with digital elevation model of the Messina Province showing the study area. b DEM of the San Fratello area (2 -m cell resolution). ¢
Geological setting of the study area (dotted red oval enhances the town sector; modified after Lentini et al. 2000)
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San Fratello landslide geomorphological map
a) Public housing; b) Stazzone quarter; c) Europa St.;
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Fig. 2 Geomorphological map of the San Fratello landslide (courtesy of DRPC) and location of the affected quarters. a Public housing. b Stazzone quarter. ¢ Via Europa-Via
Fontana nuova. d Via Latteri-Via Gioberti. e Riana quarter. f San Benedetto quarter. g Porcaro quarter-scattered housing
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Fig. 3 Example of ground deformations and damage to buildings and structure in the 2010 landslide area. Stazzone quarter: a oriented extensional cracks on building
facades and b damaged asphalt road pavement; Riana Quarter: ¢ landslide scarps and d: traction cracks in road pavement; San Benedetto-Porcaro quarters: e country
roadway complete failure and f building total collapse (see also Bianchini et al. 2015 for detailed building damage description)

Landslides 15 * (2018) | 185



| Original Paper

Radar F.'o.V.‘

(ma.s.l.)
800 | San Fratello town area
700 [

600 |
500
400 Landslide body
300

200 |

1ooW C
WNW

_______ Radar L.o s,

1

T
T

~11m

3300m
900m
~15m

Range ~3m

L5 Azimuth

(ma.s.l)
500

______________________________ Radar site

400
300

Inganno creek 200

100

ENE

Fig. 4 GB-InSAR system features. a Map with the location of the monitoring system (F.0.V. field of view). b Resolution grid size and parameters used in the monitoring campaign. ¢
Schematic cross-section representing the location of GB-InSAR system and landslide body, together with the geometry of radar LOS and landslide movement direction

Marco D’Alunzio unit), overriding sandstone and marly limestone layers
(Unita Longi-Taormina) (Nigro and Sulli 1995; Lavecchia et al. 2007) (Fig.
1¢, d). The landslide-affected slope is characterized by urban areas, farms,
and olive groves. A silty-clayey detrital cover lies over the bedrock with an
average thickness of about 10 m (DPCR 2010). This geological context
causes the overlapping of hard-brittle lithotypes (San Marco D’Alunzio-
Longi-Taormina units) on top of the soft erodible clayey formations (Mt.
Soro Flysch-Argille Scagliose unit), deeply influencing the area landscape
and causing widespread slope instability phenomena. For these reasons,
the San Fratello area has been historically prone to hydrogeological

Table 1 GB-InSAR system parameters used to monitor the San Fratello landslide

Band Min. Max.
width distance distance

Synthetic
aperture

Central

frequency

17.1 GHz 200 MHz 3.00 m 900 m 3300 m

hazards: during the last three centuries, two large landslides, occurring
in 1754 and in 1922, respectively, had already destroyed the north-eastern
and western sectors of the town (Bardi et al. 2014; Ciampalini et al. 2014;
Bianchini et al. 2015).

Landslide description

In the period from October 2009 to February 2010, the Mt. Nebrodi
area (Fig. 1) was severely affected by several landslides that caused
widespread structural damage and casualties (Ciampalini et al. 2015).

ARaz (at 900 m
distance)

ARaz (at 3300 m
distance)

Scanning
time

15m 3m 14 min
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Intense and exceptional rainfall events were the main factor that,
combined with steep slopes and widespread clayey outcropping
lithotypes, triggered several slope movements. The February 14, 2010
landslide has affected a 1.2-km* portion of the Inganno creek east-
facing slope, developing for a 450-m level drop, with a maximum
width of 1.5 km and length of 1.9 km (Bardi et al. 2014; Ciampalini
et al. 2014; Fig. 2). It can be classified as a complex roto-translational
mass movement (Cruden and Varnes 1996) about 20 x 10° m? in size,
which involved mainly the silty-clayey cover for an average thickness
of 10 m, and only to a lesser extent the bedrock (Bardi et al. 2014;
Pagliara et al. 2014). In the upper area of the landslide, a wide crown
developed (mainly in correspondence with the town quarter areas),
while minor scarps and tensional/traction fractures occurred in the
middle non-urbanized slope sector, and the landslide toe evolved
downstream into a slow earth flow (Fig. 2). The resulting ground

deformations intensively modified the topographic slope surface, pro-
ducing multiple scarps (characterized by heights between 5 and 10 m)
and counter-slopes, also modifying the drainage system with the
formation of several landslide ponds (Fig. 2). Ground deformations
intensively damaged the town structures (Fig. 3), in particular:

