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Groups in which each subgroup is
commensurable with a normal subgroup

to the memory of Jim Wiegold

Carlo Casolo, Ulderico Dardano, Silvana Rinauro

Abstract

A group G is a cn-group if for each subgroup H of G there exists
a normal subgroup N of G such that the index |HN : (H ∩ N)|
is finite. The class of cn-groups contains properly both the well-
known classes of core-finite groups and of finite-by-abelian groups. In
the present paper it is shown that a cn-group whose periodic images
are locally finite is finite-by-abelian-by-finite. Then such groups are
described into some details by considering automorphisms of abelian
groups. Finally, it is shown that if G is a locally graded group with
the property that the above index is bounded independently of H,
then G is finite-by-abelian-by-finite. 1

1 Introduction

In a celebrated paper, B.H.Neumann [9] showed that for a group G the
property that each subgroup H has finite index in a normal subgroup of G
(i.e. |HG : H| is finite) is equivalent to the fact that G has finite derived
subgroup (G is finite-by-abelian).

The class of groups with a dual property was considered in [1]. A group
G is said a cf-group (core-finite) if each subgroup H contains a normal
subgroup ofG with finite index inH (i.e. |H : HG| is finite). As Tarski groups
are cf, a complete classification of cf-groups seems to be much difficult.
However, in [1] and [11] it has been proved that a cf-group G whose periodic
quotients are locally finite is abelian-by-finite and there exists an integer n
such that |H : HG| ≤ n for all H ≤ G (say that G is bcf, boundedly cf).

1Key words and phrases: locally finite, core-finite, subnormal, inert, cf-group.
2010 Mathematics Subject Classification: Primary 20F24, Secondary 20F18, 20F50, 20E15
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Moreover a locally graded bcf-group is abelian-by-finite. Furthermore, an
easy example of a metabelian (and even hypercentral) group which is cf but
not bcf is given. It seems to be a still open question whether every locally
graded cf-group is abelian-by-finite. Recall that a group is said abelian-by-
finite if has an abelian subgroup with finite index and that a group is locally
finite (locally graded, resp.) if each finitely generated subgroup is finite (has
a proper subgroup with finite index, resp.).

With the aim of considering the above two classes in a common frame-
work, recall that two subgroups H and K of a group G are said commen-
surable if and only if H ∩ K has finite index in both H and K. This is an
equivalence relation and will be denoted by ∼. Clearly, if H ∼ K, then
(H ∩ L) ∼ (K ∩ L) and HM ∼ KM for each L ≤ G and M CG.

In the present paper we consider the class of cn-groups, that is groups
in which each subgroup is commensurable to a normal subgroup. Into details,
for a subgroup H of a group G define δG(H) to be the minimum index
|HN : (H ∩N)| with N CG. Then G is a cn-group if and only if δG(H) is
finite for all H ≤ G. Clearly both finite-by-abelian and cf groups are cn.
Moreover, the class of cn-groups is both subgroup and quotient closed.

Note that if a subgroup H of a group G is commensurable with a normal
subgroup N , then S := (H ∩ N)N has finite index in H. Thus the class of
cn-groups is contained in the class of sbyf-groups, that is, groups in which
each subgroup H is subnormal-by-finite; that is to say that H contains a
subnormal subgroup S of G such that the index |H : S| is finite. It is known
that locally finite sbyf-groups are (locally nilpotent)-by-finite (see [3]) and
nilpotent-by-Chernikov (see [6]).

Recall also that from results in [4] it follows that for an abelian-by-finite
group properties cn and cf are equivalent. However, for each prime p there
is a nilpotent p-group with property cn which is neither finite-by-abelian nor
abelian-by-finite, see Proposition 2.2 below.

Our main result is the following.

Theorem A Let G be a cn-group such that every periodic image of G is
locally finite. Then G is finite-by-abelian-by-finite.

Here by finite-by-abelian-by-finite group we mean a group which has a
subgroup which has finite index and is finite-by-abelian. The proof of The-
orem A will be completed at the end of Sect. 5. Before, in Sect. 3, we
study the action of a cn-group on its abelian sections, see Theorem 3.2 and
Corollary 3.3. Then in Sect. 4 we consider also bcn-groups, that is, groups
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G for which there is n ∈ N such that δG(H) ≤ n for all H ≤ G. We will
show the following theorem.

