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A B S T R A C T

Estimating values of permeability (k), efficient porosity (P) and hydraulic conductivity (K) by analysing field
outcrops as analogue of geothermal reservoirs, is a timely theme useful for predictions during geothermal ex-
ploration programs. In this paper we present a methodology providing k, P and K values, based on geometric
analysis of quartz-tourmaline faults-vein arrays hosted in micaschist exposed in south-eastern Elba Island (Tuscan
Archipelago, Italy), considered as the analogue of rock hosting the so-called “deep reservoir” in the Larderello
geothermal field. The methodology is based on the integration among structural geology, fluid inclusions results
and numerical analyses. Through a detailed structural mapping, scan-lines and scan-boxes analyses, we have re-
constructed three superposed faulting events, developed in an extensional setting and framed in the Neogene
evolution of inner Northern Apennines. Geometrical data of the fault-veins array were processed by reviewing the
basic parallel-plate-model-equation for k evaluation. Fluid inclusion analyses provided those salinity values nec-
essary for defining density and viscosity of the parent geothermal fluids. Then, permeability, density and viscos-
ity were joined to get hydraulic conductivity (K). Permeability is estimated between 5 × 10−13 and 5 × 10−17 m2

with variations among the different generation of faults, while the hydraulic conductivity is encompassed be-
tween 1.31 × 10−8 and 2.4 × 10−13 m/s. The obtained permeability and hydraulic conductivity values are com-
parable with those from several geothermal areas, and in particular from the Larderello geothermal field. The
main conclusion is that the proposed integrated approach provides a reliable methodology to obtain crucial val-
ues, normally obtained after drilling, for developing numerical flow models of geothermal fluid path in active
geothermal systems by field and laboratory analyses of analogue, exhumed, geothermal systems.

1. Introduction

Hydraulic properties of rock volumes, in terms of permeability (k),
hence efficient porosity (P) and hydraulic conductivity (K) are para-
meters describing the ability of the rock volume to channel fluids at
crustal depth, where primary porosity is negligible and fluid flow is
controlled by fracture networks (Sibson, 2000; Rowland and Sibson,
2004; Faulkner et al., 2010; for a review). Determination of such pa-
rameters and their variation through time are fundamental issues for
both exploration and exploitation of geothermal reservoirs. These are
fundamental features to estimate the potentiality of a geothermal sys

tem and, consequently, to calibrate the investments and the economic
plans (Barbier, 2002).

Hydraulic properties of reservoirs can be directly measured in lab-
oratories (e.g.: Preisig et al., 2015; Milsch et al., 2016) and/or extrap-
olated through boreholes tests (e.g.: Peters, 2012; Stober and Bucher,
2014, 2015). The main results highlight that, in general, the permeabil-
ity (k) decreases with depth, following an almost linear law, as docu-
mented in several geothermal fields (Stober and Bucher, 2007), even
though local inversions may be found when rock volumes with different
mechanical properties are encountered.

Permeability values in active geothermal areas have been directly
measured in the range of 10−21 − 10−12 m2 at depth (Stober and
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Bucher, 2014 with references therein), although reservoir rocks display
permeability commonly encompassed between 10−14 and 10−17 m2

(Rowland and Sibson, 2004). Nevertheless it is demonstrated that per-
meability values are transient (Cox et al., 2001), being controlled by the
interplay between tectonic activity (Sibson, 1987; Cox, 1999; Curewitz
and Karson, 1997; Rowland and Sibson, 2004; Uysal et al., 2009) and
fluid/rock interaction (Fyfe, 1987; Polak et al., 2003; Uysal et al., 2009;
Alt-Epping et al., 2013). Generally, these two processes play in oppo-
site directions: the former enhancing permeability, the latter sealing the
fractures when precipitation of hydrothermal minerals occurs.

These opposite processes may coexist and/or occur in several re-
peated cycles implying that permeability in geothermal systems is over-
all time-dependent (Curewitz and Karson, 1997; Cox et al., 2001; Uysal
et al., 2011; Brogi et al., 2012; Brogi et al., 2016). However, permeabil-
ity evolution through time cannot be recorded by boreholes tests able
only to estimate the Present condition.

Generally, in hydrocarbon studies, determination of the hydraulic
parameters of rock masses are derived from conventional 2D or 3D
reservoir simulators (Long and Witherspoon, 1985; Cacas et al., 1990;
Odling, 1992; Massonnat and Manisse, 1994; Lough et al., 1997;
Bourbiaux et al., 1998; Min et al., 2004), whereas information on frac-
ture array derives from fractal analyses (Miao et al., 2015 with refer-
ences therein) and/or analyses of fracture data collected on analogue,
exhumed, rock reservoirs (e.g.: Hausegger et al., 2009; Agosta et al.,
2010; Kim and Sanderson, 2010). It is therefore accepted that the re-
sults obtained from exposed outcrops can be considered representative
even for rock volumes located at depth, although boundary conditions
are different. Thus a statistical and/or numerical approach (Lisjak and

Grasselli, 2014 with references therein) is commonly applied to foresee
the distribution of fractures at depth.

Differently, in analogue, exhumed, geothermal systems, the frac-
ture array that was present during fluid circulation is now defined by
veins filled with hydrothermal minerals, indicating the original path
through which fluids were channelled at the time and depth of their
flow (McCaffrey et al., 1999).

In this paper we describe a methodological approach, based on geo-
metrical analyses of hydrothermal (tourmaline-quartz) veins hosted in
micaschist belonging to the eastern Elba Island exhumed geothermal
system (Fig. 1), and referred to the development of different faults gen-
erations. This area is considered the analogue of the about 4–5 km deep
reservoir in micaschist presently exploited in the Larderello geothermal
system (Batini et al., 2003; Bellani et al., 2004; Romagnoli et al., 2010).

The evolution of the hydrothermal veins, in terms of their spatial dis-
tribution (array) and growth through time, was defined by a detailed
examination of their crosscutting relationships, mainly based on geo-
metrical analyses through scan-line and scan-box methodologies applied
in selected outcrops, and by mineralogical and fluid inclusion studies.
Reassessing the base algorithm for the permeability estimation (Gale,
1982; Cox et al., 2001), the maximum permeability values of the micas-
chist palaeo-geothermal reservoir have been calculated through time.
Jointly, permeability values and pressure-temperature-salinity parame-
ters derived from the fluid inclusion data, have been considered as
the key-parameters to estimate the paleo-fluids viscosity, therefore con-
tributing to better constrain several key chemical-physical parameters
characterising the paleo-geothermal field now exposed in the eastern
Elba Island. The main results highlight the considerable role of fluctu

Fig. 1. Structural sketch map of Northern Tyrrhenian Basin and Tuscany. The main Pliocene–Quaternary basins and magmatic bodies are indicated (after Liotta et al., 2015; modified).
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ant fluid pressure in maintaining the permeability within the reservoir.
Furthermore, permeability and hydraulic conductivity of the micaschist
reservoir estimated for the eastern Elba Island are comparable with
those measured in the Larderello geothermal field.

