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HAUSDORFF MEASURE ON O-MINIMAL STRUCTURES

A. FORNASIERO AND E. VASQUEZ RIFO

Abstract. We introduce the Hausdorff measure for definable sets in an o-minimal structure, and prove

the Cauchy–Crofton and co-area formulae for the o-minimal Hausdorff measure. We also prove that every

definable set can be partitioned into “basic rectifiable sets”, and that the Whitney arc property holds for

basic rectifiable sets.

§1. Introduction. Let K be an o-minimal structure expanding a field. We intro-
duce, for every e ∈ N, the e-dimensional Hausdorff measureH e for definable sets,
which is the generalization of the usualHausdorffmeasure for real sets [Morgan98].
The definition of H e uses the measure defined by Berarducci-Otero in [BO04] to-
gether with nontrivial results on partitions of definable sets into manageable pieces
(§3). Such partitions were first obtained for the real numbers by Kurdyka [K92],
then for arbitrary o-minimal expansions of fields by Pawłucki [P08] and indepen-
dently by the second author [VR06].
With this definition of Hausdorff measure we generalize some well known re-
sults from geometric measure theory, such as the co-area formula (a version of
Fubini’s theorem), to the o-minimal context. We also prove the following version
of the Cauchy–Crofton formula (which computes the Hausdorff measure of a set
as the average number of points of intersection with hyperplanes of complementary
dimension):

Theorem 1.1 (Cauchy–Crofton Formula). Let A ⊆ K̊n be definable of dimension
e where K̊ is the finite part of K . Then,

H
e(A) =

1

â

∫

AG n−e(Kn)

#(E ∩ A) dE.

where the integral is over the set of all affine hyperplanes of codimension e, themeasure
is induced from Haar measure on the group of rigid motions, and

â := Γ
(

e+1
2

)

Γ
(

n−e+1
2

)

Γ
(

n+1
2

)−1
ð−1/2.
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When K = R our results follow from C 1 cell decomposition and standard geo-
metric measure theory. However, there are significant technical obstacles that must
be overcome when working over an arbitrary field K . For instance, the naive
definition of Hausdorff measure given by

H
e(X ) := H e

R
(st(X )), (1)

where st denotes the standard part, does not work because the resulting “measure”
is not additive: see Example 5.8. The correct definition for the e-dimensional
Hausdorffmeasure is defining it first for “basic e-rectifiable sets” (see Definition 3.9)
via (1), and then extending it to definable sets by using a partition into basic e-
rectifiable pieces. Such a partition is obtained by using partitions intoMn-cells (as
remarked above, such partitions are obtained in [K92], [P08], and [VR06]), another
consequence of which is the Whitney arc property for basic e-rectifiable sets (§4).

1.1. The standard part map. Let K be a (2ℵ0)+-saturated o-minimal structure,
expanding a field. Let K̊ := {x ∈ K : ∃n ∈ N |x| < n} be the set of finite
elements of K . Notice that K̊ is a valuation ring; by our saturation assumption,
the corresponding residue field is (canonically) isomorphic to R. Let st : K̊ → R

be the “standard part” map: the quotient map from K̊ to its residue field. We also
denote by st : K̊n → Rn the function mapping x̄ to the n-tuple of standard parts of
the components of x̄. Given a subset A ⊂ Kn, we put st(A) = st(A ∩ K̊n) ⊆ Rn.
Let R̄ := R ∪ {±∞} be the extended real line. Occasionally in dealing with
K-valued functions, we extend st to a map st : K → R̄.
Let RK be the structure on R generated by the sets of the form st(U ), where U
varies among the definable subsets ofKn. By [BP98], RK is o-minimal. [M09] gives
a more precise result, which helps clarify the situation:

Fact 1.2. [M09] The subsets of Rn definable in RK are exactly the finite unions
of differences st(X ) \ st(Y ) with definable X,Y ⊆ Kn. The closed subsets of Rn

definable in RK are exactly the sets st(X ) with definable X ⊆ Kn.

§2. Lebesguemeasure on o-minimal structures. The definitions ofmeasure theory
are taken from [Halmos50].
For every n ∈ N, letL n

R
be the n-dimensional Lebesgue measure (on Rn). If n is

clear from context we drop the superscript. Let L n1 be the o-minimal measure on

K̊n defined in [BO04]. More precisely,L n1 is a measure on the ó-ring Rn generated

by the definable subsets of K̊n; thus, (K̊n, Rn ,L n1 ) is a measure space. Moreover,

since K̊n ∈ Rn, Rn is actually a ó-algebra.
Notice thatL n1 can be extended in a natural way to a measureL

n
2 on the ó-ring

Bn generated by the definable subsets of Kn of finite diameter. Finally, we denote
byL n the completion ofL n2 , and if n is clear from context we drop the superscript.
Notice that the ó-ringBn is not a ó-algebra.

Fact 2.1. [BO04, Thm. 4.3] If C ⊂ K̊n is definable, thenL n(C ) is the Lebesgue
measure of st(C ) .

Definition 2.2. For A ⊆ Kn and f : Kn → Km we define st(f) : A → R̄m by
st(f)(x) = st(f(x)).
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Remark 2.3. If A ⊆ K̊n and f : A→ K are definable, then st(f) is anL n-mea-
surable function.

Definition 2.4. Let A ⊆ K̊n and f : A → K be definable. If st(f) is L n-
integrable we will denote its integral by

∫

A

f dL n;

∫

A

f(x) dx;

∫

A

f(x) dL n(x) or

∫

A

f.

Remark 2.5. IfA ⊆ K̊n andf : A→ K̊ are definable, then st(f) isL -integrable.

Lemma 2.6. Let B := [0, 1]n ⊂ Kn . Let f : B → Km be a definable C 1 function,
such that all the partial derivatives of f are bounded by C ∈ R>0. Then, st(Γ(f)) is
the graph of a function g : [0, 1]n → Rm.

Proof. Let b ∈ B. Assume, for a contradiction, that there exist a1 6= a2 in Rm

such that 〈b, a1〉 and 〈b, a2〉 are both in st(Γ(f)). Let x1, x2 ∈ B and y1, y2 ∈ Km

such that yi = f(xi) and st(〈xi , yi 〉) = 〈b, ai〉, i = 1, 2. By the o-minimal mean
value theorem (see [Dries98, Theorem 7.2.3]), |y2 − y1| ≤ mC |x2 − x1|. Thus,
|a2 − a1| ≤ 0, so a1 = a2. ⊣

Lemma 2.7. Let U ⊆ Kn be a definable set. Then, dim(st(U )) ≤ dim(U ).