Theorem B Let G be a finite-by-abelian-by-finite group.
i) if G is cn, then the fc-center of G has finite index and is finite-by-abelian;
ii) G is cn if and only if it is finite-by-cf.
iii) G is bcn if and only if it is finite-by-bcf.

It follows that that if the group G is periodic and finite-by-abelian-by-
finite, then G is bcn if and only if it is cn. Then we consider non-periodic
finite-by-abelian-by-finite bcf- and bcn-groups by Proposition 4.4.

The more restrictive property bcn reveals fruitful when we consider the
wider class of locally graded groups.

Corollary A locally graded bcn-group is finite-by-abelian-by-finite.

Our notation is mostly standard and we refer to [10].

2 Preliminaries

We point out a sufficient condition for a group to be cn (or even bcn).

Proposition 2.1 Let G be a group with a normal series G0 ≤ G1 ≤ G,
where G0 and G/G1 have finite order m and n resp. If H ≤ G, then H is com-
mensurable with H1 := (H ∩G1)G0 ≤ G1 and δG(H) ≤ mn · δG/G0(H1/G0).

In particular, if each subgroup of G1/G0 is commensurable with a normal
subgroup of G/G0, then G is a cn-group. �

Now we give examples of non trivial cn-groups.

Proposition 2.2 For each prime p there is a nilpotent p-group with property
bcn, which is not abelian-by-finite nor finite-by-abelian.

Proof. Consider a sequence Pn of isomorphic groups with order p4 defined
by Pn := 〈xn, yn | xp

3

n = ypn = 1, xynn = x1+p2

n 〉 = 〈xn〉 o 〈yn〉 where clearly
P ′n = 〈xp2n 〉 has order p. Let P := Drn∈N Pn and consider the automorphism
γ of P such that xγn = x1+p

n and yγn = yn, for each n ∈ N. Clearly, γ has
order p2, acts as the automorphism x 7→ x1+p on P/P ′ (which has exponent
p2) and acts trivially on P ′ (which is elementary abelian). Finally let N :=

〈xp
2

0 x
p2

n | n ∈ N〉. Then N is a subgroup of P ′ with index p. Thus the p-group
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G := (P o 〈γ〉)/N is a bcn-group by Proposition 2.1 applied to the series
P ′/N ≤ P/N ≤ G.

We have that G′ is infinite, since for each n we have xpn = [xn, γ] ∈
[Pn, γ] > P ′n. Moreover, we have that gN ∈ Z(P/N) if and only if ∀i [g, Pi] ≤
N , and N ∩ Pi = 1. Thus Z(P/N) = Z(P )/N where Z(P ) = Drn 〈xpn〉 has
infinite index in P .

If, by contradiction, G is abelian-by-finite, then there is an abelian normal
subgroup A/N of P/N with finite index. Then for some m ∈ N we have
P = AF , where F = Drn<m Pn is a finite normal sugroup of P . Therefore
P/N is center-by-finite, a contradiction. �

3 Automorphisms of abelian groups

As in [4], for the action of a group Γ on a group A, we consider the following
properties:

p) ∀H ≤ A H = HΓ;
ap) ∀H ≤ A |H/HΓ| <∞;
bp) ∀H ≤ A |HΓ/H| <∞;
cp) ∀H ≤ A ∃K = KΓ ≤ A such that H ∼ K, (H, K are commensurable).

When p holds, one says that Γ acts on A by means of power automor-
phisms or that A is Γ-hamiltonian ([10],[1]). Recall that if γ is a power
automorphism of an abelian p-group A, then there exists a p-adic integer α
such that aγ = aα for all a ∈ A (see [10] for details). Here aα stands for an,
where n ∈ N is congruent to α modulo the order of a. On the other hand,
a power automorphism of a non-periodic abelian group is either the identity
or the inversion map.

