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Do negative and positive equity returns
share the same volatility dynamics?

This Version: December 19, 2014

Abstract

This paper investigates whether positive and negative returns share the
same dynamic volatility process. The well established stylized facts on volatility
persistence and asymmetric effects are re-examined in light of such dichotomy.
To analyze the dynamics of down and up volatilities estimated from daily re-
turns I use a bivariate generalization of the standard EGARCH model. As a
robustness check, I also investigate various specifications of down and up re-
alized measures estimated from high-frequency data. The empirical findings
point to the existence of a marked diversity in the volatilities of positive and
negative daily returns in terms of persistence and sensitivity to good and bad
news. A simple forecasting exercise highlights the striking performance of the
proposed approach even in correspondence of the crisis period.

Keywords: Volatility, Contemporaneous Asymmetry, GARCH, Realized Variation.
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1 Introduction

The modeling and forecasting of volatility has received significant attention by

the financial-economic literature due to its relevance in areas such as portfolio man-

agement and selection, risk analysis and hedging and the pricing of assets and deriva-

tives. Since Engle’s (1982) ARCH and Bollerslev’s (1986) GARCH, the study of

volatility has witnessed a multitude of contributions ranging from the parametric to

the nonparametric and from the discrete to the continuous time modeling. Partic-

ular attention has been devoted to the modeling of the news impact curve, that is

the reaction of future volatility to negative and positive return shocks. Among the

first parametrizations capturing the asymmetric response of volatility to the arrival of

news are the EGARCH of Nelson (1991), the GJR-GARCH of Glosten et al. (1993)

and the GTARCH of Zakoian (1994). For a literature review of GARCH models see

Andersen et al. (2006).

El Babsiri and Zakoian (2001) introduce the concept of contemporaneous asymme-

try in conditional heteroskedasticity models and accordingly decompose the primitive

innovations into negative (down) and positive (up) shocks. Treating the volatility of

negative and positive returns as distinct processes, although not necessarily indepen-

dent, has its economic motivation in the fact that for investors with long (short)

positions risk is clearly associated with down (up) movements of the asset’s price but

not necessarily with up (down) movements. Failure to separate the two aspects of

volatility results in biased measures and forecasts whenever the down and up com-

ponents do not coincide. On the other hand, distinguishing between down and up

moves allows for “different volatility processes for down and up moves in equity mar-

kets (contemporaneous asymmetry)” and “asymmetric reactions of these volatilities

to past negative and positive changes (dynamics asymmetry or leverage-effect)”. El

Babsiri and Zakoian (2001) model the contemporaneous asymmetries with an ad hoc

generalization of the univariate GTARCH (already capturing dynamic asymmetries)

specification. In their study of the CAC 40 stock index they find that bad news

increase future down and up volatilities significantly more than good news1. Further-

more, they find that current down and up volatilities substantially enter with the

same coefficients in both equations of future down and up volatilities.

More recently, the availability of high-frequency data has stimulated a growing

literature interested in the nonparametric estimation of the latent volatility process

1Throughout the paper, good and bad news are defined as return realizations respectively above
and below their conditional expectation.
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and in the decoupling of discontinuous jumps from the continuous component. In this

framework, Barndorff-Nielsen et al. (2010) spell out the theory of realized semivari-

ances, that is the realized variance of negative and positive intradaily returns. Using

intradaily down variance as explanatory variable in a study of General Electric share

prices, they find that “for non-leveraged based GARCH models, downside realized

semivariance is more informative than the usual realized variance statistic”. How-

ever, when “a leverage term is introduced it is hard to tell the difference”. Stronger

evidence favoring the intradaily down and up dichotomy of explanatory variables is

found in Chen and Ghysels (2011). Modeling realized measures of volatility as func-

tions of intradaily returns measured over some time intervals, they achieve the down

and up decomposition of the explanatory variables with the exception of the jump

component. In their study of the Dow Jones cash market and S&P500 futures market,

they find that “moderately good news reduce volatility” while “both very good news

(unusual high positive returns) and bad news (negative returns) increase volatility,

with the latter having a more severe impact”.

Patton and Sheppard (2011) extend the use of intradaily down and up semivari-

ances as predictors of future realized measures by introducing signed jump variation,

defined as the difference between positive and negative realized semivariances. From

a panel regression (same coefficients) of 105 individual stocks and the S&P500 index

they measure the average effects of the explanatory variables on standard measures of

volatility. They conclude that intradaily down volatility “is much more important for

future volatility” than intradaily up volatility. Furthermore, based on their definition

of negative and positive jumps, they find that the former “lead to significantly higher

future volatility” while the latter “lead to significantly lower volatility”.

Building on the work of El Babsiri and Zakoian (2001), this paper studies the

volatility dynamics of negative and positive returns. In contrast to standard modeling,

this class of volatility processes allows for time periods characterized by large (small)

up and small (large) down movements. Here the UD-EGARCH, a generalization of

Nelson’s (1991) EGARCH, is proposed. The main differences with respect to the

GTARCH generalization of El Babsiri and Zakoian (2001) are: the possibility for the

realizations to have a negative impact on the volatilities without compromising their

positivity and the complete separation of the model’s memory parameters from the

loadings of the realizations.

Stylized facts on volatility persistence and asymmetric effects are re-examined in

light of the down and up dichotomy for nine major world indices. Particular attention
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is paid to the analysis of the memory of down and up processes. Notably, the relevance

of this aspect is due to the fact that, if undetected, different levels of persistence will

give investors either a false sense of calmness or a false sense of activity, resulting,

among others, in costly under- and over-estimated risk exposures. Memory of the

down and up processes is elicited in terms of half-lives of the shocks.

The empirical findings point to the existence of marked diversities in down and up

volatilities in terms of persistence and response to good and bad news. The robust-

ness of the In-Sample (henceforth IS) findings is evaluated by assessing their stability

Out-Of-Sample (henceforth OOS). Additional robustness checks are conducted in the

specific case of the S&P500 index using high-frequency observations. All results high-

light significant gains in the IS estimations and OOS predictions from the separate

treatment of the two aspects of volatility. Sizable gains have been identified in the

measurement and prediction of volatilities for all indices for the time periods consid-

ered. Specifically, the reduction of OOS mean-squared-errors ranges between 6% to

70% and 11% to 45% (depending on the benchmark measure) and averages at more

than 25%.

The paper is organized as follows. Section 2 presents the low-frequency volatility

specification. The data set of daily returns and the corresponding empirical findings

are described in Sections 3 and 4, respectively. Stability and predictions are discussed

in Section 5. Section 6 reviews realized estimators, jump detection statistic, HAR

regressions and presents high-frequency down and up volatility modeling based on

unobserved and intradaily components. Sections 7 and 8 describe the high-frequency

returns and present the relative empirical findings. Section 9 concludes.

2 Low-Frequency Volatility Specification

A stochastic process yt may be described in terms of its location and scale:

yt = µt + ǫt

ǫt = h
1/2
t · zt (1)

where µt is a function describing the evolution of the mean conditional on the infor-

mation set It−1
2, ht is the conditional variance of the process yt and zt is a zero-mean,

2The information set is defined as usual: It, t ∈ Z+ is an increasing filtration of σ-fields (It−1 ⊂
It, ∀t) such that It summarizes the information provided by the observation of variables of interest
up to time t. For purely dynamic specifications such as conditional volatility models it is enough to
define the information set generated by past realizations of the returns yt: It = {y1, . . . , yt}.
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unit-variance and serially uncorrelated innovation.

In the standard decomposition of equation (1), the primitive shocks zt are scaled

by the process ht regardless of their sign: no distinction between good and bad

contemporaneous news. However, negative and positive innovations need not to be

necessarily subject to the same amplification dynamics. Specifically, the return pro-

cess yt may exhibit large (small) down movements and small (large) up movements

over a certain period of time. To allow for two distinct scale factors, redefine ǫt by:

ǫt =





h

1/2
U,t · zt if zt > 0

h
1/2
D,t · zt otherwise

(2)

with:

E[z2
t |zt < 0] = 1 and E[z2

t |zt > 0] = 1 (3)

h
1/2
D,t and h

1/2
U,t are the volatilities amplifying and compressing negative and positive

innovations, respectively. zt is a zero-mean and serially uncorrelated innovation satis-

fying the conditions in (3). These are the down and up counterparts of the standard

identification condition for which primitive shocks have unit variance. It is straight-

forward to see that the equations in (3) imply E[z2
t ] = 1. It must be noted that with

distinct hD,t and hU,t processes additional assumptions3 are needed to guarantee a

zero conditional expectation of the shock ǫt. In other words, the clear-cut distinc-

tion between mean and variance of equation (1) becomes fuzzy once the constraint

hD = hU is relaxed. Further study of this salient connection between the first two

conditional moments is beyond the scope of this paper which focuses on the anal-

ysis and the description of departures from the assumption of equal down and up

volatilities4.

3For the conditional expectation of ǫt:

E[ǫt|It−1] = h
1/2

U,t E[zt|zt > 0] · P(zt > 0) + h
1/2

D,tE[zt|zt ≤ 0] · P(zt ≤ 0)

to be zero it is sufficient to specify the probability of observing an up movement P(zt > 0) that
offsets the movements in the down and up volatilities. For the unconditional expectation of ǫt:

E[ǫt] = h
1/2

U E[z|z > 0] · P(z > 0) + h
1/2

D E[z|z ≤ 0] · P(z ≤ 0)

to be zero it is sufficient to specify either P(z > 0) or the pair h
1/2

U , h
1/2

D so that E[ǫt] = 0.
4Given that at this stage the implications of the dichotomy in (2) for the conditional mean

of the process are not fully investigated, it is not possible to specify a candidate all round data
generating process. Throughout the paper, the term model is used loosely instead of filter but with
the understanding that it is not meant to indicate a data generating process. In addition, notice
that it is not uncommon in the literature to separately model first and second conditional moments
from which it follows that the difference between model and filter becomes a matter of semantics.
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The methodological approach followed in the paper consists in comparing the

volatility characteristics identified by a reasonable standard univariate model to those

identified by its natural nesting extension which accommodates for contemporaneous

asymmetry. The univariate EGARCH is recognized to provide a good description of

volatility and as a baseline model leads to extensions with desirable characteristics.

In particular, the conditional variances are positive by construction regardless of the

sign of the model’s coefficients5 and there is complete separation between the memory

parameters and the loadings of the realizations. The specific down and up volatility

EGARCH extension, henceforth UD-EGARCH, is defined by:



 lnhU,t

lnhD,t



 = ω +B



 lnhU,t−1

lnhD,t−1



 + A



 dt−1 · |ǫt−1| · h
−1/2
U,t−1

(1 − dt−1) · |ǫt−1| · h
−1/2
D,t−1



 (4)

where dt is a dummy variable equal to unity if zt ≥ 0 and zero otherwise. As in the

EGARCH, past realizations enter future volatility in absolute value, however, here

they are standardized by the appropriate down or up volatility. Innovations may

affect down and up volatilities differently (distinct rows of A) and for each of the two

they may have different effects depending on the sign of the innovation itself (distinct

columns of A). Analogously, the relation between current and future volatilities may

differ for future down and up volatility (distinct rows of B) and for each of the

two the relation may be different with respect to current down and up volatilities

(distinct columns of B). This allows for different degrees of persistence6 in hU and

hD which, in turn, imply different degrees of predictability for two components of

volatility7. Desirability of these characteristics is validated in Sections 4 and 5 by

the IS and OOS performance of the UD-EGARCH and the emerging stylized facts

on persistence and sensitivities.

The parameters of the UD-EGARCH are estimated by Gaussian Quasi-Maximum-

Likelihood (QML) associating to each return the appropriate variance. Conditional

on the information set It−1, the model generates down and up volatility predictions

in unison. However, only the prediction associated with the sign of the realization

5For example, just like in the UD-GTARCH specification of El Babsiri and Zakoian (2001) in an
UD-GARCH only the corresponding off-diagonal elements of the B-matrix in equation (4) may take
negative values and the matrix as a whole is subject to positivity constraints. See Nakatani and
Teräsvirta (2008).

6Uniform ergodicity conditions for the UD-EGARCH are derived in Appendix A.1.
7The model reduces to a standard EGARCH with equal down and up variances if ω1 = ω2,

β11 + β12 = β21 + β22, α11 = α21 and α12 = α22. Where ωi is the i-th element of the vector ω in
equation (4) and βij and αij the ij-th elements of the matrices B and A, respectively.
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enters the estimation procedure. Dropping the constant term −T/2 ln(2π) from the

Gaussian likelihood yields the concentrated log-likelihood:

Lc = −
1

2

T∑

t=1

dt

[
lnhU,t + ǫ2t · h

−1
U,t

]
+ (1 − dt)

[
lnhD,t + ǫ2t · h

−1
D,t

]
(5)

Down (up) variances hD,t (hU,t) are associated only to negative (positive) ǫt obser-

vations by means of the dummy variable dt. Notice that if hU,t = hD,t ∀t, then Lc

reduces to the usual concentrated Gaussian log-likelihood. In Appendix A.2 it is

shown that the QML estimator satisfies the sample counterparts of the identification

conditions in (3).

3 Low-Frequency Data

I study the down and up volatility dynamics of daily returns for nine major

world indices: S&P500, Dow Jones Industrial Average (DJIA), NASDAQ, Nikkei,

EuroSTOXX, DAX, FTSE, CAC and Swiss Market Index (SMI). The S&P500 and

DJIA series, starting in January 1980, were obtained from WRDS. The S&P500 se-

ries ends in December 2010 whereas the DJIA ends in March 2007. All other series,

obtained from Bloomberg, have the same end-of-sample in October 2011 but different

beginning-of-sample periods. In particular, the series of NASDAQ, DAX and Nikkei

start in January 1980, FTSE in January 1984, CAC in July 1987, EuroSTOXX in

January 1987 and SMI in July 1988.

To reduce the possibility of results substantially driven by outliers, such as extreme

down and up price swings, all time series have been Winsorized at the 0.1-th and 99.9-

th percentile. Table 1 reports the number of Winsorized observations together with

the corresponding percentiles for each of the nine indices. To conduct stability checks

of the proposed methodology, observations have been partitioned into IS and OOS

for each of the nine indices. Specifically, the last 1260 daily observations (roughly 5

years) of each series have been set aside for the OOS analysis. Thus, the OOS periods

of all indices, with the exception of DJIA, include the financial crisis period. Table

2 reports the per mille occurrence of extreme observations IS and OOS. Returns are

categorized as extreme if they are smaller than the 0.1-th Winsorization percentile or

greater than the 99.9-th Winsorization percentile. For all indices, the OOS periods

are characterized by a greater number of extreme price swings than the IS periods.

In particular, the OOS periods are characterized by relatively more frequent large

positive returns: on average 50% more than large negative returns. Consequently,
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the OOS periods constitute a significant challenge for any IS-estimated model. This

provides an interesting environment to evaluate stability and performance of the UD-

EGARCH specification with respect to the nested EGARCH.

4 Low-Frequency Findings

Tables 4-6 report QML parameter estimates for the standard EGARCH, uncon-

strained- and constrained-UD-EGARCH specifications. For all series of returns con-

sidered, UD-EGARCH is BIC/SIC preferred to standard EGARCH. The constrained

UD-EGARCH specification is the result of BIC/SIC model selection performed on

the B-matrix, capturing the persistence in the down and up volatilities, and the A-

matrix, capturing the impact of negative and positive realizations8. The reason to

perform constrained estimations, beyond statistical model selection, is to obtain more

precise estimates of the set of parameters governing the interdependence between the

two types of volatilities and their dynamics. For all nine indices the data supports

(Wald tests and BIC/SIC) exclusion and equality constraints on the B- and A-matrix.

Tables 7-9 report QML parameter estimates for the standard-TGARCH, uncon-

strained- and constrained-UD-TGARCH specifications. For all series of returns con-

sidered, UD-TGARCH is BIC/SIC preferred to standard TGARCH. However, the

UD-EGARCH specification is BIC/SIC preferred to the UD-TGARCH of El Babsiri

and Zakoian (2001) for all indices considered with the exception of SMI.

Throughout the rest of the paper, βD and αD (βU and αU) indicate the coefficients

of lagged down (up) volatility and the realizations of bad (good) news, respectively.

Whether the βU/D and αU/D coefficients refer to left-hand-side down or up volatilities

will be made clear from the context.