Proof. First assume U ⊆ K̊n. Let d := dim(U ). W.l.o.g., U is the graph of a
C 1 definable function f : V → K̊n−d , where V ⊂ K̊d is a definable, bounded set.
By the proof of [BO04, Lemma 2.6], after shrinking V if necessary, w.l.o.g. we can
assume that V = [0, 1]d and that all the partial derivatives of f are bounded on V .
The conclusion then follows immediately from Lemma 2.6.
For general U ⊆ Kn , for each m ∈ Z>0 observe that by the preceding case the
dimension of st(U ∩ [−m,m]n) is at most dim(U ). Since st(U ) =

⋃∞
m=1 st(U ∩

[−m,m]n) and dimension may be computed locally we are done. ⊣

Definition 2.8. A function f is Lipschitz if there is C ∈ K̊ such that, for all
x, y ∈ dom(f), we have |f(x)−f(y)| < C |x−y| (notice the condition onC being
finite). An invertible function f is bi-Lipschitz if both f and f−1 are Lipschitz.

Remark 2.9. Let U ⊂ K̊n and f : U → K̊ be definable, with f ≥ 0. Then,
∫

U

f dL n =L n+1
(

{〈x̄, y〉 ∈ U ×K : 0 ≤ y ≤ f(x̄)}
)

.

Lemma 2.10 (Change of variables). Let U,V ⊆ K̊n be open and definable, and let
A ⊆ U be definable. Let f : U → V be definable and bi-Lipschitz and g : V → K̊
be definable, then

∫

f(A)

g =

∫

A

|detDf| g ◦ f.

Before proving the above lemmaweneed somepreliminary definitions and results.
Let U ⊆ K̊n be open and let f : U → K be definable. The set of points where f
takes infinite values is

If = st({x ∈ U | f(x) /∈ K̊}).

By [BP98] or [M09], If is definable.
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Lemma 2.11. Let U ⊂ K̊n be open and let f : U → K be definable. Assume that
the set If has dimension strictly less than n. Then there is a RK -definable function

f : C → R, where C ⊂ st(U ) is an open set, such that

i) E :=
(

st(U ) \ C
)

isL n
R
-negligible (therefore st−1(E) isL n-negligible).

ii) f and f are C 1 on U \ st−1(E) and C , respectively.
iii) For every x ∈ U ∩ st−1(C ) we have st(f(x)) = f(st(x)).
iv)

∫

U

f =

∫

C

f.

v) Df is finite on U ∩ st−1(C ) andD(f)(stx) = st(Df(x)).

Proof. By cell decomposition, we may assume that f is a function of class C 2,
and that U is an open cell. If the fiber st(Γ(f))x for x ∈ st(U ) is empty then
x ∈ If . Let E be the union of the following sets:

1) the closure (in st(U )) of If ;
2) the set of points x ∈ st(U ) such that the fiber st(Γ(f))x has dimension 1;
3) the set st(U ) ∩ st(Kn \U ).

PutC = st(U )\E. Since dim(Γ(f)) = nwe havedim(st(Γ(f)) ≤ n byLemma 2.7,
and therefore the set in 2) is negligible. Moreover, the set in 3) is equal to st(bd(U )),
and therefore it is also negligible. It follows that E is negligible. By cell decompo-
sition, there are RK -definable functions gk of class C

1 for k = 1, . . . , r such that
st(Γ(f)) ∩ (C × R) is the union of the graphs of the functions gi . We claim that
r = 1:
In fact, if g1, g2 are two different such functions, and say g1 < g2, then there is an
x0 ∈ st(U ) such that 〈x0, g1(x0)〉, 〈x0, g2(x0)〉 ∈ st(Γ(f)). Let c ∈ R be such that
g1(x0) < c < g2(x0) and let yi ∈ U such that st(〈yi , f(yi)〉) = 〈x0, gi(x0)〉, i = 1, 2.
Choose d ∈ K such that st(d ) = c. Notice that, by adding the set in 3) toE, we en-
sured that st−1(x0) ⊂ U . Since f is continuous, the o-minimal intermediate value
theorem implies that there exists z lying on the segment [y0, y1], such thatf(z) = d
(notice that [y0, y1] ⊂ st−1(x0) ⊂ U ). Thus, 〈x0, c〉 = st(〈z, d 〉) ∈ st(Γ(f)), and
we have shown that {〈x0, y〉 : y ∈ (g1(x0), g2(x0))} ⊂ st(Γ(f)). On the other hand,
{〈x0, y〉 : 〈x0, y〉 ∈ st(Γ(f))} is a finite set {〈x0, g1(x0)〉, . . . , 〈x0, gr(x0)〉}, absurd.
Let f := g1. ii) holds, and for every x ∈ U with st(x) ∈ C we have st(f(x)) =
f(st(x)). The equality of the integrals in iv) follows from Remark 2.9.
To obtain v) we will enlarge E by a negligible set. For i = 1, . . . , n let

Ei := st
({

x ∈ U :
∂f

∂xi
(x) /∈ K̊

})

.

By [BP98], Ei is RK -definable. If dim(Ei) = n, then Ei contains an open ball B.
By dimension considerations, there is a line segment L ⊆ B parallel to the xi -axis
such that L ∩ If is a finite set of points. This contradicts Lemma 2.5 of [BO04] by

which every definable, one variable function into K̊ has finite derivative except on
st−1(A), for a finite set A. It follows that each set Ei is negligible and therefore,
after enlarging E, we may assume that D(f) is finite on U \ st−1(E). We may now

apply parts i), ii), and iii) to each of the functions ∂f∂xi to define Df.
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As before, we will enlargeE (and shrinkC ) by a closed negligible set. Using what

we have already proved, we may assume that all second derivatives ∂2f
∂xi∂xj

are finite

onU \st−1(E). LetV := {x ∈ C : D(f)(x) 6= Df(x)}. The setV isRK -definable
and open. If V is nonempty, then it contains an open ball and therefore w.l.o.g. we
may assume that V is an open ball centered at 0. We may also assume f(0) = 0.

After subtracting from f a linear function, we can assume that ∂f∂xi (0) = 0 and
∂f
∂xi
(0) = 3å > 0 for some index i = 1, . . . , n. Let g be the restriction of f to the

xi -axis in Kn so that g ′ =
∂f
∂xi
and g ′′ is finite.

Since g ′′ is finite there is ä ∈ R>0 such that g ′(x) < å for all x ∈ K with

|x| < ä, and ∂f∂xi (x) > 2å for all x ∈ Rn with |x| < ä . Thus there exists x ∈ C with

|f(x)| < |x|å andf(x) ≥ 2|x|å contradicting iii). We conclude thatV is empty. ⊣

Remark 2.12. Letf : U → K and g : V → U be continuous definable functions
on open subsets U ⊆ K̊n and V ⊆ K̊m. If g−1(A) is negligible whenever A is, then

by part iii) of Lemma 2.11, outside a negligible closed set, (f ◦ g) = f ◦ g, where
g is defined coordinate-wise.