2. Geological setting

The Elba Island (Tuscan Archipelago, Fig. 1) is part of the Northern
Apennines inner zone. Northern Apennines is an alpine collisional belt
(Cretaceous-Early Miocene) deriving from the convergence and subse-
quent collision between the Adria microplate, representing the Africa
plate, and the Sardinia-Corsica Massif of European pertinence (Molli,
2008 for a review). Collision determined the stacking and doubling of
oceanic and continental tectonic units deriving from the palaeo-geo-
graphic domains of the Northern Apennines (Carmignani et al., 1994;
Bianco et al., 2015). Since early-middle Miocene, inner Northern Apen-
nines has been affecting by eastwards migrating extensional tecton-
ics that can be described through two main events (Brogi and Liotta,
2008; Barchi, 2010): (a) the first one (early to late Miocene), character-
ized by an extension of at least 120% (Carmignani et al., 1994; Liotta
et al., 1998; Brogi, 2006), gave rise to low-angle normal faults; this
event produced the lateral segmentation of the previously stacked tec-
tonic units and the exhumation of mid-crustal rocks (Liotta et al., 1998;
Brogi, 2008; Barchi, 2010); (b) the second event (Pliocene to Present)
is differently defined by high angle normal faults, cross-cutting the pre-
vious structures, and determining tectonic depressions where Pliocene
to Quaternary continental and marine sediments deposited (Martini
and Sagri, 1993). The amount of extension is here estimated in about

6–7% (Carmignani et al., 1994). The opening of the Tyrrhenian basin
and the present crustal and lithospheric thicknesses, (20–22 and
30–50 km, respectively in: Calcagnile and Panza, 1981; Locardi and
Nicolich, 1992), are the clearest evidence of the extensional setting.

Since Langhian, the migration of extension is accompanied by mag-
matism, with an eastward younging direction (Fig. 1), mostly deriv-
ing from mixing of crustal and mantle sources (Serri et al., 1993;
Peccerillo, 2003). Cooling of late Miocene-Pliocene plutons (such as
the Monte Capanne and Porto Azzurro magmatic complexes at Elba Is-
land, Westerman et al., 2004; Caggianelli et al., 2014) determined a
widespread epithermal and mesothermal mineralization through Tus-
cany and Elba Island (Dini, 2003), where ore deposits were exploited for
centuries (Fig. 1).

Hence, the high heat flow of Tuscany (regionally above 100 mW/m2

with local peaks up to 1 W/m2, Mongelli and Zito, 1991; Della Vedova
et al., 2001) and the presently exploited Larderello and Monte Amiata
geothermal fields find a common explanation in this long-lasting active
extensional and magmatic framework (Batini et al., 2003).

Thus, in the frame of the eastward extensional and magmatic mi-
gration, Elba Island (Fig. 2) is considered a precursor of the present
Larderello geothermal system on the basis of the similarities in the geo-
logical settings (Trevisan, 1950; Puxeddu, 1984; Bortolotti et al., 2001),
magmatic and tectonic evolution (Garfagnoli et al., 2005; Dini et al.,
2005).

Furthermore, the structurally deepest rocks of Elba Island are micas-
chist affected by low-P metamorphism, crosscut by leucogranite dykes
(Garfagnoli et al., 2005; Musumeci et al., 2011) and quartz-tour

Fig. 2. Geological sketch map of Elba Island. The main low-angle and high-angle faults are highlighted (after Liotta et al., 2015; Bianco et al., 2015).
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maline veins (Dini et al., 2008; Viti et al., 2016). These features can be
compared with the metamorphic basement drilled at depth (3.5–5 km
b.g.l.) in Larderello, where micaschist with overpressured B-rich saline
fluids (Cavarretta et al., 1993) were drilled at about 3 km depth.

Low-P micaschist (Garfagnoli et al., 2005) is widely exposed in the
Monte Calamita Promontory (Fig. 2). This represents the host-rock of
the Porto Azzurro monzogranite (5.9–5.4 Ma, Maineri et al., 2003),
whose cooling was accompanied by the activity of a significant hy-
drothermal system, now exposed in the eastern side of Elba Island. This
is testified by the notable variety of hydrothermal parageneses (Dini,
2003). Differently, the hydrothermal system connected to the western
and older Monte Capanne plutonic complex (8–6.8 Ma, in: Dini et al.,
2002; Fig. 2) is almost completely eroded.

3. Rock fabric

The Monte Calamita micaschist derives from a pelitic protholith of
Cambrian to Ordovician age (Musumeci et al., 2011; Sirevaag et al.,
2016). It is intruded by tourmaline-rich leucogranite dykes (Fig. 3a) and
quartz-tourmaline veins, the latter related to the cooling stage of the
Porto Azzurro monzogranite (Barberi et al., 1967; Dini et al., 2008). Mi-
caschist is characterized by a NE-dipping main schistosity (Fig. 3a), de-
fined by quartz ribbons and interlayered biotite rich-levels (Fig. 3b).

The syn-kinematic mineralogical assemblage defining the main schis-
tosity is given by Qtz + Bt ± Ab (Fig. 3c–d). This foliation is over-
printed by syn- to post-kinematic LP paragenesis, consisting of
Qtz + Ms + Bt + And ± Crd ± Ttn (Fig. 3e–f). Duranti et al. (1992)
estimated a peak temperature of 650 °C at pressure of about 2 Kbar,

Fig. 3. Rock fabric of the micaschist hosting the quartz-tourmaline bearing veins exposed at Cala Stagnone. a) NNW-SSE trending leucogranite dykes, emplaced within the micaschist; the
main foliation in micaschist and leucogranite dykes are reported in the stereographic diagrams (lower-hemisphere equiangular projection) at top and bottom, respectively. b) micaschist
rock fabric at the outcrop scale; c) micrograph (plane polarized light) of micaschist showing the neoformational biotite and white mica, related to the HT-metamorphism; d) micrograph
(crossed polars) showing typical compositional and textural features of the leucogranite dyke; e–f) micrographs (plane polarized light) of micaschist showing the syn- to post-kinematic
paragenesis; g) tourmaline-bearing metasomatic halos bounding the leucogranite dyke; h) micrograph (plane polarized light) of leucogranite dyke with euhedral tourmaline crystals; i)
micrograph (plane polarized light) of zoned tourmaline crystals with a schorl core (yellow dots) and schorl-dravite rim (red dots). Mineral abbreviations according to Bucher and Frey
(1994). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dated by Musumeci et al. (2011) at about 6.2 Ma on the basis of U/Pb
method on Zircon rims and of 40Ar/39Ar method on muscovite.