4.1 Realizations

The coefficients αD, capturing the impact of bad news on the two volatilities, are

positive for all indices. Furthermore, from the Wald tests, they are statistically equal

in hU and hD for all indices but NASDAQ and Nikkei. For the SMI, the difference

is statistically significant at 10% but not at 5%. These findings are paralleled by

the information criterion with the only exception of the SMI for which distinct αD

coefficients in the two volatilities are BIC/SIC preferred. Overall, this suggests that,

8Table 3 lists the constrained B and A-matrix specifications that have been estimated.
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just like in standard volatility models, negative shocks equally increase the one-step-

ahead down and up conditional variances.

From the Wald tests, the estimated αU coefficients are statistically different in

the down and up variances for all indices. For CAC the p-value of the Wald test

is 0.112 in the unconstrained specification but 0.032 in the constrained specification

selected by BIC/SIC. Specifically, the αU coefficients in the up volatilities are positive,

statistically significant and relatively smaller in magnitude than αD in hU for all

indices. In terms of economic significance, it may be ventured that up variances are

primarily driven by negative shocks. All point estimates of αU coefficients in the

down volatilities are negative. They are statistically significant for all indices except

FTSE, CAC and SMI. However, even for these indices, specifications which impose

αU = 0 in hD are not BIC/SIC preferred. Thus, the empirical evidence suggests that

the impact of good news is twofold: reduce down volatility and mildly increase up

volatility. Standard models like the EGARCH, on the other hand, would suggest the

analyst and enforce in their predictions that good news increase future conditional

variances indiscriminately. Such effect of good news cannot be picked up by the UD-

TGARCH either. In fact, the αU in the down volatility of the UD-TGARCH hit the

positivity constraint for all indices: Tables 7-9.

4.2 Persistence

In the unconstrained specifications, up variances exhibit large autoregressive co-

efficients βU with values between 0.912 and 1.173. The βD coefficients instead are

considerably smaller in magnitude and take negative (in correspondence of estimated

βU > 1) and positive values. Nevertheless, for all indices, the βD coefficients in hU are

not statistically significant. Specifications with βD = 0 in the up variances are also

BIC/SIC preferred. With this constraint in place all autoregressive βU coefficients,

while remaining large, shrink below the unit root threshold and range from 0.969

to 0.989. Thus, the empirical evidence does not support any relation or causality

between hD,t−1 and hU,t. Instead, it outlines up volatility trajectories that do not

depend on down volatility. Standard models that do not differentiate between the

two volatilities implicitly impose a strong positive relation between such quantities

which is then reflected in the predictions.

Down variances exhibit autoregressive coefficients that are considerably smaller

than those estimated by standard specifications. βU and βD in the down volatilities

are positive and statistically significant for all indices except DAX (only βU signifi-
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cant) and CAC (only βD) significant. The BIC/SIC identifies the specifications with

βU = βD in hD as preferred to βU 6= βD for all indices. The magnitude of the

equal β coefficients in hD is less than half of βU in hU ranging from 0.410 to 0.484.

Therefore, contrary to up, down volatilities have trajectories that do exhibit interde-

pendence: relatively higher (lower) down variances will decrease (increase) to re-align

with up variances. The reaction times of these re-alignments will be substantially

shorter than those of up variances. The same is true when compared to the reaction

times predicted by standard models. Although the same triangular structure of the

B-matrix is also BIC/SIC preferred in the UD-TGARCH it does not have the same

implications. In fact, in the TGARCH family of models persistence/memory does not

depend solely on B but also on the A-matrix. Since for none of the studied indices

the estimated A-matrix of the UD-TGARCH is triangular, it is clear how this spec-

ification fails to pick up the distinction between up volatilities with own trajectories

and down volatilities exhibiting interdependence.

Overall, a clear pattern in the structure of the B-matrix emerges from the IS

empirical analysis: triangular with equal elements for the down volatility process.

However, interpreting the persistence of the two processes from the estimated B-

matrix directly is not immediate. The lower triangular structure of the B-matrix

suggested by the data allows to identify βU in hU as the largest eigenvalue and βU =

βD in hD as the smallest eigenvalue. Hence, persistence of hU is determined by the

largest eigenvalue while persistence of hD is determined by a time-varying combination

of the two eigenvalues (not to be confused with their average). Specifically, down

variances have quite short own memory but, in force of their loading on lag-one up

variance, they inherit its persistence.

An intuitive analysis of persistence in the world of dichotomized variances is re-

ported in Table 10 in terms of half-lives of negative and positive shocks to the volatility

processes. In the UD-EGARCH, the shocks’ half-lives depend on the current state

of the system (current levels of hU and hD) and the magnitude of the shocks them-

selves. I present results for half-lives computed from a system initially in equilibrium

(hU and hD equal to their equilibrium levels) shocked by innovations of one stan-

dard deviation. For all indices, the half-lives of negative and positive shocks to up

volatility are equal. Furthermore, the signature pattern of geometric decays is evi-

dent from the constancy of the half-lives. Up volatilities exhibit EGARCH dynamics

and their half-lives are similar to those estimated by standard specifications with

the exception of NASDAQ which exhibits substantially larger half-lives. For all in-
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dices, negative and positive shocks to down volatility exhibit relatively short initial

half-lives which progressively get longer. It is interesting to notice that the transi-

tion from short to longer half-lives occurs at different rates for the two volatilities.

In particular, while it takes around 4 short halvings before positive shocks to down

volatility converge to half-lives of the largest eigenvalue it only takes 2 short halvings

before negative shocks to down volatility converge to long-run half-lives. These pat-

terns are obviously non-geometric and share some similarities with hyperbolic decays.

These findings are in line with Bollerslev et al. (2006) “analysis of several popular

continuous-time stochastic volatility models [which] clearly points to the importance of

allowing for multiple latent volatility factors for satisfactorily describing the observed

volatility asymmetries”. Furthermore, Litvinova (2003) observed a “slowly decreasing

correlation pattern between the squared returns and lagged returns in 5-minute data

[that] exhibit a mixture of geometric and hyperbolic rate of decay”. Indeed, the UD

specification is a two factor model capable of capturing both geometric decays and

decays that look more similar to hyperbolic9. When compared to the EGARCH,

the magnitude of the initial half-lives is striking: 2 days vs. no less than 2 months

for S&P500 and DJIA, 2 days vs. no less than 6 weeks for NASDAQ, Nikkei, Eu-

roSTOXX and DAX, 3 days vs. at least 6 weeks for FTSE and CAC and 2 days

vs. 1 month for SMI. The relatively low (initial) persistence of down volatility is

easily interpretable within the framework of autoregressive processes. There is low

persistence if and only if there is low explanatory power which suggests that down

volatility is less predictable and therefore more random than was previously thought.

Compared to contemporaneous asymmetry specifications standard models induce a

false sense of future calmness (activity) when current down volatility is low (high).

5 Predictions and Stability

The IS results of Section 4 show superior performance of the down and up approach

to volatility in terms of a statistical likelihood-based measure such as the BIC/SIC.

As a robustness check, five years of data have been set aside to evaluate the OOS

predictions of the different specifications as well as to conduct stability tests.

From a forecasting perspective it would be desirable to update the models’ esti-

mates as new information becomes available or at predetermined time intervals such

9Appendix A.3 describes the conditions under which the UD-EGARCH produces non-geometric
decays.
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as weeks or months. These procedures, based on rolling estimations over the OOS

period are particularly time consuming due to the numerical optimizations involved

in the estimation of the models. Hence, a simple baseline approach is implemented

where the models’ parameters are kept fixed at the IS estimates and new informa-

tion incorporated into the models only through the realizations ǫτ as they become

observable day-by-day. Since, in principle, rolling windows parameter updates should

generate better forecasts, the adopted approach may be viewed as providing a lower

bound to the full OOS potential.

Ideally, the models’ predictions would be compared with the realizations by means

of some measure of distance10. Unfortunately, since variances are not directly observ-

able, the researcher may only rely on noisy proxies such as daily squared-returns11.

The information that may be derived both directly and indirectly from such class of

proxies has been at the center of a lively debate in the past. In fact, using squared

daily returns as a benchmark the empirical evidence seemed to favor simple squared-

returns autoregressions against conditional volatility models, see Cumby et al. (1993),

Figlewski (1997) and Jorion (1995). Andersen and Bollerslev (1998), on the other

hand, showed that even when the true data generating process is known, using poor

proxies as a benchmark, results in large Mean-Squared-Errors (MSE) and low R2

in Mincer-Zarnowitz regressions. As a result, IS model evaluations are conducted

primarily in terms of Information Criteria and at times following the Box-Jenkins

methodology. Nevertheless, the precision of squared-returns as OOS benchmarks may

be improved upon by considering average realizations over K periods as in Ledoit et

al. (2003).

Specifically, let tU,i and tD,j be the time stamps of positive and negative return

days: rtU,i
≥ 0, ∀i = 1, . . . , NU and rtD,j

< 0, ∀j = 1, . . . , ND. The K period down

and up average variance proxies and predictions of model m are then constructed as

follows:

R̂
(K)
s,l ≡

1

K

K∑

k=1

r2
ts,(l−1)K+k

and Ĥ
(K)
m,s,l ≡

1

K

K∑

k=1

ĥm,s,ts,(l−1)K+k

where s = {U,D}, l = 1, . . . , ⌊NU/K⌋ for s = {U} and l = 1, . . . , ⌊ND/K⌋ for

s = {D} and ĥm,s,ts,(l−1)K+k
is the one-day ahead s variance forecast of model m for

10See Patton (2011) for “[. . . ] sufficient conditions on the functional form of the loss function
for the ranking of competing volatility forecasts to be robust to the presence of noise in the volatility
proxy [. . . ]”

11Arguments regarding squared daily returns apply mutatis mutandis to other proxies based on
daily observations such as the daily returns’ absolute value.
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(l − 1)K + k. The K period MSE of model m forecasts for s variances is:

M̂SE
(K)

m,s ≡
1

⌊NU/K⌋ + ⌊ND/K⌋

⌊Ns/K⌋∑

l=1

[
Ĥ

(K)
m,s,l − R̂

(K)
s,l

]2

An alternative benchmark may be constructed following the insight from the lit-

erature on volatility: superior variance measures may be obtained from conditional

volatility models. Hence, I estimate EGARCH and UD-EGARCH specifications only

on OOS observations in order to generate quality volatility measures. QML param-

eter estimates for the EGARCH and the UD-EGARCH, reported in Table 11, are

by themselves informative on parameters’ stability between IS and OOS. The best

OOS specification is selected in terms of BIC/SIC with the aim of obtaining the best

statistical description of the data which combines fit and parsimony. Additionally,

comparing OOS predictions based on IS estimates with OOS estimates gives a mea-

sure of how the IS models perform relative to the full potential they may achieve only

when the future becomes history.

5.1 Predictions

Forecast MSE are computed from the the one-step-ahead predictions generated

by the IS estimates of EGARCH and UD-EGARCH and OOS filtered variances as

well as the K period average realizations. In particular, the periods considered are 1

day, 1 month (K = 20), 3 months (K = 60) and 6 months (K = 120). In using K

period averages there is a trade-off between variance and bias. Ideally K should be

large to minimize the noise component in the squared-log-returns. However, for large

K the models’ predictions and the realized measures converge to the unconditional

variances giving the misleading impression that the competing models perform equally

well. This is not the case for the periods considered: K = 120 strikes the largest

differences in models’ performance signaling both a significant variance reduction

and a negligible bias which would make the models look the same (for a detailed

discussion see Palandri (2009)). Therefore, throughout the rest of the paper, the

empirical findings are presented and discussed for K = 120. The results are reported

in Tables 12-14.

For all indices considered, the joint MSE of down and up variances is substantially

smaller for the UD-EGARCH when compared to the EGARCH. OOS MSE reductions

with respect to the standard modeling approach range between 6.39% (CAC) and

76.52% (NASDAQ) with a median value of 21.39% (EuroSTOXX) for squared-log-
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return proxies (henceforth SqR) and between 11.49% (CAC) and 44.92% (NASDAQ)

with a median value of 21.66% (Nikkei) for OOS filtered proxies (henceforth Filtered).

With respect to the isolated down component of volatility the UD-EGARCH ex-

hibits OOS MSE that are approximately 12% larger than those of the EGARCH for

S&P500 and DJIA when the proxy is SqR. For all other indices the UD-EGARCH

reduces the OOS MSE from 1.57% (CAC) to 94.10% (NASDAQ) with a median value

of 23.84% (FTSE) for SqR. UD-EGARCH reduces reduces the EGARCH OOS MSE

for all indices when the proxy is Filtered. Diminutions range from 7.57% (SMI) to

71.17% (NASDAQ) with a median value of 23.24% (FTSE). Such staggering improve-

ments may be reconducted, at least in part, to the sign stability of news impact on

down volatility IS and OOS: positive shocks decrease while negative shocks increase

down volatility.

With respect to the isolated up component of volatility, in terms of OOS MSE

the UD-EGARCH specification does not perform uniformly better than standard

EGARCH. Sizable improvements are found for S&P500, DJIA, EuroSTOXX, CAC

and SMI which exhibit reductions that range from 28.03% (CAC) to 95.65% (S&P500)

with a median of 52.18% (EuroSTOXX) for SqR and from 12.56% (CAC) to 53.21%

(S&P500) with a median of 23.87% (SMI) for Filtered. For NASDAQ, Nikkei and

DAX the OOS predictions of UD-EGARCH are superior when benchmarked against

SqR but inferior when the benchmark is Filtered. FTSE exhibits OOS predictions

of UD-EGARCH that are inferior to those of EGARCH by 21.36% for SqR and by

14.83% for Filtered. The underperformance of the nesting UD-EGARCH specification

OOS in the latter cases is due to structural changes in the volatility dynamics: the

IS αU coefficients are all relatively large (0.116-0.140) while OOS they are all equal

to zero except for FTSE for which it is estimated to be of relatively large magnitude

but opposite sign (−0.267).

In the hypothetical scenario in which the UD-specification coincides with the data

generating process the above empirical exercise should be expected to highlight uni-

form improvements in the down and up volatilities with respect to a misspecified

model that does not differentiate between the two. However, in more realistic sce-

narios in which the UD-specification is simply a better approximation to the data

generating process, the UD-methodology should not necessarily be expected to de-

liver improvements in both the down and up dimension. This is a limitation of the

approach presented in this paper and it arises from the estimator’s objective func-

tion. In particular, the concentrated log-likelihood of equation (5) may be rewritten
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separating negative and positive return days, Lc = Lc,D + Lc,U where:

Lc,D = −
1

2

∑

ǫt<0

lnhD,t + ǫ2t · h
−1
D,t

Lc,U = −
1

2

∑

ǫt>0

lnhU,t + ǫ2t · h
−1
U,t

Thus, the estimated UD-projection maximizes the sum of Lc,D and Lc,U which is

different from the maximization of Lc,D and Lc,U . As a result, the nesting UD-

EGARCH specification implies Lc(θ̂UD-EGARCH) > Lc(θ̂EGARCH) but does not guaran-

tee that Lc,D(θ̂UD-EGARCH) > Lc,D(θ̂EGARCH) and Lc,U(θ̂UD-EGARCH) > Lc,U(θ̂EGARCH)

hold simultaneously. This characteristic of the estimator is compatible with the OOS

findings of FTSE and the triplet NASDAQ, Nikkei, DAX with respect to Filtered.

The EGARCH produces OOS MSE that are substantially larger for down volatil-

ity. If the same was true IS, it would have been optimal for the UD-EGARCH to

specialize more in describing the down rather than the up dynamics. As a result

the losses in the up components would be more than compensated by the gains on

the down side, improving the joint IS fit and presumably the joint OOS MSE. Per-

formance differences in Tables 12-14 between the two volatilities could arise from

multiple sources the most likely of which are data differences in the IS and OOS

(characterized by the crisis period). Nevertheless, it is important to highlight that

UD-specifications should not be expected to outperform standard approaches in both

the down and up dimensions of volatility. Indeed, the current setting may easily

accentuate performance differences in the down and up components in order to max-

imize joint fit.

5.2 Stability

In the OOS period, BIC/SIC selects the EGARCH specification with αU = 0 for

all indices: positive shocks are not found to have any impact on future volatility.

The αD coefficients are all positive and statistically significant. The magnitude of the

estimated parameters is in line with the IS results even though, with the exception

of DAX, point estimates of αD are larger OOS than IS.

