
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

G. ALESSANDRINI

R. MAGNANINI
The index of isolated critical points and solutions of
elliptic equations in the plane
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 19, no 4
(1992), p. 567-589.
<http://www.numdam.org/item?id=ASNSP_1992_4_19_4_567_0>

© Scuola Normale Superiore, Pisa, 1992, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1992_4_19_4_567_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


The Index of Isolated Critical Points
and Solutions of Elliptic Equations in the Plane

G. ALESSANDRINI - R. MAGNANINI

1. - Introduction

The purpose of the present paper is to point out how statements about
geometric quantities associated with solutions of elliptic equations can be derived
from basic facts of differential topology like index calculus and the Gauss-Bonnet
theorem. We will focus on two-dimensional problems.

The results we obtain are of two different kinds.

(1) Identities or estimates relating the number and character of critical points
(i.e., zeroes of the gradient) of solutions of elliptic equations with the
boundary data.

(2) Differential identities on the gradient length and the curvatures of the
level curves and of the curves of steepest descent of an arbitrary smooth
function with isolated critical points.

As a typical example of the kind (1), we shall demonstrate the following
theorem.

THEOREM 1.1. Let Q be a bounded open set in the plane and let its
boundary 8Q be composed of N simple closed curves rl’...’ rN, N &#x3E; 1, of
class Cl’a. Consider the solution u f1 of the Dirichlet problem:

where a 1, ... , aN are given constants.
If al,..., aN do not all coincide, then u has isolated critical points

zl, ... , ZK in Q, with finite multiplicities ml, ... , mK, respectively, and the

Pervenuto alla Redazione il 27 Gennaio 1992.
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following identity holds:

This theorem generalizes some results contained in [Wa, Section 8.1.3].
In [A 1 ], a related result was proven in the case of non-constant Dirichlet data
in simply connected domains, by completely different arguments. In Theorems
2.1, 2.2 we show how our present method can be used to obtain similar results
when quite general oblique derivative boundary data are prescribed.

Moreover, in Section 4 we give a new proof of a result of Sakaguchi [Sa],
concerning the number of critical points of the solution of an obstacle problem.
We also prove identities, Theorem 3.3, 3.5, for the critical points of solutions of
equations of the form Au = - f (u), which complement previous known results
(see for instance [PM] and the references therein).

The main results in the spirit of (2) are summarized in the following
Theorem 1.2, which needs the introduction of some preliminary notations.

It is convenient to use the complex variable z = x + i y and to denote
complex derivatives az, az as follows:

Given a real-valued function u of class C~ on an open set Q in the plane, we
define, locally, real-valued functions v, w, and the complex-valued function 0
by the relations:

It is clear that e" = that, away from the critical points of u,
w coincides with the angle formed by the gradient direction and the positive
x-axis. Notice also that h = Re ~ and k = are respectively the curvature of
the level curves and of the curves of steepest descent of u, as defined in [T].

If zo E Q is an isolated critical point of u, we denote by I (zo) the index
of the gradient vector field Vu = (ux, Uy) at zo. As it is well-known, for every
sufficiently small r &#x3E; 0, we have that

where the contour integral is understood in the counterclockwise orientation

(see [Mi]).
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THEOREM 1.2. If U E has only a finite number of critical points
zl , ... , ZK E Q, then the following identities hold in the sense of distributions:

The proof of this theorem will be carried out in Section 5. These
formulas hold for any sufficiently smooth function. However, their usefulness is
particularly apparent for solutions of elliptic equations. For instance, the above
formulas take a much simpler form when u is harmonic. In such a case, if zk
is a critical point of u, then it has finite multiplicity mk. More precisely, we
have

with g(z) analytic and g(zk) f0; hence, by the argument principle for analytic
functions, we can easily deduce that -mk. In Theorem 5.1 we shall

give a generalized version of (1.6), (1.7) which is more suitable for solutions
of elliptic equations with variable leading coefficients.

