Some minimum bias window functions.
Firenze, September 29, 1976

some efficient window functions for minimum
bias spectral estimation are defined, starting from a
general quantum-mechanical analogy. Following this
approach, some new interesting functions are in par-
ticular obtained. Efficiency comparisons regarding
these and other known functions are reported.

1. - INTRODUCTION.

It is of increasing interest to define efficient win-
dow functions for optimal spectral estimation and
digital filtering.

Many window functions are up to now available;
recently interesting window functions were proposed
[11[2]. In particular, through a quantum-mechanical
analogy, efficient window functions were defined. and
proposed for minimum bias spectral estimation [5].

In this paper efficiency comparisons are presented
among different window functions and in particular
the last ones above recalied, here presented in more
general form.

2. - DERIVATION OF PAPOULIS-TYPE MINIMUM BIAS WIN-
DOW FUNCTIONS.

It has been shown by Papoulis [1] that the opti-

mum minimum-bias window function (for spectral

estimates)
(1
) t [t] t
wy (1) = sint — [+ | 1——} cosnm—|t|<n
T T % T

with Fourier transform W, (f) (see Table I) can be
determined by wminimizing the bias integral

%) f W df

with the condition W (f) =0 for every f and

400
(3) w0 = | WHdf =1
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It should be remarked the close analogy which
exists between this problem and the quantum-me-
chanical preblem of the ground energy of a particle
in a one-dimensional potential box [3]. In this case
the total energy of the particle in the quantum state
described by the wave function y(x) is proportio-
nal to

+o0
(4) PlX(p)pRdp

L—o0

where X (p) is the Fourier transform of U (x).
On this line by putting, according to relation (2)
and (4),

(3) [ X (= WK

the probability density of the particle in the one-
-dimensional box in the momentum representation
(we use the variables t and f instead of x and p
respectively) gives the window function W (f) for
spectral estimates.- For a box extending from
t = —7/2 to t = t/2 the wave function of the par-
ticle Y(t) vanishes for |t|> t/2. From relation (5)
and the convolution theorem it follows that

/2

(6) w() = d® $O—1)do, w() =1

—%+z
where, according to the generalized Fejer-Riesz theo-
rem [4], w(t) is different from zero for [T <
"The minimum-bias Papoulis function wy(t) is ob-
tained from eq. (6) if the wave function U (t) is the
ground state eigenfunction

o t
) ‘tIJo(t):\/—- cosm — |[t]|<1/2
T T

of the corresponding one-dimensional box Schroedin-
ger problem.

This conclusion can be generalized by considering
a particle in a potential V, (t) which reduces to the
one-dimensional potential box as the parameter
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TaBLE 1. - Window functions and their Fourier transforms (see fig. 3).
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* All w(t) and u(t) functions are identically zero for || > 7.

goes to a suitable value L. In this case the ground
state’ eigenfunction (which is a function of \) of the
corresponding Schroedinger problem goes to the
eigenfunction ,(t). The particular class of ground
state eigenfunctions

£\ 241
(8) (1) = A (cosw—) [t < /2

T

has been proposed in a previous paper [5]. In eq. (8)
[7:1‘(2)»—}- HERr+1)

sT(/2) TN+ 3/2)
constant where T (x) is the Eulero T-function.
The function Y, (t) corresponds to the potential

©)]
V(1) =

1/2
] is the normalization

2q2

t

2 [(4N +12—1] tg? (1: ——) ] <=2
T

where h is the Planck constant and m is the mass

of the particle and , (t) reduces to Y, (t) as N goes
to zero. The general form of the window pairs

w, (1) © W, (f), as obtained from egs. (8), (6) and
(5) is given in reference [5]. For A = 0,1/21 the
window functions wy (¢), wy, (t), wy (t) and their trans-
forms W, (f), W,,(f), W, (f) are reported in Table I.
The Papoulis window function (A = 0) corresponds
to the more extended function in the time domain
and, consequently, to the wmore concentrated func-
tion in the frequency domain. |

Returning to the ground state ezgenfunctzon %(t)
we observe that the non- staZzonary quantum mecha-
nical states

i s 371 []
= 7(7—7)'

01 2
il T(T—?)'“'“/z

(10)

correspond to approximaté U, (t) by a triangular func-
tion and a semicircular function respectively. From
egs. (6) and (5) we obtain the window functions



B

wy (t), wg(t) and their transforms W,(f), Wy(f),
which approximate, at some extent, the Papoulis pair
wo (1) © W, (f). These functions are reported in Ta-
ble I. Here we note only that the pair wy (1) < W, (f)
is known as the Parzen window pair [6] and that the
pair wg(t) < Wy(f) is a very good approximation
to the Papoulis pair as consequence of the fact that
the state Yy (1) closely approximates the ground state
Y, (2) [5].

As a further step we consider now the functions
Uy (2), U, () and g (1). With the substitution t — t/2
we obtain respectively the new functions

241
(11) u, (i) = [cos( :i )] ) [t <

[1] e
(12) uA(t)=(l—__);_uB~(t) =1——oI/t|<=x
% T2

where we have normalized the u-functions so that
u(0) = 1.