The leucogranite dykes range from few centimeters to 1 m in thick-
ness. They are generally characterized by sub-vertical attitude (Fig. 3a
and g) and emplaced at low angle with respect to the main schistos-
ity of the wall rock. Leucogranite dykes consist of K-feldspar, quartz,
muscovite, biotite and tourmaline, mainly of schorl-dravite composition
(Fig. 3h–i). Centimeters-thick metasomatic rims and patches affect the
micaschist close to the dyke-walls and along the main foliation, where
the biotite-rich levels (Fig. 3g) have been partially or completely re-
placed by tourmaline (Dini et al., 2008). Both dykes and micaschist are
crosscut by low- and high-angle faults. The related slip-zones hosted
mineralizing fluids that deposited syn-kinematic tourmaline (dravite to
uvite, Dini et al., 2008). The high-angle faults systematically cross-cut
the low-angle ones. A third generation of sub-vertical, mostly thin, fault
slip zones are mineralized almost entirely by quartz. The different fault
generations are described in the following.

4. Methodological approach and data analyses

In order to get parameters useful to define permeability, porosity
and hydraulic conductivity from field and laboratory data, we devel-
oped a methodological approach based on: (a) geological survey and
fluid inclusion analyses; (b) detailed geological mapping in key areas
and collection of geometrical parameters (length and width of fractures)
through scan-lines and scan-boxes; (c) estimation of permeability from
the collected structural data; (d) estimation of fluid density and viscosity
from fluid inclusion data, and, finally (e) hydraulic conductivity, con-
sidering the results from each of the previously listed steps. In the fol-
lowing, data related to each passage are described in different sections.

4.1. Faults

The geological survey of the study area (Fig. 4a) highlighted three
generations of mineralized fault-slip zones (Fig. 4b) with different
trends, structural and textural features. Their cross-cutting relationships
have been defined at the outcrop scale.

The older mineralized fault system (hereafter 1st faults generation)
is defined by low-angle slip-zones (B-Vein, in Dini et al., 2008; Fig.
4c–d), consisting of 1–40 cm thick cataclasite (Fig. 4d) cemented by
tourmaline and minor quartz (Fig. 4e–f). Tourmaline cement is gener-
ally fine-grained (100–500 μm) with few crystals showing a euhedral
or sub-euhedral habitus. Coarse-grained cataclastic elements are consti-
tuted of angular fragments of host rock and early tourmaline vein in-
fill. Quartz is present in the veins as minor phase generally occurring
as roundish grains, highly fractured, dispersed in tourmaline cement, or
as anhedral crystal aggregates of cataclastic nature (Dini et al., 2008).
In some parts, the cataclasite derived from hydrofracturing processes to-
gether with shearing (Fig. 4g–i), thus suggesting the generation of over-
pressured fluids during deformation.

The boundary of the cataclasite consists of polished surfaces where
tourmaline fibers can be locally recognised, attesting their syn-kine-
matic crystallization. Furthermore, mechanical striations on tourmaline
cataclasite suggest that fault activity continued even after the tourma-
line crystallization (Fig. 4j–k).

Stereographic diagrams (Fig. 4b) indicate that a minority of fault-slip
zones dip to the E, thus defining a lozange-shaped network with rhom-
boid lithons characterized by their main diagonal up to 2 m long (Fig.
5a). Kinematics is mainly defined by oblique-slip to normal movements
for both E and W dipping faults (Fig. 5a).

These low-angle faults are also characterized by splay fractures
(A-Vein, in: Dini et al., 2008), still filled by quartz and tourmaline (Fig.

5b-f). The 1st faults generation, however, systematically cross-cuts the
leucogranite dykes (Figs. c–d), possibly developed in P-T conditions
close to those of the thermometamorphic event (Duranti et al., 1992).

The high-angle fault-slip zones (hereafter 2nd faults generation, Fig.
6a–b) consist of 0.1–5 cm thick greenish to brownish cataclasite (Fig.
6c–f) with mainly quartz and micaschist clasts (up to 5 mm), mainly
cemented by very fine-grained green tourmaline, minor quartz and
small amount of Fe-sulphide. In some cases, tourmaline is distributed
along the fault surface, especially when the fault crosscuts the tourma-
line-bearing leucogranite dykes (Fig. 6 g). These faults show a NNW-SSE
trending and a subvertical attitude (Fig. 4b). In few cases right-lateral
oblique-slip kinematic indicators, consisting of quartz-tourmaline fibers
and mechanical striations, have been recognised on their slip-surfaces.
Splays at low-angle (20–40°) to the main slip zone are discontinuously
distributed in the damage zones, although coherent with the right-lat-
eral movement (Fig. 6e–f).

The 3rd faults generation consists of sub-vertical SSW-NNE fault-slip
zones (Fig. 4b) characterized by 1–10 cm thick quartz cataclasite (Fig.
7a–b) and SW-NE trending splays, mainly consisting of quartz veins
(Fig. 7c), ranging from 1 mm to 1 cm in thickness (Fig. 7a). The width
of the splay structures is variable at the outcrop scale (Fig. 7d–f), re-
sulting pervasive (0.2–1 m spaced) or absent. In few cases right-lateral
oblique-slip kinematic indicators, consisting of quartz fibers, have been
recognised.

4.2. Fluid inclusions

Hydraulic conductivity computation requires the knowledge of the
viscosity of the fluid that flowed in the fractures. Fluid inclusion analy-
ses can provide clue parameters (i.e., fluid density, salinity, temperature
and pressure) needed for the calculation of viscosity. Preliminary data
on fluid inclusions trapped in quartz occurring in quartz-tourmaline
veins at Cala Stagnone are reported in Rimondi et al. (2015a, 2015b)
and Zucchi et al. (2016). However, quartz is a minor phase in such
veins, thus, in order to estimate the viscosity of the fluid(s) that has cir-
culated longer and that formed and/or interacted with tourmaline, we
focused on fluid inclusions in tourmaline occurring in 1st and 2nd faults
generations. In addition, fluid inclusions were examined in quartz of the
3rd faults generation.

Because of its relatively poor optical features and fine-grained na-
ture, very few inclusions were observed within tourmaline. All these in-
clusions were found in larger crystals belonging to the 1st faults gener-
ation, only. Fluid inclusions occurred as isolated exemplars or grouping
in 2–3 individuals, and ranging from 5 to 20 μm in dimensions (Fig. 8a
and b). Petrographic observations indicated that many fluid inclusions
were open to the surface (dark fluid inclusions), and that some inclu-
sions have been affected by necking down (Roedder, 1984). These in-
clusions were not considered for microthemometric analyses.

Differently, no fluid inclusions were observed in tourmaline of the
2nd faults generation, probably due to their low dimensions, not dis-
cernible at the optical microscope.

Many fluid inclusions, suitable for microthermometry, were ob-
served in quartz of the 3rd faults generation. Here, fluid inclusions may
group together in many individuals (Fig. 8c and d), ranging from 5 to
50 μm, displaying a tridimensional or along specific planes distribution.