- the most damaged area was the Stazzone quarter, where prev-
alent rotational phenomena developed traction fractures in the
roadways and compressive fissures on the buildings’ facades
(the church, the primary school, and the sewer system were
heavily damaged or completely destroyed);

in the Riana quarter, translational sliding phenomena caused
the formation of sub-parallel fracture systems and secondary
scarps, with the development of deep, wide ground traction
fractures on the road pavement;
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Fig. 6 Incremental cumulated displacement maps (ICD maps) of the San Fratello area. a March 10, 2010-April 1, 2010 (squares A-G delimit the quarter areas shown in
Fig. 3). b March 10, 2010—November 1, 2010. ¢ March 10, 2010—April 1, 2010. d March 10, 2010—December 2014 (P1-P10 represent the GB-InSAR measurement
points in correspondence of which the displacement time series were extracted). In red which is highlighted is the landslide boundary according to Ciampalini et al. 2014

and Bardi et al. 2014
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Fig. 7 Selected measuring points displacement time series of the scenario monitored. a Northern sector. b Southern sectors (see Fig. 6 for measuring points and sector location)

- in the San Benedetto and Porcaro quarters, located in the southern
sector of the town, both translational and rotational phenomena
and local flows caused the complete destruction of isolated build-
ings, roadways, water pipes, and the sewer system;

- in the upper sector of the town, a transect of the Cesaro SS 289
roadway (Fig. 2), representing one of the most important local
linear infrastructures, was also damaged, causing temporary
transport problems.

GB-InSAR theoretical principles

GB-InSAR system consists of a computer-controlled microwave
transceiver, characterized by transmitting and receiving anten-
nas, which by moving along a mechanical linear rail are able to
synthesize a linear aperture along the azimuth direction (Tarchi
et al. 1997; Rudolf et al. 1999). A SAR image is obtained by
combining the spatial resolution along the direction perpendic-
ular to the rail (range resolution, ARr), and that parallel to the
synthetic aperture (azimuth or cross-range resolution, ARaz)
(Luzi 2010). This image contains amplitude and phase informa-
tion, measured during the acquiring time interval, regarding the
backscattered echo of the observed scenario (Luzi et al. 2004;
Monserrat et al. 2014). The working principle of the GB-InSAR
technique is the evaluation of the phase difference, pixel by pixel,
between two pairs of averaged sequential SAR complex images,
which constitutes an interferogram (Bamler and Hartl 1998). The
latter does not contain topographic information, given the an-
tennas’ fixed position during different scans (zero baseline

condition). Therefore, in the elapsed time between the acquisi-
tion of two or more subsequent coherent SAR images, it is
possible to derive from the interferograms obtained a map of
the displacements that occurred along the sensor line-of-sight
(LOS), with a millimetre accuracy in the Ku band (Tarchi et al.
1997; 2003). The ability of the technique to detect ground dis-
placement depends on the persistence of phase coherence (rang-
ing from o to 1) over appropriate time intervals (Luzi 2010).
According to the specific acquisition geometry, only the displace-
ment component along the sensor LOS can be estimated, whereas
the displacements occurring along a direction perpendicular to
the LOS are missed; this is one of the limitations of the GB-InSAR
technique.

The radar system must be placed in order to make the sensor
LOS as parallel as possible to the expected direction of the
landslide motion. Nevertheless, the GB-InSAR represents a ver-
satile and flexible technology, allowing rapid changes in the type
of data acquisition, such as geometry and temporal sampling,
based on the characteristics of the monitored slope failure.

