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Groups in which each subgroup is

commensurable with a normal subgroup
to the memory of Jim Wiegold

Carlo Casolo, Ulderico Dardano, Silvana Rinauro

Abstract

A group G is a CN-group if for each subgroup H of G there exists
a normal subgroup N of G such that the index |[HN : (H N N)|
is finite. The class of CN-groups contains properly both the well-
known classes of core-finite groups and of finite-by-abelian groups. In
the present paper it is shown that a CN-group whose periodic images
are locally finite is finite-by-abelian-by-finite. Then such groups are
described into some details by considering automorphisms of abelian
groups. Finally, it is shown that if G is a locally graded group with
the property that the above index is bounded independently of H,
then G is finite-by-abelian-by-finite. !

1 Introduction

In a celebrated paper, B.H.Neumann [9] showed that for a group G the
property that each subgroup H has finite index in a normal subgroup of G
(i.e. |HE : H| is finite) is equivalent to the fact that G has finite derived
subgroup (G is finite-by-abelian).

The class of groups with a dual property was considered in [1]. A group
G is said a CF-group (core-finite) if each subgroup H contains a normal
subgroup of G with finite index in H (i.e. |H : Hg| is finite). As Tarski groups
are CF, a complete classification of CF-groups seems to be much difficult.
However, in [1] and [11] it has been proved that a CF-group G whose periodic
quotients are locally finite is abelian-by-finite and there exists an integer n
such that |H : Hg| < n for all H < G (say that G is BCF, boundedly CF).

'Key words and phrases: locally finite, core-finite, subnormal, inert, CF-group.
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Moreover a locally graded BCF-group is abelian-by-finite. Furthermore, an
easy example of a metabelian (and even hypercentral) group which is CF but
not BCF is given. It seems to be a still open question whether every locally
graded CF-group is abelian-by-finite. Recall that a group is said abelian-by-
finite if has an abelian subgroup with finite index and that a group is locally
finite (locally graded, resp.) if each finitely generated subgroup is finite (has
a proper subgroup with finite index, resp.).

With the aim of considering the above two classes in a common frame-
work, recall that two subgroups H and K of a group G are said commen-
surable if and only if H N K has finite index in both A and K. This is an
equivalence relation and will be denoted by ~. Clearly, if H ~ K, then
(HNL)~(KNL)and HM ~ KM for each L < G and M < G.

In the present paper we consider the class of CN-groups, that is groups
in which each subgroup is commensurable to a normal subgroup. Into details,
for a subgroup H of a group G define 6¢(H) to be the minimum index
|[HN : (HN N)| with N < G. Then G is a CN-group if and only if d¢(H) is
finite for all H < G. Clearly both finite-by-abelian and CF groups are CN.
Moreover, the class of CN-groups is both subgroup and quotient closed.

Note that if a subgroup H of a group G is commensurable with a normal
subgroup N, then S := (H N N)y has finite index in H. Thus the class of
CN-groups is contained in the class of sbyf-groups, that is, groups in which
each subgroup H is subnormal-by-finite; that is to say that H contains a
subnormal subgroup S of G such that the index |H : S| is finite. It is known
that locally finite sbyf-groups are (locally nilpotent)-by-finite (see [3]) and
nilpotent-by-Chernikov (see [6]).

Recall also that from results in [4] it follows that for an abelian-by-finite
group properties CN and CF are equivalent. However, for each prime p there
is a nilpotent p-group with property CN which is neither finite-by-abelian nor
abelian-by-finite, see Proposition 2.2 below.

Our main result is the following.

Theorem A Let G be a CN-group such that every periodic image of G 1is
locally finite. Then G s finite-by-abelian-by-finite.

Here by finite-by-abelian-by-finite group we mean a group which has a
subgroup which has finite index and is finite-by-abelian. The proof of The-
orem A will be completed at the end of Sect. 5. Before, in Sect. 3, we
study the action of a CN-group on its abelian sections, see Theorem 3.2 and
Corollary 3.3. Then in Sect. 4 we consider also BCN-groups, that is, groups



G for which there is n € N such that §g(H) < n for all H < G. We will
show the following theorem.