In tourmaline of the 1st faults generation and in quartz of the 3rd
faults generation, phase assemblage at room temperature divided fluid
inclusions in two typologies (Fig. 8a and d): i) liquid-rich inclusions
(L), displaying quite a variable L/V ratio (from 30 to 50%), and ii)
multiphase inclusions (S), containing halite and sometimes other 1–2
solids. One of this solid in quartz was recognised as hematite (Fig. 8d).
Both L and S inclusions (and related solids other than halite) were also
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Fig. 4. a) Aerial photo of Cala Stagnone, with indication of the study outcrops; b) stereographic diagrams (lower hemisphere, equiangular projections) reporting data on faults and striae
for each faults generation; c) detail of a mineralised low-angle normal fault (1st faults generation) dissecting two leucogranite dykes; d–f) details of the tourmaline + quartz mineralised
fault zone, showing the hydraulic brecciation accompanying the slip, at the outcrop and at microscopic scales: (e) at the optical microscope (plane polarized light), highlighting the cat-
aclastic and neoformational tourmaline, and (g) at SEM (BSE image) with a detail of the inset indicated in (e); g–i) hydraulic breccia cemented by tourmaline micro-crystals aggregate at
the outcrop and microscopic scales, respectively; j) slickenlines on a tourmaline polished surface; k) mechanical striation on a tourmaline fault surface. Mineral abbreviations according to
Bucher and Frey (1994).

observed as preliminary results in quartz-tourmaline veins (Rimondi et
al., 2015a, 2015b).

Microthermometry was performed at Linkam THMSG600 heat-
ing-freezing stage coupled with ZEISS POL-BK at CNR-IGG at Florence.
The stage was calibrated by using pure H2O with critical density, and
mixed H2O-CO2 (CO2 25% M) synthetic fluid inclusions. Accuracy was
estimated to be ± 0.1 °C for final ice melting (Tmice), final hydrohalite
melting (Tmhh), and ±1 °C for the vapour/liquid homogenization (Th)
and halite melting temperature (Tmh).

Microthermometric data for L and S inclusions are reported in Table
1. Data of both L and S inclusions in tourmaline and S inclusions in
quartz of the 3rd faults generation are within the ranges reported in a
preliminary study for quartz at Cala Stagnone (Rimondi et al., 2015a,
2015b). For S inclusions, Th (referring to the disappearance of the

vapour bubble) covered ranges of 253–328 and 256–284 °C for tourma-
line and quartz, respectively (Table 1); in tourmaline, Tmh may occur
before or after vapour disappearance with a maximum at 313 °C (Table
1). In quartz of the 3rd faults generation, halite dissolved always after
vapour disappearance at a maximum of 389 °C (Table 1).

In tourmaline Th of L inclusions range from 322 to 540 °C, while Th
values of L inclusions in quartz of the 3rd generation faults are com-
prised between 242 and 442 °C (Table 1).

For L inclusions in tourmaline, Tmice ranged from −24.6 to
−16.1 °C (Table 1), while an eutectic temperature (TE) of ∼ –50 °C
was observed. Comparable TE and Tmice were observed for fluid in-
clusions in quartz of the 3rd faults generation, although Tmice extends
to higher values (Table 1). Relatively low TE and Tmice lower than
−21.2 °C in L inclusions (the eutectic T for the biphasic H2O-NaCl sys
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Fig. 5. a) Panoramic view of the analysed area 3, shown in Fig. 4a. The 1st faults generation is given by faults arranged in a lozenge shape geometry. Minor fractures, interpreted as
splay-structures, are associated to the E and W-dipping low-angle normal faults; b–c) detail of tourmaline veins (A veins in Dini et al., 2008) with splay structures associated to the main
low-angle normal faults. d–e) plane polarized light and crossed polars micrographs showing the syn-tectonic crystalline fabric of the tourmaline veins.

tem) indicated that other divalent cations (Ca2+, Mg2+, Fe2+ etc.) in ad-
dition to Na+ are present in many of the examined inclusions (Shepherd
et al., 1985).

Salinity for fluid inclusions is conventionally reported as wt.% NaCl
equivalents (Roedder, 1984; Shepherd et al., 1985) and can be calcu-
lated from Tmice following the equation of Bodnar and Vytik (1994),
that was extrapolated to temperature lower than TE for inclusions dis-
playing Tmice ≥ TE of the H2O-NaCl system. These salinities were com-
prised between 19.2–25.5 wt. and 10.7 26.6 wt.% NaCl eq. for L inclu-
sions in tourmaline and quartz, respectively.

Salinity for S inclusions, similarly expressed in wt.% NaCl eq., was
calculated following the methods of Lecumberri-Sanchez et al.
(2012) and Steele-MacInnis et al. (2012) for inclusions homogenizing by
halite or vapour disappearance, respectively. The S inclusions salinity in
tourmaline (32.3-37.3 wt.% NaCl eq.) was comprised in the range mea-
sured for the quartz of the 3rd faults generation (38.2-46.7 wt.% NaCl
eq.) (Table 1).

The all possible trapping conditions of fluid inclusion in tourmaline
and quartz are shown in Fig. 9a and b. Minimum temperature and pres-
sure of trapping correspond to homogenization conditions. Isochores
were computed for the estimate of maximum trapping temperature
and pressure in L and S inclusions in tourmaline and in quartz, fol-
lowing the HokieFlincs Microsoft excel spreadsheet (Steele-MacInnis et
al., 2012 and reference therein) and Lecumberri-Sanchez et al. (2012).
Thus, maximum pressure-temperature conditions (Fig. 9a and b) are
constrained by the intersection of isochores with the maximum pres-
sure (<2 Kbar) or the maximum temperature (<650 °C) estimated for

the thermometamorphic peak (Duranti et al., 1992). Furthermore, the
stability field of andalusite provides a further (mineralogical) constrain
to the related isochores.

The occurrence of at least two fluid inclusions populations within
both tourmaline and quartz (L and S), the relatively large ranges of
their microthermometric data (particularly Th) and the variable compo-
sitions of veins tourmaline pointed out to fluids with a composite physi-
cal-chemical evolution (Dini et al., 2008; Rimondi et al., 2015b; Zucchi
et al., 2016). Although this variability, the occurrence of both L and S
inclusions in tourmaline of 1st faults generation and in quartz of 3rd
faults generation suggests that all the faults generations experienced the
circulation of similar fluid(s).

4.3. Key-areas, scan lines and scan boxes

On the basis of this survey, three key-areas were mapped at 1:100
scale (Fig. 4a). Here, the reconstruction of the mineralized fault-slip
zones array was essential to plan the location and geometrical configu-
ration of the scan-lines and scan boxes. By this approach, the geomet-
rical parameters (mineralized slip zone width and length) necessary for
the permeability estimation were collected. In all study areas, the min-
eralized slip zones were sampled in order to relate the geochemical fea-
tures of the circulating paleo-fluids to the different faults generations.