Formulas (1.6)-(1.8) unify, in a general setting, several identities which
have been proven in different times, and used in different contexts. When the
gradient never vanishes, (1.6) appears in Weatherburn [We], and (1.8) has been
proven by Talenti, [T]. Pucci, [P], has obtained identities and inequalities of
the type (1.7) in the treatment of solutions of elliptic equations in two or more
variables. A formula like (1.6), in the presence of critical points, has been
applied to the geometrical study of solutions of elliptic equations in [Al]; see
also [A2] and the references therein.

All present results are based on the computation of contour integrals of the
type faG dw with suitable choices of the region G C Q. Index theory provides
the appropriate tool, since

For instance, the derivation of (1.8), in the case where u has no critical points,
was carried out in [T], by writing dw in terms of 4J, and then by taking into
account that d dw = 0. On the other hand, if u has isolated critical points
zl , ... , zK, dw is a well defined closed form in while w cannot
be continuously defined as a single-valued function in SZB { zl , ... , zK } . By this
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remark and (1.9), we will show that d dw defines a measure concentrated at

and (1.8) will follow.

2. - Critical points of ,~-harmonic functions

We shall prove Theorem 1.1 in a greater generality than the one stated in
the introduction. In fact, it is possible to replace ( 1.1 a) with

where f is an elliptic operator of the form

where the variable coefficients, a, b, c are Lipschitz continuous and d, e are

bounded measurable in Q. Uniform ellipticity is assumed in the following form:

By the uniformization theorem (see [V]), we recall that we can choose
a quasi-conformal mapping ~ = q(z) = ~(z) + iq(z) such that u(~) satisfies the

equation:

where

It follows that g = is a solution of

where ) is bounded on 

By the well-known similarity principle (see [V]) there exists s(~), Holder
continuous on the whole plane, and G(~), analytic in ~(0), such that

It follows, for instance, that every critical point zo E 0. of u is isolated
and 9,u vanishes with finite multiplicity mo at zo; moreover I(zo) = -mo.

Before proving Theorem 1.1, we shall state Theorems 2.1, 2.2. The

following notations and definitions will be useful.
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Let a be a C’ unitary vector field on a~. We will denote by D the
topological degree of a : aS2 -~ S’ 1, that is

DEFINITION 2.1. Let 0 E 

(i) If 8Q is decomposed into two disjoint subsets J+, J- such that &#x3E; 0

on J+ and 0  0 on J-, we denote by M(J+) the number of connected
components of J+, which are proper subsets of a connected component of
aS2. We denote by M the minimum of M(J+) among all such decompo-
sitions J+, J- of aSZ.

(ii) If 0} and  0}, we denote by M+
(respectively M- ) the number of connected components of 1+ (respectively
7’) which are proper subsets of a component of aSZ.

REMARK. Notice that in (i), the definition of M would not change if we
replace J+ with J’- . Note also that M  M+, M-.

THEOREM 2.1. Let Theorem 1.1, let L be as in (2.2), (2.3),
and let _a be a C’ unitary vector field on 8Q of degree D, as defined in

(2.8). Suppose u E n C(Q) is a solution of (2.1) satisfying the oblique
derivative boundary condition:

where 0 is a given continuous function on 8Q. Let M be as in Definition 2.1
(i). If M is finite and u has no critical points on 8n, then the interior critical
points of u are finite in number and, letting ml, ... , mK be their multiplicities,
we have:

REMARK. It would be desirable to remove the hypothesis that u has no
critical point on the boundary. In the following theorem we allow the presence
of boundary critical points at the cost of requiring the more stringent assumption
on the changes of sign of the boundary data ø, given by Definition 2.1 (ii).

THEOREM 2.2. Let S2, a and 0 be as in Theorem 2.1 and let M+ and
M- be as in Definition 2.1 (ii). Suppose u E n C2(12) is a solution of
(2.1 ), (2.9). If M+ + M- is finite, then the interior critical points of u are finite
in number and, letting ml, ... , mK be their multiplicities, we have:
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Here [x] = greatest integer  x.