Proof of Lemma 2.10. The fact that f is bi-Lipschitz implies that f is injective
(since it is also bi-Lipschitz).

Claim 1. Let C ⊂ st(V ) be Lebesgue measurable. Then,

L
n(C ) =

∫

(stf)−1(C )

st(|detDf|).

In fact, by the change of variables formula (on the reals) and Lemma 2.11,

L
n(C ) =

∫

f
−1
(C )

|detDf|) =

∫

(stf)−1(C )

st(|detDf|).

Claim 2. Let h : V → R̄ be an integrable function. Then,
∫

V

h =

∫

U

st(|detDf|) h ◦f.

Claim 1 implies that the statement is true if h is a simple function. By continuity,
the statement is true for any integrable function h.
In particular, we can apply Claim 2 to the function

h : x 7→

{

st(g(x)) if x ∈ f(A),

0 otherwise,

and obtain the conclusion. ⊣

Lemma 2.13 (Fubini’s theorem). L n+m is the completion of the product measure
L n × Lm. Therefore, if D is the interval [0, 1] ⊂ K and given f : Dn+m → D
definable,

∫

Dn+m

f(x, y) dL n+m(x, y) =

∫

Dm

∫

Dn

f(x, y) dLm(x) dL n(y).

Proof. Follows from the definition ofL n in [BO04]. ⊣
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2.1. Measure on semialgebraic sets.

Definition 2.14. We say thatE ⊆ Kn is ∅-semialgebraic ifE is definable without
parameters in the language of pure fields. If E ⊆ Kn is ∅-semialgebraic we denote
the subset of Rn defined by the same formula that defines E by ER.

Remark 2.15. Let E ⊆ K̊n be ∅-semialgebraic. Then, st(E) = ER.

LetE ⊆ Kn be closed and ∅-semialgebraic submanifold. Working in local charts,
from [BO04] one can easily define a measure LE on the ó-ring generated by the
definable subsets of E of bounded diameter. We will denote in the same way the
completion ofLE . Notice thatLK

n

=L n .

Remark 2.16. Let E be a closed, ∅-semialgebraic submanifold of Kn of dimen-
sion e, F := st(E), and C ⊆ E be definable and bounded. Then, LE(C ) =
L
F
R
(st(C )), whereLF

R
is the e-dimensional Hausdorff measure on F .

One could also take the above remark as the definition ofLE on E ∩ K̊n.

§3. Rectifiable partitions. Theorem 3.8 shows that every definable set A ⊂ K̊n

has a partition into definable sets which areMn-cells after an orthonormal change
of coordinates (whereMn ∈ Q depends only on n). In [P08], Pawłucki shows that
a permutation of the coordinates suffices. The proof of 3.8 follows closely that
of [K92]. The partition in 3.8 is then used in Corollary 3.11 to show that definable
sets have a rectifiable partition.

Definition 3.1. Let L : V → W be a linear map between normed K-vector
spaces. The norm of L is given by

‖L‖ := sup
|v|=1

|L(v)|.

For V,W in the Grassmannian of e-dimensional linear subspaces of Kn, namely
Ge(K

n), let ðV and ðW ∈ EndK(K
n) be the orthogonal projections onto V andW

respectively. In this way we have a canonical embedding Ge(Kn) ⊂ EndK(Kn). The
distance function on the Grassmannian is given by the inclusion above:

ä(V,W ) := ‖ðV − ðW ‖.

For P in G1(Kn) and X ∈ Gk(K
n), define

ä(P,X ) := |v − ðX (v)|,

where ðX is the orthogonal projection onto X , and v is a generator of P of norm
1. Note that ä(P,X ) = 0 if and only if P ⊂ X , 0 ≤ ä(P,X ) ≤ 1 and ä(P,X ) = 1 if
and only if P ⊥ X . Note also that ä(P,X ) is the definable analog of the sine of the
angle between P and X .

Lemma 3.2. Let n ∈ N>0. Then there exists an ån ∈ Q>0, ån < 1, such that
for any X1, . . . , X2n ∈ Gn−1(Kn), there is a line P ∈ G1(Kn) such that whenever
Y1, . . . , Y2n ∈ Gn−1(Kn) and

ä(Xi , Yi) < ån, i = 1, . . . , 2n, then

ä(P,Yi ) > ån, i = 1, . . . , 2n.
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Proof. For å > 0 define Si(å) = {v ∈ Sn−1 : |v − ðXi (v)| ≤ 2å}. If K = R,
let ån ∈ Q>0 be small enough so that 2nVol(S1(ån)) < Vol(Sn−1), where Vol is the

measureLS
n−1

defined in §2.1. Then

Vol(
⋃2n

i=1
Si (ån)) ≤ 2nVol(S1(ån)) < Vol(S

n−1)

and therefore
⋃2n

i=1
Si(ån) 6= S

n−1. (2)

The same ån will necessarily satisfy (2) for any field K containing R.
Now, we choose

v ∈ Sn−1 −
⋃2n

i=1
Si(ån)

and let P := 〈v〉. Then

ä(P,Yi) = |v − ðYiv| ≥ |v − ðXi v| − |ðXi v − ðYiv| > ån. ⊣

Definition 3.3. Let å > 0. A definable embedded submanifoldM ofKn is å-flat
if for each x, y ∈ M we have ä(TMx , TMy) < å, where TMx denotes the tangent
space toM at x.

Lemma 3.4. Let A ⊂ Kn be a definable submanifold of dimension e and å ∈ R>0.

Then there is a cell decomposition A =
⋃k
i=0 Ai of A such that for every i we have

either dim(Ai ) < dim(A) or Ai is an å-flat submanifold of Kn.

Proof. Cover Ge(Kn) by a finite number of balls Bi of radius å/2; and consider
the Gauss map G : A → Ge(K

n) taking an element a of A to TAa . Take a cell
decomposition of K e compatible with A and partitioning each G−1(Bi ). Then the
e-dimensional cells contained in A are å-flat. ⊣

Lemma 3.5. Let å ∈ Q>0, and let A ⊂ K̊n be an open definable set. Then there are
open, pairwise disjoint cells A1, . . . , Ap ⊂ A such that

(i) dim(A−
⋃

Ai) < n.
(ii) For each i , there are definable, pairwise disjoint setsB1, . . . , Bk (withk depending
on i) such that
(a) k ≤ 2n;
(b) each Bj is a definable subset of ∂Ai and an å-flat, (n − 1)-dimensional,
C 1-submanifold of Kn ;

(c) dim(∂Ai −
⋃k
j=1 Bj) < n − 1.

