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Abstract

This paper addresses the inter-signal coherence problem in mobile communications applications where multipath
parameters, such as path angle of arrival, must be estimated with an array of sensors operating ift impulsive interference.
We reduce the measured coherence by using the spatial smoothing approach to the structure of the measurement matrix
while at the same time we mitigate the effects of the heavy-tailed background noise by employing a signed-power
nonlinearity to the array data. The combination of these two processing modules gives rise to a family of robust
smoothed subspace array processing methods based on fractional lower-order statistics (FLOS), which are able to
identify all incident angles regardless of their correlation structure. The improved performance of the proposed

techniques is demonstrated via Monte Carlo simulations © 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel behandelt das Signalkohirenzproblem in der mobilen Kommunikation, wenn Mehrwegeparameter wie
zB. der Einfallswinkel eines Pfades mit Hilfe einer Sensorgruppe geschitzt werden mus, die in impulshafter Storung
arbeitet. Durch raumliche Glauung reduzieren wir die gemessene Kohirenz auf die Struktur der Datenmatrix. Dabei
wird das stark ausgedehnte Hintergrundgerdusch durch eine Vorzeichen-Potenz-Nichtlinearitat abgeschwicht, die auf
die Daten der Sensorgruppe angewandt wird. Die Kombination dieser zwei Signalverarbeitungsmodule ist die Ausgan-
gsbasis fiir eine Familie von robusten glittenden Unterraum-Methoden zur Sensorgruppensignalverarbeitung, die auf
fractional lower order statistics (FLOS) basieren, die simtliche Einfallswinkel unabhéngig von ihrer Korrelationsstruk-
tur identifizieren konnen. Das verbesserte Leistungsverhalten der vorgestellten Verfahren wird anhand von Monte Carlo
Simulationen demonstriert. © 2000 Elsevier Science B.V. All rights reserved.

Résumeé

Cet article porte sur le probléme de la cohérence inter-signaux dans les applications de communications mobiles dans
lesquelles de paramétres de propagations multiples, tels que I'angle d’arrivée, doivent étre estimés avec un réseau de
capteurs opérant en interférence impulsive. Nous réduisons la cohérence mesurée en utilisant I'approche de lissage spatial
a la structure de la matrice de mesure tandis que dans le méme temos nous mitigeons les effets du bruit de fond a densite
de probabilité¢ étendue en employant une non-linéarité de type puissance signée sur les données du réseau. La
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combinaison de ces deux modules de traitement permet de créer une famille de méthodes de traitement de réseau en
sous-espace lissées robustes basées sur les statistiques d’ordre inférieur fractionnaires (FLOS), qui sont capables
d'identifier tous les angles d’incidence quelle que soit leur structure de corrélation. Les performances supérieures des

techniques proposées sont mises en lumiére par des simulations de type Monte Carlo.

rights reserved.
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1. Introduction

The rapidly increasing demands for personal mo-
bile communications have created an avid interest
in new array processing algorithms and antenna
architectures. The appropriate choice for a particu-
lar antenna array model depends on its capability
to discriminate among different incoming signals,
which can be generated from various digitally
modulated sources. Specifically, in wireless com-
munications the transmitted signal arrives to the
receiver via multiple paths due to physical pheno-
mena such as diffraction and reflection, which are
caused by obstacles present in the line of view
between the transmitter and the receiver. Multipath
can affect the incoming signal and destroy comple-
tely the information sequence [13]. Besides, coher-
ent interference can arise when smart jammers
deliberately redirect scaled and delayed replicas of
the same signal to the receiver. The antenna array
should be able to process the incoming signal and
improve its quality by applying techniques based
on interference cancellation and spatial diversity [4].

In recent years, considerable effort has been di-
rected towards the development of high-resolution
techniques for estimating the direction of arrival of
multiple signals using antenna arrays. The class of
cigen-based methods has been proven to be an
effective means to achieve high-resolution source
localization even when the signals are partially
correlated [20]. However, when some of the signals
are perfectly correlated, eigen-based or subspace
techniques designed to locate uncorrelated sources
cannot be used directly since the incoherence as-
sumption is violated.