The so constructed u-functions can be considered
as window functions. The functions uy, uy, u, t,
and uy are reported in table I together with their
Fourier transforms. It can be observed that u, (1)
is the Fejer-Bartlett triangular window [7] and ty,; ()
is the Hanning-Tukey window [7]

t

(13) ug(t) = B+ (1—B) cosw

T

in the particular case B = 1/2.

- We remark that the procedure of this paper, based
on a quantum-mechanical analogy, while simple and
intuitive, permits through easy rules to obtain the
more important known window functions. Further,
on this line, new window functions can be defined.
In order to show the characteristics of these new
classes w, and u, of window functions, we will go
in the following in more details on the bias criteria
for the selection of spectral windows.

3. - EFFICIENCY COMPARISON OF THE PROPOSED SPECTRAL
WINDOWS.

As is known [7] the efficiency of a window
w(t) can be estimated at a given frequency f by
the bias term B; defined as

(14) Bf=J%su—f)Wuodf~su>

—o0

where S(f) is the true spectrum and W (f) the Fou-
rier transform of w(?).

Palmer [8] has found an upper bound for the
normalized bias B;/S (f) based on suitable models
of the true spectrum S(f) in regions of width Af.
The bound is given by KA,(Af) in the transition
region between peaks and valleys of the true spec-
trum and by A,(Af) + KA, (Af) in the region of a
prominent peak or valley, where K is a suitable finite
real number and

(15) a@an=2 [ |(wp|df

Af/2

4 w172
(16) A,(Af) = vy W) df.

0

Palmer has also given plots of A, (Af) (dB) and
A, (Af) (dB) for some typical window functions, from
which the well known 'Hanning’ window (called cos'1
in Palmer’s paper [8]) appears to be the best one
on the basis of bias criteria. In fig. 1 and fig. 2 plots
of A,(Af) (dB) and A, (Af) (dB) are shown for the
most significant window functions listed in table T
compared with the behaviour of Hanning window
(cos1).

The transition region parameter A, (Af), as Pal-
mer observes, has greater importance because it ap-
pears in the upper bound for both regions of interest
of the true spectrum and because the differences
among the peak/valley parameters A, (Af) of diffe-
rent windows are considerably smaller than for
A, (Af). Therefore, according to Palmer's criterion,
some of the functions listed in Table I may show
better behaviour than cos 1, depending on the length
Af of the region of validity of the true spectrum
model proposed by Palmer. At very small Af one
can see that u, (t) is the best one, while at large

TaBLE II. - Window functions and their properties.

S Bias Asymptotic
SRR coefficient (2) | attenuation (3)
72 1
w, (2) U.535 % T N eitei o
2«2 2723 f4
2
w,y, (0) 0.418 = 0.667 n2/<2 _—
3 n2q5f6
9
w, (1) 0.415 7 0.900 n2/<2
527 8
0.6 =2 12
w, (1) 0.539 < PO S
<2 T4 3 f4
15
wy (1) 0.602 © 0.500 =2/<2 S —
2t 3 f4
1
u, (t) 1.00 < undetermined £ CLS
4nf2
2 1
u, (t) 0.750 =
(cos 1) (Hanning) 42 8n2f3
3
u, (1) 0.625 < 0.375 n2/2 T
KYE X133
1
u, (1) 0.667 © o
w27 f2
1
ug (1) 1.065 undetermined
w2 g f2

i
(') Energy E = f wz(f)df.

o
(2) Bias coefficient - D = 2 w2 f AW () df.

(3) Asymptotic attenuation A = W (f) for. large f.
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Fig. 1. - Transition region bias parameter A, (Af) verus Af for some spectral window function of interest.
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Fig. 2. - Peak/valley region bias parameter Ap (A f) versus A f for some spectral window functions of interest.
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Fig. 3. - Plots of the window functions and their Fourier transforms of table I.
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Af w(t) and Wy, (2) resuit the best ones.
Papoulis [1] has given a general expression for
the bias term (14)

a7 B; = 22 S”(f) ff’z W) df

(S”(f) is the second derivative of S({)) and has
found that the window function (1) minimizes the
integral in (17).In table II the bias coefficient D
— i.e. the coefficient of S”(f) in (17) — is shown for
the window functions listed in table I. A comparison
among different windows wmust take into account
also their energy E, also shown in table II, because
the variance of the estimate of the true spectrum
is directly proportional to E [11, and their asymp-
totic attenuation (table II), which is an important
parameter for the suppression of interference from
distant large components in the true spectrum.

From the analysis of table II, we can observe that
the Hanning window has the minimum bias coej-
ficient; however, as remarked by Papoulis [1], a
reasonable comparison must take into account also
the value of the energy E. If the energy of the Hann-
'fhg window is reduced to the value of wy(t), the
bias term becomes essentially equal. Analogous con-
siderations are valid also for u, (1).

Moreover we can observe, from table II and fig. 1
and fig. 2, that the behaviour of wy(t) is essentially
equivalent to that of Papoulis’ window w, (1).

The window functions of table I and their Fourier
transforms are also plotted in figii3:

We conclude pointing out that the utility of these
window functions is not limited to the area of spec-
tral estimates but extends to other areas (filtering,
antennasy and in particular to the finite impulse
response digital filtering (one and two dimensional).

Enrr1o BorcHI
Vito CAPPELLINT - ENRICO DEL RE
Istituto di Elettronica, Universita di Firenze
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