The GB-InSAR monitoring campaign

On March 8, 2010, a GB-InSAR system was installed on the right
flank of the Inganno Creek valley, opposite with the San Fratello
town, at an average distance of 2100 m with respect to the
landslide (Fig. 4; Table 1). Given the acquisition setting of the
site and the civil protection needs, the radar data covers an area
of about 1 km? corresponding to the middle-upper landslide
sector and the town area. The GB-InSAR data were processed
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using LiSALab software (Ellegi s.r.l.). In order to mask the noisy
areas, a 0.4 coherence filter was applied. Radar images were
acquired every 14 min, but for comparisons, 24-h averaged im-
ages were used. Other radar parameters used during the mea-
surement campaign are summarized in Table 1. The radar started
to acquire data 2 days after the installation and has been active
for almost 5 years. In the context of the post-event recovery
phase, GB-InSAR data analysis was combined with detailed geo-
morphological surveys and building inspections for the
following:

- mapping and monitoring slope residual deformations for early
warning purposes in case of landslide reactivations, so as to
assure the safety of all the town inhabitants and of all the
personnel involved in the recovery phase;

- selecting the buildings to be evacuated and pulled down, based
on their damage conditions;

- assessing geomorphological hazard for new settlements;

- planning the landslide mitigation works (bulkheads, draining
wells, and trenches) and evaluating their effectiveness;

- updating landslide inventory.

The following operative approach (Fig. 5) was adopted:

Daily on-routine near real-time monitoring

GB-InSAR data were uploaded via LAN network on a dedicated
Web-based interface, which was shared with the DPC-DRPC per-
sonnel. For a clear visualization of the results and an effective data
dissemination, the Web interface was organized in different sec-
tions, allowing for a near real-time on-routine visualization of the
monitoring data, such as the following:

- displacement maps (spanning selectable time periods);

- displacement time series of selected measuring points;

- related trends (decreasing, stable, increasing) and criticality
assessment (ordinary, moderate, high).

Due to technical problems, the system has undergone a few
acquiring interruptions (Fig. 5).

On demand deferred time data analysis

The results of the on-demand data analyses were delivered to the
DPC-DRPC personnel by using a remote ftp server, in the occurrence
of critical weather events; based on the national civil protection
weather forecast system (http://www.protezionecivile.gov.it/jcms/
en/allertamento_meteo_idro.wp), GB-InSAR displacement maps
(ASCII format) were integrated into a GIS environment and con-
verted into the correct metric scale and coordinate system, over-
lapped to a chosen cartographic base (DEMs, topographic maps, and
orthophotos), and compared with ancillary data (rainfall, geological,
and geomorphological maps). Based on the surface of the deforma-
tion areas and the increasing trends of displacement time series,
seven monitoring alerts were obtained (Fig. 5). This procedure
allowed for the precautionary evacuation of the Riana-San Benedetto
quarters on March 17, 2011, after heavy and persistent rainfall events
and three monitoring alerts, starting from February 1, 2011 to
March 4, 2011. Following the evacuation, a monthly bulletin phase



Fig. 8 Selection of monthly cumulated displacement maps (MCD maps). a April 2010 (91 mm). b December 2010 (184 mm). ¢ March 2011 (139 mm). d October 2011
(160 mm). e February 2012 (133 mm). f July 2014 (65 mm). In red which is highlighted is the landslide boundary according to Ciampalini et al. 2014 and Bardi et al. 2014

(April 2011-March 2012) was planned as a strategy for landslide
residual risk prevention.

Monitoring data analysis

GB-InSAR incremental cumulative displacement maps and
displacement time series

The collected GB-InSAR dataset, consisting in incremental cumulative
displacement (ICD) maps and displacement time series of 10 selected
measuring points, are shown in Figs. 6 and 7, respectively. The obtained
radar maps show the global increase of the slope surface deformation,
starting from March 10, 2010 up to the first day of each successive month
of the monitoring campaign. The ICD maps are shown as a function of
the displacement measured along the device LOS (the negative displace-
ment values indicate movements approaching the sensor) (Fig. 6). In
order to evaluate the deformation rates and provide easily interpretable
data, a traffic light type colour scale was adopted. From the analysis of
ICD maps and displacement time series, two areas characterized by the