Theorem B Let G be a finite-by-abelian-by-finite group.

i) if G is CN, then the FC-center of G has finite index and is finite-by-abelian;
ii) G is CN if and only if it is finite-by-CF.

i11) G is BCN if and only if it is finite-by-BCF.

It follows that that if the group G is periodic and finite-by-abelian-by-
finite, then G is BCN if and only if it is ¢N. Then we consider non-periodic
finite-by-abelian-by-finite BCF- and BCN-groups by Proposition 4.4.

The more restrictive property BCN reveals fruitful when we consider the
wider class of locally graded groups.

Corollary A locally graded BCN-group is finite-by-abelian-by-finite.

Our notation is mostly standard and we refer to [10].

2 Preliminaries
We point out a sufficient condition for a group to be CN (or even BCN).

Proposition 2.1 Let G be a group with a normal series Go < G; < G,
where Gy and G /G4 have finite order m andn resp. If H < G, then H is com-
mensurable with Hy := (H N G1)Go < Gy and dq(H) < mn - 6¢/a,(H1/Go).

In particular, if each subgroup of G1/Gy is commensurable with a normal
subgroup of G /Gy, then G is a CN-group. 0

Now we give examples of non trivial CN-groups.

Proposition 2.2 For each prime p there is a nilpotent p-group with property
BCN, which is not abelian-by-finite nor finite-by-abelian.

Proof. Consider a sequence P, of isomorphic groups with order p* defined
by P, = (Zp,yn | 22" = 42 = 1, ¥ = z27°) = (x,) % (y,) where clearly
P! = (2" has order p. Let P := Dr,ey P, and consider the automorphism
v of P such that 27 = x'* and y) = y,, for each n € N. Clearly, v has
order p?, acts as the automorphism z + '™ on P/P’ (which has exponent
p?) and acts trivially on P’ (which is elementary abelian). Finally let N :=

<x82xﬁ2 | n € N). Then N is a subgroup of P’ with index p. Thus the p-group



G := (P x (y))/N is a BCN-group by Proposition 2.1 applied to the series
P'/N < P/N <@G.

We have that G’ is infinite, since for each n we have 22 = [z,,7] €
[P,.,~] > P. Moreover, we have that gN € Z(P/N) if and only if Vi [g, P;] <
N,and NN P, =1. Thus Z(P/N) = Z(P)/N where Z(P) = Dr,, (zF) has
infinite index in P.

If, by contradiction, GG is abelian-by-finite, then there is an abelian normal
subgroup A/N of P/N with finite index. Then for some m € N we have
P = AF, where F' = Dr,,,,, P, is a finite normal sugroup of P. Therefore
P/N is center-by-finite, a contradiction. O

3 Automorphisms of abelian groups

As in [4], for the action of a group I" on a group A, we consider the following
properties:

P) VH<A H=H';

AP) VH < A |H/Hr| < o0

BP) VH < A |H"/H| < oc;

cP) VH < A 3K = KV < A such that H ~ K, (H, K are commensurable).

When P holds, one says that I'" acts on A by means of power automor-
phisms or that A is ['-hamiltonian ([10],[1]). Recall that if v is a power
automorphism of an abelian p-group A, then there exists a p-adic integer o
such that a” = a® for all a € A (see [10] for details). Here a® stands for a™,
where n € N is congruent to o modulo the order of a. On the other hand,
a power automorphism of a non-periodic abelian group is either the identity
or the inversion map.

Obviously both AP and BP imply cp. Moreover, these three properties
are equivalent, provided A is abelian and I' is finitely generated, while they
are in fact different in the general case even when A and I' are elementary
abelian p-groups (see [4]). On the other hand, the properties AP and BP have
previously characterized in [5] and [2] resp., as we are going to recall. To
shorten statements we define a further property:

P) T has P on the factors of a I'-series 1 <V < D < A where

i) 'V is free abelian with finite rank,

it) D]V is divisible periodic with finite total rank,

i11) A/ D is periodic and has finite p-exponent for each prime p € w(D/V').