Area 1 (map-view, Fig. 10) shows that the 1st faults generation is
widely exposed favouring collection of kinematic indicators and sam-
ples for fluid inclusion analysis. Structures belonging to the 2nd faults
generation are defined by high-angle NNW-trending faults. No clear
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Fig. 6. Plain-view examples of the analysed faults: a) Crosscutting relationships between 1st and 2nd faults generations and (b) related line-drawing with the main structural elements
being indicated; c) detail of the 2nd faults generation zone where a chlorite-rich cataclasite embeds clasts of quartz and minor tourmaline; d) inset of (c) where the relationships between
the cataclasite along the main slip zone and the splay-structures can be recognised; e–f) detail of minor splay-structures associated to the main 2nd faults generation.

kinematic indicators have been recognised on their slip surfaces; how-
ever, a component of right-lateral movement is clearly indicated by
their offsets (Fig. 10). The 3rd faults generation is only represented by
minor structures, consisting of tiny quartz veins, not reported on this
map. However, their structural data have been collected and summa-
rized in the stereographic diagrams.

Area 2 (Fig. 10), similarly to Area 1, shows the already described
relationships among dykes, 1st and 2nd faults generations (Fig. 6). The
3rd faults generation is also mapped, resulting in localised brittle shear
zones, with a main dextral component (Fig. 7b).

Area 3 (Fig. 10) is represented by the vertical exposure illustrated
in Fig. 5a, where the 1st faults generation forms a lozenge-shaped
geometry, with planes both dipping to the East and to the West. Their
cross-cutting relationships suggest a coeval development. These low-an-
gle faults are connected through 40–50° west-dipping splay tourma-
line-rich (B-veins, in Dini et al., 2008) fractures (Fig. 5b–f). The 2nd
faults generation is represented by steep-dipping faults (Fig. 5 g),
whereas the 3rd faults generation, given its almost vertical attitude
and tiny fea

tures, is not distinguishable from the vertical quartz layers defining the
micaschist metamorphic fabric, at least at the outcrop scale.

Scan-lines (3–12 m in length) have been measured in the three se-
lected areas (Fig. 10) to quantify the minimum (m) and maximum (M)
spacing of the mineralized faults (Fig. 11), assuming the scan-line length
as the maximum possible spacing value between two similar mineral-
ized veins.

Their orientation is almost normal to the trend of the 1st and 2nd
faults generations and is at high angle with respect to the 3rd faults gen-
eration. The spacing between scan-lines was defined in 2 m, considering
the outcrop conditions and the width of the study key-areas.

In all scan-lines (Fig. 11) the 1st and 2nd faults generations are
generally displayed, although their coexistence in the same scan-line is
not a common feature. The 3rd faults generation is present in F-G-H
scan-lines, only. Vertical I-J-K scan-lines illustrate the 1st faults genera-
tion.

The minimum spacing value (i.e. 0.2 m) between two forthcoming
similar fault-slip zones has been taken in account to define the size
of the scan-box, thus fixed in 0.4 m per side (Fig. 12). The minimum
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Fig. 7. a) Right-lateral oblique-slip fault (3rd faults generation) and its tip damage zone; b) a main 3rd generation fault zone made by localised shear planes; c) micrograph showing the
quartz-rich splay veins related to the 3rd faults generation; d–e) meter-sized spacing of the quartz veins associated to the 3rd faults generation; f) millimetre-thick quartz veins associated
to the 3rd faults generation.

amount of the maximum fault spacing value (i.e. 1.3 m) has been dif-
ferently considered to define the scan-box spacing (i.e. 1 m), along the
scan line.

Within each scan-box, collection of data (i.e. mineralized fault
length, minimum and maximum mineralized slip-zone width, and num-
ber of structures for each fault generation) has been carried out in the
field, when the size of structures was suitable for the direct measure-
ment. Differently, image analyses were performed (by the free software
ImageJ 1.45) for pictures taken at right angle to the scan-box surface.
By this methodology, structures from 30 cm to less than a millimetre in
size were considered.

The analysed fracture dataset consists of about 450 data. Fig. 13
summarizes the collected data, as measured within each scan-box of
each scan-line for the different faults generations. The diagrams show:
a) the number of structures; b) the sum of the length of all structures
belonging to the same generation; c) averaged minimum and maximum
thickness of the mineralized slip zones, belonging to the same fault gen-
eration.

The splay structures belonging to the 3rd faults generation are pre-
sent in almost all scan-boxes, with numerosity ranging from 1 (Fig.
13a) to 23 (Fig. 13i) for each scan-box. Differently, the mineralized

fault-slip zones of the 2nd faults generation are missing in several
scan-boxes (Fig. 13e, i, m and y) although, when present, their numeros-
ity reaches a maximum of 14 (Fig. 13s). The 1st faults generation is pre-
sent in all diagrams, ranging between 1 (Fig. 13a and i) and 13 (Fig.
13a).

The sum of the length of all structures belonging to the same gen-
eration was computed for each scan-box. This analysis highlights that a
high numerosity does not always imply a high value of total length. The
best example of this is provided by the comparison of Fig. 13 m with
Fig. 13n, where scan-boxes between 0 and 1 m and 6–7 m, although
showing the same number of 1st and 3rd faults generation (Fig. 13m),
display a different total length for the considered generation (Fig. 13n).
On the contrary, number of structures within the 0–1 m scan-box of
the scan-line G (Fig. 13v) indicates a large difference between the 2nd
and the 3rd faults generations (1 and 9, respectively) but a similar total
length (Fig. 13w).

Values of the averaged minimum and maximum widths are signifi-
cantly different only for the 1st faults generation, varying between few
centimeters (e.g. Figs. 13c, g and o) to some decimeters (e.g. Fig. 14c
and i). Differently, the averaged minimum and maximum widths of
the 2nd faults generation are encompassed between few millimeters to
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Fig. 8. a,b) Micrographs in transmitted light of fluid inclusions in a,b) tourmaline of the 1st faults generation; c,d) quartz of the 3rd faults generation; hal = halite.

Table 1
Summary of fluid inclusion microthermometric data in tourmaline and quartz of each generations faults. Th, Tmice, Tmh, Tmhh refer to the temperatures of disappearance of the vapour
bubble, melting of ice, halite and hydrohalite respectively.

Generation faults Mineral FI type Tmice (°C) Th (°C)* Tmh (°C) Tmhh Salinity (NaCl wt.% eq.)

1st tourmaline L −24.6/−16.1[11] 322/540[8] / −26[2] 19.2/25.5
S n.d. 253/328[8] 213/313[6] / 32.3/37.3

3rd quartz L −26.3/−7.1[70] 242/442[94] / −26/−1.2[19] 10.7/26.6
S n.d. 256/284[5] 297/389[5] / 38.2/46.7

about 2 centimeters (e.g. Fig. 13r, 13x), whereas the values related to
the 3rd faults generation range between 0.1 and 4 mm.

In summary, the 3rd faults generation, the most diffuse, is the one
showing the lowest averaged width value. On the contrary, the 1st
faults generation displays the higher values of averaged width and total
length.