highest residual displacement were identified, falling within the San
Benedetto (sector F; 2524 mm) and Porcaro quarters (sector G;
2259 mm) (sectors Fand G in Fig. 6a). Minor ground deformations were
measured within the Riana (sector E) and Stazzone quarters (sector B),
where cumulated displacements reached 664 and 450 mm, respectively.
The displacement time series of the measurement points (P1-P1o in Fig.
6a; corresponding to a 5 X 5 pixel size area) were selected in correspon-
dence with sectors with high stability of the radar signal i.e. high signal/
noise ratio in SAR power image and high coherence (> 0.40), in order to
accurately monitor the deformations of structures and buildings (Fig. 7).
The displacements recorded in correspondence with the measurement
points are related to their specific location; thus, they do not necessarily
reflect the maximum displacement of the whole area investigated
(Table 2). The analysed displacement time series confirmed the defor-
mation trend highlighted by the cumulated maps (Fig. 7). In particular,
in the northern sector of the town, represented by the public housing
area (sector A in Fig. 6a) and Stazzone quarters (sector B in Fig. 6a), P1,
P2, and P4 points recorded low cumulative displacements, while
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moderate values were measured in correspondence with P3 point (Via
Europa area, sector C in Fig. 6a). Slope deformations are more relevant
in the town’s southern sector, in correspondence with P5 point within
the Riana quarter (sector E in Fig. 6a), and especially regarding P6, P7,
and P8 points in the San Benedetto quarter (sector F in Fig. 6a).

The peak cumulative displacements recorded within all of the
measuring points correspond to P9 and Pio points, which fall
within uninhabited areas in the Porcaro quarter-scattered housing
area (sector G in Fig. 6a).

GB-InSAR monthly cumulated displacement maps

Moreover, so as to perform a temporally detailed displacement analysis
(from the beginning to the end of each month) for detecting residual
landslide hazard areas, monthly cumulated displacement (MCD) maps
were also selected and analysed from the dataset (Fig. 8). The compar-
ison amongst these emphasized that displacements are particularly
relevant during the winter-fall season, ranging from the maximum
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measured value of 184 mm in correspondence with area G (December
2010; Fig. 8b) to 133 mm in correspondence with area F (February 2012;
Fig. 8e). On the contrary, the summer periods highlighted lower dis-
placement values, from a maximum of 69 mm (July 2014; Fig. 8f) to the
lowest value in the overall monitored period (a few millimetres; August
2012 and September 2012). In order to enhance the areas affected by
higher/lower displacement values, MCD maps were also used as input
data for average displacement estimation in correspondence with each
town quarter (Fig. 9). Average values are usually affected by lower noise
than “raw” values and are more representative of the general displace-
ment trend in the selected area. The analysis was performed in a GIS
environment, by means of the “zonal statistic” tool (Fig. 9). The average
displacement was calculated on each single monthly cumulated dis-
placement map (Fig. 9a), showing that the areas G and Fin particular are
affected by the highest slope deformation trend, as also confirmed by the
spatial representation of the cumulated and average values for each
quarter (Fig. ob). In Fig. 9¢, the cumulated displacement time series is
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Fig. 10 Results of the employed MATLAB code applied to the GB-InSAR dataset. Residual reactivation maps obtained from selected MCD maps. a April 2010. b
March 2011. ¢ February 2012. d July 2014. e Frequency map of the reactivation of the critical residual displacement sectors, classified basing on their activation frequency

from 1 (most active) to 9 (least active)

reported by calculating the monthly cumulated average values in cor-
respondence with each town quarter area. While in Fig. 8d, the quarter
areas’ maximum displacement map is reported, enhancing 220 mm for
area G and 376 mm for area F. Spatial average values can imply the
underestimation of localized peak displacements; therefore, in order to
automatically extract the most critical residual displacement sectors, the
data were also analysed by means of a MATLAB code (Salvatici et al.
2017) (Fig. 10). The code extracts from the MCD maps dataset all of the
areas affected by deformation higher than a selected threshold value
(=32 mm; being the minimum displacement amongst all the maximum
monthly values; Fig. 8). The results are displacement maps highlighting
only the areas with such selected displacements (Fig. 10a, d). The second

operation of the employed code consists in the frequency calculation of
displacement occurring (the code computes how many times each pixel
has recorded the selected displacement during the monitoring period)
(Fig. 10e). By using this method, nine critical areas characterized by
repeated residual reactivations were detected.