Theorem 3.1 [5],[2] Let I be group acting on an abelian group A. Then:
a) ' has AP on A if and only if there is a I'-subgroup Ay such that AJA; is
finite and T has either P or P on Aj.

b) T has BP on A if and only if there is a I'-subgroup Aoy such that Ay is
finite and I has either P or P on A/A,.

By next statement we give a characteration of the property Ccp along the
same lines.

Theorem 3.2 Let I' be group acting on an abelian group A. Then:
c) I' has cp on A if and only if there are I'-subgroups Ay < A; < A such
that Ag and A/A; are finite and ' has either P or P on Ai/Ay.

The proof of Theorem 3.2 is at the end of this section. Here we deduce a
corollary.

Corollary 3.3 For a group I acting on an abelian group A, the following
are equivalent:

a) I' has AP on AJAq for a finite I'-subgroup Ay of A,

b) T’ has BP on a finite index I'-subgroup Ay of A,

c) I has cp on A. O

Let us recall some basic facts from [4] where inertial automorphisms of
abelian groups have been introduced. These are automorphisms v of a group
G such that H” ~ H for all H < (. Clearly, if I" has ¢P on GG and v € T,
then v is inertial.

Proposition 3.4 Let I' be group acting on a locally nilpotent periodic group
A. Then T" has AP, BP, CP resp. on A if and only if I" has AP, BP, CP resp.
on finitely many primary components of A and P on all the other ones. [

Lemma 3.5 Let I' be a group acting on an abelian group A. If T' has CP,
then:

i) T has P on the mazimum periodic divisible subgroup of A.

i) if A is torsion-free, then each v € I' acts by conjugation on A by either
the identity or the inversion map. O

Now we prove some lemmas. In the first one we do not require that the
group A is abelian.



Lemma 3.6 Let I" be a group acting on a group A. If ' has cP, then ' has
BP on the subgroup X := {a € A|(a)" is finite} of A.

Proof. For any H < X there is K such that H ~ K = K' < A. Then
there is finite subgroup F' < X such that H < KF. Thus H' < KF' and
|HY : H| < |F"|- |HK : H| is finite. O

Lemma 3.7 Let T' be a group acting on a p-group A which is the direct
product of cyclic groups. If I' has CP, then the following subgroup has finite

ndex in A:
X :={ae Al(a) is finite}

Proof. Assume by contradiction that A/X is infinite.
Let us see that, by elementary facts, there is a sequence (a,,) of elements
of A such that
1) {(an|n € N) = Dryen (ay,),
2) Ar/A;NX is infinite, for each infinite subset I of N, where A; := (a;]i € I).
In fact, if A/X has finite rank, it has a Priifer subgroup Q/X. Let Y be a
countable subgroup such that @ = Y X. By Kulikov Theorem (see [10]) Y is
the direct product of cyclic groups, so that we may choose elements a, € Y
such that (a,|n € N) = Drpey(a,) <Y and |a,X| < |a,41X|. The claim
holds. Similarly, if A/X has infinite rank, we may consider its socle S/X and
consider a countable subgroup Y such that S = Y X. Then we may choose
elements a,, € Y which are independent mod X and generate their direct
product as in (1).

We claim now that there are sequences of infinite subsets I,,, J,, of N and
['-subgroups K, < A such that for each n € N:
3) L,NnJ,=0and I, CJ,
4) Ky, ~ Aln
5) (K1K1>H<A[1A[n)§ (AIIA[Z),VZSTL

Proceed by induction on n. Choose an infinite subset I; of N such that
Ji := N\ [; is infinite. By cpP-property there exists K; = K IF commensurable
with A[l.

Suppose we have defined [;, J; K; for 1 < j < n such that 3-5 holds.
Since (K;...K,) ~ (A ... Ar,), there is m € N such that

6) (KlKQ ce Kn) N AN S (AhAIg c. A[n)<a1, ce ,am>.
Let I,,41 and J,41 be disjoint infinite subsets of J, \ {1,...,m}. By cp-

property there exists K,+1 = K, ., commensurable with A; . By the choice
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of I,41 it follows that

7) (Kl...Ki>ﬂ<A]1 ...A]nJrl) S (Kl...Ki)ﬂ(Ah...A]n) \4) §n
and so (5) holds for n 4 1, as whished. The claim is proved.