PROOF OF THEOREM 1.1. Without loss of generality, we can suppose that 
"

u = u(z) is the solution of (2.1), (l.lb) with a = c = 1, b = 0.
We start by analysing the character of a boundary critical point zo. We

choose a conformal mapping x(z), regular up to the boundary, in a way that
is flat in a neighbourhood of X(zo). Since u is constant on by a

standard reflection argument (see [V]), we can continue u in a full neighbourhood
u of x(zo) to a function u* in such a way that g* = 28xu* is a solution of

where R* is bounded in U. This argument shows that, by the similarity principle
(2.7), 9,u vanishes at zo with positive order mo; moreover, the level set

{u = u(zo)l is made of mo + 2 distinct simple arcs crossing at zo, two of which
lie on 8Q. Furthermore, a sort of an index can be computed at zo, as well.

Namely, by setting Lg = { z E zo ( _ ~ } and

by the change of variable X = X(z) and by (2.7), we readily obtain

Now,

and consider the set 06 = Let us compute:

On one hand, if 6 is small enough, all the interior critical points belong to Q~,
so that:

On the other hand, we have:
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By (2.12), if E is small enough, we have:

while

where we assume that rl surrounds all the remaining rj’s and all such curves
are oriented in the counterclockwise sense.

It should be noticed that on the boundary, the direction of the gradient of u,
parallel to the normal v, may switch from outward to inward or viceversa, when
a critical point is crossed (precisely, it switches at points of odd multiplicity).
At such points, w has a jump of ~~r. However, there are as many positive
jumps as the negative ones. Consequently, we obtain:

By adding up over j - 1,..., N and taking into account (2.15), (2.13), and
(2.14), we arrive at

By the Gauss-Bonnet formula, we know that

(see [Mi]), thus, (1.2) follows.

PROOF OF THEOREM 2.1. Since u has only interior critical points, we have:

According to Definition 2.1 (i), let J+, J- be a decomposition of aS2 such that
M = M(J+). Notice that
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Let T~ be any connected component of If
we have 

, I

, then

I 
_ _ I

and, since the left-hand side is an integer, we get

If rj contains points of both J’+ and J-, then it contains as many components
of J+ as of J-. Let Mj be the number of connected components of J+ n r .
Then we have E Mj = M.

If A and B are consecutive connected components of J+ n r~ and J- n rj
respectively, we obtain

thus,

Finally, by summing up over j, we have

PROOF OF THEOREM 2.2. By the uniformization theorem, we can suppose
that u = u(z) is a solution of (2.1), (2.9) with a = c = 1, b - 0. In fact, a

quasi-conformal transformation, regular up to the boundary, does not change
the numbers D, M+ and M-.

The function g = satisfies (2.6); we then apply the similarity principle
(2.7) in the following way. As it is well-known (see [B]), fixed a component rj
of aS2, the Holder continuous function s in (2.7) can be chosen to be real-valued
on rj. Let us denote by 8j this choice of s, and by Gj the corresponding analytic
function in (2.7).

Now, fix e &#x3E; 0, 1  j  N, and consider the set { z E Q: IGj(z)1  ê}. This
set is open, hence it is the union of countably many connected components: we
select those components whose boundary contains open portions of rj where
0 =- 0, and we name their union by Aj. Notice that, for sufficiently small e, the
Ai’s, j = 1, ..., N, are pairwise disjoint. Then, we set

AT
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Observe that 8ne does not contain critical points of u, and furthermore, it can
be decomposed as 8ne = E U T U where E, T, and E are disjoint subsets of
8ne, each one made of countably many arcs having the following properties:

(i) every component a of E is a connected subset of 8Q where Q =0, and
each connected component of {z E 8n: §(z) f0) contains at most one arc
(J c ;

(ii) every component T of T is a connected subset of 8n where § * 0 and

(iii) every component £ of E is an arc in Q with endpoints on aS2, and we
have IGjl = ê on ~ if this has endpoints on r~ .
Let us preserve on E, T, 3 the positive orientation of 8ne. Notice that

if §f0 on some component Fj of 8Q, then, for sufficiently small ê, rj is a

component of 1.