In the UD-EGARCH specification, equality of αD in hU and hD is BIC/SIC pre-

ferred for all indices. Thus, in the OOS period bad news have equal impact on

future down and up volatilities. As for the EGARCH specification, the magnitudes

of the point estimates of these coefficients are in line with those found IS even though

slightly larger. The αU coefficients are negative and statistically significant in the
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down volatility of all indices like in the IS period: good news decrease future down

volatility. However, the specification with αU = 0 in the up volatility is BIC/SIC

preferred for the S&P500, DJIA, NASDAQ, Nikkei, EuroSTOXX and DAX. There-

fore, while IS good news increase up volatility they are found to have no effect in

the OOS period. For the remaining indices (FTSE, CAC and SMI) the estimated

αU coefficients are negative and significant: good news decrease future up volatility.

These findings are in stark contrast with the IS data features.

The triangular structure of the B-matrix with equal lower elements is BIC/SIC

preferred for S&P500, DJIA, NASDAQ, Nikkei, EuroSTOXX and DAX. Similarly to

the IS, the OOS estimated autoregressive coefficients in the up volatility range from

0.970 to 0.985 while the twin coefficients in the down volatility range from 0.414 to

0.510. For the remaining indices, on the other hand, the OOS results do not mimic

the IS findings. CAC and SMI exhibit down volatilities with large autoregressive co-

efficients, 0.946 and 0.958 respectively, and no loading on lag-one up volatilities. Up

volatilities have smaller autoregressive coefficients and statistically significant nega-

tive loadings on lag-one down volatilities. OOS the FTSE index exhibits reversal of

the IS B-matrix structure. Specifically, in the up volatility the loadings on lag-one

down and up volatilities are found to be equal. Down volatility exhibits a larger

than unity autoregressive coefficient and a statistically significant negative loading

on lag-one up volatility of −0.400.

The next Section provides additional robustness checks, using high-frequency ob-

servations and associated methodologies, for the S&P500 index for which I have high-

frequency observations.

6 High-Frequency Volatility Specifications

This section investigates whether volatility measures based on high-frequency

trades provide stylized facts for contemporaneous asymmetry in line with those that

have emerged from the empirical study based on daily observations.

6.1 Predictors Based on Realized Measures

Assuming intradaily log-prices follow a jump diffusion process, the volatility over

the day is measured by the quadratic variation. While not directly observable, it may
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be consistently estimated by realized variance:

RVt =
M∑

j=1

r2
t,j (6)

where M is the number of intradaily returns rt,j measured over a given sampling fre-

quency. As the number of intradaily observations M goes to infinity, the estimator in

(6) converges12 to the sum of the continuous volatility path component and the jump

contribution to the total daily quadratic variation. To separately measure these two

components, I use the Hausman-type testing procedure based on bipower variation

introduced by Barndorff-Nielsen and Shephard (2004, 2006). Bipower variation is an

estimator of the continuous volatility component defined by:

RBVt = µ−2
1

(
M

M − 1

) M∑

j=2

|rt,j−1| · |rt,j | (7)

where µk = E
(
|ζ |k

)
with ζ ∼ N (0, 1). Under general conditions13, the estimator

in (7) converges in probability to the integrated variance. The jump detection test

statistic is:

Zt =
1 − RBVt/RVt√((

π
2

)2
+ π − 5

)
1
M

max
(
1, RTQt

RBV 2
t

) (8)

where RTQt is realized tripower quarticity14. Under the null hypothesis of no within-

day jumps, the test statistic (8) is asymptotically standard normal distributed. Fol-

lowing the jump detection test, the contribution of the jump component Jt and the

continuous component Ct to the overall quadratic variation is defined by:

Jt ≡ I(Zt > Φα) · (RVt − RBVt)

Ct ≡ RVt − Jt

where I(·) denotes the indicator function and Φα the appropriate critical value from

the standard normal distribution15. Having decoupled Ct and Jt it is possible to use

12See Andersen and Bollerslev (1998), Comte and Renault (1998), Andersen et al. (2001,2003)
and Barndorff-Nielsen and Shephard (2001,2002), among others.

13See Barndorff-Nielsen, Shephard, and Winkel (2006) and Jacod (2008), among others.
14RTQt = Mµ−3

4/3

(
M

M−2

)∑M
j=3

|rt,j−2|
4/3 · |rt,j−1|

4/3 · |rt,j |
4/3

15Corsi et al. (2010) propose a different jump testing procedure based on the concept of threshold
multipower variation: a combination of the multipower variation of Barndorff-Nielsen and Shephard
(2004) and the threshold realized variance of Mancini (2009). Replicating the work of Andersen et
al. (2007) using threshold multipower variation, Corsi et al. (2010) find a larger number of jumps
for the same data sample and a positive impact of the latter on future volatility. Preliminary checks
based on this approach indicated that the results presented in this paper are robust to the choice of
testing procedure.
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them as predictors in regressions for future RV and C.

The above set of predictors may be extended by separating the negative and pos-

itive returns to construct two distinct series with no gaps: rD
t,j and rU

t,j with negative-

and positive-only returns, respectively, as in Barndorff-Nielsen et al. (2010) and Pat-

ton and Sheppard (2011). Treating these two series separately, I compute the usual

estimates (RV , RBV and RTQ) necessary for the implementation of the test statistic

defined in (8). In particular, standard realized variance measures are extended to:

RV U
t =

MU∑

j=1

(
rU
t,j

)2
and RV D

t =

MD∑

j=1

(
rD
t,j

)2

The joint variance of positive and negative returns gives the overall daily variance:

RV U
t +RV D

t = RVt. From the series of realized variances, the jump test statistic16 in

(8) generates the series of continuous- (CU
t and CD

t ) and jump-components (JU
t and

JD
t ):

RV U
t = CU

t + JU
t and RV D

t = CD
t + JD

t

It should be noticed that JU
t and JD

t do not necessarily add up to the standard Jt.

They are simply a different set of covariates obtained by performing standard jump-

testing procedures to the split series of intradaily returns. Further analysis of these

two jump components is beyond the scope of this paper. Since JU
t and JD

t are only

used as covariates it is not particularly relevant to investigate their fine properties

as what really matters is that they are good predictors. It must be emphasized that

down and up jumps defined above are intrinsically different from the signed jumps of

Patton and Sheppard (2011)17.

6.2 HAR Specification

The benchmark specification is the log-version of the Heterogeneous AR (HAR)

model, originally proposed by Corsi (2009), which consists of volatility components

measured over different time horizons. Thanks to the daily, weekly and monthly time

scales considered, the HAR specification well approximates the long-memory behavior

16Jump-test(s) are performed if within the day there are at least five returns of the same sign. If
this is not the case, set CU

t = RV U
t and/or CD

t = RV D
t .

17“[. . . ] the variation due to the continuous component can be removed by simply subtracting one
[Realized Semivariance] from the other, and the remaining part is what we define as the signed jump
variation”. However, separating intradaily down and up variances seems reasonable only under the
assumption that the two may differ, in which case the signed jump variation statistic will also pick
up differences in the down and up continuous components (a measure of intradaily asymmetry).
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of volatility in a simple and parsimonious way.

ln(Xt) = ω + βD ln(Ct−1) + βW ln(CW,t−1) + βM ln(CM,t−1)

+ βJ ln(1 + Jt−1) + ǫt (9)

where Xt = {RVt, Ct} is the left-hand-side variable18 and CW,t and CM,t are defined

as usual: CW,t = 1
5

∑4
j=0Ct−j and CM,t = 1

22

∑21
j=0Ct−j . The HAR regression based

on intradaily realized measures is given by:

ln(Xt) = ω + βU
D ln(CU

t−1) + βD
D ln(CD

t−1)

+ βU
W ln(CU

W,t−1) + βD
W ln(CD

W,t−1)

+ βM ln(CM,t−1) + βU
J ln(1 + JU

t−1) + βD
J ln(1 + JD

t−1) + ǫt (10)

where CU
W,t = 1

5

∑4
j=0C

U
t−j and CD

W,t = 1
22

∑21
j=0C

D
t−j . With the exception of the unique

monthly component and different definition of down and up jumps, this specification

is the same as that in Patton and Sheppard (2011). Here, distinct down and up

monthly measures are not considered due to potential multicollinearity issues. In the

data, monthly down and up measures alone exhibit correlation levels of 0.90 which

increase to 0.98 with the inclusion of daily and weekly dichotomized regressors.

6.3 UD-HAR Specification

This specification of contemporaneous asymmetry is the counterpart of HAR re-

gressions. Investigating the dynamics of down and up volatilities requires the defini-

tion of two sets of variables depending on the sign of the corresponding daily return.

Since observability of the up variance excludes observability of the down variance and

vice versa, I define daily down and up volatilities as latent processes and replace the

unobserved components in the daily and weekly regressors with predictions generated

by the model itself. Monthly down and up regressors are not used due to borderline

multicollinearity. The latent down and up processes are modeled by:

lnhs,t = ωs + βU
s,Dψ

U
D,t−1 + βD

s,Dψ
D
D,t−1 + βU

s,Wψ
U
W,t−1 + βD

s,Wψ
D
W,t−1

+ βs,M ln(CM,t−1) +
[
βU

s,Jdt−1 + βD
s,J(1 − dt−1)

]
ln(1 + Jt−1)

(11)

where s = {U,D} and:

ψU
D,t = dt lnCt + (1 − dt) lnhU,t ψD

D,t = (1 − dt) lnCt + dt lnhD,t

ψU
W,t = ln

[
1
5

∑4
j=0 exp

(
ψU

D,t−j

)]
ψD

W,t = ln
[

1
5

∑4
j=0 exp

(
ψD

D,t−j

)]

18The study of the dynamics and predictability of the jump component is beyond the scope of
this paper. For a convenient reduced form model of jump occurrence and jump size see Andersen et
al. (2011).

18



The beta coefficients, one set for s = {U} and another for s = {D}, have superscripts

indicating whether they refer to an up (U) or down (D) measure and subscripts

indicating the time interval (Day, W eek and Month) over which such variable is

computed. The same indexing system is used for the regressors. The binary variable

dt equals unity on positive return days and zero otherwise. Coherently with the

definition of down and up variance, jumps are classified as down if occurring on

negative return days and up otherwise. This specification has built-in a certain degree

of persistence for the effects of jumps. In particular, since they enter the latent

processes hU,t and hD,t, jumps also enter indirectly19 the daily and weekly components

ψ which determine persistence in the HAR. The model’s parameters are estimated

by non-linear least squares (NLS) with objective function:

T∑

t=1

[lnXt − dt lnhU,t − (1 − dt) lnhD,t]
2 (12)

where Xt = {RVt, Ct} is the left-hand-side variable that is being modeled.

Observable intradaily measures may be used to replace the model-implied predic-

tions. In fact, although CU
t−1 and CD

t−1 are intrinsically different from Ct−1 on negative

and positive return days, if the latter are a function of the former the substitution

of unobservable with observable variables is perfectly justifiable from a reduced-form

modeling perspective. Hence, the down and up processes are modeled by:

lnhs,t = ω + βU
s,D ln(CU

t−1) + βD
s,D ln(CD

t−1) + βU
s,W ln(CU

W,t−1) + βD
s,W ln(CD

W,t−1)

+ βs,M ln(CM,t−1) + βU
s,J ln(1 + JU

t−1) + βD
s,J ln(1 + JD

t−1)

(13)

Since in this setting there are no latent covariates, the model’s parameters may be

estimated by standard OLS.

6.4 UD-EGARCHX Specification

This is the counterpart of the low-frequency specification (4). The GARCHX class

of models consists of GARCH specifications based on volatility measures constructed

from high-frequency data and have been studied in Engle (2002), Engle and Gallo

(2006) and Shephard and Sheppard (2010), among others. Here, the EGARCHX

19A specification in which jumps do not enter the components ψ, while not presented here, has
been considered and found to provide very similar qualitative and quantitative results, although
BIC/SIC inferior.
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specification is extended to the down and up components:


 lnhU,t

lnhD,t



 = ω +B



 lnhU,t−1

lnhD,t−1



 + A



 dt−1 ln(Ct−1)

(1 − dt−1) ln(Ct−1)





+ G



 dt−1 ln(1 + Jt−1)

(1 − dt−1) ln(1 + Jt−1)



 (14)

It should be noticed that while in the UD-EGARCH persistence is solely determined

by the B-matrix coefficients, in the UD-EGARCHX the A-matrix parameters also

play a role as they determine the loading on past realizations rather then past shocks.

In equation (14) it is the G-matrix of jump coefficients that more closely resembles the

A-matrix of the low frequency UD-EGARCH. The model’s parameters are estimated

by NLS with objective function as in equation (12).

The latent down and up processes may be modeled by exploiting the information

contained in the intradaily down and up measures:


 lnhU,t

lnhD,t



 = ω +B



 lnhU,t−1

lnhD,t−1



 + A



 ln(CU
t−1)

ln(CD
t−1)





+ G



 ln(1 + JU
t−1)

ln(1 + JD
t−1)



 (15)

Notice that specification (15) does not nest (14) as it does not distinguish between

realizations on negative and positive return days. Persistence of the latent components

is jointly determined by the B- and A-matrix coefficients. The unknown parameters

are estimated by NLS with objective function as in equation (12).

7 High-Frequency Data

In this part of the paper the focus is on down and up volatility patterns from

high-frequency observations. The data consists of S&P500 tick-by-tick trades from

TickData beginning January 1985 and ending December 2005. Following Andersen

et al. (2007), the sampling frequency is lowered to mitigate market microstructure

contamination. Investigating the impact of microstructure effects for one-, two-, five-,

ten- and fifteen-minute returns it is found that the latter strikes the best balance20

20From signature plots: shorter time intervals lead to underestimation of the total quadratic
variation. Preliminary studies of down and up volatility dynamics based on five-minute returns,
conducted as a robustness check, confirmed the findings based on fifteen-minute returns.
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between the desire for finely sampled observations and unconditional unbiasedness

of the variance estimates. Hence, fifteen-minute prices, corresponding to 25 non-

overlapping returns per day, are used throughout this section.

8 High-Frequency Findings

8.1 Predictors Based on Realized Measures

Results of standard HAR regressions for RV and C, reported in Table 15, parallel

those of Andersen et al. (2011) who find jump coefficients to be negative but not

statistically significant. Also, BIC/SIC selects the specification with equal loadings

on the weekly and monthly components.

Estimation results for the UD-HAR specification (with unobserved components

replaced by predictions generated by the model) are reported in Table 15. Specifi-

cations with RV and C as LHS variables exhibit the same pattern. With respect to

the daily component, if from negative-return days it has the same impact on down

and up volatilities (βD
D ) while from positive-return days it has a larger effect on down

volatility (βU
D). The βU

W coefficients are not statistically significant and their elim-

ination is BIC/SIC preferred, suggesting that down and up volatilities are not tied

to weekly up movements. On the other hand, weekly down movements do have a

statistically significant and equal effect on current down and up volatilities. The co-

efficient of the monthly component in the up volatility is BIC/SIC equal to the weekly

component as in the standard HAR specification. Instead, in the down volatility the

loading on the monthly component is significantly smaller which could be indicative

of a somewhat shorter memory. Estimated jump coefficients are stable across RV and

C specifications and qualitatively very similar to those estimated using low-frequency

observations and reported in Table 4. In particular, jumps on negative-return days

have the same impact on future down and up volatilities while jumps occurring on

positive-return days have no effect on up volatility but a sizable negative effect on

down volatility. In other words, the arrival of good news in the form of a jump is

found to reduce the magnitude of future down movements.

Estimates reported in the bottom panels of Table 15 parallel very closely the

estimates based on low-frequency observations of Table 4. Specifically, the triangular

structure of the B-matrix: up volatility exhibits a large autoregressive coefficient

but no loading on past down volatility and down volatility with equal and smaller

loadings on past down and up volatilities. However, it is worth recalling that here the
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triangular structure of B does not imply that up volatility follows its own trajectory.

The realizations of down volatility have the same impact on future down and up

volatilities (αD) while the realizations of up volatility are found to have a larger

impact on future down volatility (αU). The estimated jump coefficients reproduce the

pattern found for UD-EGARCH on daily data and UD-HAR on realized measures.

Jumps on negative-return days increase future down and up volatilities equally while

jumps on positive-return days reduce future down volatility and are neutral to up

volatility.