Note that by (2) and (5) it follows that A;, /A; N X is infinite for each
n € N and that also the following property holds
8) (K1Ky...K,)NA<(ALA;L ... Ar) Vn, where A := Dr,cy A, .

Now for each n € N, choose an element b,, € (A;, NK,,)\X. Then we have
B := (b, | n € N) = Dr, (b,), where (b,)" is infinite and (b,)" < K, ~ A;,,
so that
9)  (b,)" N Ay, is infinite for each n.

Since there exists By = B} ~ B, we may take
- B, :=(Byn B)' = (B,NB)" < B" where B, ~ B.

Now B./(B.NB) and B/(B,N B) are both finite and there is n € N such
that if B, := (b1,...,b,) we have
~(B.NB)Y =B, < (B.NB)B" and
- B=(B.N B)B,.
Since b,, € K, for each n, we have B, < K,, == K1 K, ... K, and
- B = (B.NnB)'B! <(B.NB)B. <(B.NB)K, < BK,, so that
- BF N zzl S BKn N A = B(Kn N A) S BA[1A12 .. A]n by (8) above.
Thus
~ (bas1) DA

n+1

< B'NA;,,, <(BALAL...A)NA;

n+1

= (bp1) is finite,
a contradiction with (9). O

Lemma 3.8 Let I be a group acting on an abelian periodic reduced group
A. If T has cP, then there are I'-subgroups Ay < Ay < A such that Ay and
AJA; are finite and T has P on Ay/Ao.

Proof. By Proposition 3.4 it is enough to consider the case when A is a
p-group. If A is the direct product of cyclic groups, by Lemma 3.7 we have
that Ay := {a € A|(a)" is finite} has finite index in A. Further, by Lemma
3.6, I has BP on A;. Then the statement follows from Theorem 3.1.

Let A be any reduced p-group and B, be a basic subgroup of A. Then
there is B = BY ~ B,. Since A/B, is divisible, then the divisible radical of
A/ B has finite index. Thus we may assume that A/B is divisible. By Kulikov
Theorem (see [10]), also B is a direct product of cyclic groups, therefore by
the above there are I'-subgroups By < B; < B such that By and B/B; are



finite and I' has P on B;/By. We may assume By = 1. Also, since A/By is
finite-by divisible, it is divisible-by-finite and we may assume it is divisible.

Let v € I' and a be a p-adic integer such that 7 = x® for all x € B;.
Consider the endomorphism v —« of A and note that By < ker(y—«). Thus
A/ker(y — a) ~ im(y — «) is both divisible and reduced, hence trivial. Tt
follows v = o on the whole A. O

Proof of Theorem 3.2 For the sufficiency of the condition note that
for any subgroup H < A we have H ~ H N A; and the latter is in turn
commensurable with a I'-subgroup since I has BP on A; by Theorem 3.1.

Concerning necessity, we first prove the statement when A is periodic.
Let A = D x Ry, where D is divisible and R; is reduced. Then there is a
R = R" ~ R,. Thus DR and DNR are I-subgroups of A with finite index and
order resp. Then we can assume A = DxR. Let X := {a € A|(a)" is finite}.
Clearly D < X, as I" has P on D by Lemma 3.5. On the other hand, X N R
has finite index in R by Lemma 3.8. It follows A/X is finite and by Lemma
3.6 and Theorem 3.1 the statement holds.

In the non-periodic case, note that if V is a maximal free subgroup of A
(hence A/V, is periodic), then there is V) = V' ~ Vi Let n := [V1/(VoN1y)].
Thus by applying Lemma 3.5 we have
- there is a free abelian T'-subgroup V' := V" such that A/V is periodic and
each v € I' acts on V' by either the identity or the inversion map.

Suppose that V' has finite rank. Consider now the action of I' on the
periodic group A/V and apply the above. Then there is a series V' < Ay <
A; < Asuch that Ag/V and A/A; are finite and I has either P or P on A;/Ay.
Since Ap has finite torsion subgroup 7' we can factor out 7" and assume
Ayg = V. Then T" has either P or P on A; as straightforward verification
shows.