Denoting by ~i,...,~,... the interior critical points of u with their

respective multiplicities m 1, ... , m~, ... , we have

We observe that

and, in particular,

Moreover, we have

Let now ~ be an arc of 3 with endpoints on rj and where = 6. By
our representation of g = 2azu, we have
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since 8j is real-valued on Fi. Moreover, since arg Gj is the harmonic conjugate
of log I Gj 1, and ~ is a level curve of log we get

where the last integral is unoriented and performed with respect to the arc

lenght parameter.
Thus, (2.16)-(2.19) imply that

Now, fixing G = G 1 and letting - - 0 the set 8Q n invades monotonically
where Z’ c ,Z = {z E aS2: IG(z)l = 0}. Now, Z, and hence Z’, is a set

of zero Lebesgue measure in 9Q. In fact, for any zo E Q, and for a sufficiently
small r, we can find a conformal mapping -~ the map
x-’ being piecewise C~ on aBI(O). Since Go X-1 is a bounded holomorphic
function on the unit disk, it belongs to the Nevanlinna space, thus its zero set
’W on aB¡ (0) forms a set of zero Lebesgue measure (see [D]). The same holds
for Z since Z n C By the dominated convergence theorem and
(2.8), we obtain:

and therefore

---

that is the integer at the right-hand side is finite and (2.11 ) holds.

3. - Identities on the number of critical points of solutions of Au = - f (u)

The following lemma gives a classification of isolated critical points
of smooth functions in I(~2. Although results of the same kind, but in the
more difficult case of higher dimensional spaces, which requires additional

assumptions, are known (see [R]), the authors have not been able to find a
detailed specific proof for the two dimensional case; therefore, an ad hoc proof
is provided in the Appendix to this paper.
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LEMMA 3.1. Let u be a real-valued Cl function in an open set S2 in the
complex plane. Let zo E SZ be an isolated critical point of u.

Then, one of the following cases occurs.

(i) There exists a neighbourhhod U of zo such that Iz E U : u(z) = u(zo)l is

exactly zo, and we have I(zo) = I.

(ii) There exist a positive integer L and a neighbourhood ’U of zo such that
the level set {z E v : u(z) = u(zo)} consists of L simple closed curves. If
L &#x3E; 2, each pair of such curves crosses at zo only. We have I(zo) = 1 - L.

REMARK. Observe that the statement of Lemma 3.1 can be summarized

by saying that the index of an isolate zero of a conservative vector field never
exceeds 1.

DEFINITION 3.2. If (i) holds, then zo is a local maximum or minimum

point; in such a case we shall refer to it as an extremal point.
If (ii) holds with L = 1, we say that zo is a trivial point.
If (ii) holds with L &#x3E; 2, we say that zo is a saddle point and if L = 2, zo

is a simple saddle point. We will call order of a trivial or a saddle point the
number L - 1.

We will consider now the following boundary value problem:

where f is a real-valued function with

The next theorem is in the same spirit as Morse theory, the condition

(3.3a) takes the place of the non-degeneracy condition (see [Ms]).

THEOREM 3.3. Let SZ be a bounded open domain in the plane and let
its boundary aS2 be composed of N closed simple curves of class CI,Q. Let
u E CO(Q) be a non-negative solution of (3.1), (3.2), subject to (3.3a).
If the critical points of u are isolated, then they only can be extremal, simple
saddle, or trivial points. Moreover, if nE and ns denote respectively the number
of extremal and saddle points, we obtain
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COROLLARY 3.4. Let u E C°(S2) n be a non-negative solution of
(3.1), (3.2), and suppose in addition that 0 is simply connected and f is real

analytic and satisfies (3.3a).
Then the critical points of u are isolated, and we have

REMARK. Notice that if Q is not simply connected, then non-isolated
critical points indeed occur. An example is provided by the first Dirichlet

eigenfunction of the Laplace ’operator for a circular annulus.