Proof. By induction on n. The lemma is clear for n = 1. Assume that n > 1 and
the lemma holds for smaller values of n.
Take a cell decomposition of A compatible with A into C 1-cells. Let C be an
open cell in this decomposition; it suffices to prove the lemma for C . Note that
C = (f, g)X , where X is an open cell in Kn−1 and f, g are definable C 1-functions
on X . Take finite covers of Γ(f) and Γ(g) by open, definable sets Ui and Vj ,
respectively, such that each Ui ∩ Γ(f) and each Vj ∩ Γ(g) is å-flat (to do this, take
a finite cover of the Grassmannian by å-balls and pull it back via the Gauss maps
for Γ(f) and Γ(g)). The collection of all sets ð(Ui) ∩ ð(Vj) is an open cover O
of X . By the cell decomposition theorem, there is a C 1-cell decomposition of X
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partitioning each set in O . Let S be an open cell in this decomposition, and let
C0 := (f, g)S . It suffices to prove the lemma for C0. By the inductive hypothesis,
we can find A′

1, . . . , A
′
p ⊂ S and B

′
1, . . . , B

′
k ⊂ ∂A

′
i satisfying the conditions (i) and

(ii) above (with n replaced by n − 1). Define

Ai := (f, g)A′

i
, i = 1, . . . , p.

Then dim(C0−
⋃p
i=1 Ai) < n. For j = 1, . . . , k, the set (B

′
j ×K)∩∂Ai is definable.

Take a C 1-cell decomposition of this set, and let Bj be the union of the (n − 1)-
dimensional cells in this decomposition (note that Bj may be empty). Then Bj is
an å-flat C 1-submanifold of Kn and

dim
(

((B ′
j ×K) ∩ ∂Ai)− Bj

)

< n − 1.

Define Bk+1 := Γ(f
∣

∣A′
i) and Bk+2 := Γ(g

∣

∣A′
i); by construction these are å-flat. It

is routine to see that ∂Ai ⊂ Bk+1 ∪ Bk+2 ∪ (∂A
′
i ×K). Thus

∂Ai −
⋃k+2
j=1 Bj ⊂ ((∂A

′
i ×K) ∩ ∂Ai )−

⋃k
j=1 Bj

= (
⋃k
j=1((B

′
j ×K) ∩ ∂Ai) ∪ E)−

⋃k
j=1 Bj

⊂
⋃k
j=1(((B

′
j ×K) ∩ ∂Ai)− Bj) ∪ E,

where E is a definable set with dim(E) < n − 1. Therefore dim(∂Ai −
⋃k+2
j=1 Bj) <

n − 1. Since k ≤ 2(n − 1), we get k + 2 ≤ 2n and the lemma is proved. ⊣

Definition 3.6. Let U ⊆ Kn be open and let f : U → Km be definable. Given
0 < M ∈ K , we say that f is anM -function if |Df| ≤M . We say that f has finite
derivative if |Df| is finite.

Notice that, by ù-saturation ofK , if f is definable and has finite derivative, then
it is anM -function for some finiteM .
LetM ∈ K>0. AnM -cell is a C 1-cell where the C 1 functions that define the cell
areM -functions. More precisely:

Definition 3.7. Let (i1, . . . , im) be a sequence of zeros and ones, andM ∈ K>0.
An (i1, . . . , im)-M -cell is a subset of Km defined inductively as follows:

(i) A (0)-M -cell is a point {r} ⊂ K , a (1)-M -cell is an interval (a, b) ⊂ K , where
a, b ∈ K .

(ii) An (i1, . . . , im, 0)-M -cell is the graph Γ(f) of a definableM -functionf : X →
K of class C 1, where X is an (i1, . . . , im)-M -cell; an (i1, . . . , im, 1)-M -cell is a
set

(f, g)X := {(x, r) ∈ X ×K : f(x) < r < g(x)},

whereX is an (i1, . . . , im)-M -cell andf, g : X → K are definableM -functions
of class C 1 on X such that for all x ∈ X , f(x) < g(x).

Theorem 3.8. LetA ⊂ K̊n be definable. Then there are definable, pairwise disjoint
sets Ai , i = 1, . . . , s, such that A =

⋃

i Ai and for each Ai , there is a change of
coordinates ói ∈ On(K) such that ói(Ai ) is anMn-cell, whereMn ∈ Q>0 is a constant
depending only on n.
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Proof. We will make use of the following fact:
Let å ∈ [0, 1], P ∈ G1(Kn), X ∈ Gk(K

n) and and w ∈ X be a unit vector.
Suppose ä(P,X ) > å. If ðP(w) ≥ 1/2, where ðP is the orthogonal projection onto
P, then

|ðP(w)− w| ≥ |ðP(w)− ðX (ðP(w))| > |ðP(w)|å ≥ 1/2å.

If ðP(w) < 1/2, then |w| ≤ |ðP(w)|+ |ðp(w)−w| ≤ 1/2 + |ðp(w)−w|. In either
case, we have

|ðP(w)− w| ≥
1

2
å. (3)

We prove the theorem by induction on n; for n = 1 the theorem is clear. We
assume that n > 1 and that the theorem holds for smaller values of n. We also
proceed by induction on d := dim(A). It’s clear for d = 0; so we assume that d > 0
and the theorem holds for definable bounded subsets B of Kn with dim(B) < d .
Case I: dim(A) = n. In this case A is an open, bounded, definable subset of
Kn , so by using the inductive hypothesis and Lemma 3.5, we can reduce to the
case where there are pairwise disjoint, definable B1, . . . , Bk ⊂ ∂A such that k ≤ 2n,

dim(∂A −
⋃k
j=1 Bj) < n − 1 and each Bj is an ån-flat submanifold, where ån is as

in Lemma 3.2. By Lemma 3.2, there is a hyperplane L such that for each Bj and
all x ∈ Bj , we have ä(L⊥, TxBj) > ån . Take a cell decomposition B of Kn, with
respect to orthonormal coordinates in the L, L⊥ axis, partitioning each Bj . Let

S := {C ∈ B : dim(C ) = n − 1, C ⊂
⋃k
j=1 Bj}

and note that dim(∂A \
⋃

C∈S C ) < n − 1. Furthermore,

BAD := {x ∈ A : ð−1L (ðL(x)) ∩ ∂A 6⊂
⋃

c∈S C}

has dimension smaller than n. Let U1, . . . , Ul be the elements of {ðL(C ) : C ∈ S}.
Then the set

{x ∈ A : x 6∈ ð−1L (
⋃l
i=1Ui)}

is contained in BAD, and therefore has dimension smaller than n.
By using the inductive hypothesis, we only need to find the required partition for
each of the sets A ∩ ð−1L (Ui), i = 1, . . . , l . Fix i ∈ {1, . . . , l} and let U := Ui ,

A′ := A ∩ ð−1L (U ). Take C ∈ S with ðL(C ) = U . Then C = Γ(φ) for a definable
C 1-map φ : U → L⊥ and for all x ∈ C ,

TxC = {(v,Dφ(v)) : v ∈ TðL(x)U}.