To address the coherent signal localization
problem, a spatial smoothing scheme was initially

suggested by Johnson et al. [6], and subsequently
studied by Shan et al. [15]. The proposed methods
used sub-aperture sampling in uniform linear
arrays that essentially decorrelates the coherent
signals. To compensate for the effective array
aperture reduction induced by the smoothing
techniques, Johnson et al. introduced the modi-
fied spatial smoothing method [6]. Other
advanced techniques used forward and complex
conjugate backward sub-arrays of the original
array [12].

The majority of the spatial smoothing techniques
assume that the array operates in an additive white
noise background. By and large, the Gaussian dis-
tribution is the favorite noise model commonly
employed in radio communications mainly because
it often leads to closed-form solutions and to linear
processors. However, multiuser interference, atmo-
spheric noise (thunderstorms), car ignitions, and
other types of naturally occurring or man-made
noise sources result in an aggregate noise compon-
ent that may exhibit high amplitudes for small
duration time intervals [10,16]. Recent experi-
mental measurements have demonstrated that the
ambient channel noise is decidedly non-Gaussian
due mostly to impulsive phenomena (see [19] and
references therein). Indeed, it has been shown that
electromagnetic noise in urban mobile-radio chan-
nels is heavy tailed in nature and can be better
modeled by using distributions with algebraic tails
rather than the Gaussian or other exponentially
tailed distributions [8.,9,11].

Detection and estimation algorithms designed
under the Gaussian assumption exhibit various de-
grees of performance degradation, depending on
the non-Gaussian nature of the noise. This is due to
the lack of robustness of linear and quadratic types
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of signal processors to many types of non-Gaussian
environments [5]. On the other hand, non-Gaus-
sian noise may actually be beneficial to a system’s
performance if appropriately modeled and treated
[19]. For this reason, there is a need to use more
general and realistic non-Gaussian models and de-
sign robust signal processing techniques that take
into account the heavy-tail nature of the data.

Recently, a statistical model of heavy-tailed in-
terference, based on the theory of alpha-stable
random processes, has been proposed for signal
processing applications [11]. The family of alpha-
stable distributions arises under very general
assumptions and describes a broad class of impul-
sive interference. It is a parsimonious statistical-
physical model defined (in its most general form) by
only four parameters that can be efficiently esti-
mated directly from the data. Furthermore, the
alpha-stable model is the only one whose members
obey the stability property and the Generalized
Central Limit Theorem. For these and other rea-
sons, explained in greater detail in Section 2.1,
probabilists, statisticians, economists, signal pro-
cessing engineers, and other scientists scattered
through a variety of disciplines have embraced al-
pha-stable processes as the model of choice for
heavy-tailed data [1].

In this paper, we address the problem of direc-
tion of arrival (DOA) estimation with an array of
sensors operating in heavy-tailed noise, under the
assumption of fully coherent incident signals. We
reduce the measured coherence by using the spatial
smoothing approach while at the same time we
mitigate the effects of the heavy-tailed background
noise environment by employing a signed-power
nonlinearity to the array data.

The paper is organized as follows: a brief review
of the alpha-stable family is undertaken in Section
2.1. In Section 2.2, we describe the adopted
signal model. In Section 3, we combine spatial
smoothing with fractional lower-order statistics to
achieve high-resolution DOA estimation of nar-
row-band coherent sources in the presence of im-
pulsive noise. In Section 5, we demonstrate the
improved performance of the proposed method via
simulation examples. Finally, in Section 6, we sum-
marize the results and present avenues of future
research.

2. Problem statement
2.1. Alpha stable distributions

In this section, we give a brief description of
alpha-stable distributions, which are well suited for
describing signals that are impulsive in nature.
A review of the state of the art on stable processes
from a statistical point of view is provided by a vol-
ume of papers edited by Cambanis et al. [3], and
a textbook by Samorodnitsky and Taqqu [14]. An
extensive review of stable processes from a signal
processing point of view can be found in a mono-
graph by Shao and Nikias [11].

The alpha-stable family is most conveniently de-
scribed by its characteristic function as follows:

(P(” — e/at =yt [1+,8 sign(r)cu(t,a)]’ (1)

where w(t,o) is tan(xm/2) if « # 1 and (2/n)log|t| if
o = 1, and sign(t)is |t] if t # 0 and O if t = 0. As seen
in (1), alpha-stable distributions are defined by four
parameters: (i) the characteristic exponent
0 < o < 2 that determines the heaviness of the tails
of the distribution, (ii) the skewness parameter
— 1 < f <1 (the distribution is symmetric when
S = 0). (ii1) the dispersion y > 0 that determines the
spread of the density, (iv) and the location para-
meter — o0 < a < oo, (which corresponds to the
mean when 1< <2 and the median when
0<a<1)[11].