THEOREM 3.5. Let SZ be as in Theorem 3.3, and suppose f is a

Cl real-valued function satisfying (3.3b). If the critical points of a solution
u E co(Q) n are isolated, then they are of the following type:

(i) nodal critical points, that is u also vanishes at such points; indicate
them by ZI, - - -, ZK; then they have integral multiplicities ml, ... , mK, and
azu(z) is asymptotic to Ck(Z - as Z -&#x3E; z~, with l~ = 1, ... , K;

(ii) non-nodal critical points, which only can be extremal, simple saddle, or
trivial points, as described in Definition 3.2.

Finally, we have

where ns, nE were defined in Theorem 3.3.

PROOF OF THEOREM 3.3. By the maximum principle, u &#x3E; 0 in Q, hence
Au  0 in Q, by (3.3a). By the Hopf lemma, the normal derivative of u never
vanishes on 9Q, that is the critical points zl, ... , zK of u are not on aS2. The
Gauss-Bonnet theorem yields:

Euler characteristic of

If the Hessian determinant of u is not zero at a critical point zk, then it is
readily seen that z~ is either a local maximum point or a simple saddle point,
since  0.

Otherwise, Ux = uy = u2y = 0, at Zk, and, without loss of generality,
we may 0, Uxx = 0, at 0, and  0. Let

U be a neighbourhood of 0 where uyy  0. By reducing U if needed, Dini’s
theorem implies that the set {z E U: uy(z) = 01 is the graph of some smooth
function y = with = 0; we also have uy  0 if y &#x3E; O(x) and uy &#x3E; 0 if

y  Since
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if x 0 because 0 is an isolated critical point. Therefore,dx 
( Y(x ))=0 = 0 p

{ z E U: u(z) = u(O), uy(z) = 0} _ {O}.
Fix tf0; there exist at most two yi(t), y2(t), 2/1 ?  y2(t), such that

= u(t, Y2(t» = 0, since uy(t, y) = 0 only at y = Notice that y I (t)
and Y2(t) may not exist, but, if they do, they are distinct, because uyy  0 on

U.

There are now three possibilities: a) yl (t), y2(t) do not exist for any 
that is 0 is a maximal point; b) yl (t), y2(t) do exist for every t f0, that is (ii)
of Lemma 3.1 occurs with L = 2; c) Yl(t), Y2(t) exist only for either t &#x3E; 0 or

t  0, that is (i) of Lemma 3.1 is verified with L = 1.

These remarks and formula (3.7) yield (3.3).

PROOF OF COROLLARY 3.4. As it is well-known (see for instance .[Mo]),
u is real analytic in Q.

Suppose by contradiction that the set Z = {z E S2: ux(z) = uy(z) = o} is
not discrete. As we observed in the previous proof, Z n aS2 = 0, by the Hopf
lemma. Let Z, zo E Z, zm f zo, zm - zo, as m - +oo. Since Au(zo)  0,
we may suppose with no loss of generality that uxx(zo)  0; hence there exists
a neighbourhood U of zo such {z E U: ux(z) = 0} is a simple analytic
arc. The fact that uy(zm) = u2(zm) = 0, for infinitely many m’s, implies that
uy = 0 on u by analytic continuation. This means that Z is composed by the
union of a finite number of isolated points and analytic simple closed curves.

Let E be one of such curves and let G c Q be the region such that aG = E.
On aG, we have Ux = uy = 0, u = c = constant. We also know that u &#x3E; c on

G, since u is superharmonic on S2. Let zo c 9G; if v and T are respectively
the normal and tangential directions to aG at zo, we have uvv(zo)  0, since

Au(zo)  0, and uTT(zo) = 0. This contradicts the fact that u &#x3E; u(zo) in G, and
that = uy(zo) = 0.

PROOF OF THEOREM 3.5. The classification of non-nodal critical points
goes as in Theorem 3.3. On the other hand, in a neighbourhood of an interior
critical point, we have:

(constant,

and the Hartman-Wintner theorem can be applied (see [Sch]), thus yielding (i).
At a boundary critical point, a reflection argument, like the one used in the

proof of Theorem 1.1, can be used, and again the Hartman-Wintner theorem
applies, so that we obtain the asymptotic behaviour of u. Identity (3.5) follows,
as before, by the computation of a limit of the type (2.13).
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4. - Critical points of solutions of an obstacle problem

Here, we shall show how our method yields a simple proof of results of
Sakaguchi [Sa] concerning the number of critical points in an obstacle problem.
Let us begin with a description of the obstacle problem; for more details, the
reader may consult [K-S].