8.2 Predictors Based on Intradaily Measures

Results for HAR regressions using intradaily down and up measures of C and

J are reported in Table 16. In-Sample, the set of intradaily regressors provides a

superior fit as measured by the log-likelihood and information criteria. Daily RV and

C are found not to react to up intradaily C and intradaily down and up jumps are

statistically significant with equal but opposite effects.

The intradaily down and up regressors provide a superior IS fit, as seen in Table 16.

Down and up estimated jump coefficients remain substantially unchanged whether the

regressors are daily or intradaily. In particular, up jumps have no impact on future

up volatility but decrease future down volatility. Instead, down jumps are once again

found to increase future down and up volatilities equally. Unchanged is also the

finding that weekly down volatility equally increases future down and up volatilities.

Main differences for this specification with respect to its counterpart based on daily

information only is that here daily up volatility does not predict down volatility while

weekly up volatility is found to increase down volatility.

The UD-EGARCHX specification with intradaily regressors exhibits an inferior

IS fit than that of the UD-EGARCHX based on daily regressors. Nevertheless, the

estimated coefficients are quite similar across specifications with the only exception

being the α coefficients: equal impact of down C in daily as opposed to equal impact

of up C in intradaily. The structure of the matrix of coefficients of the jump is the

same as that found for all other specifications highlighting a high degree of robustness

of the findings pertaining to the jump components.

8.3 Persistence

Persistence of the down and up volatilities modeled and estimated on realized

measures is described by the half-lives of negative and positive shocks to volatility and
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jump processes as reported in Table 17. In order to compute half-lives, as described in

Section 4.2, the models object of study need to be fully dynamic. Without specifying

additional dynamics for the regressors the half-lives may be readily computed for

the specifications with C as LHS variable which make use of daily information only.

Hence, I look at the constrained specifications of Panels B and D in Table 15 treating

the jumps as i.i.d. processes.

In the HAR specification there are no half-lives for jumps as they have not been

found to be statistically significant. Furthermore, since this specification does not

differentiate between down and up quantities the two exhibit a common pattern.

Specifically, a first halving of approximately 1 week followed by successive halvings

occurring approximately every 7 weeks.

The half-lives of shocks to C and J on negative return days for down and up

volatilities in the UD-HAR are similar. The only difference is that the third halving

of jumps occurs 1 week earlier in the down volatility. Shocks on positive return

days, instead, are found to be more persistent in the up volatilities. In particular,

shocks to C on positive return days have second and third half-lives that are 1 and 3

weeks shorter, respectively, for down volatility. The differences between down and up

volatilities are even more marked when considering the half-lives of jumps on positive

return days: 1 week vs. 1 day, 5 weeks vs. 1 day and 7 weeks vs. 2 weeks for the first

three halvings in down and up volatilities.

In the UD-EGARCHX, the half lives of shocks to up volatility are the same across

shock type: C or J , on negative or positive return days. Down volatilities exhibit

half-lives equal to up volatility after the first halving with the exception of jumps on

positive return days. Shocks to C have first half-life of approximately 2 weeks shorter

for down volatility. 3 weeks shorter for jumps on negative return days. Jumps on

positive return days have initial half lives of 1 day, 2 days and 3 weeks in down

volatility as opposed to approximately 5 weeks in up volatility.

8.4 Stability

The IS results of Tables 15 and 16 show superior performance of the down and up

approach to volatility in terms BIC/SIC. Furthermore, they clearly outline a ranking

which sees the UD-EGARCHX specification as providing the best data description,

followed by the UD-HAR. To assess the stability of these findings, I use the five years

of data that have been set aside to evaluate the OOS performance of the different

specifications. The model’s predictions are compared to the realized measures RV
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and C in terms of MSE. The same baseline approach of Section 5 is followed keeping

parameters fixed at the IS estimates and incorporating new information only through

the realizations as they become available day-by-day. Even though RV and C are

more precise measure of daily variance than squared-returns they are still proxies21.

Hence, K period average RV , C and predictions are considered for K = 1, 20, 60, 120.

Tables 18 and 19 confirm the IS findings for the down and up specifications. Regard-

less of the information set used, whether daily or intradaily, the UD-EGARCHX

performs better than the down and up HAR generalization UD-HAR.

Tables 18 and 19 highlight stabilized MSEs for K = 60 and K = 120. Since as

K gets larger the models’ predictions and proxies converge to the long-run variance,

empirically K = 60 seems to strike the best balance in the trade-off between variance

and bias and is the measure I refer to in the following analysis.

From the OOS joint MSE, the down and up specifications outperform the stan-

dard HAR. In particular, the UD-EGARCHX exhibits MSE reductions slightly above

30%. The UD-HAR specification, on the other hand, does not exhibit substantial im-

provements. In more detail, the down and up specifications outperform the standard

HAR with respect to the down side of volatility but underperform with respect to the

up side. This is in line with the low-frequency findings which highlight MSE gains for

the down volatilities of all indices considered and losses for the up volatilities of NAS-

DAQ, Nikkei, DAX and FTSE. Hence, while down volatilities exhibit stable dynamic

structures that may be exploited OOS, up volatilities exhibit less stable structures

with sign changes leading to inferior OOS performances. The use of intradaily infor-

mation reduces the OOS MSE for both specifications with respect to standard HAR.

In particular, UD-HAR presents joint reductions of 10.91% and 15.45% for RV and

C predictions, respectively. The UD-EGARCHX exhibits OOS joint MSE reductions

of approximately 40.00% with respect to standard HAR.

Separating the two volatilities and down from up jumps leads to the results re-

ported in Table 16. In Panels B and C it is clear that down jumps increase both

down and up volatility and that their impact on the two is not statistically different,

as suggested by the Wald tests. Up jumps are not found to have statistically signif-

icant effects on up volatility but are found to be the only covariate decreasing down

volatility. The patterns outlined by the various jump components fit remarkably well

with those found at low-frequencies for the α parameters. This parallelism seems to

21In the specific case, using fifteen-minute returns, RV is constructed from 25 observations. Thus,
although a good proxy, RV will contain measurement errors that may be partially offset when
considering average RV over various days.
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be due the fact that the UD-EGARCH, as well as the standard EGARCH, produces

quite good one-step-ahead predictions of the continuous component of the conditional

variance. Hence, the terms multiplying the α coefficients are equal to the daily shock

standardized by the continuous component only. It follows that in the occurrence of

a jump the standardized shocks substantially reflect the jump itself. In other words,

the forcing variables of the process are unit-variance random draws from a stationary

continuous distribution mixed with the distribution of jumps standardized by the

continuous components.

9 Conclusions

Using daily returns from nine major world market indices this paper studies

contemporaneous asymmetry. With a simple and straightforward extension of the

EGARCH model I find substantial and not previously documented differences in the

persistence levels of down and up volatilities and the way they react to good and

bad news. The empirical evidence obtained effectively suggests the following stylized

facts. Up volatility evolves based on its own past history alone and may be more

persistent than estimated by standard models. Down volatility exhibits a persistent

component equal to that of up volatility coupled with a fast mean-reverting compo-

nent. Their combination determines decaying patterns of shocks to down volatility

with half lives that are initially very short and subsequently equal to those of the up

volatility. This implies that down volatility is less predictable and more random than

otherwise concluded from standard models that do not contemplate contemporaneous

asymmetry. These findings are confirmed by robustness checks on the S&P500 index

where numerous specifications with observed and unobserved components have been

estimated for daily measures of variance computed from high-frequency returns. The

empirical analysis has also outlined that, in contrast to its lower persistence, down

volatility exhibits dynamic relations that are considerably more stable over time than

those found for the more persistent up volatility. The OOS exercise has highlighted

that for all indices considered investors with long positions, for whom risk is asso-

ciated with down movements, would have obtained significant improvements by the

separate modeling of down and up volatilities.

Further investigations of the potential gains that may derive from the implementa-

tion of weighted objective functions favoring this or that type of volatility depending

on the researcher’s interest, specification of a down and up data generating process
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with clear separation of mean and variance and the study of the theoretical proper-

ties of down and up jumps, as defined in the paper, are all issues that await future

research.
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A Appendix

A.1 Ergodicity Conditions

From equation (2), the standardized residuals ǫt−1 in equation (4) are equal to the

primitive shocks zt−1. Thus, the UD-EGARCH may be rewritten as:


 lnhU,t

lnhD,t



 = ω +B



 lnhU,t−1

lnhD,t−1



 + A



 dt−1 · |zt−1|

(1 − dt−1) · |zt−1|





or with a more compact notation:

xt = ω +Bxt−1 + Aψt−1 (16)

with xt = (lnhU,t , lnhD,t) and ψt = (dt , 1 − dt) · |zt|. Letting ψ ≡ ψt − E[ψt] and

ηt ≡ ψt − ψ, then:

xt = (ω + Aψ) +Bxt−1 + A · ηt−1 (17)

The skeleton of the Markov chain has a unique fixed point at x∗ = (I−B)−1(ω+Aψ).

With the subscript n denoting the mapping of the skeleton:

xn = (ω + Aψ) +Bxn−1 (18)

Equation (17) defines a two-dimensional VAR(1) with innovations ηt−1. Hence, the

UD-EGARCH specification is uniformly ergodic if and only if the eigenvalues of B

are inside the unit circle.

A.2 Identification Conditions

Let hU,t and hD,t be the optimized conditional down and up variances and define:

h̃t ≡



 κU · hU,t

κD · hD,t





from which it follows that:

x̃t = lnκ + xt (19)

with κ = (κU , κD) and x̃t =
(
ln h̃U,t , ln h̃D,t

)
. Substituting equation (19) in (16)

gives:

x̃t = [ω + lnκ−B lnκ] +Bx̃t−1 + Aψt−1

= ω̃ +Bx̃t−1 + Aψt−1 (20)
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The vector ψt−1 is equal to:

ψt−1 =



 dt−1|ǫt−1|κ
1/2
U h̃

−1/2
U,t−1

(1 − dt−1)|ǫt−1|κ
1/2
D h̃

−1/2
D,t−1





=



 κ
1/2
U 0

0 κ
1/2
D



 · ψ̃t−1 (21)

Substituting equation (21) in (20) yields:

x̃t = ω̃ +Bx̃t−1 + A



 κ
1/2
U 0

0 κ
1/2
D



 · ψ̃t−1

= ω̃ +Bx̃t−1 + Ãψ̃t−1 (22)

Therefore, the rescaling of the down and up conditional variances by the κD and

κU factors, respectively, results in processes that are still UD-EGARCH as may be

seen from equation (22). The concentrated Gaussian log-likelihood may be rewritten,

consistently with the model, in terms of h̃U,t and h̃D,t:

Lc = −
1

2

T∑

t=1

dt[ln h̃U,t + ǫ2t h̃
−1
U,t] + (1 − dt)[ln h̃D,t + ǫ2t h̃

−1
D,t]

= −
1

2

T∑

t=1

dt[lnκU + lnhU,t + κ−1
U y2

t h
−1
U,t] + (1 − dt)[lnκD + lnhD,t + κ−1

D y2
t h

−1
D,t]

The first order conditions with respect to κU and κD are:

T∑

t=1

dt

(
κ−1

U − κ−2
U ǫ2th

−1
U,t

)
= 0

T∑

t=1

(1 − dt)
(
κ−1

D − κ−2
D ǫ2th

−1
D,t

)
= 0

However, since the QML estimator maximizes Lc and hU,t and hD,t are the optimized

down and up variances, it must be that κU = κD = 1. Imposing these conditions and

solving yields:

∑T
t=1 dtǫ

2
th

−1
U,t∑T

t=1 dt

= 1 and

∑T
t=1(1 − dt)ǫ

2
th

−1
D,t∑T

t=1(1 − dt)
= 1

which are the sample counterparts of the conditions in (3). Hence, both positive and

negative components of the residuals have unit variance.
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A.3 Decaying Patterns

From equation (17), a shock at t = 0 impacts the elements of x0 through the

matrix of coefficients A while in the subsequent n periods the evolution of xn and its

mean reversion are described by equation (18). Consider the spectral decomposition

CΛC−1 of the matrix of coefficients B:

xn = (ω + Aψ) + CΛC−1xn−1

C−1xn = C−1 (ω + Aψ) + ΛC−1xn−1

Letting
◦
ω= C−1 (ω + Aψ) and

◦
xn= C−1xn gives:

◦
xn=

◦
ω +Λ

◦
xn−1

and therefore:

◦
x1,n =

◦
ω1 +λ1

◦
x1,n−1

◦
x2,n =

◦
ω2 +λ2

◦
x2,n−1

For λ1 6= λ2 the components
◦
x1 and

◦
x2 exhibit different persistence and therefore

different geometrically decaying rates. The elements of xn are a linear combination

of those of
◦
xn:

x1,n = c11
◦
x1,n +c12

◦
x2,n

x2,n = c21
◦
x1,n +c22

◦
x2,n

where cij are the elements of the eigenvector matrix C. In turn, this produces richer

persistence and decaying patterns for the quantities of interest. To exemplify one of

the possible decaying patterns of the UD-EGARCH, consider the case in which one of

the elements of
◦
x is very persistent while the other is significantly less so. Furthermore,

let the loadings on the persistent element (c11 and/or c21) be significantly smaller

than the loadings on the transitory element (c12 and/or c22). Then, the process

will initially exhibit low persistence due to its small-eigenvalue component vanishing

relatively quickly. Subsequently, the process will exhibit near-full loading on the

large eigenvalue component and therefore exhibit high persistence as depicted by the

simulation in Figure 1.

The dynamics of the UD-EGARCH decaying patterns are carried over to the

autocovariances of the process. In particular, while the variance processes rotated by

the matrix of eigenvectors will exhibit geometrically decaying autocovariances, the
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Figure 1: Decay: λ1 = 0.995, λ2 = 0.85, c11 = 0.3 and c12 = 0.7. Solid line: compound process
x with fast initial decay and slower decay at larger lags. Dotted lines: constituting elements with
geometric decay matching either the initial or the final shape of the x process.
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autocovariances of the processes themselves will exhibit combined decaying patters

which may result in overall patterns that are more similar to an hyperbolic than an

geometric decay.
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Nakatani, T. and T. Teräsvirta (2008), “Positivity constraints on the conditional

variances in the family of conditional correlation GARCH models” Finance

Research Letters, 5(2) 88-95.

Nelson, D.B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New Ap-

proach” Econometrica 59 347-370.

Palandri, A. (2009), “Sequential conditional correlations: Inference and evaluation”

Journal of Econometrics 153 122-132.

Patton, A.J. (2011), “Volatility Forecast Comparison Using Imperfect Volatility

Proxies” Journal of Econometrics 160 246-256.

Patton, A.J. and K. Sheppard (2011), “Good Volatility, Bad Volatility: Signed

Jumps and the Persistence of Volatility” Working Paper

Shephard, N. and K. Sheppard (2010), “Realising the Future: Forecasting with High-

frequency Based Volatility (HEAVY) Models” Journal of Applied Econometrics

25 191-231.

Zakoian, J. M. (1994), “Threshold Heteroskedastic Models” Journal of Economic

Dynamics and Control 18 931-955.

33



Table 1: Winsorization of Low-Frequency Returns

The table reports the 0.1-th (Lower) and 99.9-th (Upper) Winsorization percentiles. The third column (W/T)
reports the ratio of Winsorized observations to the total number of observations.

Lower Upper W/T

S&P500 -6.801% +6.325% 16/7815

DJIA -6.578% +4.810% 14/6857

NASDAQ -8.850% +7.579% 16/8030

Nikkei -7.141% +7.274% 16/7840

EuroSTOXX -7.355% +7.078% 12/6396

DAX -7.270% +6.979% 16/7997

FTSE -5.885% +5.904% 14/7026

CAC -7.678% +8.327% 12/6139

SMI -6.794% +6.079% 12/5863

Table 2: In- and Out-Of-Sample Distribution of Winsorized Low-Frequency Returns

The table reports the distribution of extreme observations. Returns are categorized as extreme if they are smaller
than the 0.1-th Winsorization percentile, reported in the Lower column, or greater than the 99.9-th Winsorization
percentile, reported in the Upper column. The IS columns contain the permillage of extreme returns observed
In-Sample. The OOS columns contain the permillage of extreme returns observed Out-Of-Sample.