Obviously both ap and bp imply cp. Moreover, these three properties
are equivalent, provided A is abelian and Γ is finitely generated, while they
are in fact different in the general case even when A and Γ are elementary
abelian p-groups (see [4]). On the other hand, the properties ap and bp have
previously characterized in [5] and [2] resp., as we are going to recall. To
shorten statements we define a further property:

p̃) Γ has p on the factors of a Γ-series 1 ≤ V ≤ D ≤ A where
i) V is free abelian with finite rank,
ii) D/V is divisible periodic with finite total rank,
iii) A/D is periodic and has finite p-exponent for each prime p ∈ π(D/V ).
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Theorem 3.1 [5],[2] Let Γ be group acting on an abelian group A. Then:
a) Γ has ap on A if and only if there is a Γ-subgroup A1 such that A/A1 is
finite and Γ has either p or p̃ on A1.
b) Γ has bp on A if and only if there is a Γ-subgroup A0 such that A0 is
finite and Γ has either p or p̃ on A/A0.

By next statement we give a characteration of the property cp along the
same lines.

Theorem 3.2 Let Γ be group acting on an abelian group A. Then:
c) Γ has cp on A if and only if there are Γ-subgroups A0 ≤ A1 ≤ A such
that A0 and A/A1 are finite and Γ has either p or p̃ on A1/A0.

The proof of Theorem 3.2 is at the end of this section. Here we deduce a
corollary.

Corollary 3.3 For a group Γ acting on an abelian group A, the following
are equivalent:
a) Γ has ap on A/A0 for a finite Γ-subgroup A0 of A,
b) Γ has bp on a finite index Γ-subgroup A1 of A,
c) Γ has cp on A. �

Let us recall some basic facts from [4] where inertial automorphisms of
abelian groups have been introduced. These are automorphisms γ of a group
G such that Hγ ∼ H for all H ≤ G. Clearly, if Γ has cp on G and γ ∈ Γ,
then γ is inertial.

Proposition 3.4 Let Γ be group acting on a locally nilpotent periodic group
A. Then Γ has ap, bp, cp resp. on A if and only if Γ has ap, bp, cp resp.
on finitely many primary components of A and p on all the other ones. �

Lemma 3.5 Let Γ be a group acting on an abelian group A. If Γ has cp,
then:
i) Γ has p on the maximum periodic divisible subgroup of A.
ii) if A is torsion-free, then each γ ∈ Γ acts by conjugation on A by either
the identity or the inversion map. �

Now we prove some lemmas. In the first one we do not require that the
group A is abelian.
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Lemma 3.6 Let Γ be a group acting on a group A. If Γ has cp, then Γ has
bp on the subgroup X := { a ∈ A | 〈a〉Γ is finite} of A.

Proof. For any H ≤ X there is K such that H ∼ K = KΓ ≤ A. Then
there is finite subgroup F ≤ X such that H ≤ KF . Thus HΓ ≤ KF Γ and
|HΓ : H| ≤ |F Γ| · |HK : H| is finite. �

Lemma 3.7 Let Γ be a group acting on a p-group A which is the direct
product of cyclic groups. If Γ has cp, then the following subgroup has finite
index in A:

X := { a ∈ A | 〈a〉Γ is finite}

Proof. Assume by contradiction that A/X is infinite.
Let us see that, by elementary facts, there is a sequence (an) of elements

of A such that
1) 〈an|n ∈ N〉 = Drn∈N 〈an〉,
2) AI/AI∩X is infinite, for each infinite subset I of N, where AI := 〈ai|i ∈ I〉.

In fact, if A/X has finite rank, it has a Prüfer subgroup Q/X. Let Y be a
countable subgroup such that Q = Y X. By Kulikov Theorem (see [10]) Y is
the direct product of cyclic groups, so that we may choose elements an ∈ Y
such that 〈an|n ∈ N〉 = Drn∈N 〈an〉 ≤ Y and |anX| < |an+1X|. The claim
holds. Similarly, if A/X has infinite rank, we may consider its socle S/X and
consider a countable subgroup Y such that S = Y X. Then we may choose
elements an ∈ Y which are independent mod X and generate their direct
product as in (1).