Suppose finally that V' has infinite rank. Let V5 <V be such that V/V5
is divisible periodic and its p-component has infinite rank for each prime p.
We may assume V := V5. By the above case when A is periodic, there is a
[-series V' < Ag < A; < A such that Ag/V and A/A; are finite and I" has p
on A;/Ay. We may factor out the torsion subgroup of Ay, as it is finite, and
assume Ay =V.

Again let V5 < V be such that V/V; is divisible periodic and its p-
component has infinite rank for each prime p. Let v € T' and a, be a
p-adic integer such that 27 = x® for all x in the p-component of A;/V. Let
e = £1 be such that 27 = ¢ for all x € V. By Lemma 3.5, v has P on



the maximum divisible subgroup D, /V5 of the p-component of A;/V5;. Thus
a, = e on D,/V,. Therefore 7 = z¢ for all x € V and for all x € A;/V.
We claim that a” = a¢ for each a € A;. To see this, for any a € A; consider
n € N such that a” € V. Then there is v € V such that a” = a‘v. Hence
a" = (a") = (a")" = (a*v)" = a™v". Thus v" = 1. Therefore, as V is

torsion-free, we have v = 1, as whished. O

4 Abelian-by-finite CN-groupsand Theorem B
Locally finite CF-groups are known to be abelian-by-finite and BCF (see [1]).

Proposition 4.1 Let G be an abelian-by-finite group.
i) if G is CN, then G is CF;
it) if G is BCN, then G is BCF.

Proof. Let A be a normal abelian subgroup with finite index r. Then each
H < A has at most r conjugates in G. If dg(H) < n < oo then for each
g € G wehave |H: (HNHY)| <2)¢(H) < 2n hence |H/Hg| < (2n)". More
generally, if H is any subgroup of G, then |H/H¢g| < r(2n)". O

We state now a key fact about non-periodic CN-grups.

Lemma 4.2 Let G be a CN-group and A = A(G) its subgroup generated by
all infinite cyclic normal subgroups. Then G /A is periodic, A is abelian and
each g € G acts on A by either the identity or the inversion map, hence

|G/Ca(A)] < 2.

Proof. For any x € G there is N < G which is commensurable with (z).
Then n := |N : (N N (x))] is finite. Thus N™ < (z) where N** <t G. Hence
G/A is periodic.

It is clear that A is abelian. Let g € G. If (a) <G and a has infinite order,
then there is ¢, = £1 such that a9 = a. On the other hand, by Lemma 3.5,
there is € = 41 such that for each a € A there is a periodic element ¢, € A
such that a9 = a‘t,. It follows a~¢ = t. Therefore €, = € is independent of
a, as wished. O

Lemma 4.3 Let G be an FC-group. If G is a CN-group then G is finite-by-
abelian.



Proof. Let H be any subgroup of G. We shall prove that |H : H| is finite.
Consider A = A(G) as in Lemma 4.2. Then HN A< G and H/AN H is
periodic. Hence we may assume H is periodic, that is, H cointained in the
torsion subgroup of the Fc-group G. Our claim follows then from Lemma

3.6. 0

Proof of Theorem B Let GG be a ¢N-group and Gy < GG; < G be a normal
series such that G/Gy is abelian and both Gy and G/G; are finite. Then
G has cp on (G1/Gy. By Corollary 3.3, the group G has BP on a subgroup
Ay /Gy < Gy /Gy with finite index in G1/Gy. Thus A; /Gy is contained in the
FC-centre of G/Gy. Hence A, is contained in the FC-centre of F' of G. So
that G/F is finite. On the other hand, from Lemma 4.3 it follows that F” is
finite.

Finally, (i) and (iii) follow from Proposition 2.1 and Proposition 4.1. [

Let us characterize BCF-groups among abelian-by-finite CF-groups.

Proposition 4.4 Let G be a non-periodic group with an abelian normal sub-
group A with finite index. Then the following are equivalent:

i) G is a BCF-group;

it) G is a CF-group and there is B < A such that B has finite exponent,
B <G and each g € G acts by conjugation on A/B by either the identity or
the inversion map.