Discussion

Assessment of landslide residual hazard

Successful strategies for landslide residual hazard assessment
and risk reduction imply integrated methodology for instability
detection, mapping, monitoring, and forecasting (Confuorto
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Fig. 11 Comparison between radar maps and landslide inventory of San Fratello area. a March 2011 MCD map. b December 13, 2014 ICD map A. ¢ Landslide inventory
map from PAI (Piano di Assetto Idrogeologico—hydrogeological setting plan; AdB 2012)
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et al. 2017). Detection and mapping need a combination of the
“classical” approach providing information on the nature, extent,
and frequency of past landslide events (i.e. field-based studies,
standard geomorphological mapping) and advanced techniques,
such as remote-sensing data analysis and geophysical investiga-
tions (Frodella et al. 2014; Ciampalini et al. 2015). In particular,
the extent and the magnitude of the landslide residual hazard
could be successfully assessed using ground-based monitoring
techniques, and of these, the one giving best results appears to be
GB-InSAR (Di Traglia et al., 2014a, b; 2015; Carla et al. 2016a, b). In
the study area, the 57 months of continuous GB-InSAR data
acquisition enabled the measurement of the slope surface defor-
mation pattern with millimetre accuracy over a 1.2-km? landslide
area. This allowed the analyses of the landslide residual hazard
evolution during the post-2010 event phase. The GB-InSAR sys-
tem requires the user to choose the optimal radar location for
measuring the most significant displacement signal, providing
the most suitable resolution and allowing for continuous moni-
toring of ground deformation (Di Traglia et al. 2015), also in the
case of unstable slopes with mitigation works (Bozzano et al.
2011). In the San Fratello area, the logistics of the GB-InSAR
system installation favoured a good data spatial coverage on the
monitored slope, especially with regard to the town’s inhabited
quarter sectors (areas A-G in Figs. 3, 6a, and 8a), with the
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exception of the western town area where shadowing effects did
not allow for measurement (Fig. 6).

Moreover, the system narrow field of view prevented the middle-
lower slope landslide monitoring (Fig. 4). The use of ICD maps proved
its usefulness in recognizing an overall stability for the town’s upper-
most sector (area D), in correspondence with the slope divide. Further-
more, areas affected by the most relevant residual hazard were detected:
the peak deformations are located in the southern sectors of the mon-
itored slope, such as area F (2524 mm) and area G (2259 mm), whereas in
the northern sector of the town peak cumulated ground deformations
vary from 465 mm (area A) to 664 mm (area B) and 550 mm (area C),
respectively (Fig. 6d).

Comparing remotely sensed data and field evidence

The comparison between field surveys and GB-InSAR data in the San
Fratello area provided useful information for analysing and interpreting
the pattern and kinematics of the detected slope deformations. In
particular, by comparing ICD and MCD maps with previous landslide
inventories (PAI 2004; AdB (2012), it was noticed how several slope areas
characterized by intense residual deformation fall within shallow minor
instability processes (such as slow earth slips, slides, and complex
landslides) (Fig. 11). This suggests the effectiveness of GB-InSAR for
mapping refinement of slope scale inventories. Furthermore, by com-
paring the ICD map of the total monitoring period with field evidence
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(the geomorphological landslide map and the slope fracture mapping
carried out within the urban area; Fig. 12), it can be noticed how the main
landside scarps delimitate areas affected by intense residual displace-
ments in the town’s southern areas (sectors F and G; Figs. 6a and 12a). On
the contrary, the majority of the mapped ground fractures are located
within the town’s urban centre (sectors B and E), where minor cumu-
lated ground deformations were measured by the radar-monitoring
system (Fig. 12a). In the context of field-mapping activities, the defor-
mational pattern of the 2010 landslide is also confirmed by the spatial
distribution of the building damage (Ciampalini et al. 2014; Fig. 12b). The
building inspection also revealed the presence of several damaged
buildings located in the town’s north-western sector. This area cannot
be monitored, because it is located along the town’s western slope, and

so is not visible the GB-InSAR system. The recognized building damage
was partly developed after the 2010 landslide, suggesting that the area
corresponding to the 1922 landslide crown (town north-eastern sector)
was partly reactivated by this latest landslide event (Ciampalini et al.
2014; Bianchini et al. 2015).

The most severe and widespread damaged town sectors were primar-
ily area B and area E, while localised partial and total building collapse
takes place in area F and area G (Fig. 12b). All the previous considerations
suggest that the displacements recorded by the radar system are connect-
ed to intermittent activations of minor surface landslides (Figs. 8 and 11);
this is particularly evident by analysing the residual reactivation and
frequency maps (Fig. 10). On the contrary, it can be inferred how the slope
deformations connected to the 2010 landslide event were initially severe
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in the slope’s northern and uppermost sectors (sectors A, B, and D; Fig.
12). The latter deformations were mainly exhausted before the implemen-
tation of the monitoring system (Figs. 63, 7, and 8). Continuous residual
displacements have been recorded primarily in the slope’s southern
sectors, fortunately in mainly uninhabited areas.