We claim now that there are sequences of infinite subsets In, Jn of N and
Γ-subgroups Kn ≤ A such that for each n ∈ N:
3) In ∩ Jn = ∅ and In+1 ⊆ Jn
4) Kn ∼ AIn
5) (K1 . . . Ki) ∩ (AI1 . . . AIn) ≤ (AI1 . . . AIi), ∀i ≤ n.

Proceed by induction on n. Choose an infinite subset I1 of N such that
J1 := N\I1 is infinite. By cp-property there exists K1 = KΓ

1 commensurable
with AI1 .

Suppose we have defined Ij, Jj Kj for 1 ≤ j ≤ n such that 3-5 holds.
Since (K1 . . . Kn) ∼ (AI1 . . . AIn), there is m ∈ N such that

6) (K1K2 . . . Kn) ∩ AN ≤ (AI1AI2 . . . AIn)〈a1, . . . , am〉.
Let In+1 and Jn+1 be disjoint infinite subsets of Jn \ {1, . . . ,m}. By cp-
property there exists Kn+1 = KΓ

n+1 commensurable with AIn+1 . By the choice
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of In+1 it follows that

7) (K1 . . . Ki) ∩ (AI1 . . . AIn+1) ≤ (K1 . . . Ki) ∩ (AI1 . . . AIn) ∀i ≤ n
and so (5) holds for n+ 1, as whished. The claim is proved.

Note that by (2) and (5) it follows that AIn/AIn ∩X is infinite for each
n ∈ N and that also the following property holds

8) (K1K2 . . . Kn) ∩ Ā ≤ (AI1AI2 . . . AIn) ∀n, where Ā := Drn∈NAIn .
Now for each n ∈ N, choose an element bn ∈ (AIn∩Kn)\X. Then we have

B := 〈bn | n ∈ N〉 = Drn 〈bn〉, where 〈bn〉Γ is infinite and 〈bn〉Γ ≤ Kn ∼ AIn ,
so that
9) 〈bn〉Γ ∩ AIn is infinite for each n.

Since there exists B0 = BΓ
0 ∼ B, we may take

- B∗ := (B0 ∩B)Γ = (B∗ ∩B)Γ ≤ BΓ where B∗ ∼ B.

Now B∗/(B∗∩B) and B/(B∗∩B) are both finite and there is n ∈ N such
that if Bn := 〈b1, . . . , bn〉 we have
- (B∗ ∩B)Γ = B∗ ≤ (B∗ ∩B)BΓ

n and
- B = (B∗ ∩B)Bn.

Since bn ∈ Kn for each n, we have Bn ≤ K̄n := K1K2 . . . Kn and
- BΓ = (B∗ ∩B)ΓBΓ

n ≤ (B∗ ∩B)BΓ
n ≤ (B∗ ∩B)K̄n ≤ BK̄n, so that

- BΓ ∩ Ā ≤ BK̄n ∩ Ā = B(K̄n ∩ Ā) ≤ BAI1AI2 . . . AIn by (8) above.
Thus

- 〈bn+1〉Γ∩AIn+1 ≤ BΓ∩AIn+1 ≤ (BAI1AI2 . . . AIn)∩AIn+1 = 〈bn+1〉 is finite,

a contradiction with (9). �

Lemma 3.8 Let Γ be a group acting on an abelian periodic reduced group
A. If Γ has cp, then there are Γ-subgroups A0 ≤ A1 ≤ A such that A0 and
A/A1 are finite and Γ has p on A1/A0.

Proof. By Proposition 3.4 it is enough to consider the case when A is a
p-group. If A is the direct product of cyclic groups, by Lemma 3.7 we have
that A1 := { a ∈ A | 〈a〉Γ is finite} has finite index in A. Further, by Lemma
3.6, Γ has bp on A1. Then the statement follows from Theorem 3.1.

Let A be any reduced p-group and B∗ be a basic subgroup of A. Then
there is B = BΓ ∼ B∗. Since A/B∗ is divisible, then the divisible radical of
A/B has finite index. Thus we may assume that A/B is divisible. By Kulikov
Theorem (see [10]), also B is a direct product of cyclic groups, therefore by
the above there are Γ-subgroups B0 ≤ B1 ≤ B such that B0 and B/B1 are
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finite and Γ has p on B1/B0. We may assume B0 = 1. Also, since A/B1 is
finite-by divisible, it is divisible-by-finite and we may assume it is divisible.