4.4. Permeability estimation

Permeability can be mathematically estimated using the parallel
plate model, assuming a laminar fluid flow and combining continu-
ous fractures with different orientations, apertures, and spacing (Gale,
1982). It implies that fractures with permeability greater than 10−12 m2

cannot be approximated by this model (Gale, 1982; Nicholl et al., 1999).
The parallel plate model was used in many studies. Among them, it

is worth mentioning Zimmerman and Bodarsson (1996) and Leung and
Zimmermann (2012) who used it as a basis to evaluate the hydraulic
conductivity of rock fractures and two-dimensional fracture networks.

Estimation of permeability has been obtained through the following
Eq. (1), modified after Gale (1982) for the permeability of a medium

containing a single fracture, characterized by a width lower than 2 mm:

(1)

where b is the average fracture width and L is the fracture length.
Gale (1982) evaluated the permeability of the medium, by summing

the contributions of each individual fracture, at a given sampling sta-
tion. Some authors (e.g. Cox, 2001; Nicholl et al., 1999) discussed the
approximation of the parallel plate model. Nicholl et al. (1999) demon-
strated that, approximating the fracture roughness and internal connec-
tivity to a series of rock-wedges, if wedges have a connecting angle
lower than 30°, the relative transmissivity is reduced at most by a factor
of 0.7; differently, for a connecting angle of 60°, the reduction is by a
factor of 0.4.

Many authors have debated on the connectivity of the fracture net-
work. According to Leung and Zimmermann (2012), the fact that the
effective conductivity of the fracture segments can be approximated by
the arithmetic mean is explained as follows: if fracture aperture is pos-
itively correlated with length, then the fracture network will be domi
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Fig. 9. a,b) Pressure-temperature diagram illustrating trapping conditions for L and S inclusions in tourmaline of the 1st faults generation (a) and quartz of the 3rd faults generation (b).
Isochores are depicted as solid lines for L inclusions, point-dotted line for S inclusions. The liquid-vapour-halite (L + V + H) curve and a liquid-vapour curves (L + V) for a salinity of
20 wt.% NaCl eq. are also shown. Liquidus (L + halite) are calculated for different fluid salinity (from Bodnar, 1994); the limit for the andalusite field is reported as black line. Shaded
area defines the P-T trapping conditions for L and S inclusions.

nated by a relatively small number of long fractures, with high con-
ductivity. These long fractures will act more efficiently if their array
can be described as “parallel” fractures, thus each of these fractures can
transmit fluid across large distances, without the need that fluids pass
through the less efficient fractures of the network.

The effective conductance of a set of conductors arranged in paral-
lel array is governed by the arithmetic mean rather than the geometric
or harmonic mean. The geometric mean is a special case of power law
averaging, extensively used by de Dreuzy et al. (2001a, 2001b, 2002).
In our case, being the system dominated by very long fractures (1st and

2nd faults generation, at least), we assume that the geometric mean
of the permeability is the best approximation, although the arithmetic
mean was considered for comparison.

According to these considerations, we modified the Eq. (1) as follow:

(2)

where F is the connectivity parameter ranging from 0 to 1. On the
basis of the main geometrical configuration of the analysed structures
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Fig. 10. Detailed structural map of the indicated areas reported in Fig. 4a. Analysed scan-lines and scan-boxes are also reported for the whole areas.

(angles of about 60°), we have considered F = 0.4. However, even con-
sidering F = 0.7 the results do not change significantly, revealing the
scarce influence of the used F value on the permeability estimation.

The b and L parameters derive from the fieldwork structural data
collection, described in the previous section. When fractures are wide
more than 2 mm, thus beyond the limiting width value for the plate
model theory, these are interpreted as the result of repeated deforma

tional events and their deriving permeability values were considered
reasonable only for k < 10−12 m2.

The b and L parameters were obtained for each generation of min-
eralized structures, within each scan-box (Fig. 10) of each scan line.
Then, by Eq. (2), the permeability of each mineralized structure was
computed. Finally, a permeability value for each faults generation was
defined through the harmonic average (Table 2).

12
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Fig. 11. Scan-lines results and main spacing for the different faults generations. The blue line at the base of the scan-line bars indicates where the scan-boxes have been located. The
spacing between two similar structures is indicated in its minimum (m) and maximum values (M). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12. Example of the geometric parameters collected within each scan-box, along each
scan line, for the k estimation.

Fig. 15 summarizes the results about permeability and efficient
porosity, respectively, computed for each scan box, along each scan line.
Efficient porosity derives from the ratio between mineralized fractures
and scan box areas.

Generally, the higher permeability values are from the 1st faults gen-
eration, with values up to 10−12 m2 whilst the lower ones are from
the 3rd faults generation. Both these generations are shown in all dia

grams. Differently, the structures of the 2nd faults generation are only
occasionally present. The efficient porosity (Fig. 15) displays a distribu-
tion similar to that of the permeability.

Finally, the whole k values have also been analysed through fre-
quency distribution diagrams (Fig. 16) in order to define the charac-
teristic value for each fault generation. In a more detail, the k fre-
quency distribution for the 1st faults generation (Fig. 16a) displays
three peaks, suggesting three main populations (Fig. 16b, c and d), with
10−14 < k < 10−16 m2 as the main representative values. A smaller
interval is instead characterising the 2nd faults generation (Fig. 16d)
where significant values of k are comprised between 10−14 and
10−13 m2. Finally, the 3rd faults generation distribution of data is char-
acterized by two main peaks, from which the most significant perme-
ability results comprised between 10−15 and 10−17 m2 (Fig. 16e).

4.5. Viscosity and hydraulic conductivity estimations

Based on the fluid inclusions results previously described (i.e., salin-
ity, maximum and minimum pressure-temperature conditions for both
L and S inclusions), maximum and minimum fluid density and viscos-
ity were computed through the software SoWat NaCl-H2O (Driesner,
2007; Driesner and Heinrich, 2007), following the water-NaCl Equation
of State (EOS, available online at http://baobab.istep.upmc.fr/model.
php) as proposed by Dubacq et al. (2013), using the method described
in Mao and Duan (2009).

Fluid viscosity was computed for the two kinds of fluid inclusions
(L and S) and for all the faults generations at the minimum pressure
conditions (i.e at homogenization conditions), and at maximum pres-
sure trapping conditions (Fig. 9a and b). For the 2nd faults generation,
we employed the density data obtained from the fluid inclusion in tour-
maline of the 1st faults generation. L inclusions type for 1st and 2nd
faults generation results in a density of 661–889 kg/m3 and in viscos-
ity ranges of 3.29/5.91 E + 01 and 7.06 E + 01/1.24 E + 02 μPa*s
for low- and high-pressure, respectively (Table 3). Density values for
fluid inclusions in quartz of the 3rd faults generation are in the range
of 777–1029 kg/m3, while viscosity is comprised between 2.72/4.81

13
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Fig. 13. Diagrams deriving from the processing of the data collected in each scan-box for the areas 1 and 2 as indicated in Fig. 4a. These show: the number of veins vs. distance, the total
veins length vs. distance, the minimum and maximum veins width vs. distance; each labelled diagram has been discussed in the text to which the reader is addressed for more explanations.