In the following, we will consider only symmetric
alpha-stable (S«S) distributions for which the skew-
ness parameter is equal to zero. Noise modeled
with a SuS density takes negative and positive
values with equal probability. Fig. 1 shows plots
of SuS probability density functions for several
values of «. One can see that the S«S tails decay
at a lower rate than the Gaussian density tails.
We should note that the Gaussian distribution
is an important member of the SoS family
(when o« = 2). While the Gaussian density has ex-
ponential tails, the stable densities have algebraic
tails. The smaller the characteristic exponent « is,
the heavier the tails of the SuS density. This fact
implies that random variables following SaS distri-
butions with small characteristic exponents are
highly impulsive. It is this heavy-tail characteristic
that makes the SoS densities appropriate for
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Fig. 1. (a) SeiS probability density functions. (b) Tails of SuS probability density functions.
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modeling noise and interference which is impulsive
in nature.

The alpha-stable family shares many properties
with the Gaussian distribution that further justify
its role in data modeling. Namely, alpha-stable
densities satisfy the stability property, which states
that linear combinations of jointly stable variables
are indeed stable. Moreover, they arise as limiting
distributions of sums of independent, identically
distributed random variables via the generalized
central limit theorem.

SaS random variables possess finite pth-order
moments only for p < z, so it is clear that for all
non-Gaussian SaS variables finite second- or high-
er-order statistics do not exist. Hence, for signal
processing algorithmic development, it is necessary
to define new tools based on fractional lower-order
statistics (FLOS) [11]. For example, consider two
random variables x.y of zero location parameter
and finite pth-order moment for some possibly frac-
tional p, 0 < p < 2. Then, the pth-order correlation
of x with y is defined as [2]
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where y?71> = |y|P72y*_ Clearly, when p = 2, the
above definition reduces to the usual correlation
function between x and y. Fractional lower-order
statistics of the form (2) have been used in the
design of signal processing algorithms that are
robust to the existence of heavy-tailed noise in the
data [11,17].

2.2. Signal model

Fig. 2 shows a block diagram of the imple-
mentation of our proposed processor that suc-
cessively restores the information sequence with
techniques of spatial smoothing and impulsive in-
terference suppression. We consider a uniformly
spaced linear antenna array consisting of N ele-
ments. The distance d between two sensors is half
the operating wavelength of the antenna. The
array receives the contribution from multiple signal
paths due to the surrounding environment, com-
monly present in a mobile radio communication
scenario.

The transmitted waveform is a general mem-

$x, Yoy = Elxy P17, (2) oryless quadrature amplitude signal with complex
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Fig. 2. Proposed receiver structure based on spatial smoothing and fractional lower-order statistics.
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baseband representation

s(t) =Y Lu(t — kT), (3)
k

where {I, | represents the set of symbols, modeled
as independent identically distributed i.i.d. random
variables, u(t) is the data pulse, and T is the symbol
duration. We assume the existence of Q fully corre-
lated signals s,(t), where each signal is an at-
tenuated version of the transmitted sequence (1) by
a constant real variable, a,. Moreover, since we
consider a mobile radio scenario, a fixed phase-
shift, f, is also taken into account. This shift is due
to the relative motion between the transmitter and
the receiver. Under the narrowband operating as-
sumption, the propagation delay across the array is
much smaller than the reciprocal of the signal
bandwidth, and it follows that, by using a complex
envelop representation, the incident signal to the
nth array element, n = 1,..., N, can be written as
[13.4]

Q
Xl = Y Slfp 1o 1ss.
k=1

Q
Z aks(r)e_;.’lvrfke~_|27'.(d,‘/.)(n— 1)sin GA. (4)
k=1

Using vector notation, the array output can be
expressed as [6]

x(1) = V(Ps(t) + n, (1), )

where x() is the N x 1 array output vector and
s(t) = [s1(t),....s0(t)]" is the Q x 1 signal vector re-
ceived by the array, whose elements are the at-
tenuated and phase shifted versions of the band
limited information signal s(t).