Let γ ∈ Γ and α be a p-adic integer such that xγ = xα for all x ∈ B1.
Consider the endomorphism γ−α of A and note that B1 ≤ ker(γ−α). Thus
A/ ker(γ − α) ' im(γ − α) is both divisible and reduced, hence trivial. It
follows γ = α on the whole A. �

Proof of Theorem 3.2 For the sufficiency of the condition note that
for any subgroup H ≤ A we have H ∼ H ∩ A1 and the latter is in turn
commensurable with a Γ-subgroup since Γ has bp on A1 by Theorem 3.1.

Concerning necessity, we first prove the statement when A is periodic.
Let A = D × R1, where D is divisible and R1 is reduced. Then there is a
R = RΓ ∼ R1. ThusDR andD∩R are Γ-subgroups ofA with finite index and
order resp. Then we can assume A = D×R. LetX := { a ∈ A | 〈a〉Γ is finite}.
Clearly D ≤ X, as Γ has p on D by Lemma 3.5. On the other hand, X ∩R
has finite index in R by Lemma 3.8. It follows A/X is finite and by Lemma
3.6 and Theorem 3.1 the statement holds.

In the non-periodic case, note that if V0 is a maximal free subgroup of A
(hence A/V0 is periodic), then there is V1 = V Γ

1 ∼ V0. Let n := |V1/(V0∩V1)|.
Thus by applying Lemma 3.5 we have
- there is a free abelian Γ-subgroup V := V n

1 such that A/V is periodic and
each γ ∈ Γ acts on V by either the identity or the inversion map.

Suppose that V has finite rank. Consider now the action of Γ on the
periodic group A/V and apply the above. Then there is a series V ≤ A0 ≤
A1 ≤ A such that A0/V and A/A1 are finite and Γ has either p or p̃ on A1/A0.
Since A0 has finite torsion subgroup T we can factor out T and assume
A0 = V . Then Γ has either p or p̃ on A1 as straightforward verification
shows.

Suppose finally that V has infinite rank. Let V2 ≤ V be such that V/V2

is divisible periodic and its p-component has infinite rank for each prime p.
We may assume V := V2. By the above case when A is periodic, there is a
Γ-series V ≤ A0 ≤ A1 ≤ A such that A0/V and A/A1 are finite and Γ has p
on A1/A0. We may factor out the torsion subgroup of A0, as it is finite, and
assume A0 = V .

Again let V2 ≤ V be such that V/V2 is divisible periodic and its p-
component has infinite rank for each prime p. Let γ ∈ Γ and αp be a
p-adic integer such that xγ = xαp for all x in the p-component of A1/V . Let
ε = ±1 be such that xγ = xε for all x ∈ V . By Lemma 3.5, γ has p on
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the maximum divisible subgroup Dp/V2 of the p-component of A1/V2. Thus
αp = ε on Dp/V2. Therefore xγ = xε for all x ∈ V and for all x ∈ A1/V .
We claim that aγ = aε for each a ∈ A1. To see this, for any a ∈ A1 consider
n ∈ N such that an ∈ V . Then there is v ∈ V such that aγ = aεv. Hence
anε = (an)γ = (aγ)n = (aεv)n = anεvn. Thus vn = 1. Therefore, as V is
torsion-free, we have v = 1, as whished. �

4 Abelian-by-finite CN-groupsand Theorem B

Locally finite cf-groups are known to be abelian-by-finite and bcf (see [1]).

Proposition 4.1 Let G be an abelian-by-finite group.
i) if G is cn, then G is cf;
ii) if G is bcn, then G is bcf.

Proof. Let A be a normal abelian subgroup with finite index r. Then each
H ≤ A has at most r conjugates in G. If δG(H) ≤ n < ∞ then for each
g ∈ G we have |H : (H ∩Hg)| ≤ 2δG(H) ≤ 2n hence |H/HG| ≤ (2n)r. More
generally, if H is any subgroup of G, then |H/HG| ≤ r(2n)r. �

We state now a key fact about non-periodic cn-grups.