E + 01 and 9.56 E + 01/1.61 E + 02 μPa*s for low and high pressure,
respectively (Table 3). At low pressure, S inclusions generally display
comparable viscosities to L inclusions (Table 3); whereas at high pres-
sure, S inclusions displayed always higher viscosity, with values gener-
ally higher than 200 μPa*s (Table 3).

Considering permeability in addition to the parameters listed in
Table 3, the hydraulic conductivity (K, measured in m/s) can be esti-
mated by the Eq. (3), at low and high-pressure conditions:

(3)

where k is permeability, ρ is density and η is viscosity. The compu-
tation was carried out for the minimum and maximum permeability

values for each generation of faults and for the L and S inclusions (Table
3).

5. Discussion

This section will be focused on two main points: a) relationships be-
tween structures and tourmaline mineralization; b) estimation of perme-
ability and hydraulic conductivity.

5.1. Structures and tourmaline mineralization

Tourmaline is the most significant mineralogical phase associated to
the first hydrothermal event during the Porto Azzurro magma cooling
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Fig. 14. Diagrams deriving from the processing of the data collected in each scan-box for the areas 3 as indicated in Fig. 4a. In this case, the scan lines along which data were collected
are vertical. Symbols and explanation as in Fig. 13.

(Dini et al., 2008). Such an event can be therefore referred to the times-
pan encompassed between 6.2 Ma (40Ar/39Ar datings on muscovite,
Musumeci et al., 2011), considered as the age of the contact metamor-
phism, and 5.4 Ma ((U + Th)-He datings on hematite and K/Ar datings
on adularia, Lippolt et al., 1995), assumed as the age of the Fe-ore de-
posits post-dating the tourmaline mineralization (Liotta et al., 2015).
Hydrofracturing and fabric of tourmaline veins (Figs. 4 and 5) imply
that tourmaline deposition occurred during fault activity. Kinematics on
1st faults generation clearly indicates a normal to transtensional move-
ments in the W-E direction, depending on the fault segments dipping
attitude, thus defining the lozenge shape geometry, associated to this
faulting event (Fig. 5). This extensional tectonic framework agrees with
the one deriving from the studies at shallower structural depth, and
in particular to those dealing with the Zuccale extensional fault (Fig.
2), described by several authors (Keller and Pialli, 1990; Duranti et al.,
1992; Pertusati et al., 1993; Collettini and Holdsworth, 2004; Collettini
et al., 2006; Smith et al., 2008; Smith et al., 2011; Liotta et al., 2015).
The lozenge shaped geometry observed at the Cala Stagnone area is
therefore referred to the typical deformational fabrics at deep structural
levels, where pressure and temperature favour a quasi-symmetric shear-
ing.

The 2nd faults generation is locally characterized by a mineralogical
association with quartz and tourmaline similar to that of the 1st faults
generation, suggesting the involvement of B-rich fluids also during this
fault activity (Fig. 6 g). Although data are few, the kinematics of the 2nd
faults generation is consistent with the one of the 1st faults generation.
The 3rd faults generation appears to maintain the kinematic character-
istics of the 2nd faults generation.

The Stagnone area was also described in Dini et al. (2008) and
Mazzarini et al. (2011). Dini et al. (2008) explained the tourmaline
veins (A and B veins) as interconnected and developed during the same
hydrothermal event, although B-bearing fluids display slight composi-
tional differences. This interpretation is also in agreement with our ob-
servations (Fig. 5b–f), referring their A-veins as splay of the low-angle
normal faults (B-veins, in Dini et al., 2008) here previously described.

Differently, Mazzarini et al. (2011) explain the A-veins as minor ex-
tensional structures located at the outer arc of a regional fold, whose
development is controlled by the neutral surface folding mechanism.

Similarly, their B-veins (corresponding to those structures that we have
described as 1st faults generation) are interpreted as conjugate struc-
tures developed in a shortening context, i.e. in the inner part of the fold,
below the neutral surface. In Mazzarini et al. (2011)‘s view, a down-
ward migration of the neutral surface (toward the fold core) is also
supposed during deformation, determining the overprint of extensional
structures on the previous formed structures. Cala Stagnone is indicated
as the key-area for this evolution. However, at Cala Stagnone only ex-
tensional and trans-tensional structures (active during the hydrothermal
stage) were detected, without any indication of conjugate shear struc-
tures formed in a previous, dominantly, shortening setting.

Concluding, the structural and kinematic dataset from Cala Stagnone
can be better framed in the Neogene extensional (rather than compres-
sional) tectonic evolution of the northern Tyrrhenian Sea (e.g.: Bartole,
1995; Carmignani et al., 1995) and of the whole Northern Apennines
inner zone (Carmignani et al., 1994; Liotta et al., 1998; Brogi et al.,
2005), where different generations of normal faults produced the pro-
gressive thinning of the previously over thickened (Rossetti et al., 2002;
Molli, 2008; Brogi, 2008; Brogi and Giorgetti, 2012; Bianco et al.,
2015) continental crust and lithosphere, accompanied by emplacement
of crust- and mantle-derived magmatic bodies (Peccerillo, 2003; Dini et
al., 2005).

5.2. Permeability and hydraulic conductivity estimation

The method to estimate permeability (k) and hydraulic conductivity
(K) is based on the measurements of the vein length and thickness, as
previously described. It is therefore assumed that veins with the same
mineralogical association have been contemporaneously active. This is
also a consequence of the fact that, given the comminution of min-
eral-filling veins, indications about the evolution of veins (e.g. Oliver
and Bons, 2001; Bons et al., 2012) were not recognizable, thus deter-
mining a simplification, although length and width of veins can be the
result of multiple deformational events, occurred during faults activity.
In this framework, an overestimation of the k values is possible and can-
not be totally avoided. Nevertheless, this limit is counterbalanced by the
statistical approach, which tends to highlight the most suitable value,
cutting away those results deriving from veins with a thickness in the or
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Table 2
Example of the database with the collected geometric data in each scan box along each scan line used for the computation of the k parameter.