Proof. Let T be the torsion subgroup of A. By Lemma 3.5, each g € G acts
on A/T as the automorphism x +— z° where ¢, = £1. Then the equivalence
of (i) and (ii) holds with B := (497% | g € G), by Theorem 3 of [4]. O

5 Proof of Theorem A

Our first satement in this section is a reduction to nilpotent groups.
Lemma 5.1 A soluble p-group G with the property CN is nilpotent-by-finite.

Proof. By Theorem 3.2, one may refine the the derived series of G to a
finite GG-series S such that GG has P on each infinite factor of S. Recall that
a p-group of power automorphisms of an abelian p-group is finite (see [10]).
Then the stability group S < G of the series S, that is, the intersection of
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the centralizers in GG of the factors of the series, has finite index in G. On
the other hand, by a theorem of Ph.Hall, S is nilpotent. 0

We recall now an elementary property of nilpotent groups.

Lemma 5.2 Let G be a nilpotent group with class c. If G' has finite exponent
e, then G/Z(G) has finite exponent dividing €.

Proof. Argue by induction on ¢, the statement being clear for ¢ = 1.
Assume ¢ > 1 and that G/Z has exponent dividing e“~!, where Z/7.(G) :=
Z(G/7.(@)). Then for all g,z € G we have [¢° ", z] € 7.(G) < G'N Z(G).
Therefore 1 = [gecfl,x]e = [¢¢, 2], and ¢* € Z(G), as claimed. O

Next lemma follows easily from Lemma 6 in [8].

Lemma 5.3 Let G be a nilpotent p-group and N a normal subgroup such
that G/N is an infinite elementary abelian group. If H and U are finite
subgroup of G such that HNU = 1, there exists a subgroup V' of G such that
U<V,HNV =1and V/N NV is infinite. O

We deduce a technical lemma which is a tool for our pourpose.

Lemma 5.4 Let G be a nilpotent p-group and N be a normal subgroup such
that G/N s an infinite elementary abelian group. If N contains the FC-
center of G and G’ is abelian with finite exponent, then there are subgroups
H, U of G such that H U = 1, with injective maps n +— h, € H and
(i,n) = uin € [G,h; 'hy) MU, where i,n €N, i < n.

Proof. Let us show that for each n € N there is an (n + 1)-uple v, =
(s U010y Uty -+ - 5 Un—1.n) Of elements of G such that:

1. {hy,...,h,} is linearly independent modulo N;
2. Uiy €[G,h; ) Vi€ {0,...,n—1};
3. {ujn | 0 <j <k <n}is Z-independent in G';

4. H,NU, =1, where H, := (hq,...,hy) and U, := (u;; |0 < j < k < n).

11



Then the statement is true for H := |J H, and U := |J U,.
neN neN

Let hg := 1 and choose hy € G\ N. Since N > F the rc-center of G,
we have that y; has an infinite numbers of coniugates in G, hence [G, hq] is
infinite and residually finite. Thus we may choose ug; € [G, hi] such that
<UO,1> N <h1> =1.

Assume then that we have defined v; for i < n, that is, we have elements
ho, ..., hn, wjk, with 0 < j < k < n such that conditions 1-4 hold. To define
an adequate v, 1, note that by Lemma 5.3 we have that there exists V,, < G
such that H,, <V,, U, NV, =1 and V,,N/N is infinite. Then choose
i) hpy €V, \ NU,H,.

Note that h,1 & FH, < NH,, sothat {hy,...,h,41}is independent mod F'.
In particular Vi € {0,...,n}, hy 'hyy1 € F, hence also [G, h; 'k, 1] is infinite.
Since G is residually finite, we may recursively choose g 5,41, - . . , Up n+1 SUCh
that Vi € {0,...,n}

i) Uin € [G, Ry hy)

ii1) (Uint1) N Up(uppyr | 0 < h <i)H, =1

Then properties 1-3 hold for v, 1. Finally suppose there are h € H,,, u € U,
s,to, ..., t, € Z such that

i) a="hhi =uwul, g ul, € Hopn N U
Then from (i) it follows ), .y = ... =ug, 3 = 1. Hence a = hh = u €
V., NU, =1 and 4 holds. O

Lemma 5.5 Let G be a nilpotent p-group. If G is CN, then G’ has finite
exponent.