Lemma 4.2 Let G be a cn-group and A = A(G) its subgroup generated by
all infinite cyclic normal subgroups. Then G/A is periodic, A is abelian and
each g ∈ G acts on A by either the identity or the inversion map, hence
|G/CG(A)| ≤ 2.

Proof. For any x ∈ G there is N C G which is commensurable with 〈x〉.
Then n := |N : (N ∩ 〈x〉)| is finite. Thus Nn! ≤ 〈x〉 where Nn! C G. Hence
G/A is periodic.

It is clear that A is abelian. Let g ∈ G. If 〈a〉CG and a has infinite order,
then there is εa = ±1 such that ag = aεa . On the other hand, by Lemma 3.5,
there is ε = ±1 such that for each a ∈ A there is a periodic element ta ∈ A
such that ag = aεta. It follows aεa−ε = t. Therefore εa = ε is independent of
a, as wished. �

Lemma 4.3 Let G be an fc-group. If G is a cn-group then G is finite-by-
abelian.
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Proof. Let H be any subgroup of G. We shall prove that |HG : H| is finite.
Consider A = A(G) as in Lemma 4.2. Then H ∩ A C G and H/A ∩ H is
periodic. Hence we may assume H is periodic, that is, H cointained in the
torsion subgroup of the fc-group G. Our claim follows then from Lemma
3.6. �

Proof of Theorem B Let G be a cn-group and G0 ≤ G1 ≤ G be a normal
series such that G1/G0 is abelian and both G0 and G/G1 are finite. Then
G has cp on G1/G0. By Corollary 3.3, the group G has bp on a subgroup
A1/G0 ≤ G1/G0 with finite index in G1/G0. Thus A1/G0 is contained in the
fc-centre of G/G0. Hence A1 is contained in the fc-centre of F of G. So
that G/F is finite. On the other hand, from Lemma 4.3 it follows that F ′ is
finite.

Finally, (ii) and (iii) follow from Proposition 2.1 and Proposition 4.1. �

Let us characterize bcf-groups among abelian-by-finite cf-groups.

Proposition 4.4 Let G be a non-periodic group with an abelian normal sub-
group A with finite index. Then the following are equivalent:
i) G is a bcf-group;
ii) G is a cf-group and there is B ≤ A such that B has finite exponent,
B CG and each g ∈ G acts by conjugation on A/B by either the identity or
the inversion map.

Proof. Let T be the torsion subgroup of A. By Lemma 3.5, each g ∈ G acts
on A/T as the automorphism x 7→ xεg where εg = ±1. Then the equivalence
of (i) and (ii) holds with B := 〈Ag−εg | g ∈ G〉, by Theorem 3 of [4]. �

5 Proof of Theorem A

Our first satement in this section is a reduction to nilpotent groups.

Lemma 5.1 A soluble p-group G with the property cn is nilpotent-by-finite.

Proof. By Theorem 3.2, one may refine the the derived series of G to a
finite G-series S such that G has p on each infinite factor of S. Recall that
a p-group of power automorphisms of an abelian p-group is finite (see [10]).
Then the stability group S ≤ G of the series S, that is, the intersection of
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the centralizers in G of the factors of the series, has finite index in G. On
the other hand, by a theorem of Ph.Hall, S is nilpotent. �

We recall now an elementary property of nilpotent groups.

Lemma 5.2 Let G be a nilpotent group with class c. If G′ has finite exponent
e, then G/Z(G) has finite exponent dividing ec.

Proof. Argue by induction on c, the statement being clear for c = 1.
Assume c > 1 and that G/Z has exponent dividing ec−1, where Z/γc(G) :=
Z(G/γc(G)). Then for all g, x ∈ G we have [ge

c−1
, x] ∈ γc(G) ≤ G′ ∩ Z(G).

Therefore 1 = [ge
c−1
, x]e = [ge

c
, x], and ge

c ∈ Z(G), as claimed. �

Next lemma follows easily from Lemma 6 in [8].

Lemma 5.3 Let G be a nilpotent p-group and N a normal subgroup such
that G/N is an infinite elementary abelian group. If H and U are finite
subgroup of G such that H ∩U = 1, there exists a subgroup V of G such that
U ≤ V , H ∩ V = 1 and V/N ∩ V is infinite. �

We deduce a technical lemma which is a tool for our pourpose.