Lower Upper

IS OOS IS OOS

S&P500 0.610 3.175 0.152 5.556

DJIA 1.251 0.000 0.893 1.587

NASDAQ 0.739 2.381 0.886 1.587

Nikkei 0.456 3.968 0.912 1.587

EuroSTOXX 0.584 2.381 0.195 3.968

DAX 0.891 1.587 0.594 3.175

FTSE 0.694 2.381 0.347 3.968

CAC 0.615 2.381 0.000 4.762

SMI 1.086 0.794 0.652 2.381
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Table 3: Specifications Considered in Model Selection Search

The table lists the exclusion and equality constraints that have been considered for the UD-EGARCH and UD-
GTARCH specifications. B-matrix constraints comprise: no dependence of down (up) volatility on lagged up
(down) volatility and equal dependence of down (up) volatility on lagged down and up volatilities. A-matrix
constraints comprise: no good news effects and good (bad) news having equal effects on down and up volatilities.

B-matrix: A-matrix:

No Constraints:



 β11 β12

β21 β22







 α11 α12

α21 α22





One Constraint:



 β11 0

β21 β22







 β11 β12

0 β22






 β11 β11

β21 β22







 β11 β12

β21 β21







 0 α12

α21 α22







 α11 α12

0 α22







 a11 α12

a11 α22







 α11 a12

α21 a12





Two Constraints:



 β11 0

0 β22






 β11 0

β21 β21







 β11 β11

0 β22







 0 a12

α21 a12







 α11 a12

0 a12







 a11 a12

a11 a12





Three Constraints:



 β11 0

0 β11







 0 a12

0 a12
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Table 4: In-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the EGARCH and the UD-EGARCH. The first column reports standard
EGARCH estimates. The second column reports the Unconstrained UD-EGARCH estimates of the Up and
Down components. The third column reports UD-EGARCH estimates of the Up and Down components with
parametric constraints selected by BIC/SIC. With respect to equation (4): ω, βU ,βD, αU , αD in the Up (Down)
column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21, α22), respectively. Constrained coefficients are reported
in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗ indicating significance at 1%, 5% and 10%
respectively. In ∆ are reported the p-values for the Wald test that the coefficients of the Up and Down components
are equal. The row before last of each panel reports the concentrated log-likelihood value of the estimated models
with a indicating the best BIC/SIC specification between EGARCH and Unconstrained UD-EGARCH and b

indicating the best BIC/SIC specification of the three. Last row of each box reports the number of observations.

EGARCH
Unconstrained Constrained

Up Down ∆ Up Down ∆

S&P500

ω -0.084 (0.011)∗∗∗ -0.079 (0.017)∗∗∗ 0.042 (0.048) -0.093 (0.011)∗∗∗ 0.076 (0.036)∗∗

βU

0.987 (0.003)∗∗∗
1.029 (0.057)∗∗∗ 0.446 (0.122)∗∗∗ [0.000] 0.987 (0.003)∗∗∗ 0.459 (0.021)∗∗∗

βD -0.046 (0.065) 0.477 (0.128)∗∗∗ [0.000] 0.459 (0.021)∗∗∗

αU 0.049 (0.016)∗∗∗ 0.029 (0.038) -0.300 (0.064)∗∗∗ [0.000] 0.059 (0.016)∗∗∗ -0.337 (0.058)∗∗∗ [0.000]

αD 0.165 (0.017)∗∗∗ 0.175 (0.019)∗∗∗ 0.224 (0.061)∗∗∗ [0.386] 0.175 (0.017)∗∗∗ 0.175 (0.017)∗∗∗

log-lik -2564.955 -2497.725 -2499.301

BIC/SIC 5165.062 5083.330a 5060.118b

obs. 6555 6555 6555

Dow Jones Industrial Average

ω -0.083 (0.013)∗∗∗ -0.098 (0.019)∗∗∗ 0.024 (0.057) -0.092 (0.012)∗∗∗ 0.080 (0.037)

βU

0.984 (0.004)∗∗∗
0.942 (0.057)∗∗∗ 0.417 (0.140)∗∗∗ [0.000] 0.985 (0.003)∗∗∗ 0.466 (0.025)∗∗∗

βD 0.050 (0.063) 0.522 (0.143)∗∗∗ [0.001] 0.466 (0.025)∗∗∗

αU 0.059 (0.019)∗∗∗ 0.104 (0.042)∗∗ -0.231 (0.076)∗∗∗ [0.000] 0.078 (0.018)∗∗∗ -0.272 (0.061)∗∗∗ [0.000]

αD 0.153 (0.020)∗∗∗ 0.138 (0.025)∗∗∗ 0.254 (0.076)∗∗∗ [0.162] 0.159 (0.018)∗∗∗ 0.159 (0.018)∗∗∗

log-lik -2320.086 -2269.318 -2272.451

BIC/SIC 4674.692 4624.936a 4605.312b

obs. 5597 5597 5597

NASDAQ

ω -0.157 (0.013)∗∗∗ -0.152 (0.018)∗∗∗ 0.061 (0.047) -0.144 (0.011)∗∗∗ 0.090 (0.043)∗∗

βU

0.982 (0.003)∗∗∗
0.970 (0.030)∗∗∗ 0.362 (0.072)∗∗∗ [0.000] 0.989 (0.002)∗∗∗ 0.462 (0.012)∗∗∗

βD 0.022 (0.035) 0.568 (0.079)∗∗∗ [0.000] 0.462 (0.012)∗∗∗

αU 0.146 (0.018)∗∗∗ 0.152 (0.029)∗∗∗ -0.210 (0.060)∗∗∗ [0.000] 0.136 (0.015)∗∗∗ -0.223 (0.058)∗∗∗ [0.000]

αD 0.261 (0.018)∗∗∗ 0.226 (0.021)∗∗∗ 0.373 (0.052)∗∗∗ [0.008] 0.236 (0.017)∗∗∗ 0.386 (0.053)∗∗∗ [0.005]

log-lik -3117.654 -2986.110 -2988.072

BIC/SIC 6270.589 6060.423a 6046.706b

obs. 6770 6770 6770
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Table 5: In-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the EGARCH and the UD-EGARCH. The first column reports standard
EGARCH estimates. The second column reports the Unconstrained UD-EGARCH estimates of the Up and
Down components. The third column reports UD-EGARCH estimates of the Up and Down components with
parametric constraints selected by BIC/SIC. With respect to equation (4): ω, βU ,βD, αU , αD in the Up (Down)
column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21, α22), respectively. Constrained coefficients are reported
in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗ indicating significance at 1%, 5% and 10%
respectively. In ∆ are reported the p-values for the Wald test that the coefficients of the Up and Down components
are equal. The row before last of each panel reports the concentrated log-likelihood value of the estimated models
with a indicating the best BIC/SIC specification between EGARCH and Unconstrained UD-EGARCH and b

indicating the best BIC/SIC specification of the three. Last row of each box reports the number of observations.

EGARCH
Unconstrained Constrained

Up Down ∆ Up Down ∆

Nikkei

ω -0.156 (0.013)∗∗∗ -0.141 (0.014)∗∗∗ -0.105 (0.035)∗∗∗ -0.151 (0.013)∗∗∗ -0.091 (0.041)∗∗

βU

0.979 (0.003)∗∗∗
1.039 (0.060)∗∗∗ 0.369 (0.106)∗∗∗ [0.000] 0.983 (0.003)∗∗∗ 0.484 (0.014)∗∗∗

βD -0.058 (0.062) 0.596 (0.103)∗∗∗ [0.000] 0.484 (0.014)∗∗∗

αU 0.117 (0.019)∗∗∗ 0.092 (0.031)∗∗∗ -0.098 (0.048)∗∗ [0.000] 0.121 (0.019)∗∗∗ -0.125 (0.053)∗∗ [0.000]

αD 0.300 (0.021)∗∗∗ 0.292 (0.028)∗∗∗ 0.441 (0.052)∗∗∗ [0.000] 0.282 (0.022)∗∗∗ 0.449 (0.056)∗∗∗ [0.004]

log-lik -3672.331 -3621.803 -3624.809

BIC/SIC 7379.829 7331.524a 7319.952b

obs. 6580 6580 6580

EuroSTOXX

ω -0.104 (0.018)∗∗∗ -0.062 (0.045) 0.135 (0.081)∗ -0.125 (0.012)∗∗∗ 0.146 (0.041)∗∗∗

βU

0.979 (0.005)∗∗∗
1.103 (0.096)∗∗∗ 0.450 (0.169)∗∗∗ [0.000] 0.979 (0.003)∗∗∗ 0.439 (0.015)∗∗∗

βD -0.155 (0.120) 0.414 (0.207)∗∗ [0.000] 0.439 (0.015)∗∗∗

αU 0.061 (0.029)∗∗ 0.011 (0.042) -0.223 (0.083)∗∗∗ [0.005] 0.084 (0.018)∗∗∗ -0.254 (0.070)∗∗∗ [0.000]

αD 0.215 (0.030)∗∗∗ 0.256 (0.029)∗∗∗ 0.260 (0.079)∗∗∗ [0.947] 0.246 (0.022)∗∗∗ 0.246 (0.022)∗∗∗

log-lik -2567.974 -2501.073 -2503.920

BIC/SIC 5170.124 5087.586a 5067.648b

obs. 5136 5136 5136

DAX

ω -0.131 (0.014)∗∗∗ -0.084 (0.036)∗∗ 0.063 (0.063) -0.149 (0.015)∗∗∗ 0.071 (0.038)∗

βU

0.979 (0.004)∗∗∗
1.173 (0.131)∗∗∗ 0.629 (0.207)∗∗∗ [0.000] 0.979 (0.004)∗∗∗ 0.474 (0.018)∗∗∗

βD -0.203 (0.136) 0.317 (0.207) [0.000] 0.474 (0.018)∗∗∗

αU 0.114 (0.022)∗∗∗ 0.048 (0.041) -0.177 (0.071)∗∗ [0.002] 0.140 (0.022)∗∗∗ -0.208 (0.063)∗∗∗ [0.000]

αD 0.235 (0.022)∗∗∗ 0.261 (0.028)∗∗∗ 0.305 (0.067)∗∗∗ [0.395] 0.254 (0.023)∗∗∗ 0.254 (0.023)∗∗∗

log-lik -3989.576 -3932.700 -3937.655

BIC/SIC 8014.413 7953.554a 7937.018b

obs. 6737 6737 6737
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Table 6: In-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the EGARCH and the UD-EGARCH. The first column reports standard
EGARCH estimates. The second column reports the Unconstrained UD-EGARCH estimates of the Up and
Down components. The third column reports UD-EGARCH estimates of the Up and Down components with
parametric constraints selected by BIC/SIC. With respect to equation (4): ω, βU ,βD, αU , αD in the Up (Down)
column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21, α22), respectively. Constrained coefficients are reported
in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗ indicating significance at 1%, 5% and 10%
respectively. In ∆ are reported the p-values for the Wald test that the coefficients of the Up and Down components
are equal. The row before last of each panel reports the concentrated log-likelihood value of the estimated models
with a indicating the best BIC/SIC specification between EGARCH and Unconstrained UD-EGARCH and b

indicating the best BIC/SIC specification of the three. Last row of each box reports the number of observations.

EGARCH
Unconstrained Constrained

Up Down ∆ Up Down ∆

FTSE

ω -0.122 (0.013)∗∗∗ -0.151 (0.022)∗∗∗ -0.059 (0.038) -0.135 (0.013)∗∗∗ 0.012 (0.034)

βU

0.983 (0.003)∗∗∗
0.912 (0.054)∗∗∗ 0.191 (0.096)∗∗ [0.000] 0.983 (0.003)∗∗∗ 0.478 (0.019)∗∗∗

βD 0.078 (0.058) 0.776 (0.101)∗∗∗ [0.000] 0.478 (0.019)∗∗∗

αU 0.100 (0.018)∗∗∗ 0.155 (0.035)∗∗∗ -0.025 (0.049) [0.005] 0.116 (0.019)∗∗∗ -0.058 (0.050) [0.001]

αD 0.198 (0.018)∗∗∗ 0.190 (0.027)∗∗∗ 0.249 (0.046)∗∗∗ [0.319] 0.214 (0.020)∗∗∗ 0.214 (0.020)∗∗∗

log-lik -2182.067 -2156.974 -2161.599

BIC/SIC 4398.773a 4400.545 4383.816b

obs. 5766 5766 5766

CAC

ω -0.098 (0.015)∗∗∗ -0.105 (0.035)∗∗∗ 0.024 (0.084) -0.104 (0.015)∗∗∗ 0.067 (0.050)

βU

0.979 (0.005)∗∗∗
0.975 (0.093)∗∗∗ 0.288 (0.241) [0.003] 0.979 (0.005)∗∗∗ 0.448 (0.027)∗∗∗

βD 0.005 (0.113) 0.625 (0.286)∗∗ [0.022] 0.448 (0.027)∗∗∗

αU 0.065 (0.024)∗∗∗ 0.071 (0.038)∗ -0.077 (0.087) [0.112] 0.068 (0.023)∗∗∗ -0.102 (0.081) [0.032]

αD 0.206 (0.024)∗∗∗ 0.215 (0.025)∗∗∗ 0.225 (0.086)∗∗∗ [0.913] 0.217 (0.025)∗∗∗ 0.217 (0.025)∗∗∗

log-lik -3174.565 -3156.442 -3156.977

BIC/SIC 6383.100a 6397.811 6373.403b

obs. 4879 4879 4879

Swiss Market Index

ω -0.135 (0.021)∗∗∗ -0.159 (0.024)∗∗∗ -0.065 (0.068) -0.153 (0.020)∗∗∗ -0.045 (0.067)

βU

0.961 (0.008)∗∗∗
0.946 (0.057)∗∗∗ 0.280 (0.133)∗∗ [0.000] 0.969 (0.006)∗∗∗ 0.410 (0.029)∗∗∗

βD 0.031 (0.078) 0.566 (0.164)∗∗∗ [0.001] 0.410 (0.029)∗∗∗

αU 0.078 (0.030)∗∗ 0.122 (0.039)∗∗∗ -0.078 (0.082) [0.026] 0.109 (0.028)∗∗∗ -0.081 (0.084) [0.023]

αD 0.269 (0.032)∗∗∗ 0.270 (0.045)∗∗∗ 0.450 (0.109)∗∗∗ [0.071] 0.282 (0.031)∗∗∗ 0.480 (0.093)∗∗∗ [0.032]

log-lik -2130.939 -2080.162 -2081.034

BIC/SIC 4295.616 4244.669a 4229.544b

obs. 4603 4603 4603
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Table 7: In-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the TGARCH and the UD-TGARCH of El Babsiri and Zakoian (2001).
The first column reports standard TGARCH estimates. The second column reports the Unconstrained UD-
TGARCH estimates of the Up and Down components. The third column reports UD-TGARCH estimates of the
Up and Down components with parametric constraints selected by BIC/SIC. With respect to equation (4): ω,
βU ,βD, αU , αD in the Up (Down) column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21, α22), respectively.
Constrained coefficients are reported in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗

indicating significance at 1%, 5% and 10% respectively. In ∆ are reported the p-values for the Wald test that the
coefficients of the Up and Down components are equal. The row before last of each panel reports the concentrated
log-likelihood value of the estimated models with a indicating the best BIC/SIC specification between TGARCH
and Unconstrained UD-TGARCH and b indicating the best BIC/SIC specification of the three. Last row of each
box reports the number of observations.