In the following sections, we address the prob-
lem of direction-of-arrival (DOA) estimation
in the presence of heavy-tailed noise and fully
coherent incoming sources. To introduce the
reader to the use of fractional lower-order statis-
tics for robust DOA estimation, we first assume an
all S«S model both for the uncorrelated informa-
tion signal and the noise. Then, we consider a pro-
cessor that detects fully correlated communication
signals in an arbitrary heavy-tailed noise back-
ground.

3. Subspace methods based on FLOS

We start our analysis by first considering the case
of uncorrelated incoming signals. To address the
problem of parameter estimation in the presence
of heavy-tailed noise environments, the concept
of the covariation matrix was introduced in [17]
to characterize the correlation properties of the
signal/noise field. In addition, application of eigen-
decomposition methods to the covariation matrix
resulted to robust DOA estimates of independent
signal sources in S«S noise.

The covariation matrix, I'y, of the observed vec-
tor process x(f) is defined as the matrix whose
elements are the covariations [x;(r) x;(t)], of the
components of x(t), given by

k=1

Q
[xi(1) x;(0], =J< Z Ui(3)sk +nll)
S

Q Ca=1)
><< Y vi(G)sy + n:,j> u(ds),

h=1
(6)

where 4(-) is the spectral measure of the process
x;(1), and v* 71 = [p|*~ Dp* denotes the so-called
signed-power nonlinearity of the complex element
v. Assuming that the incoming signals are SxS un-
correlated with each other and with the S«S noise
vector, it is possible to obtain the following expres-
sion for the covariation matrix of the observation
vector [17]

Ix2[x(t) x)], =VI[sV*" @ +0.1 ()

where I's is the covariation matrix of the incident
signals, y, is the noise covariation, and I is the
identity matrix. Because of the Vandermonde struc-
ture of the steering matrix ¥(9), the (i, j)th element
of ¥*71(9) is the complex conjugate of the
(J.i)th element of matrix W3 [V*~ (9], =
VLIV = [(M9]5. As a result the
covariation matrix can be written as

Iy =WV + 3, 1 (®)
Observing (8), it is possible to conclude that stan-
dard subspace techniques can be applied to the
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covariation of the observation vector to extract
the bearing information. One such algorithm,
named ROC-MUSIC, was introduced and studied
in [17].

A point of interest, is the relation between the
second-order (SO) correlation matrix and the
FLOS-based covariation matrix. Note in (7) that
when o = 2, i.e., for Gaussian distributed noise, the
expression for the covariation matrix becomes
identical to the well-known expression for the
covariance matrix, where the signal and noise
covariation matrices are replaced by the signal and
noise covariance matrices, respectively. Truly, by
changing the parameter « in (7), we obtain a class of
spatial correlation matrices that result into proces-
sors that may provide considerable flexibility for
optimization purposes when operating in various
degrees of heavy-tailed noise environments. Nat-
urally, a important issue is the choice of the appro-
priate value of the non-linearity «, which has to be
estimated from the data. The interested reader may
find extensive studies on this issue in [18,7].

4. Subspace methods based on FLOS and spatial
smoothing

In a realistic communication scenario, the trans-
mitted signal s(¢) is not alpha stable but instead can
be described by the expression given in (3). Further-
more, for the case of correlated sources, the
measurement vector at the receiver may be written
as

x(t) = V(Pas(t) + n,(t) = V(Ps(t) + n,(1), 9)

where a is the Q x 1 complex constant attenuation
vector and s(t) = as(t).

To address signal coherence phenomena in an
impulsive noise background, we introduce a spatial
smoothing version of the FLOS-based ROC-MU-
SIC algorithm. The basic idea behind spatial
smoothing is to divide the array of dimension
N > Q into uniformly overlapping sub-arrays of
dimension P > @, in such a way that each sub-
array shares with an adjacent sub-array all but
one of its sensors. Let the rth sub-array consist
of the elements (r,r + 1,....r + P — 1). Then, we

can write the fractional lower-order correlation
function of the ith with the jth element of this
sub-array as

Q
<xr,xr,>p = E|:( z vr;(gk)sk = I‘lxl>
k=1

Q o=y
><< Y o, (Fn)su + n1,> ] (10)

h=1

where i,j=1,...,P are the element indices and
r=1.....N — P + 1 is the sub-array index. In (10)
and the following derivations, we drop the time
index, t, for notational convenience. By taking the
expectation operation within the first product term
of (10) we have that