Lemma 5.4 Let G be a nilpotent p-group and N be a normal subgroup such
that G/N is an infinite elementary abelian group. If N contains the fc-
center of G and G′ is abelian with finite exponent, then there are subgroups
H, U of G such that H ∩ U = 1, with injective maps n 7→ hn ∈ H and
(i, n) 7→ ui,n ∈ [G, h−1

i hn] ∩ U , where i, n ∈ N, i < n.

Proof. Let us show that for each n ∈ N there is an (n + 1)-uple vn :=
(hn, u0,n, u1,n, . . . , un−1,n) of elements of G such that:

1. {h1, . . . , hn} is linearly independent modulo N ;

2. ui,n ∈ [G, h−1
i hn] ∀i ∈ {0, . . . , n− 1};

3. {uj,h | 0 ≤ j < k ≤ n} is Z-independent in G′;

4. Hn∩Un = 1, whereHn := 〈h1, . . . , hn〉 and Un := 〈uj,h | 0 ≤ j < k ≤ n〉.

11



Then the statement is true for H :=
⋃
n∈N

Hn and U :=
⋃
n∈N

Un.

Let h0 := 1 and choose h1 ∈ G \ N . Since N ≥ F , the fc-center of G,
we have that y1 has an infinite numbers of coniugates in G, hence [G, h1] is
infinite and residually finite. Thus we may choose u0,1 ∈ [G, h1] such that
〈u0,1〉 ∩ 〈h1〉 = 1.

Assume then that we have defined vi for i ≤ n, that is, we have elements
h0, . . . , hn, uj,k, with 0 ≤ j < k ≤ n such that conditions 1-4 hold. To define
an adequate vn+1, note that by Lemma 5.3 we have that there exists Vn ≤ G
such that Hn ≤ Vn, Un ∩ Vn = 1 and VnN/N is infinite. Then choose
i) hn+1 ∈ Vn \NUnHn.

Note that hn+1 6∈ FHn ≤ NHn, so that {h1, . . . , hn+1} is independent mod F .
In particular ∀i ∈ {0, . . . , n}, h−1

i hn+1 6∈ F , hence also [G, h−1
i hn+1] is infinite.

Since G′ is residually finite, we may recursively choose u0,n+1, . . . , un,n+1 such
that ∀i ∈ {0, . . . , n}
ii) ui,n ∈ [G, h−1

i hn]
iii) 〈ui,n+1〉 ∩ Un〈uh,n+1 | 0 ≤ h < i〉Hn+1 = 1
Then properties 1-3 hold for vn+1. Finally suppose there are h ∈ Hn, u ∈ Un,
s, t0, . . . , tn ∈ Z such that
iii) a = hhsn+1 = uut10,n+1 · · ·utnn,n+1 ∈ Hn+1 ∩ Un+1.

Then from (iii) it follows utnn,n+1 = . . . = ut10,n+1 = 1. Hence a = hhsn+1 = u ∈
Vn ∩ Un = 1 and 4 holds. �

Lemma 5.5 Let G be a nilpotent p-group. If G is cn, then G′ has finite
exponent.

Proof. If, by contradiction, G′ has infinite exponent, then the same happens
to the abelian group G′/γ3(G) and there is N such that G′ ≥ N ≥ γ3(G)
and G′/N is a Prüfer group. We may assume N = 1, that is, G′ itself is
a Prüfer group and G′ ≤ Z(G). Let us show that for any H ≤ G we have
|HG : H| < ∞, hence G′ is finite, a contradiction. In fact we have that, by
cn-property there is K C G such that K ∼ H. Thus H has finite index in
HK and we can also assume H = HK, that is, H/HG is finite. Thus, we can
assume HG = 1 and H ∩G′ = 1, that is, H is finite with order pn and HG′ is
an abelian Chernikov group. It follows that H is contained in the n-th socle
S of HG′ CG, where S is finite and normal in G, as whished. �

Lemma 5.6 Let G be a nilpotent p-group. If G is cn, then G is finite-by-
abelian-by-finite.
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Proof. Assume, by contradiction, G is a counterexample. Then both G′

and G/Z(G) are infinite. However, they have finite exponent by Lemmas 5.5
and 5.2. Moreover, even the fc-center F of G has infinite index by Lemma
4.3. On the other hand, G/F has finite exponent, since F ≥ Z(G).