TGARCH
Unconstrained Constrained

Up Down ∆ Up Down ∆

S&P500

ω 0.012 (0.004∗∗∗ 0.007 (0.005) 0.043 (0.044) 0.007 (0.003)∗∗ 0.042 (0.049)

βU

0.943 (0.009)∗∗∗
0.950 (0.062)∗∗∗ 0.377 (0.210)∗ [0.008] 0.950 (0.008)∗∗∗ 0.443 (0.034)∗∗∗

βD 0.000 (0.067) 0.507 (0.205)∗∗ [0.016] 0.443 (0.034)∗∗∗

αU 0.025 (0.010)∗∗ 0.034 (0.012)∗∗∗ 0.000 (0.053) [0.537] 0.034 (0.009)∗∗∗ 0.000 (0.055) [0.547]

αD 0.090 (0.013)∗∗∗ 0.073 (0.020)∗∗∗ 0.230 (0.071)∗∗∗ [0.033] 0.074 (0.011)∗∗∗ 0.024 (0.066)∗∗∗ [0.015]

log-lik -2564.850 -2519.494 -2519.858

BIC/SIC 5164.852 5126.868a 5110.020b

obs. 6555 6555 6555

Dow Jones Industrial Average

ω 0.016 (0.005)∗∗∗ 0.006 (0.008) 0.045 (0.056) 0.009 (0.004)∗∗ 0.037 (0.065)

βU

0.941 (0.012)∗∗∗
0.917 (0.055)∗∗∗ 0.360 (0.201)∗ [0.012] 0.951 (0.009)∗∗∗ 0.449 (0.043)∗∗∗

βD 0.038 (0.055) 0.526 (0.192)∗∗∗ [0.019] 0.449 (0.043)∗∗∗

αU 0.029 (0.012)∗∗ 0.043 (0.015)∗∗∗ 0.000 (0.045) [0.414] 0.038 (0.010)∗∗∗ 0.000 (0.047) [0.442]

αD 0.084 (0.015)∗∗∗ 0.052 (0.016)∗∗∗ 0.236 (0.080)∗∗∗ [0.027] 0.063 (0.011)∗∗∗ 0.244 (0.075)∗∗∗ [0.019]

log-lik -2319.932 -2274.629 -2275.441

BIC/SIC 4674.384 4635.559a 4619.922b

obs. 5597 5597 5597

NASDAQ

ω 0.019 (0.005)∗∗∗ 0.006 (0.007) 0.054 (0.040) 0.008 (0.004)∗∗ 0.061 (0.048)

βU

0.896 (0.014)∗∗∗
0.926 (0.057)∗∗∗ 0.358 (0.205)∗ [0.007] 0.911 (0.013)∗∗∗ 0.452 (0.038)∗∗∗

βD 0.000 (0.056) 0.543 (0.175)∗∗∗ [0.003] 0.452 (0.038)∗∗∗

αU 0.077 (0.015)∗∗∗ 0.073 (0.018)∗∗∗ 0.000 (0.072) [0.323] 0.084 (0.015)∗∗∗ 0.000 (0.070) [0.247]

αD 0.145 (0.020)∗∗∗ 0.088 (0.021)∗∗∗ 0.274 (0.080)∗∗∗ [0.027] 0.108 (0.017)∗∗∗ 0.282 (0.077)∗∗∗ [0.030]

log-lik -3108.376 -2992.653 -2995.974

BIC/SIC 6252.033 6073.509a 6062.510b

obs. 6770 6770 6770
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Table 8: In-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the TGARCH and the UD-TGARCH of El Babsiri and Zakoian (2001).
The first column reports standard TGARCH estimates. The second column reports the Unconstrained UD-
TGARCH estimates of the Up and Down components. The third column reports UD-TGARCH estimates of the
Up and Down components with parametric constraints selected by BIC/SIC. With respect to equation (4): ω,
βU ,βD, αU , αD in the Up (Down) column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21, α22), respectively.
Constrained coefficients are reported in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗

indicating significance at 1%, 5% and 10% respectively. In ∆ are reported the p-values for the Wald test that the
coefficients of the Up and Down components are equal. The row before last of each panel reports the concentrated
log-likelihood value of the estimated models with a indicating the best BIC/SIC specification between TGARCH
and Unconstrained UD-TGARCH and b indicating the best BIC/SIC specification of the three. Last row of each
box reports the number of observations.

TGARCH
Unconstrained Constrained

Up Down ∆ Up Down ∆

Nikkei

ω 0.020 (0.004)∗∗∗ 0.013 (0.005)∗∗ 0.029 (0.035)∗∗∗ 0.014 (0.004)∗∗∗ 0.023 (0.038)

βU

0.898 (0.011)∗∗∗
0.911 (0.078)∗∗∗ 0.330 (0.153)∗∗ [0.000] 0.910 (0.012)∗∗∗ 0.442 (0.028)∗∗∗

βD 0.000 (0.077) 0.549 (0.149)∗∗∗ [0.000] 0.442 (0.028)∗∗∗

αU 0.060 (0.012)∗∗∗ 0.073 (0.023)∗∗∗ 0.000 (0.035) [0.098] 0.070 (0.014)∗∗∗ 0.000 (0.037) [0.089]

αD 0.163 (0.020)∗∗∗ 0.128 (0.028)∗∗∗ 0.297 (0.067)∗∗∗ [0.021] 0.130 (0.020)∗∗∗ 0.312 (0.066)∗∗∗ [0.011]

log-lik -3679.446 -3629.342 -3630.835

BIC/SIC 7394.059 7346.602a 7332.004b

obs. 6580 6580 6580

EuroSTOXX

ω 0.024 (0.011)∗∗ 0.013 (0.021) 0.090 (0.108) 0.014 (0.007)∗∗ 0.111 (0.116)

βU

0.918 (0.023)∗∗∗
0.926 (0.107)∗∗∗ 0.252 (0.526) [0.218] 0.923 (0.021)∗∗∗ 0.435 (0.085)∗∗∗

βD 0.000 (0.111) 0.621 (0.540) [0.269] 0.435 (0.085)∗∗∗

αU 0.033 (0.020) 0.048 (0.027)∗ 0.000 (0.122) [0.706] 0.047 (0.021)∗∗ 0.000 (0.140) [0.749]

αD 0.123 (0.032)∗∗∗ 0.104 (0.025)∗∗∗ 0.210 (0.158) [0.518] 0.109 (0.026)∗∗∗ 0.224 (0.171) [0.518]

log-lik -2555.974 -2507.757 -2509.370

BIC/SIC 5146.124 5100.954a 5087.092b

obs. 5136 5136 5136

DAX

ω 0.026 (0.008)∗∗∗ 0.018 (0.008)∗∗ 0.044 (0.061) 0.020 (0.007)∗∗∗ 0.032 (0.080)

βU

0.904 (0.015)∗∗∗
0.915 (0.090)∗∗∗ 0.316 (0.288) [0.044] 0.911 (0.016)∗∗∗ 0.463 (0.052)∗∗∗

βD 0.000 (0.083) 0.589 (0.261)∗∗ [0.029] 0.463 (0.052)∗∗∗

αU 0.059 (0.016)∗∗∗ 0.070 (0.026)∗∗∗ 0.000 (0.072) [0.376] 0.070 (0.017)∗∗∗ 0.000 (0.076) [0.000]

αD 0.129 (0.020)∗∗∗ 0.100 (0.020)∗∗∗ 0.223 (0.097)∗∗ [0.223] 0.105 (0.018)∗∗∗ 0.230 (0.097)∗∗

log-lik -3988.522 -3943.265 -3944.868

BIC/SIC 8012.305 7974.684a 7960.259b

obs. 6737 6737 6737
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Table 9: In-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the TGARCH and the UD-TGARCH of El Babsiri and Zakoian (2001).
The first column reports standard TGARCH estimates. The second column reports the Unconstrained UD-
TGARCH estimates of the Up and Down components. The third column reports UD-TGARCH estimates of the
Up and Down components with parametric constraints selected by BIC/SIC. With respect to equation (4): ω,
βU ,βD, αU , αD in the Up (Down) column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21, α22), respectively.
Constrained coefficients are reported in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗

indicating significance at 1%, 5% and 10% respectively. In ∆ are reported the p-values for the Wald test that the
coefficients of the Up and Down components are equal. The row before last of each panel reports the concentrated
log-likelihood value of the estimated models with a indicating the best BIC/SIC specification between TGARCH
and Unconstrained UD-TGARCH and b indicating the best BIC/SIC specification of the three. Last row of each
box reports the number of observations.

TGARCH
Unconstrained Constrained

Up Down ∆ Up Down ∆

FTSE

ω 0.017 (0.005)∗∗∗ 0.011 (0.006)∗ 0.026 (0.023) 0.017 (0.006)∗∗∗ 0.020 (0.052)

βU

0.920 (0.010)∗∗∗
0.916 (0.048)∗∗∗ 0.172 (0.116) [0.000] 0.908 (0.011)∗∗∗ 0.486 (0.037)∗∗∗

βD 0.009 (0.044) 0.754 (0.102)∗∗∗ [0.000] 0.486 (0.037)∗∗∗

αU 0.051 (0.010)∗∗∗ 0.066 (0.018)∗∗∗ 0.000 (0.025) [0.038] 0.068 (0.013)∗∗∗ 0.000 (0.031) [0.042]

αD 0.107 (0.012)∗∗∗ 0.083 (0.015)∗∗∗ 0.162 (0.036)∗∗∗ [0.049] 0.110 (0.014)∗∗∗ 0.110 (0.014)∗∗∗

log-lik -2183.823 -2152.266 -2164.151

BIC/SIC 4402.285 4391.129a 4397.580b

obs. 5766 5766 5766

CAC

ω 0.027 (0.009)∗∗∗ 0.015 (0.017) 0.072 (0.061) 0.022 (0.007)∗∗∗ 0.091 (0.107)

βU

0.921 (0.016)∗∗∗
0.935 (0.071)∗∗∗ 0.130 (0.224) [0.001] 0.918 (0.015)∗∗∗ 0.456 (0.053)∗∗∗

βD 0.000 (0.080) 0.762 (0.243)∗∗∗ [0.004] 0.456 (0.053)∗∗∗

αU 0.032 (0.016)∗∗ 0.038 (0.017)∗∗ 0.000 (0.067) [0.583] 0.043 (0.016)∗∗∗ 0.000 (0.088) [0.627]

αD 0.112 (0.020)∗∗∗ 0.092 (0.020)∗∗∗ 0.159 (0.076)∗∗ [0.408] 0.114 (0.020)∗∗∗ 0.114 (0.020)∗∗∗

log-lik -3171.215 -3153.291 -3158.330

BIC/SIC 6376.703a 6391.509 6384.602b

obs. 4879 4879 4879

Swiss Market Index

ω 0.045 (0.013)∗∗∗ 0.020 (0.021) 0.129 (0.060)∗∗ 0.023 (0.010)∗∗ 0.145 (0.078)∗

βU

0.877 (0.027)∗∗∗
0.899 (0.076)∗∗∗ 0.219 (0.208) [0.002] 0.896 (0.022)∗∗∗ 0.391 (0.052)∗∗∗

βD 0.000 (0.083) 0.571 (0.223)∗∗ [0.017] 0.391 (0.052)∗∗∗

αU 0.044 (0.023)∗ 0.072 (0.034)∗∗ 0.000 (0.052) [0.266] 0.067 (0.026)∗∗∗ 0.000 (0.052) [0.278]

αD 0.159 (0.034)∗∗∗ 0.125 (0.033)∗∗∗ 0.300 (0.128)∗∗ [0.189] 0.129 (0.027)∗∗∗ 0.335 (0.134)∗∗ [0.141]

log-lik -2119.366 -2070.241 -2072.226

BIC/SIC 4272.470 4224.827a 4211.928b

obs. 4603 4603 4603
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Table 10: Half-Lives of Volatility Shocks from In-Sample Estimates

The table reports the half-lives of volatility shocks for the EGARCH and Constrained UD-EGARCH specifications.
Columns of the left and right panels indicate the elapsed times, expressed in number of days, between the (n-1)-th
n-th halving. The rows in each panel report the following: Up+ the half-lives of positive shocks in up volatilities,
Down+ the half-lives of positive shocks in down volatilities, Up− the half-lives of negative shocks in up volatilities
and Down− the half-lives of negative shocks in down volatilities.

n: 1st 2nd 3rd 4th 5th 6th n: 1st 2nd 3rd 4th 5th 6th

S&P500 Dow Jones Industrial Average

EGARCH 53 53 53 53 53 53 EGARCH 44 44 44 44 44 44

Up+ 55 53 54 53 54 53 Up+ 47 47 47 47 46 47

Down+ 2 1 2 37 54 53 Down+ 2 1 1 2 26 47

Up− 52 53 53 53 54 53 Up− 46 46 47 46 47 46

Down− 2 9 52 53 53 54 Down− 2 7 46 46 46 47

NASDAQ Nikkei

EGARCH 39 39 39 39 39 39 EGARCH 33 33 33 33 33 33

Up+ 62 61 62 61 62 61 Up+ 42 40 41 41 40 41

Down+ 2 1 1 1 1 6 Down+ 2 1 6 40 41 40

Up− 60 60 61 61 61 62 Up− 39 40 40 40 41 40

Down− 2 2 42 60 61 61 Down− 2 16 39 40 40 41

EuroSTOXX DAX

EGARCH 33 33 33 33 33 33 EGARCH 32 32 32 32 32 32

Up+ 33 33 32 33 32 32 Up+ 33 32 32 32 32 32

Down+ 2 1 4 32 32 33 Down+ 2 1 1 2 18 32

Up− 31 32 32 32 32 33 Up− 31 32 32 32 32 32

Down− 2 14 32 32 32 32 Down− 2 16 31 32 31 32

FTSE CAC

EGARCH 40 40 40 40 40 40 EGARCH 32 32 32 32 32 32

Up+ 40 40 39 40 39 40 Up+ 33 32 33 32 32 32

Down+ 2 1 2 27 40 39 Down+ 2 3 28 33 32 32

Up− 39 39 39 39 40 39 Up− 31 32 32 32 32 32

Down− 4 34 39 39 39 39 Down− 4 27 32 31 32 32

Swiss Market Index

EGARCH 18 18 18 18 18 18

Up+ 23 22 22 22 22 22

Down+ 2 1 3 20 22 21

Up− 21 22 21 22 22 22

Down− 2 2 19 21 22 22
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Table 11: Out-Of-Sample Low-Frequency Volatility Estimates

The table reports estimation results for the EGARCH and the UD-EGARCH. The first column reports standard
EGARCH estimates with parametric constraints selected by BIC/SIC. The second column reports UD-EGARCH
estimates of the Up and Down components with parametric constraints selected by BIC/SIC. With respect to
equation (4): ω, βU ,βD, αU , αD in the Up (Down) column indicate ω1, β11, β12, α11, α12 (ω2, β21, β22, α21,
α22), respectively. Constrained coefficients are reported in bold. Standard errors are reported in parentheses
with ∗∗∗, ∗∗ and ∗ indicating significance at 1%, 5% and 10% respectively. The last row of each panel reports the
concentrated log-likelihood value of the estimated models with b indicating the best BIC/SIC specification. For
each index the total number of observations is 1260.