We consider a simply connected bounded open set Q C I1~2, and a function
1/J E such that 0  0 on 8Q and max 1/J &#x3E; 0. Suppose that a C2 vector

0

field 3 p - a = a(p) C V is given, which satisfies the following bounds:

and set

The solution of the obstacle problem is defined as the unique function
u E lC satisfying the variational inequality

where Vu = (ux, uy).
An appropriate regularity theorem (see [K-S, IV, Theorem 6.3]) shows that

u E Moreover, denoting by

the so-called coincidence set, we have

It follows that u &#x3E; 0 in K2 and also that, in the non-coincidence set SZB1, the
Hartman-Wintner theorem applies to u, see again [Sch].

Now, we are in a position to state Sakaguchi’s results (see [Sa, Theo-
rems 1, 2]).

THEOREM 4.1. Suppose has isolated critical points in Q, and let
N be the number of positive maximum points. Then the critical points of u in
QB1 are finite in number and, denoting by ml, ... , mK their multiplicities, we
have
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If, in addition, all the critical points of 1/;, where 0 &#x3E; 0, are of absolute
maximum, then the equality holds in (4.4), that is

PROOF. The preliminary step of this proof consists in the following lemma.

LEMMA 4.2. If the hypotheses of the Theorem 4.1 are satisfied, then the
critical points of u in S2BI are finite in number.

A proof of this lemma can be obtained along the same lines of [A l , Lemma
1.1 ], and it is based on a combined use of the Hartman-Wintner theorem and
the maximum principle (see Section 6).

Now, since the critical points of u in 1 are also critical points of 1/;, we
have that the interior critical points of u in Q are finite in number, and we
denote them by Since Q is simply connected, we have:

and also -ml’. when zt E 0.B1. Moreover, since u has no interior minima,
by Lemma 3.1, we get

so that

and (4.4) follows.
Observe now that the points of absolute maximum of 0 are in the set

1, hence, if all the critical points of where 0 &#x3E; 0, are points of absolute
maximum, then the critical points of u in I are nothing else than such N points
of absolute maximum, and consequently

thus (4.5) follows.



582

5. - Identities relating the functions v, w, h, and k

In this section we will prove Theorem 1.2. We wish to remark that
formulas (1.6)-(1.8) can be adapted to suit the needs of treating solutions of
elliptic equations with general principal part. The next Theorem, which is in
fact a corollary of Theorem 1.2, provides such an adaptation for formulas (1.6),
(1.7).

Let

be a positive definite symmetric matrix with Lipschitz continuous entries sa-

tisfying the normalization condition (2.3), that is

We shall consider an elliptic operator in divergence form:

Given u E we introduce in place of v, w, the following functions which
are more strictly related to the metric intrinsic to ,~ :

here vIA denotes the positive definite symmetric square root of A. It is useful
to introduce the following expression

THEOREM 5.1. If U E has only a finite number of critical points
zl , ... , ZK E SZ of indices I (zl ), ... , I(zK), respectively, then the following
identities hold in the sense of distributions:

here I and
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The proof of Theorems 1.2 and 5.1 is based on the following lemma.

LEMMA 5.2. Suppose U E C2(S2) has isolated critical points zl, ... , zK E S2
of indices I (zl ), ... , I(zK), respectively. Let v, w be given by (1.3). Then the
following identities hold in the sense of distributions

Here, 8(. - z~) dx ôy denotes the Dirac measure with pole at zk.

PROOF. Let 0 E By means of a partition of unity, we can assume,
without loss of generality, that the support of 0 contains only one critical point
of u, say z~ .