Then N := FGpG′ has infinite index in G, otherwise the abelian group
G/FG′ has finite rank and finite exponent, hence it is finite. This implies
that the nilpotent group G/F is finite, a contradiction.

If G′ is abelian we are in a condition to apply Lemma 5.4 and get infinite
elements and subgroups hn ∈ H, ui,n ∈ U as in that statement. By cn-
property there is K such that H ∼ KCG. So that the set {hn(H ∩K) / n ∈
N} is finite. Hence there is i ∈ N and an infinite set I ⊆ N such that for each
n ∈ I we have h−1

i hn ∈ H ∩K and ui,n ∈ U ∩ [G,H ∩K] ≤ U ∩K. Therefore
U ∩K is infinite, in contradiction with U ∩K ∼ U ∩H = 1.

For the general case, proceed by induction on the nilpotency class c > 1
of G and assume that the statement is true for G/Z(G) and even that this
is finite-by-abelian. Then there is a subgroup L ≤ G such that G/L is
abelian and L/Z(G) is finite. Thus L′ is finite and, by the above, G/L′ is
finite-by-abelian-by-finite, a contradiction. �

Proof of Theorem A. Recall from the Introduction that all subgroups of
G are subnormal-by-finite. Thus, by above quoted results in [6] and [3] resp.,
we may assume that G is locally nilpotent and soluble

Assume first G is periodic. Then, by Lemma 3.4, only finitely many
primary components are non-abelian. Thus we may assume G is a p-group
and apply Lemma 5.1 and Lemma 5.6. It follows that G is finite-by-abelian-
by-finite.

To treat the general case, consider A = A(G) as in Lemma 4.2. We may
assume A is central in G. Let V be a torsion-free subgroup of A such that
A/V is periodic. Then G/V is locally finite and we may apply the above.
Thus there is a series V ≤ F ≤ G1 ≤ G such that G acts trivially on V ,
G1/G0 is abelian, while G0/V and G/G1 are finite. Then we can assume
G = G1 and note that the stabilizer S of the series has now finite index.
Since S is nilpotent (by Ph.Hall Theorem) we can assume that G = S is
nilpotent. If T is the torsion subgroup of G, then V T/T is contained in
the center of G/T . Since all factor of the upper central series of G/T are
torsion-free we have G/T is abelian. Thus G′ ≤ T ∩G0 is finite. �

Proof of Corollary. If the statement is false, by Theorem A we may assume
there is a counterexample G periodic and not locally finite. Also we may
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assume G is finitely generated and infinite. Let R be the locally finite radical
of G. By Theorem A again, R is finite-by-abelian-by-finite. By Theorem
B(i), there is a finite subgroup G0 C G such that R/G0 is abelian-by-finite.
We may assume G0 = 1, so that R is abelian-by-finite.

We claim that Ḡ := G/R has finite exponent at most (n + 1)! where n
is such that n ≥ δG(H) for each H ≤ G . In fact, for each x ∈ Ḡ, there is
N̄ C Ḡ such that |N̄ : (N̄ ∩ 〈x〉)| ≤ n. Thus N̄n! ≤ 〈x〉 and N̄n! CG. Hence
N̄n! = 1 and xn·n! = 1.

By the positive answer (for all exponents) to the Restricted Burnside
Problem, there is a positive integer k such that every finite image of Ḡ has
order at most k. Since Ḡ is finitely generated, this means that the finite
residual K̄ of Ḡ has finite index and is finitely generated as well. Since also
Ḡ is locally graded (see [7]), we have K̄ = 1 and Ḡ is finite. Therefore G is
abelian-by-finite, a contradiction. �
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versità della Basilicata, Via dell’Ateneo Lucano 10 - Contrada Macchia Romana,
I-85100 Potenza, Italy. email: silvana.rinauro@unibas.it

15