Management of landslide residual hazard

The landslide kinematics was analysed by comparing the incremental
cumulated peak displacements with the rainfall data of the S.I.A.S. (Sicil-
ian Agro-meteorological Informative System) rain gauge network (Fig.
13). According to this analysis, the 2010 landslide trigger appears to be
related to intense rainfall (the involved slope cover was mainly saturated
due to a shallow water table; Bardi et al. 2014; DRPC 2010). Furthermore,
following an initial phase of landslide residual displacements, lasting until
the end of June 2010, three dormancy periods and three reactivation
phases were detected (Fig. 13). A rainfall-induced displacement trend of
the landslide is confirmed regarding the first reactivation, spanning from
November 2010 to December 2011. This reactivation was the most severe
in the monitored period, as testified by four occurred alerts and the
planning of a monthly monitoring bulletin phase (Figs. 5 and 13). In this
context, persistent and widespread accelerations were detected from
March 4, 2011 within the San Benedetto quarter (area F). Field inspections
were promptly carried out in the detected area by the DRPC personnel
revealing the increase of the crack and fissure pattern in correspondence
of a few buildings. Therefore, on March 17, 2011, the latter buildings were
evacuated as a precautionary measure (Fig. 13). The initial rainfall-
induced landslide kinematics was also confirmed by the time series of
the selected measuring points (Fig. 7; Table 2), by the MCD maps and the
quarter displacement analysis (Figs. 8 and 9), which all highlight as
dormancy phases occur in dry periods, whereas reactivation phases
usually take place during wet winter-fall months.

Following the second reactivation phase (February-April 2012,
showing a 4.4-mm/day average velocity), a progressive reduction in
slope deformation is observed, both in terms of area extension and
displacement rate, whereas regarding the subsequent minor
reactivations, the increase of displacement trend does not appear to be
related to rainfall. In fact, starting from 2012, no accelerations were
detected in correspondence of the main rainfall events (see for
example the third dormancy phase in Fig. 13). This suggests the efficiency
of the landslide mitigation works, since the full activation of draining
trenches and wells starts from February 2012 (Figs. 7 and 13).

Conclusions

On February 14, 2010, a large landslide affected the San Fratello town urban
centre. In the context of the post-event recovery activities, starting from
March 8, 2010, a GB-InSAR displacement monitoring campaign was
carried, with the aim of assessing the landslide residual risk and analyse
its deformation trend. The analysed scenario was subdivided into town
quarter areas, where ICD maps recorded slope deformations span from
about 0.46 up to 2.52 m. The areas characterized by the most frequent and
intense ground deformations are located in the town southern sectors, as
confirmed by the analysis of the measuring point trend, MCD maps, and
quarter areas average deformations. On the basis of selected displacement
thresholds and frequency of activation, nine residual active slope sectors
were detected and mapped. The latter sectors are located within shallow
active minor landslides, in the main body of the landslide, which were
mapped and characterized in pre-existing landslide inventory. The overall
landslide kinematics was investigated through the analysis of both dis-
placement time series of selected measuring points and peak

196 | Landslides 15 * (2018)

displacements within the monitored area, leading to the detection of an
initial residual displacement phase, followed by three reactivations and
dormancy phases. The main triggering factor for these shallow
reactivations is intense rainfall events. After the initial intense residual
displacements, following April 2012, a progressive reduction of both the
measuring points and cumulated peak displacements occur, suggesting the
efficiency of the landslide mitigation works. Based on the surface of the
deformation areas and the increasing trends of displacement time series,
several alerts were obtained. In this context on March 17, 201, a few
buildings were evacuated in the Riana-San Benedetto quarters by the
DPCR personnel. GB-InSAR monitoring also allowed controlling the slope
instability during the implementation of the mitigation works, for the
safety of the involved workers. The implemented local scale GB-InSAR
system provided a clear, user-friendly, and valid scientific support, de-
signed for all the personnel involved in managing the immediate response,
for a better understanding of such a critical landslide scenario and an
improvement in the decision-making process.
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