SCAN
LINE

SCAN
BOX

FRACTURE
GENERATION

average
DISTANCE

FRACTURE
NUMBER

min WIDTH
(m)

max WIDTH
(m)

average
WIDTH

LENGTH
(m) K (m2)

HARMONIC
AVERAGE

A 6 I 5.7 1 0.0015 0.004 0.00275 0.192 2.89E-14 2.89E-14
III 5.7 1 0.0001 0.0002 0.00015 0.046 1.96E-17

2 0.0001 0.0015 0.0008 0.026 5.25E-15
3 0.005 0.002 0.00125 0.13 4.01E-15 5.81E-17

8 I 7.7 1 0.001 0.004 0.0025 0.038 1.1E-13
2 0.0002 0.0065 0.00335 0.14 7.16E-14
3 0.0005 0.0025 0.0015 0.08 1.12E-14
4 0.0001 0.0055 0.0028 0.184 3.18E-14
5 0.0002 0.0065 0.00335 0.16 6.26E-14 3.14E-14

III 7.7 1 0.0005 0.0015 0.001 0.078 3.41E-15
2 0.0001 0.002 0.00105 0.27 1.14E-15 1.71E-15
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Fig. 15. Diagrams illustrating the secondary permeability (i.e., from fractures) and efficient porosity calculated for each scan box along the indicated scanlines, pointing out the different
faults generations. Each labelled diagram is discussed in the text to which the reader is addressed for more explanations.

der of tens of centimeters, that are not reasonable to explain as a con-
sequence of a single deformational event. Similarly, those values deriv-
ing from transient overpressured fluids forming hydraulic breccias (Fig.
4 g) were also cut away. Furthermore, it should be taken into account
that explosive hydrothermal brecciation (burst breccias, in Gaweda et
al., 2013) as consequence of co-seismic events (Miller et al., 2004;
Waldhauser et al., 2012) or exsolution of superheated late-magmatic flu-
ids (Gaweda et al., 2013) are not compatible, in principle, with a lami-
nar flow.

K values were calculated for the minimum and maximum possible
pressure values of fluid inclusion trapping. Maximum pressure (up to
2 Kbar) corresponds to lithostatic regime whereas minimum pressure
implies hydrostatic or sub-hydrostatic pressure. During faults activity
and fluid flow, pressure likely oscillated between hydrostatic and litho-
static regime, as evidenced by hydraulic fracturing events. Thus, K val-
ues at the maximum pressure are the lowest and probably occurred
when the system was pressurized whereas maximum K values occur at
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Fig. 16. Diagrams illustrating the statistical distribution of the permeability values for the different faults generation.
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Table 3
Values of viscosity, density, permeability and hydraulic conductivity for each faults generation. Low pressure and high pressure refer to variables calculated at minimum (i.e., homogenization) and maximum trapping conditions, respectively.

FAULTS
GENERATION

Fluid inclusion
type

DENSITY (Kg/
m3) η VISCOSITY (μPa*s) k PERMEABILITY (m 2) K HYDRAULIC CONDUCTIVITY (m/s)

low pressure range high pressure range max min low pressure range high pressure range

1st L 661/889 3.29E + 01 5.91E + 01 7.06E + 01 1.24E + 02 5.00E-14 5.00E-16 1.00E-09 8.26E-12 4.7E-10 3.9E-12
S 1105/1142 3.88E + 01 2.40E + 02 1.91E + 02 2.78E + 02 5.00E-14 5.00E-16 8.52E-10 2.04E-12 1.7E-10 1.8E-12

2nd L 661/889 3.29E + 01 5.91E + 01 7.06E + 01 1.24E + 02 5.00E-13 5.00E-14 1.54E-08 1.76E-09 7.2E-09 8.4E-10
S 1105/1142 3.88E + 01 2.40E + 02 1.91E + 02 2.78E + 02 5.00E-13 5.00E-14 1.31E-08 4.34E-10 2.7E-09 3.8E-10

3rd L 777/1029 2.72E + 01 4.81E + 01 9.56E + 01 1.61E + 02 5.00E-15 5.00E-17 1.43E-10 1.07E-12 4.1E-11 3.2E-13
S 1100/1110 1.98E + 02 2.26E + 02 2.22E + 02 2.31E + 02 5.00E-15 5.00E-17 2.77E-11 2.46E-13 2.5E-11 2.4E-13

RV1
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low pressure and are likely characteristic of the conditions after the de-
pressurization event related to hydro-fracturing.

The maximum and minimum K values computed from the data of
S inclusions are always lower than the corresponding K values of L in-
clusions in all faults generations. However, the relatively high viscos-
ity of the fluid trapped in S inclusions (>200 μPa.s) makes this kind of
fluid characterized by a limited mobility, suggesting that such fluid was
scarcely mobilised in the main fluid flow. Thus, only the K values com-
puted for L inclusions are considered representative for the dominant K
during the hydrothermal flow.

The validity of the proposed approach finds a confirmation in the k
and K values from comparable reservoirs in active geothermal systems
(Rowland and Sibson, 2004). Moreover, taking in account that the study
area is considered as a part of the Larderello geothermal field proxy, it
is significant that k values we have obtained are in the range of those
measured within the micaschist hosting the deep reservoir exploited in
the Larderello geothermal area, at 3–5 km depth (Cappetti et al., 1995;
Romagnoli et al., 2010).

Thus, although the parallel-plate-model has limitations, the results
provide reliable estimations. Permeability values beyond the resolution
limits of the model can be explained as the contribution of overpres-
sured fluids.

Another positive confirmation derives from the experimental stud-
ies conducted on brittle shear zones assisted by fluids, indicating typ-
ical values of permeability comprised between 10−14 and 10−16 m2

(Townend and Zoback, 2000; Wibberley and Shimamoto, 2003).
As it regards the obtained viscosity values, these are not directly

comparable with those from Larderello field, where exploited fluids are
vapour-dominated (Romagnoli et al., 2010). Geothermal fields charac-
terized by saline to hyper-saline fluids are rare: one of these is the
Kakkonda geothermal system, where exploited fluids have a comparable
viscosity, as described in Yano and Ishido (1996). Finally, it is worth to
underline that the resulting hydraulic conductivity estimation, is in line
with those already estimated from altered micaschist (Domenico, 1972).

6. Conclusions

On the basis of the results obtained in this study, we propose the fol-
lowing protocol of investigation, during the preliminary phases of any
geothermal exploration:

a) identifying the analogue exhumed geothermal system of the ex-
ploitable area;

b) in the exhumed geothermal area, mineralised key-areas should be
chosen, where a detailed structural and kinematic survey can be car-
ried out and reported in a detailed map;

c) mineralized faults and veins distribution at map-scale will indicate
the most suitable orientation for the frequency analysis along scan
lines;

d) the frequency analysis will be used to calibrate the scan box size and
spacing;

e) within each scan box, width and length of each vein will be col-
lected, through field and image analyses;

f) based on the collected data, the parallel-plate model will give per-
meability values;

g) fluid inclusions data will provide information to estimate trapping
temperature and salinity of the circulating geothermal paleo-fluids;
from these values, density and viscosity of fluids can be obtained;

h) joining permeability with viscosity and density, the hydraulic con-
ductivity will be gained.

Summing up, in exhumed geothermal systems, the study of the
faults-veins array through geometrical and kinematic analyses, inte

grated with fluid inclusions data and numerical modeling (paral-
lel-plate-model equation), can provide reliable data (commonly ob-
tained after drilling) for rock-physical and hydraulic parameters, repre-
senting key-values for an evaluation of the geothermal potentiality of
any exploitable area.
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