If ( . , .) denotes the L2-based duality between distributional 2-forms and
functions, for any integrable 1-form q, we have

By the use of local changes of coordinates for which o becomes an independent
variable, we can write

Notice that this formula can be viewed as a special case of Federer’s coarea
formula (see [F], Theorem 3.2.12). Note also that, by Sard’s lemma, 9{0 &#x3E; t}
is C 1-smooth for almost every t. Now, setting q = dc~ yields

By changing 0 with -~ if needed, we can suppose that &#x3E; 0.

Let t be a regular value of ?k. If t &#x3E; 9(zk), then g (1b &#x3E; t }, while

&#x3E;  t } and (1b  t } is bounded, when t  0. In both

cases, we get 
r

On the other hand, when t is regular and 0  t  then Zk G f 0 &#x3E; tl, and
consequently 

r
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Finally, we have

and (5.5) follows. Analogously, we obtain (d dv, 0) = 0, since / dv = 0 for
every smooth closed curve ~, and (5.6) follows. 

’

PROOF OF THEOREM 1.2. By (1.4), we have:

On the other hand, we get

hence

Since v and w are real-valued, we can write:

By applying Lemma 5.2 to (5.9), we get:

On the other hand, (5.7) and (5.8) give also

and, by (5.10), we have
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It is worthwhile to notice that this last identity may be re-written as follows:

By taking the real and the imaginary parts in (5.11 ), we obtain (1.6) and (1.7).
Formula (1.8) follows by simply differentiating in (5.10), and by using (1.4).

PROOF OF THEOREM 5.1. By the uniformization theorem (see [V]), we
may find a change of coordinates in Q, q = ~(z) _ ~(z) + such that ~(z)
satisfies the Beltrami equation:

and we have

where A, = and

is the jacobian determinant of the mapping ~(z).
Now, we write the identity (5.12) in the ~ coordinate and, by a simple

calculation, we obtain in the z coordinate:

where .M = az - qaz. We compute the terms depending on qz by using equations
(5.13) and (5.14), and we obtain:

Identities (5.3) and (5.4) follow directly from (5.15), by taking the real and
imaginary parts.
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6. - Appendix

PROOF OF LEMMA 3.1. With no loss of generality, we may assume that
u(zo) = 0, zo = 0. If (i) does not hold, there exists ro &#x3E; 0 such that the sets

are both non-empty for every r  ro. Moreover, being zo an isolated critical
point, no connected component of Br or B- is contained in the interior of

Br(O). Such connected components are finite in number; in fact, we can argue as
follows. By the Dini’s theorem, for any i c there is a disk Be(z) such that
{z C Be(z): u(z) = 01 is either empty or a simple curve that crosses transversally

By compactness, there is a finite covering of
M 

aBr(O). Therefore, if A = U Bem(zm), then the set {z E A: u (z) = 0 1 is composed
m=1

by a finite number of non-intersecting simple curves. Thus, {z E A: u(z) &#x3E; 0}
has finitely many components and, since each component of Br contains points
in A, also such components are finite in number. The same argument applies
to Br .

Let U = U A ; U is a simply connected neighbourhod of 0, with

piecewise smooth boundary, since it may have angular points at the intersections
of the circles aBel (zi),..., aBeM (zm). Let PI, - - -, PN be such angular points; we
can suppose u(pn) f 0, n = l, ... , N, otherwise we can add to U a small disk D
centered at Pn in such a way that uo = uB{0}: u(z) = 01 and Uo U D have
the same number of components. If now = 1,..., N, we may smooth
a u near pi , ... ; pN by enlarging u in such a way that the number of connected
components of Uo does not change. Note in addition that each component of this
new version of uo crosses a u transversally, by a similar continuity argument.

Let et,..., Ek (respectively ~1 , ... , be the connected components of
U+ = {z E &#x3E; 0} (respectively U- = {z E  01) which
contain 0 in their boundary. Each of the sets 6 =,Ek+, or ?~ is simply connected
and its boundary can be decomposed as follows:

(i) two simple arcs ui, Q 2 each having one endpoint at 0 and the other one
on au,

(ii) an arc T which is composed by finitely many portions of 8U and arcs
where u = 0 but which do not reach 0.