Let v ∈ TðL(x)U be a unit vector; since we have ä(L
⊥, TxC ) > ån and |(v,Dφ(v))| =

√

1 + |Dφ(v)|2, it follows from equation (3) that

1
2 ån ≤

1
√

1 + |Dφ(v)|2|
|ðL⊥((v,Dφ(v)))− (v,Dφ(v))| =

1
√

1 + |Dφ(v)|2
|v|.

Therefore,

|Dφ(v)| ≤

√

4

å2n
− 1.
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LetMn ∈ Q be bigger than max
{

Mn−1,
√

4
å2n
− 1

}

.

We have proved that for each Cj ∈ S with ðL(Cj) = U there is a definable
C 1-map φj : U → K , such that |Dφj | < Mn and Cj = Γ(φj).
By the inductive hypothesis, there is a partition P of U such that each piece
P ∈ P is aMn−1-cell after a change of coordinates of L. We have

A′ =
∐

P∈P
(φr ,φs )P⊂A

′

(φr , φs)P ,

and (φr , φs )P is aMn-cell after a coordinate change.
Case II: dim(A) < n. In this case, by Lemma 3.4, we can partition A into cells
which are ån-flat. Therefore we may assume thatA is an ån-flat submanifold, where
ån is as in Lemma 3.2. As in case I, there is a hyperplane L such thatA is the graph
of a function f : U → K , U ⊂ L and |Df| < Mn. By the inductive hypothesis,
we can partitionU intoMn−1-cells. The graphs of f over the cells in this partition
give the required partition of A. ⊣

Definition 3.9. LetA ⊆ Kn and e ≤ n. A is basic e-rectifiable with boundM if,
after a permutation of coordinates,A is the graph of anM -functionf : U → Kn−e ,
where U ⊂ K e is an openM -cell for some finiteM .

Lemma 3.10. Let A ⊂ K̊n be an M -cell of dimension e. If M ∈ K̊ then A is a
basic e-rectifiable set, and the bound of A can be chosen depending only onM and n.

Proof. We proceed by induction on n. If n = 0 or n = 1 the result is trivial, so
assume n ≥ 2. By definition, there exists anM -cell B ⊂ K̊n−1 such that

(1) either A = Γ(g) for someM -function g : B → K̊ , or
(2) A = (g, h)B for someM -functions g, h : B → K̊ , with g < h.

By inductive hypothesis, there is a permutation of the first n− 1 coordinates so that
B = Γ(f) where f : C → Kn−1−d is an L-function for some L depending only on
M and n and C ⊆ Kd is an open L-cell.
In case (1) d = e. Define l : C → Kn−e by l(x) = 〈f(x), g(x,f(x))〉. It is easy
to see that l is an L′-function for some L′ depending only on M and n, and that
A = Γ(l).
In case (2), d = e−1. For x ∈ C define g̃(x) := g(x,f(x)), h̃(x) := h(x,f(x)),
and B̃ := (g̃ , h̃)C . Given x̄ ∈ C and g̃(x) < y < h̃(x) with 〈x̄, y〉 ∈ B̃ , define
l(x̄, y) := f(x̄). We have that B̃ is an open e-dimensional L-cell, l : B̃ → Kn−e is
an L′-function for some L′ depending only on M and n, and after a permutation
of coordinates A = Γ(l). ⊣

Corollary 3.11. Let A ⊆ K̊n be a definable set of dimension at most e. Then

there is a partition A =
⋃k
i=0 Ai with dim(A0) < e and such that for each i > 0 there

is ói ∈ On(K) with ói(Ai) basic e-rectifiable. Moreover, the bounds of each ói(Ai)
can be chosen to depend only on n.

Proof. Apply Theorem 3.8 and 3.10. ⊣

A partition (A0, . . . , Ak) of A as in Corollary 3.11 is a basic e-rectifiable partition
of A.
Notice that a similar result has also been proved in [PW06, Theorem 2.3] (where
they also take arbitrarily small bounds): however, in [PW06] they don’t require that
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the functions parametrizing the set A are injective (which is essential for our later
uses).

§4. Whitney decomposition. The fact that the functions that define anM -cell are
actually Lipschitz function follows from the following property ofM -cells:

Every pair of points x, y in anM -cell C ⊂ Kn can be connected by a definable
C 1 curve ã : [0, 1]→ C with |ã ′(t)| < N |x−y|, whereN is a constant depending
only onM and n which is finite ifM is (Lemma 4.3 or [VR06] 3.10 & 3.11).

The same property implies that an N -function f on an M -cell is Lipschitz where
the Lipschitz constant is finite ifM and N are (Corollary 4.5). This last property
will be needed for defining Hausdorff measure.

Remark 4.1. Let U ⊂ K̊n be open and definable, and f : U → K̊ be an M -
function (for some finiteM ). It is not true in general thatf is L-Lipschitz for some
finite L: this is the reason why we needed to prove Theorem 3.8.

Definition 4.2. Let A ⊂ Kn, B ⊂ Km be definable sets. Let ë ⊂ A ×
([0, 1] × B) ⊂ Kn × K1+m be a definable set such that for every x ∈ A, the
fiber over x

ëx := {y ∈ [0, 1]× B : 〈x, y〉 ∈ ë}

is a curve ëx : [0, 1] → B. We view ë as describing the family of curves {ëx}x∈A.
Such a family is a definable family of curves (in B, parametrized by A).

An L-cell is an L-Lipschitz cell if the functions that define the L-cell are L-
Lipschitz.

Lemma 4.3. Fix L ∈ K>0 and n ∈ N>0. Then, there is a constant K(n,L) ∈ K>0
depending only on n and L, that is finite if L is, such that for every L-Lipschitz cell
C ⊂ Kn there is a definable family of curves ã ⊂ C 2 × ([0, 1]×C ) such that: For all
x, y ∈ C , ãx,y : [0, 1]→ C is a C 1-curve with

(i) ãxy(0) = x, ãxy(1) = y;
(ii) |ã ′xy(t)| ≤ K(n,L)|x − y|, for all t ∈ [0, 1].

Proof. By induction on n. For n = 1 the lemma is clear. Take n ≥ 1, and
assume that the lemma holds for n. Let C ⊂ Kn+1 be an L-Lipschitz cell. Then
C = Γ(f) or C = (g, h)X for some L-Lipschitz cell X ⊂ Kn−1 and definable, C 1,
L-Lipschitz functions f, g, h with g < h, and |Df|, |Dg|, |Dh| ≤ L. By induction,
there are a constant k := K(n − 1, L) and a definable family of C 1-curves â in X
with the required properties. Let ðn : Kn+1 → Kn be the projection onto the first n
coordinates.
If C = Γ(f), we lift â toC viaf: fix x, y ∈ C and let ãx,y(t) := (α(t), f(α(t))),
where for all t ∈ [0, 1]α(t) := âðn(x),ðn(y)(t).Thenwehave |ã

′
xy(t)| ≤ (1+L)k|x−y|.