EGARCH
UD-EGARCH

EGARCH
UD-EGARCH

Up Down Up Down

S&P500 Dow Jones Industrial Average

ω -0.100 (0.013)∗∗∗ -0.121 (0.015)∗∗∗ 0.210 (0.075)∗∗∗ -0.071 (0.014)∗∗∗ -0.076 (0.016)∗∗∗

βU

0.979 (0.005)∗∗∗
0.977 (0.006)∗∗∗ 0.448 (0.028)∗∗∗ 0.987 (0.005)∗∗∗ 0.985 (0.005)∗∗∗ 0.414 (0.036)∗∗∗

βD 0.448 (0.028)∗∗∗ 0.414 (0.036)∗∗∗

αU -0.240 (0.117)∗∗ -0.185 (0.107)∗

αD 0.277 (0.036)∗∗∗ 0.325 (0.045)∗∗∗ 0.325 (0.045)∗∗∗ 0.167 (0.032)∗∗∗ 0.180 (0.038)∗∗∗ 0.180 (0.038)∗∗∗

log-lik -757.848 -738.774 -351.944 -341.982

BIC/SIC 1537.113 1520.381b 725.305 719.658b

NASDAQ Nikkei

ω -0.087 (0.011)∗∗∗ -0.101 (0.012)∗∗∗ 0.313 (0.076)∗∗∗ -0.089 (0.011)∗∗∗ -0.096 (0.012)∗∗∗ 0.242 (0.076)∗∗∗

βU

0.972 (0.007)∗∗∗
0.970 (0.007)∗∗∗ 0.426 (0.030)∗∗∗ 0.972 (0.006)∗∗∗ 0.973 (0.007)∗∗∗ 0.426 (0.031)∗∗∗

βD 0.426 (0.030)∗∗∗ 0.426 (0.031)∗∗∗

αU -0.242 (0.106)∗∗ -0.230 (0.101)∗∗

αD 0.276 (0.033)∗∗∗ 0.330 (0.042)∗∗∗ 0.330 (0.042)∗∗∗ 0.277 (0.032)∗∗∗ 0.305 (0.039)∗∗∗ 0.305 (0.039)∗∗∗

log-lik -1016.271 -991.324 -1073.477 -1059.796

BIC/SIC 2053.959 2025.481b 2168.371 2162.425b

EuroSTOXX DAX

ω -0.106 (0.011)∗∗∗ -0.105 (0.014)∗∗∗ -0.089 (0.011)∗∗∗ -0.093 (0.013)∗∗∗ 0.205 (0.081)∗∗

βU

0.976 (0.006)∗∗∗
0.978 (0.008)∗∗∗ 0.510 (0.030)∗∗∗ 0.972 (0.007)∗∗∗ 0.973 (0.007)∗∗∗ 0.455 (0.034)∗∗∗

βD 0.510 (0.030)∗∗∗ 0.455 (0.034)∗∗∗

αU -0.250 (0.099)∗∗ -0.285 (0.117)∗∗

αD 0.314 (0.033)∗∗∗ 0.312 (0.043)∗∗∗ 0.312 (0.043)∗∗∗ 0.279 (0.033)∗∗∗ 0.300 (0.042)∗∗∗ 0.300 (0.042)∗∗∗

log-lik -1055.091 -1047.429 -1005.059 -993.495

BIC/SIC 2131.599 2130.552b 2031.535 2029.832b

FTSE CAC

ω -0.097 (0.010)∗∗∗ -0.132 (0.045)∗∗∗ -0.125 (0.036)∗∗∗ -0.102 (0.011)∗∗∗ -0.006 (0.021) 0.002 (0.021)

βU

0.978 (0.005)∗∗∗
0.475 (0.013)∗∗∗ -0.400 (0.047)∗∗∗ 0.972 (0.007)∗∗∗ 0.991 (0.002)∗∗∗

βD 0.475 (0.013)∗∗∗ 1.360 (0.041)∗∗∗ -0.038 (0.008)∗∗∗ 0.946 (0.010)∗∗∗

αU -0.267 (0.062)∗∗∗ -0.194 (0.037)∗∗∗ -0.194 (0.040)∗∗∗ -0.194 (0.040)∗∗∗

αD 0.270 (0.029)∗∗∗ 0.261 (0.040)∗∗∗ 0.261 (0.040)∗∗∗ 0.314 (0.033)∗∗∗ 0.327 (0.036)∗∗∗ 0.327 (0.036)∗∗∗

log-lik -881.216 -860.407 -1072.552 -1054.479

BIC/SIC 1783.849 1777.925b 2166.521 2158.930b

Swiss Market Index

ω -0.160 (0.013)∗∗∗ -0.050 (0.022)∗∗ -0.046 (0.022)∗∗

βU

0.970 (0.007)∗∗∗
0.940 (0.002)∗∗∗

βD -0.031 (0.007)∗∗∗ 0.958 (0.009)∗∗∗

αU -0.136 (0.037)∗∗∗ -0.136 (0.037)∗∗∗

αD 0.312 (0.035)∗∗∗ 0.323 (0.038)∗∗∗ 0.323 (0.038)∗∗∗

log-lik -765.830 -743.477

BIC/SIC 1553.077 1536.926b
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Table 12: Out-Of-Sample Performance of Low-Frequency Volatility Specifications

The table reports the OOS performance of the EGARCH and UD-EGARCH specifications of Table 4. Daily
predictions are generated by keeping parameters fixed at the IS estimates for both specifications. OOS Up and
Down variances are Filtered from the BIC/SIC preferred specifications of Table 11 and approximated by K
period averages of squared-log-returns SqR for K = 1, 20, 60, 120. Mse measures of distance between predictions
and filtered values are reported in the first column for Up variances and in the second column for Down variances.
The third column reports Mse for the standard Joint measure of variance. ∆ reports the percentage differences
in Mse of UD-EGARCH with respect to EGARCH.

EGARCH UD-EGARCH ∆

Up Down Joint Up Down Joint Up Down Joint

S&P500

Filtered 1.255 2.579 3.834 0.588 2.072 2.660 −53.21% −19.70% −30.67%

1-SqR 9.251 13.282 22.533 9.088 13.077 22.165 −1.76% −1.54% −1.63%

20-SqR 0.664 1.205 1.869 0.526 1.334 1.860 −20.83% +10.74% −0.48%

60-SqR 0.196 0.989 1.185 0.016 1.141 1.156 −92.04% +15.29% −2.46%

120-SqR 0.186 0.608 0.794 0.008 0.680 0.688 −95.65% +11.87% −13.28%

Dow Jones Industrial Average

Filtered 0.100 0.062 0.162 0.081 0.047 0.128 −18.12% −25.02% −20.77%

1-SqR 2.192 1.527 3.719 2.200 1.540 3.740 +0.35% +0.88% +0.56%

20-SqR 0.139 0.061 0.200 0.124 0.074 0.198 −10.70% +20.67% −1.09%

60-SqR 0.089 0.014 0.103 0.073 0.017 0.089 −18.38% +19.89% −13.18%

120-SqR 0.050 0.013 0.063 0.033 0.014 0.047 −34.70% +12.09% −25.14%

NASDAQ

Filtered 0.564 2.293 2.857 0.912 0.661 1.573 +61.75% −71.17% −44.92%

1-SqR 12.522 23.605 36.127 13.110 23.849 36.959 +4.70% +1.03% +2.30%

20-SqR 0.676 1.429 2.105 0.856 0.941 1.797 −34.11% +26.57% −14.62%

60-SqR 0.108 0.579 0.688 0.119 0.249 0.368 −57.00% +9.94% −46.46%

120-SqR 0.036 0.343 0.380 0.002 0.087 0.089 −74.67% −94.10% −76.52%
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Table 13: Out-Of-Sample Performance of Low-Frequency Volatility Specifications

The table reports the OOS performance of the EGARCH and UD-EGARCH specifications of Table 5. Daily
predictions are generated by keeping parameters fixed at the IS estimates for both specifications. OOS Up and
Down variances are Filtered from the BIC/SIC preferred specifications of Table 11 and approximated by K
period averages of squared-log-returns SqR for K = 1, 20, 60, 120. Mse measures of distance between predictions
and filtered values are reported in the first column for Up variances and in the second column for Down variances.
The third column reports Mse for the standard Joint measure of variance. ∆ reports the percentage differences
in Mse of UD-EGARCH with respect to EGARCH.

EGARCH UD-EGARCH ∆

Up Down Joint Up Down Joint Up Down Joint

Nikkei

Filtered 0.399 1.410 1.809 0.482 0.935 1.417 +20.94% −33.71% −21.66%

1-SqR 9.486 20.247 29.733 10.116 20.613 30.729 +6.64% +1.81% +3.35%

20-SqR 0.355 1.525 1.880 0.365 1.196 1.561 +2.72% −21.58% −16.99%

60-SqR 0.135 0.659 0.794 0.113 0.363 0.476 −16.54% −44.85% −40.03%

120-SqR 0.079 0.426 0.506 0.049 0.213 0.262 −37.47% −50.09% −48.11%

EuroSTOXX

Filtered 0.641 3.951 4.592 0.466 2.924 3.389 −27.35% −26.01% −26.19%

1-SqR 14.980 19.673 34.652 15.203 19.463 34.667 +1.49% −1.06% +0.04%

20-SqR 0.358 2.799 3.157 0.345 2.588 2.933 −3.79% −7.51% −7.09%

60-SqR 0.129 1.136 1.265 0.097 0.966 1.063 −25.11% −14.92% −15.97%

120-SqR 0.116 0.703 0.819 0.056 0.588 0.644 −52.18% −16.29% −21.39%

DAX

Filtered 0.403 2.172 2.575 0.539 1.056 1.595 +33.59% −51.39% −38.07%

1-SqR 12.551 18.126 30.677 12.922 17.898 30.820 +2.96% −1.26% +0.47%

20-SqR 0.138 2.043 2.181 0.150 1.764 1.914 +8.96% −13.64% −12.22%

60-SqR 0.050 0.688 0.739 0.062 0.551 0.613 +23.85% −20.01% −17.02%

120-SqR 0.040 0.519 0.559 0.037 0.420 0.458 −6.00% −19.02% −18.09%
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Table 14: Out-Of-Sample Performance of Low-Frequency Volatility Specifications

The table reports the OOS performance of the EGARCH and UD-EGARCH specifications of Table 6. Daily
predictions are generated by keeping parameters fixed at the IS estimates for both specifications. OOS Up and
Down variances are Filtered from the BIC/SIC preferred specifications of Table 11 and approximated by K
period averages of squared-log-returns SqR for K = 1, 20, 60, 120. Mse measures of distance between predictions
and filtered values are reported in the first column for Up variances and in the second column for Down variances.
The third column reports Mse for the standard Joint measure of variance. ∆ reports the percentage differences
in Mse of UD-EGARCH with respect to EGARCH.

EGARCH UD-EGARCH ∆

Up Down Joint Up Down Joint Up Down Joint

FTSE

Filtered 0.673 2.530 3.203 0.772 1.942 2.715 +14.83% −23.24% −15.24%

1-SqR 7.316 10.122 17.438 7.399 9.980 17.378 +1.12% −1.40% −0.34%

20-SqR 0.301 1.213 1.514 0.306 1.114 1.420 +1.62% −8.15% −6.21%

60-SqR 0.088 0.526 0.613 0.102 0.413 0.515 +16.18% −21.42% −16.05%

120-SqR 0.073 0.346 0.419 0.088 0.264 0.352 +21.36% −23.84% −15.99%

CAC

Filtered 3.889 2.663 6.552 3.401 2.399 5.800 −12.56% −9.92% −11.49%

1-SqR 25.249 18.951 44.200 25.275 19.040 44.315 +0.10% +0.47% +0.26%

20-SqR 0.970 2.405 3.375 1.002 2.511 3.512 +3.31% +4.40% +4.09%

60-SqR 0.209 1.059 1.268 0.127 1.065 1.193 −39.11% +0.56% −5.98%

120-SqR 0.135 0.606 0.741 0.097 0.596 0.693 −28.03% −1.57% −6.39%

SMI

Filtered 1.674 1.058 2.732 1.275 0.978 2.252 −23.87% −7.57% −17.56%

1-SqR 6.899 8.125 15.025 6.847 8.280 15.126 −0.76% +1.90% +0.68%

20-SqR 0.584 1.195 1.779 0.294 0.915 1.209 −49.67% −23.45% −32.05%

60-SqR 0.245 0.357 0.603 0.050 0.232 0.282 −79.74% −35.16% −53.30%

120-SqR 0.186 0.251 0.437 0.042 0.161 0.203 −77.51% −35.72% −53.52%
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Table 15: In-Sample High-Frequency Volatility Estimates with Daily Components

The table reports S&P500 estimation results for daily measures computed from high-frequency observations. HAR
indicates the specification of equation (9), UD-HAR that of equation (11) and UD-GARCHX that of equation(14).
With respect to equation (14): ω, βU ,βD, αU , αD , γU , γD in the Up (Down) column indicate ω1, β11, β12,
α11, α12, γ11, γ12 (ω2, β21, β22, α21, α22, γ21, γ22), respectively. Constrained coefficients are reported in
bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗ indicating significance at 1%, 5% and 10%
respectively. In ∆ are reported the p-values for the Wald test that the coefficients of the Up and Down components
are equal. The last row of each panel reports the concentrated log-likelihood value of the estimated models with
the letters a through f indicating the BIC/SIC ranking of the different specifications, with a indicating the best.

Unconstrained Constrained

HAR
UD-HAR

HAR
UD-HAR

Up Down ∆ Up Down

Panel A: RV on C and J

ω -0.135 (0.017)∗∗∗ -0.195 (0.026)∗∗∗ 0.010 (0.024) -0.140 (0.016)∗∗∗ -0.205 (0.021)∗∗∗ 0.003 (0.021)

βU
D

0.191 (0.020)∗∗∗
0.178 (0.035)∗∗∗ 0.275 (0.037)∗∗∗ [0.052]

0.189 (0.020)∗∗∗
0.183 (0.030)∗∗∗ 0.303 (0.029)∗∗∗

βD
D 0.256 (0.038)∗∗∗ 0.195 (0.041)∗∗∗ [0.279] 0.225 (0.026)∗∗∗ 0.225 (0.026)∗∗∗

βU
W

0.336 (0.034)∗∗∗
0.014 (0.080) 0.072 (0.064) [0.595]

0.354 (0.012)∗∗∗

βD
W 0.228 (0.065)∗∗∗ 0.291 (0.059)∗∗∗ [0.510] 0.271 (0.021)∗∗∗ 0.271 (0.021)∗∗∗

βM 0.374 (0.031)∗∗∗ 0.277 (0.052)∗∗∗ 0.087 (0.048)∗ [0.017] 0.354 (0.012)∗∗∗ 0.271 (0.021)∗∗∗ 0.119 (0.032)∗∗∗

βU
J

-0.063 (0.065)
-0.141 (0.082)∗ -0.323 (0.115)∗∗∗ [0.200] -0.317 (0.115)∗∗∗

βD
J 0.391 (0.104)∗∗∗ 0.411 (0.163)∗∗ [0.916] 0.392 (0.094)∗∗∗ 0.392 (0.094)∗∗∗

log-lik -736.095 -665.692 -736.976 -668.312b

BIC/SIC 1531.710f 1464.248d 1498.864e 1411.360b

Panel B: C on C and J

ω -0.237 (0.017)∗∗∗ -0.289 (0.028)∗∗∗ -0.028 (0.025) -0.241 (0.017)∗∗∗ -0.298 (0.022)∗∗∗ -0.037 (0.022)∗

βU
D

0.214 (0.021)∗∗∗
0.183 (0.036)∗∗∗ 0.260 (0.037)∗∗∗ [0.121]

0.215 (0.020)∗∗∗
0.187 (0.030)∗∗∗ 0.293 (0.029)∗∗∗

βD
D 0.271 (0.038)∗∗∗ 0.233 (0.040)∗∗∗ [0.488] 0.260 (0.025)∗∗∗ 0.260 (0.025)∗∗∗

βU
W

0.338 (0.033)∗∗∗
0.021 (0.075) 0.071 (0.060) [0.623]

0.336 (0.012)∗∗∗

βD
W 0.241 (0.060)∗∗∗ 0.261 (0.055)∗∗∗ [0.820] 0.239 (0.020)∗∗∗ 0.239 (0.020)∗∗∗

βM 0.337 (0.031)∗∗∗ 0.211 (0.049)∗ 0.104 (0.044)∗∗ [0.159] 0.336 (0.012)∗∗∗ 0.239 (0.020)∗∗∗ 0.133 (0.032)∗∗∗

βU
J

-0.071 (0.067)
-0.146 (0.075)∗ -0.357 (0.127)∗∗∗ [0.157] -0.351 (0.127)∗∗∗

βD
J 0.346 (0.121)∗∗∗ 0.308 (0.160)∗ [0.856] 0.322 (0.099)∗∗∗ 0.322 (0.099)∗∗∗

log-lik -698.599 -617.042 -699.216 -619.793

BIC/SIC 1438.718f 1366.948d 1423.344e 1314.322b

UD-GARCHX UD-GARCHX

Up Down ∆ Up Down

Panel C: RV on C and J

ω -0.031 (0.024) 0.179 (0.043)∗∗∗ 0.029 (0.005)∗∗∗ 0.130 (0.020)∗∗∗

βU 0.806 (0.084)∗∗∗ 0.524 (0.136)∗∗∗ [0.048] 0.805 (0.013)∗∗∗ 0.362 (0.012)∗∗∗

βD 0.000 (0.093) 0.179 (0.136) [0.212] 0.362 (0.012)∗∗∗

αU 0.154 (0.020)∗∗∗ 0.309 (0.027)∗∗∗ [0.000] 0.152 (0.013)∗∗∗ 0.286 (0.021)∗∗∗

αD 0.197 (0.016)∗∗∗ 0.233 (0.030)∗∗∗ [0.307] 0.203 (0.013)∗∗∗ 0.203 (0.013)∗∗∗

γU 0.044 (0.065) -0.405 (0.124)∗∗∗ [0.002] -0.333 (0.117)∗∗∗

γD 0.341 (0.071)∗∗∗ 0.303 (0.170)∗∗ [0.838] 0.340 (0.063)∗∗∗ 0.340 (0.063)∗∗∗

log-lik -655.864 -658.042

BIC/SIC 1427.984c 1390.820a

Panel D: C on C and J

ω -0.060 (0.030)∗∗ 0.180 (0.052)∗∗∗ -0.061 (0.007)∗∗∗ 0.134 (0.021)∗∗∗

βU 0.786 (0.089)∗∗∗ 0.497 (0.143)∗∗∗ [0.061] 0.779 (0.014)∗∗∗ 0.361 (0.013)∗∗∗

βD 0.000 (0.095) 0.207 (0.139) [0.168] 0.361 (0.013)∗∗∗

αU 0.170 (0.020)∗∗∗ 0.321 (0.027)∗∗∗ [0.000] 0.172 (0.014)∗∗∗ 0.300 (0.022)∗∗∗

αD 0.207 (0.018)∗∗∗ 0.251 (0.030)∗∗∗ [0.214] 0.219 (0.014)∗∗∗ 0.219 (0.014)∗∗∗

γU 0.027 (0.062) -0.376 (0.139)∗∗∗ [0.010] -0.327 (0.133)∗∗

γD 0.238 (0.081)∗∗∗ 0.343 (0.169)∗∗ [0.591] 0.269 (0.069)∗∗∗ 0.269 (0.069)∗∗∗

log-lik -606.134 -608.250

BIC/SIC 1328.524c 1291.236a
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Table 16: In-Sample High-Frequency Volatility Estimates with Intra-Daily Components

The table reports S&P500 estimation results for daily measures computed from high-frequency observations.
HAR indicates the specification of equation (10), UD-HAR that of equation (13) and UD-GARCHX that of
equation(15). With respect to equation (15): ω, βU ,βD, αU , αD , γU , γD in the Up (Down) column indicate ω1,
β11, β12, α11, α12, γ11, γ12 (ω2, β21, β22, α21, α22, γ21, γ22), respectively. Constrained coefficients are reported
in bold. Standard errors are reported in parentheses with ∗∗∗, ∗∗ and ∗ indicating significance at 1%, 5% and 10%
respectively. In ∆ are reported the p-values for the Wald test that the coefficients of the Up and Down components
are equal. The last row of each panel reports the concentrated log-likelihood value of the estimated models with
the letters a through f indicating the BIC/SIC ranking of the different specifications, with a indicating the best.