L% 5, Yo

Q Q (p—1>
= E[ Z l"rl('gk)sk< Z r)‘,('9h)sh + nz,) :l
k h

=al, =1

Q <p=15
+ E[ni,( Y. 0, (S)sn + ny > j| (11)
h=1

In the first expectation term in (11), all products
with terms of the {p — 1)th power that contain
fractional powers of only the noise component, 1, ,
are zero since s, and n, are independent and
E[s,] = 0. Hence, the first expectation term of (11)
may be written as

{3 %0, )b

2 9
=Y Y (S ($) 77 VELsisi? ]
k=1h=1

Q Q
+ E[Q( Y o (F)sks Y vy,(9h)"SZ,n§,ﬂ. (12)
k h=1

(=1

where ¢(+) is a function of x, and a,b,c are three
fractional values strictly less then p — 1, with the
constraint b # 0, ¢ # 1.

A similar argument holds for the second expecta-
tion term in (11). In this case, all products with
terms of the {(p — 1)>th power which contain frac-
tional powers of the signal s, are zero since s, and
n, are independent and E[n, ] = 0. Hence, the
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second expectation contributes terms of the form
<Xr, .\',,,>; = E[nz‘ n;p-l):] = A)’n,éi,j" (]3)
since the noise components are independent and

with zero location parameter. Using (12) and (13),
we can express (11) as

Ty =08 50 Sl 3

Il
DMe

O (F0)0r, (9"~ VP E[s5,52 ]

k

=

=1
+>‘11,6i,j e @i‘j’ (14]

where

Q Q
®;; = EM Y v (9, Y v,.(shrf”si:.n;,)} (15)
k=1

b=k

we will call the corruption factors. The terms in (15)
are finite quantities since all the fractional powers
a,b,c.d are strictly less than p — 1 and n, ,n, are
SoS noise components that have finite moments of
order p < a. The effect of the corruption factor is
that of a correlated noise field which will adversely
affect the performance of the method. However, as
we demonstrate in the simulation section, the
advantage of using the FLOS formulation in the
presence of heavy-tailed environment noise out-
weighs the negative effect of the induced corruption
factors.

Eq. (14) can be written in a compact form so that
the FLOS matrix of the rth sub-array is given by

IO &Va D LD V()
+ }"VI,IP + (D(H’ (16)

where V() is the set of steering vectors for a sub-
array of length P and D is a diagonal matrix whose
Ith element is equal to e #2™@/sin®) The (j,j)th
element of ¥3*~1’(9) is the (j,i)th element of Vp(9)
to the signed power of “*~!”. Since the elements of
Vp(9) and D"~ ! have unit magnitude, it follows that

IY = VoD 'Ts DV Viu(9H + v, Ip + DY,

(17)

In practice, the FLOS matrix is evaluated as the
average of the sub-array FLOS matrices:

1 N-P+1
| (T — ry. 18
Sl ; %) (18)

r

Using (18) along with (17), we can write the FLOS
matrix as

Ty =Vp( V(D" + '3

1 N-P+1 ,
o T DY, 19

= T e

where

B 1 N-P+1 .

rsém > TFrart, (20)
= r=1

' 1 N=P=1

r”"éVP——f—l Y wle (21)
LS r=1

As a result of the spatial smoothing operation,
the matrix in (19) is nonsingular [15]. Hence,
we can apply an eigen decomposition of I'y
to achieve robust DOA estimation in a fading
environment with heavy-tailed noise. We call the
resulting method the ROC-MUSIC smoothing
algorithm.

5. Simulation results

In this section, we show comparative results on
the resolution capability of ROC-MUSIC smooth-
ing versus ROC-MUSIC, MUSIC and MUSIC
smoothing in several scenarios of signal and noise
environments. In our simulations, we used a linear
array with 12 sensors spaced a half-wavelength
apart. The spatial smoothing techniques employed
overlapped sub-arrays each containing six sensors.
A total of M = 500 snapshots for every experiment
is available to the algorithms.

Four multipath signals impinge on the array
from directions &= [30°, —40°,60°, — 15°]. The
relative power attenuation factors |a,|* for the four
paths were chosen to be { —3,0, —2, —6 dB}. The
constant phase shifts of a, were taken uniformly