If C = (g, h)X , we lift â as follows: Fix x, y ∈ C and let α := âðn(x),ðn(y). Let

ð : Kn+1 → K be the projection onto the last coordinate and take u, v ∈ (0, 1) with

ð(x) = uh(α(0)) + (1− u)g(α(0)),

ð(y) = vh(α(1)) + (1− v)g(α(1)).
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Let l(t) := tv + (1 − t)u, for t ∈ [0, 1]. We define ãx,y(t) := (α(t), l(t)h(α(t)) +
(1 − l(t))g(α(t))), and note that

|ã ′xy(t)| ≤ k|x − y|+ |(v − u)(h(α(t)) − g(α(t)))| + 2Lk|x − y|,

since l(t), 1− l(t) are between 0 and 1 and |Dh(α′(t))|, |Dg(α′(t))| ≤ L|α′(t)|. Let
f := h − g. We want to bound |(v − u)f(α(t))|, which equals
∣

∣ðy − ðx − v(f(α(1))− f(α(t))) +

+ u(f(α(0))− f(α(t))) + g(α(0))− g(α(1))
∣

∣.

But

|f(α(1))− f(α(t))| ≤ L|α(1)− α(t)| = L|1 − t|

∣

∣

∣

∣

α(1)− α(t)

1− t

∣

∣

∣

∣

≤ L|α′(t0)|

for some t0 between t and 1. Similarly, |f(α(0))− f(α(t))| ≤ L|α′(t1)|, for some
t1 between t and 1. Since u, v ∈ [0, 1], we get

|(v − u)f(α(t))| ≤ |ðy − ðx|+ 2Lk|x − y| + L|x − y|;

thus |ã ′xy(t)| ≤ K(n,L)|x − y| for some constantK(n,L) depending only on n and
L which is finite if L is. The collection of the curves ãxy for x, y ∈ C constitutes the
required family of curves. ⊣

Theorem 4.4. Let L > 0, and let C ⊂ Kn be an L-cell. Then C is a k(n,L)-
Lipschitz cell, where k(n,L) depends only on n and L, and is finite if L is.

Proof. By induction on n; the theorem is clear for n = 1. Assume that n > 1
and that the theorem holds for n − 1. Then C = Γ(f) or C = (g, h)X , where
X ⊂ Kn−1 is a k(n − 1, L)-Lipschitz cell and f, g, h are C 1-functions on X such
that |Df|, |Dg|, |Dh| ≤ L. We need to show that f, g, h are Lipschitz.
Since X is a k-Lipschitz cell, k := k(n − 1, L), it follows from Lemma 4.3 that
there is a constant K(n − 1, k) such that whenever x, y ∈ X , there is a definable,
C 1-curve ã joining x and y with |ã ′(t)| ≤ K(n − 1, k)|x − y| for all t ∈ [0, 1]. Let
g := f ◦ ã, and let t0 ∈ (0, 1) be such that

|f(x)− f(y)| = |g ′(t0)| = |Df(ã ′(t0))| ≤ L|ã
′(t0)| ≤ LK(n − 1, k)|x − y|.

Thus f is LK(n − 1, k)-Lipschitz. We set k(n,L) := LK(n − 1, k). ⊣

Corollary 4.5. Let C be anM -cell and f be a definableM -function. Then f is
Lipschitz, and with finite Lipschitz constant ifM is finite.

Proof. By Theorem 4.4, C has a definable family of curves as in Lemma 4.3.
The result therefore follows from the mean value theorem. ⊣

Definition 4.6. A definable set A ⊂ Kn satisfies the Whitney arc property if
there is a constant K ∈ K̊>0 such that for all x, y ∈ A there is a definable curve

ã : [0, 1]→ A with ã(0) = x, ã(1) = y and length(ã) :=
∫ 1

0
|ã ′| ≤ K |x − y|.

Lemma 4.7. Let C ⊂ K̊n be an M -cell, M ∈ K̊ . Then, C satisfies the Whitney
arc property.

Proof. It follows from Theorem 4.4 and Lemma 4.3. The finiteness of C andM
guarantee that length(ã) can be defined. ⊣
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Theorem 4.8. Let A ⊂ K̊n be definable. Then, A can be partitioned into finitely
many definable sets, each of them satisfying the Whitney arc property.

Proof. This follows from Lemma 4.7, Theorem 3.8 and the fact that theWhitney
arc property is invariant under an orthonormal change of coordinates. ⊣

§5. Hausdorff measure. For an introduction to geometric measure theory, and
to the Hausdorff measure, see [Morgan98].

Definition 5.1. Let U ⊆ Kn be open and let f : U → K̊m be a definable
function. If a ∈ U , e ≤ n andM is the set of the e × e minors of Df(a) we define

Jef(a) =











+∞
if f is not differentiable at a

or rank(Df(a)) > e,
√

∑

m∈M m
2 otherwise;

(cf. [Morgan98, §3.6]).

Notice that if e = n = m, then Jnf = |det(Df)|.

Definition 5.2. Let U ⊆ K̊ e be an open M -cell for some M ∈ N, and let
f : U → K̊m be a definable function with finite derivative. Let F : U → K̊m+e be
F (x) := 〈x,f(x)〉 and C := Γ(f) = F (U ) (notice thatC has bounded diameter).
We define

H
e(C ) :=

∫

U

JeF dL
e .

Lemma 5.3. If C ⊆ K̊n is a basic e-rectifiable set, then H e(C ) = H e
R
(st(C )),

whereH e
R
is the e-dimensional Hausdorff measure on Rn.

Proof. Let A ⊂ K̊ e and f : A→ K̊n−e be as in Definition 3.9, and F : A→ K̊n

as in Definition 5.2. Let B := st(A). Then, using the real Area formula [Mor-
gan98],

∫

A

JeF dL
e =

∫

B

Je(F ) dL
e
R
= H e

R
(F (B)) = H e

R
(st(C )).

⊣

Definition 5.4. LetA⊆K̊n bedefinable of dimension atmost e, and (A0, . . . , Ak)
be a basic e-rectifiable partition of A. For i > 0, define H e(Ai) := H e(ói(Ai )),
where ói ∈ On(K) is as in Corollary 3.11; and

H
e(A) :=

∑k

i=1
H
e(ó(Ai)).

Lemma 5.5. If A is as in the above definition, then H e(A) does not depend on the
choice of the basic e-rectifiable partition (A0, . . . , Ak).