Unconstrained Constrained

HAR
UD-HAR

HAR
UD-HAR

Up Down ∆ Up Down

Panel A: RV on C and J

ω 0.233 (0.031)∗∗∗ 0.058 (0.040) 0.443 (0.047)∗∗∗ 0.228 (0.031)∗∗∗ 0.037 (0.034) 0.439 (0.046)∗∗∗

βU
D 0.023 (0.016) 0.047 (0.021)∗∗ 0.001 (0.025) [0.153] 0.058 (0.019)∗∗∗

βD
D 0.112 (0.013)∗∗∗ 0.077 (0.018)∗∗∗ 0.145 (0.020)∗∗∗ [0.011] 0.113 (0.013)∗∗∗ 0.073 (0.017)∗∗∗ 0.149 (0.019)∗∗∗

βU
W 0.114 (0.034)∗∗∗ 0.052 (0.048) 0.168 (0.046)∗∗∗ [0.080] 0.133 (0.030)∗∗∗ 0.174 (0.040)∗∗∗

βD
W 0.264 (0.025)∗∗∗ 0.261 (0.035)∗∗∗ 0.297 (0.036)∗∗∗ [0.478] 0.268 (0.025)∗∗∗ 0.283 (0.024)∗∗∗ 0.283 (0.024)∗∗∗

βM 0.374 (0.033)∗∗∗ 0.459 (0.044)∗∗∗ 0.267 (0.047)∗∗∗ [0.003] 0.373 (0.033)∗∗∗ 0.481 (0.032)∗∗∗ 0.271 (0.045)∗∗∗

βU
J -0.224 (0.092)∗∗ -0.088 (0.108) -0.360 (0.153)∗∗ [0.146] -0.235 (0.067)∗∗∗ -0.355 (0.152)∗∗

βD
J 0.236 (0.103)∗∗ 0.259 (0.123)∗∗ 0.222 (0.168) [0.856] 0.235 (0.067)∗∗∗ 0.245 (0.102)∗∗ 0.245 (0.102)∗∗

log-lik -721.304 -655.864 -722.385 -657.081

BIC/SIC 1509.040f 1444.592d 1494.594e 1405.506b

Panel B: C on C and J

ω 0.150 (0.031)∗∗∗ -0.045 (0.041) 0.385 (0.047)∗∗∗ 0.145 (0.031)∗∗∗ -0.075 (0.035)∗∗ 0.371 (0.046)∗∗∗

βU
D 0.030 (0.016)∗ 0.041 (0.020)∗∗ 0.025 (0.025) [0.607] 0.057 (0.020)∗∗∗

βD
D 0.127 (0.013)∗∗∗ 0.105 (0.018)∗∗∗ 0.145 (0.020)∗∗∗ [0.130] 0.127 (0.013)∗∗∗ 0.096 (0.018)∗∗∗ 0.153 (0.019)∗∗∗

βU
W 0.123 (0.033)∗∗∗ 0.088 (0.048)∗ 0.143 (0.046)∗∗∗ [0.409] 0.148 (0.031)∗∗∗ 0.176 (0.040)∗∗∗

βD
W 0.258 (0.025)∗∗∗ 0.239 (0.034)∗∗∗ 0.311 (0.036)∗∗∗ [0.148] 0.263 (0.025)∗∗∗ 0.284 (0.025)∗∗∗ 0.284 (0.025)∗∗∗

βM 0.336 (0.033)∗∗∗ 0.390 (0.045)∗∗∗ 0.262 (0.047)∗∗∗ [0.048] 0.335 (0.033)∗∗∗ 0.426 (0.032)∗∗∗ 0.272 (0.045)∗∗∗

βU
J -0.179 (0.095)∗ -0.016 (0.103) -0.357 (0.167)∗∗ [0.083] -0.216 (0.068)∗∗∗ -0.358 (0.152)∗∗

βD
J 0.245 (0.103)∗∗ 0.311 (0.119)∗∗∗ 0.183 (0.172) [0.540] 0.216 (0.068)∗∗∗ 0.255 (0.102)∗∗ 0.255 (0.102)∗∗

log-lik -687.687 -607.269 -689.649 -611.115

BIC/SIC 1441.806f 1347.402d 1429.122e 1313.574b

UD-GARCHX UD-GARCHX

Up Down ∆ Up Down

Panel C: RV on C and J

ω 0.110 (0.028)∗∗∗ 0.318 (0.039)∗∗∗ 0.111 (0.010)∗∗∗ 0.349 (0.026)∗∗∗

βU 0.822 (0.061)∗∗∗ 0.272 (0.104)∗∗∗ [0.000] 0.824 (0.012)∗∗∗ 0.351 (0.013)∗∗∗

βD 0.000 (0.073) 0.441 (0.105)∗∗∗ [0.000] 0.351 (0.013)∗∗∗

αU 0.061 (0.010)∗∗∗ 0.046 (0.020)∗∗ [0.523] 0.057 (0.009)∗∗∗ 0.057 (0.009)∗∗∗

αD 0.098 (0.015)∗∗∗ 0.202 (0.018)∗∗∗ [0.000] 0.100 (0.009)∗∗∗ 0.204 (0.017)∗∗∗

γU 0.054 (0.072) -0.346 (0.136)∗∗ [0.012] -0.344 (0.139)∗∗

γD 0.252 (0.079)∗∗∗ 0.186 (0.135) [0.689] 0.235 (0.064)∗∗∗ 0.235 (0.064)∗∗∗

log-lik -663.828 -664.793

BIC/SIC 1443.912c 1404.322a

Panel D: C on C and J

ω 0.091 (0.032)∗∗∗ 0.321 (0.044)∗∗∗ 0.092 (0.010)∗∗∗ 0.363 (0.026)∗∗∗

βU 0.800 (0.066)∗∗∗ 0.247 (0.109)∗∗ [0.000] 0.800 (0.014)∗∗∗ 0.354 (0.013)∗∗∗

βD 0.000 (0.073) 0.467 (0.106)∗∗∗ [0.000] 0.354 (0.013)∗∗∗

αU 0.069 (0.011)∗∗∗ 0.059 (0.020)∗∗∗ [0.648] 0.066 (0.009)∗∗∗ 0.066 (0.009)∗∗∗

αD 0.103 (0.015)∗∗∗ 0.202 (0.018)∗∗∗ [0.000] 0.105 (0.010)∗∗∗ 0.205 (0.018)∗∗∗

γU 0.036 (0.074) -0.387 (0.140)∗∗∗ [0.011] -0.382 (0.146)∗∗∗

γD 0.206 (0.080)∗∗ 0.120 (0.136) [0.608] 0.180 (0.066)∗∗∗ 0.180 (0.066)∗∗∗

log-lik -615.477 -616.334

BIC/SIC 1347.210c 1307.404a
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Table 17: Half-Lives of Volatility Shocks from In-Sample Estimates

The table reports S&P500 the half-lives of volatility shocks for the fully dynamic specifications of the continuous
component C. HAR indicates the specification of equation (9) , UD-HAR that of equation (11) and UD-GARCHX
that of equation(14). All parameter estimates are Constrained and correspond to those in Table 15. Columns of
the left and right panels indicate the elapsed times, expressed in number of days, between the (n-1)-th n-th halving.
The rows in each panel report the following: Up(C,+) the half-lives of positive shocks to the continuous component
C in up volatilities, Down(C,+) the half-lives of positive shocks to the continuous component C in down volatilities,
Up(C,−) the half-lives of negative shocks to the continuous component C in up volatilities, Down(C,−) the half-lives
of negative shocks to the continuous component C in down volatilities, Up(J,+) the half-lives of positive shocks
to the jump component J in up volatilities, Down(J,+) the half-lives of positive shocks to the jump component
J in down volatilities, Up(J,−) the half-lives of negative shocks to the jump component J in up volatilities and
Down(J,−) the half-lives of negative shocks to the jump component J in down volatilities.

n: 1st 2nd 3rd 4th 5th 6th n: 1st 2nd 3rd 4th 5th 6th

HAR

Up(C,+) 6 38 35 36 35 35

Down(C,+) 6 38 35 36 35 35

Up(C,−) 6 38 35 36 35 35

Down(C,−) 6 38 35 36 35 35

Up(J,+) - - - - - -

Down(J,+) - - - - - -

Up(J,−) - - - - - -

Down(J,−) - - - - - -

UD-HAR UD-GARCHX

Up(C,+) 2 9 39 34 33 33 Up(C,+) 29 27 27 27 27 27

Down(C,+) 2 4 23 33 33 34 Down(C,+) 21 27 27 27 27 27

Up(C,−) 2 5 29 34 33 34 Up(C,−) 28 27 27 27 27 27

Down(C,−) 2 5 28 34 33 34 Down(C,−) 16 26 27 27 27 27

Up(J,+) 6 26 34 33 34 33 Up(J,+) 29 27 27 27 27 27

Down(J,+) 1 1 8 34 33 34 Down(J,+) 1 2 17 27 27 27

Up(J,−) 2 5 31 33 34 33 Up(J,−) 29 27 27 27 27 27

Down(J,−) 2 5 26 34 33 33 Down(J,−) 12 27 27 27 27 27
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Table 18: Out-Of-Sample Performance of High-Frequency Volatility Specifications

The table reports S&P500 results for the OOS performance of the specifications of Tables 15 and 16. In Panel A
and Panel B: HAR of equation (9) and UD-HAR of equation (11). In Panel C and Panel D: HAR of equation
(10) and UD-HAR of equation (13). Daily predictions are generated by keeping parameters fixed at the IS estimates
for all specifications. OOS Up and Down variances are measured from high-frequency observations Hf over periods
of length K = 1, 20, 60, 120. Mse measures of distance between predictions and realizations are reported in the
first column for Up variances and in the second column for Down variances. The third column reports Mse for
the standard Joint measure of variance. ∆ reports the percentage differences in Mse of UD-HAR with respect to
HAR.

HAR UD-HAR ∆

Up Down Joint Up Down Joint Up Down Joint

Panel A: RV on C and J

1-Hf 0.679 0.823 1.502 0.705 0.763 1.468 +3.82% −7.27% −2.26%

20-Hf 0.078 0.179 0.256 0.113 0.140 0.253 +44.91% −21.39% −1.30%

60-Hf 0.045 0.107 0.152 0.072 0.081 0.153 +60.55% −24.35% +0.62%

120-Hf 0.037 0.086 0.123 0.060 0.063 0.124 +62.98% −26.19% +0.69%

Panel B: C on C and J

1-Hf 0.615 0.863 1.478 0.645 0.786 1.431 +4.85% −8.88% −3.17%

20-Hf 0.061 0.216 0.277 0.100 0.161 0.261 +63.73% −25.24% −5.58%

60-Hf 0.038 0.137 0.175 0.070 0.097 0.167 +84.94% −29.28% −4.48%

120-Hf 0.031 0.112 0.144 0.059 0.078 0.137 +87.58% −30.50% −4.84%

Panel C: RV on intradaily C and J

1-Hf 0.672 0.811 1.483 0.722 0.726 1.448 +7.43% −10.48% −2.37%

20-Hf 0.078 0.185 0.263 0.117 0.122 0.239 +49.72% −33.81% −8.99%

60-Hf 0.045 0.111 0.156 0.079 0.060 0.139 +75.12% −45.64% −10.91%

120-Hf 0.036 0.089 0.125 0.065 0.046 0.112 +79.16% −47.96% −11.09%

Panel D: C on intradaily C and J

1-Hf 0.612 0.855 1.467 0.661 0.748 1.409 +8.04% −12.54% −3.95%

20-Hf 0.062 0.222 0.284 0.108 0.139 0.246 +74.67% −37.48% −13.16%

60-Hf 0.039 0.141 0.180 0.080 0.072 0.152 +106.83% −48.81% −15.45%

120-Hf 0.031 0.116 0.147 0.065 0.058 0.123 +111.10% −49.94% −16.02%
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Table 19: Out-Of-Sample Performance of High-Frequency Volatility Specifications

The table reports S&P500 results for the OOS performance of the specifications of Tables 15 and 16. In Panel
A and Panel B: HAR of equation (9) and UD-GARCHX of equation (14). In Panel C and Panel D: HAR
of equation (10) and UD-GARCHX of equation (15). Daily predictions are generated by keeping parameters
fixed at the IS estimates for all specifications. OOS Up and Down variances are measured from high-frequency
observations Hf over periods of length K = 1, 20, 60, 120. Mse measures of distance between predictions and
realizations are reported in the first column for Up variances and in the second column for Down variances. The
third column reports Mse for the standard Joint measure of variance. ∆ reports the percentage differences in Mse
of UD-GARCHX with respect to HAR.

HAR UD-GARCHX ∆

Up Down Joint Up Down Joint Up Down Joint

Panel A: RV on C and J

1-Hf 0.679 0.823 1.502 0.674 0.729 1.403 −0.86% −11.40% −6.63%

20-Hf 0.078 0.179 0.256 0.091 0.106 0.197 +17.62% −40.73% −23.05%

60-Hf 0.045 0.107 0.152 0.057 0.046 0.104 +28.27% −56.87% −31.83%

120-Hf 0.037 0.086 0.123 0.050 0.037 0.087 +34.53% −56.67% −29.18%

Panel B: C on C and J

1-Hf 0.615 0.863 1.478 0.620 0.734 1.354 +0.89% −14.93% −8.35%

20-Hf 0.061 0.216 0.277 0.086 0.120 0.206 +40.46% −44.34% −25.60%

60-Hf 0.038 0.137 0.175 0.061 0.057 0.118 +59.44% −58.24% −32.70%

120-Hf 0.031 0.112 0.144 0.051 0.047 0.099 +64.54% −57.84% −31.24%

Panel C: RV on intradaily C and J

1-Hf 0.672 0.811 1.483 0.675 0.678 1.354 +0.49% −16.36% −8.73%

20-Hf 0.078 0.185 0.263 0.089 0.094 0.184 +14.61% −48.91% −30.04%

60-Hf 0.045 0.111 0.156 0.053 0.039 0.092 +18.36% −64.71% −40.82%

120-Hf 0.036 0.089 0.125 0.044 0.030 0.074 +21.71% −66.58% −40.98%

Panel D: C on intradaily C and J

1-Hf 0.612 0.855 1.467 0.624 0.692 1.316 +1.93% −19.01% −10.27%

20-Hf 0.062 0.222 0.284 0.085 0.109 0.194 +38.08% −51.09% −31.75%

60-Hf 0.039 0.141 0.180 0.059 0.049 0.107 +52.08% −65.47% −40.27%

120-Hf 0.031 0.116 0.147 0.048 0.039 0.087 + 55.35% −66.25% −40.63%
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