Let PI, P2 be the endpoints on a u of aI, a2, respectively. By the transversality
condition mentioned above, we may join PI to P2 with an arc f in 6 having
the following properties: (a) f is tangent to au at PI and P2 ; (b) on

f BIPI, P2}.
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Let ECE be the simply connected region surrounded by ui U U2 U f-
Moving along au, the sign of u changes at each Pj. Hence, we have L = K.
Moreover, by replacing ? = Ekl, ~’ with t = E-k’, E-j-, for every = 1,..., L,
and u with T, the domain surrounded by the union of the ?g, ?g arcs, we have
that the following holds: v is a simply connected neighbourhood of 0 with C’
boundary; the level set lJB{O}: u(z) = 01 is composed by 2L disjoint simple
arcs each having one endpoint at 0 and the other on 8T; each of such arcs
reaches 8T transversally at distinct points, and separates points where u &#x3E; 0

from points where u  0. If we glue two by two such arcs at 0, we get case
(ii).

Now we proceed by computing the index. If zo = 0 is an extremal point,
say a minimum point, for - &#x3E; 0 small enough, there is a bounded simply
connected component of {~: u(z)  e) which contains 0 and whose boundary is
C 1. Hence,

1 ,.

by the Gauss-Bonnet formula.
Let now suppose that zo = 0 is either a trivial or a saddle point of order

L. Let f be one of the sets tk, tf- defined above. We have

We want to compute f7,, dw, fTl- dw.T£ i

Consider the region tê = Iz c E:  61; for e &#x3E; 0 sufficiently small,
o9E, is formed by 5 arcs O"l, U2, q, al, and a2, where o,,, U2 are the arcs defined
above, ai, a2 are contained in and, c E and is such that lul = e on q.
Clearly, 

I I I ~

T Ci I 7 a2

and we dw, 0, as E &#x3E; 0. On the other hand, we can compute

f~, dw as follows: let v be the unitary vector field, tangent to the lines lul = ê at
the points of a v near PI,... p2L, where u = 0. We may orientate and continue
v in such a way that, on all a v , it forms an acute angle with the exterior
normal v to a v .

Let Qi, Q2 be the endpoints of q ordered along T with respect to the
counterclockwise orientation on av. We have then
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hence

Finally,

by the Gauss-Bonnet formula.

PROOF OF LEMMA 4.2. By contradiction, let us suppose that there are

infinitely many critical points of u in We distinguish two cases:

(i) there exist t &#x3E; 0 and a connected component r of {z E Q: u(z) = t} which
contains infinitely many critical points;

(ii) there exist infinitely many connected components of level lines of u in Q,
each of which contains at least one critical point.

Case (i). We show that the set {z E 0.: u(z) &#x3E; t} has infinitely many
connected components, thus contradicting the assumption that 0 has finitely
many maximum points.

If a, Q are simple closed curves in r, then none of the two surrounds
the other. Otherwise, in the region between them, we would have u  t,
which is impossible by the maximum principle. Therefore, there exists a simple
closed curve X C r which contains infinitely many critical points of u, 
zk C g k = 1, 2,.... Near each Zk, the level line r is composed of 2(mk + 1)
(rrLk &#x3E; 0) branches meeting at Zk. Two of such branches belong to x, while all
the others point to the exterior of X and cannot reach another zj, j f k.

Therefore, by induction, for each Zk, we find at least one loop vk in

lu = t} passing through zk and lying in the exterior of x, and of II, ... , 
Each qk surrounds a connected component of {u &#x3E; t}. This is a contradiction.

Case (ii). There are infinitely many Jordan curves 9 = aj n ak = 0,
each of which contains a critical point and it belongs to a different com-

ponent of a level line of u. If each curve in 9 surrounds a finite number of
curves in g , then we are finished.

Conversely, suppose that aj+l is surrounded by a~ for every j. If zj E aj
is a critical point, then, by the same reasoning as above, in the exterior of aj
there is at least a Jordan curve Qj, containing zj and on which u is constant.
Thus, the interiors of the are all disjoint and each of them contains a point
of relative maximum of u. This yields a contradiction.
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