Proof. It suffices to prove the following: if C is a basic e-rectifiable set and

(A0, . . . , Ak) is a basic e-rectifiable partition of C , then H
e(C ) =

∑k
i=1H

e(Ai ),
where H e(C ) and H e(Ai) are defined using 5.2. For every i = 1, . . . , n let U
and Vi be M -cells, f : U → Kn−e and gi : Vi → Kn−e be definable functions
with finite derivative, ói ∈ On(K), F : K e → Kn defined by F (x) := (x,f(x)),
and Gi : K e → Kn defined by G(x) = ói(x, gi (x)) such that C = F (U ) and
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Ai = Gi (Vi). Define Ui := F−1(Ai) ⊆ U , and Hi := G
−1
i ◦ F : Ui → Vi . Notice

that each Hi is a bi-Lipschitz bijection, that U is the disjoint union of the Ui , and
that dim(U0) < e. Hence,

H
e(C ) =

∫

U

JeF dL
e =

n
∑

i=1

∫

Ui

JeF dL
e =

n
∑

i=1

∫

Ui

Je(Gi ◦Hi) dL
e =

n
∑

i=1

∫

Ui

(Je(Gi ) ◦Hi) · |det(DHi)| dL
e =

n
∑

i=1

∫

Vi

JeGi dL
e =

n
∑

i=1

H
e(Ai)

where we used Lemma 2.10, the fact that each ói is a linear function with determi-
nant ±1, and that Je(G ◦H ) = (Je(G) ◦H ) · |det(DH )|. ⊣

Lemma 5.6. H e does not depend on n. That is, let m ≥ n, and A ⊂ K̊n definable,
and ø : Kn → Km be the embedding x 7→ (x, 0). Then,H e(A) = H e(ø(A)).

Proof. Obvious from the definition and Lemma 5.5. ⊣

Notice thatH 0(C ) is the cardinality of C .
It is clear thatH e can be extended to the ó-ring generated by the definable subsets
ofKn of finite diameter and dimension atmost e; wewill also denote the completion
of this extension byH e .

Lemma 5.7. H e is a measure on the ó-ring generated by the definable subsets of
Kn of bounded diameter and dimension at most e.

Proof. SinceK is ℵ1-saturated, it suffices to show that, for everyA andB disjoint
definable subsets of Kn of finite diameter and dimension at most e, H e(A ∪ B) =
H e(A) +H e(B). But this follows immediately from Lemma 5.5. ⊣

Example 5.8. In Lemma 5.3, the assumption that C is basic e-rectifiable is nec-
essary. For instance, take å > 0 infinitesimal, and X be the following subset of K2

X :=
(

[0, 1]× {0}
)

∪ {〈x, y〉 : 0 ≤ x ≤ 1 & y = åx}.

Then, st(X ) = [0, 1]×{0}, and thusH 1(X ) = 2, whileH 1
R
(st(X )) = 1. This is the

source of complication in the theory, and one of the reasons why we had to wait
until this section to introduceH e .

§6. Cauchy–Crofton formula. Give e ≤ n, define

â := Γ
(

e+1
2

)

Γ
(

n−e+1
2

)

Γ
(

n+1
2

)−1
ð−1/2.

Definition 6.1. LetAG e(K
n) be the Grassmannian of affine e-dimensional sub-

spaces of Kn and let AG e(Rn) be the Grassmannian of affine e-dimensional sub-
spaces of Rn. Fix an embedding of AG e(Rn) into some Rm, such that AG e(Rn) is
a ∅-semialgebraic closed submanifold of Rm, and the restriction to AG e(Rn) of the
dim(AG e(Rn))-dimensional Hausdorff measure coincides with the Haar measure
on AG e(Rn).

Definition 6.2. Given A ⊆ Kn and E ∈ AG n−e(Kn), we define fA(E) :=
#(A ∩ E).
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Theorem 6.3 (Cauchy–Crofton Formula). Let A ⊆ K̊n be definable of dimen-
sion e. Then,

H
e(A) =

1

â

∫

AG n−e(Kn)

fA dL
AG n−e(K

n).

We prove the theorem by reducing it to the known case of K = R. This is done
by showing that #(A ∩ E) equals #(stA ∩ stE) almost everywhere.

Definition 6.4. Let f : U → K̊m be definable, with U ⊂ K̊n open. Let E ⊂ Rn

and f be as in Lemma 2.11. We say that b ∈ Rn is an S-regular point of f if

i) b ∈ st(U ) \ E;
ii) b is a regular point of f.

Otherwise, we say that b is an S-singular point and f(b) is an S-singular value
of f. If c ∈ Rm is not an S-singular value, we say that c is an S-regular value of f.

Remark 6.5. Let S be the set of S-regular points of f. Then, S is open and
definable in RK .

Lemma 6.6 (Morse-Sard). Assume thatm ≥ n. Then, the set of S-singular values
of f isLm

R
-negligible,

Proof. ByLemma 2.11,E is negligible; sinceE is alsoRK -definable, it has empty
interior and therefore dim(E) < n. Since m ≥ n, it follows that f(E) is negligible.
The set of S-singular values off is the union off(E) and the set of singular values
of f; it is therefore negligible. ⊣

Lemma 6.7 (Fixed point theorem). Let X be a definable nonempty closed subset
of Kn . Let f : X → X be a definable map. Assume that:

i) EitherX is bounded, and, for every distinctx andy inX , |f(x)−f(y)| < |x−y|;
ii) Or there exists C in K such that 0 ≤ C < 1 and, for every x and y in X ,

|f(x)− f(y)| ≤ C |x − y|.

Then, f has a unique fixed point.

Proof. Uniqueness of the fixed point of f is clear; thus, we have only to show
existence.
If i), define g : X → K , g := |x −f(x)|. Let d := min(g(X )). If f has no fixed
point, then d > 0. Let x1 ∈ X such that g(x1) = d ; define x2 := f(x1). Then,
g(x2) = |f(x2)− x2| < |x2 − x1| = d , absurd.
If ii), pick any x1 ∈ X ; let x2 := f(x1), r0 := |x2 − x1|, r := r0/(1 − C ), and
Y := {x ∈ X : |x − x0| ≤ r}. Then, Y is definable, closed, and bounded, and
f(Y ) ⊆ Y . Hence, by i), f has a fixed point in Y . ⊣

Lemma 6.7 (with the same proof) holds in any K which is a definably complete
expansion of a field [Miller01].

Lemma 6.8 (Implicit Function). Assume that m = n. Let b ∈ Rn. If b is an
S-regular point of f then, for every y ∈ st−1(f(b)) there exists a unique x ∈ st−1(b)
such that f(x) = y.

Proof. Choose x0 ∈ st−1(b). LetA := (Df(x0))−1. Since b is a regular point of

f, ‖A‖ is finite. Thus we can choose r, ñ ∈ Q>0 such that B := B(b;ñ) is contained



646 A. FORNASIERO AND E. VASQUEZ RIFO

in the set of S-regular points of f, and

‖Df(b′)−Df(b)‖ <
1

2n‖A‖
,for every b′ ∈ B

r ≤
ñ

2‖A‖
.

Moreover, we can pick ñ such that B ′ := B(x0;ñ) ⊂ U . Given y ∈ Kn such that
|y − f(x0)| < r, consider the mapping

Ty : B
′ → Kn

Ty(x) := x + A · (y − f(x)).

Ty is definable and Lipschitz, with Lipschitz constant 1/2. Furthermore, Ty(B ′) ⊂
B ′. Therefore, for every y ∈ B(f(x0); r) there exists a unique x ∈ B ′ such that
Ty(x) = x. Thus, there is a unique x ∈ B with f(x) = y. It remains to show that,

given y ∈ st−1(f(b)) and x ∈ B ′ such that f(x) = y, we have x ∈ st−1(b). We
can verify that

T y : B → B

T y(b
′) = b′ + (Df(b))−1 · (f(b)− f(b′))

is also a contraction, and therefore it has a unique fixed point, namely b. Since
T y(st(x)) = st(x), we must have st(x) = b. ⊣

Remark 6.9. Let U ⊂ K̊m. If f : U → K̊n is definable and M -Lipschitz
(for some finite M ), n ≥ m and E is Lm

R
-negligible, then the set f(st−1(E)) is

L n-negligible.

Proof. We can cover E with a polyrectangle Y whose measure is an arbitrarily
small rational number ë and such that Y covers st−1(E). Since f(Y ) has measure
at most CM në (C depends only on m and n) the result follows. ⊣

Lemma 6.10. Let A ⊆ K̊n be a basic e-rectifiable set of dimension e. Consider
V := K e as embedded in Kn via the map x 7→ 〈x, 0〉. Identify each p ∈ V with the
(n−e)-dimensional affine space which is orthogonal toV and intersectsV in p. Then,
for almost every p ∈ V , we have #(p ∩ A) = #(st(p) ∩ st(A)).

Proof. Let ð : Kn → V be the orthogonal projection. Let U ⊂ K̊ e be an
open M -cell and f : U → Kn−e be a definable M -function (M finite) such that
A = Γ(f). Let F (x) := 〈x,f(x)〉. Let h := ð ◦ F : U → V , and consider
h : C → st(V ), C ⊂ st(U ) as in Lemma 2.11. For almost every p ∈ V , #(p ∩

A) = #(h−1(p)), and #(stp ∩ stA) = #(h
−1
(stp)) because F : U → A and

F : C → Im(F ) are bijections. Thus, it suffices to prove that, for almost every

p ∈ V , #(h−1(p)) = #(h
−1
(stp)). Let E be as in Lemma 2.11. By Remark 6.9,

h(st−1(E)) is L e-negligible. Let S be the set of S-singular values of h, by Lemma
6.6, S is negligible.
Let p ∈ V \ (st−1(S) ∪ h(st−1(E)). Then for every x in h−1(p), st(x) is
an S-regular point of h, and therefore Lemma 6.8 implies that #(h−1(p)) =

#(h
−1
(stp)). ⊣

Notice that the above lemma does not hold if A is only definable, instead of basic
e-rectifiable.
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Proof of Theorem 6.3. By Corollary 3.11, w.l.o.g. A is basic e-rectifiable. Let
B := st(A), and fB(F ) := #(B ∩ F ), for every F ∈ AG e(Rn). By Lemma 6.10,

∫

AG n−e(Kn)

fA dL
AG n−e(K

n) =

∫

AG n−e(Rn)

fB dL
AG n−e(R

n).

By the usual Cauchy–Crofton formula [Morgan98, 3.16], the right-hand side in the
above identity is equal toH e

R
(B) = H e(A), where we applied Lemma 5.3. ⊣

§7. Further properties of Hausdorff measure and the Co-area formula.

Theorem 7.1. Let e ≤ n andC ⊆ Kn be a bounded and definable set of dimension
at most e.

1. H e is invariant under isometries.
2. For every r ∈ K̊ ,H e(rC ) = st(r)eH e(C ).
3. If C is ∅-semialgebraic, thenH e(C ) = H e(CR) = H

e(st(C )).
4. if dim(C ) < e, thenH e(C ) = 0; the converse is not true.
5. H e(C ) < +∞.
6. If

(

C (r)
)

r∈Kd
is a definable family of bounded subsets of Kn , then there exists

a natural numberM such thatH n(C (r)) < M for every r ∈ Kd .
7. If K ′ is either an elementary extension or an o-minimal expansion of K , then
H e(CK ′) = H e(C ).

8. If n = e, thenH e(C ) = L n(C ).
9. If C is a subset of an e-dimensional affine space E, thenH e(C ) =LE (C ).

Proof. (1) Use the Cauchy–Crofton formula.
(2), (4) and (7) Apply the definition ofH e and Lemma 5.5.
(3) Apply Corollary 3.11 to CR and use Lemma 5.3.
(5) and (6) Apply the Cauchy–Crofton formula 6.3 and then use the same argument
as in [Dries03, Proposition 4.1].
(8) Apply Lemma 5.3.
(9) Since H e is invariant under isometries, w.l.o.g. E is the coordinate space K e .
By Lemma 5.6, the measure H e inside Kn is equal to the measure H e inside K e ,
and the latter is equal toL e . The conclusion follows from Fact 2.1. ⊣

The following theorem is the adaption to o-minimal structures of the Co-area
formula, a well-known generalization of Fubini’s theorem. Let D := [0, 1] ⊂ K .

Theorem 7.2 (Co-area Formula). Let A ⊂ Dm be definable, and f : Dm → Dn

be a definable Lipschitz function, with m ≥ n. Then, Jnf isLmK -integrable, and
∫

A

Jnf dL
m =

∫

Dn

H
m−n(A ∩ f−1(y)) dL n(y).

Sketch of Proof. W.l.o.g., A is an open subset of Dm. By Lemma 6.6, w.l.o.g.
all points of A are S-regular for f. Apply the real co-area formula [Morgan98] to
g := f and B := st(A), and obtain

∫

A

Jnf dL
m =

∫

B

Jng dL
m
R
=

∫

Dn
R

H
m−n
R
(B ∩ g−1(z)) dL n

R
(z).



648 A. FORNASIERO AND E. VASQUEZ RIFO

By the Implicit Function Theorem and Lemma 5.3, for almost every y ∈ Dn
R
, we

have

H
m−n(A ∩ f−1(y)) = Hm−n

R
(B ∩ g−1(st y)). ⊣
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