Proof. If, by contradiction, G’ has infinite exponent, then the same happens
to the abelian group G’/v3(G) and there is N such that G' > N > ~3(G)
and G'/N is a Priifer group. We may assume N = 1, that is, G’ itself is
a Priifer group and G’ < Z(G). Let us show that for any H < G we have
|HY : H| < oo, hence G is finite, a contradiction. In fact we have that, by
CN-property there is K <1 G such that K ~ H. Thus H has finite index in
HK and we can also assume H = HK, that is, H/H is finite. Thus, we can
assume Hg = 1 and HNG' = 1, that is, H is finite with order p™ and HG' is
an abelian Chernikov group. It follows that H is contained in the n-th socle
S of HG' <« G, where S is finite and normal in G, as whished. O

Lemma 5.6 Let G be a nilpotent p-group. If G is CN, then G is finite-by-
abelian-by-finite.

12



Proof. Assume, by contradiction, G is a counterexample. Then both G’
and G/Z(G) are infinite. However, they have finite exponent by Lemmas 5.5
and 5.2. Moreover, even the FC-center F' of G has infinite index by Lemma
4.3. On the other hand, G/F has finite exponent, since F' > Z(G).

Then N := FGPG' has infinite index in G, otherwise the abelian group
G/FG' has finite rank and finite exponent, hence it is finite. This implies
that the nilpotent group G/F is finite, a contradiction.

If G’ is abelian we are in a condition to apply Lemma 5.4 and get infinite
elements and subgroups h, € H, w;, € U as in that statement. By CN-
property there is K such that H ~ K <G. So that the set {h,(HNK) / n €
N} is finite. Hence there is i € N and an infinite set I C N such that for each
n € I we have h;'h, € HNK and u;,, € UN[G, HN K] < UNK. Therefore
U N K is infinite, in contradiction with UN K ~U N H = 1.

For the general case, proceed by induction on the nilpotency class ¢ > 1
of G and assume that the statement is true for G/Z(G) and even that this
is finite-by-abelian. Then there is a subgroup L < G such that G/L is
abelian and L/Z(G) is finite. Thus L' is finite and, by the above, G/L’ is
finite-by-abelian-by-finite, a contradiction. O

Proof of Theorem A. Recall from the Introduction that all subgroups of
G are subnormal-by-finite. Thus, by above quoted results in [6] and [3] resp.,
we may assume that G is locally nilpotent and soluble

Assume first G is periodic. Then, by Lemma 3.4, only finitely many
primary components are non-abelian. Thus we may assume G is a p-group
and apply Lemma 5.1 and Lemma 5.6. It follows that G is finite-by-abelian-
by-finite.

To treat the general case, consider A = A(G) as in Lemma 4.2. We may
assume A is central in G. Let V' be a torsion-free subgroup of A such that
AJV is periodic. Then G/V is locally finite and we may apply the above.
Thus there is a series V < F < (G; < G such that G acts trivially on V,
G1/Gy is abelian, while G¢/V and G/G; are finite. Then we can assume
G = G and note that the stabilizer S of the series has now finite index.
Since S is nilpotent (by Ph.Hall Theorem) we can assume that G = S is
nilpotent. If 7" is the torsion subgroup of G, then VT'/T is contained in
the center of G/T. Since all factor of the upper central series of G/T are
torsion-free we have G/T is abelian. Thus G’ < T N G is finite. O

Proof of Corollary. If the statement is false, by Theorem A we may assume
there is a counterexample G periodic and not locally finite. Also we may
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assume G is finitely generated and infinite. Let R be the locally finite radical
of G. By Theorem A again, R is finite-by-abelian-by-finite. By Theorem
B(i), there is a finite subgroup Gy <1 G such that R/G is abelian-by-finite.
We may assume Gy = 1, so that R is abelian-by-finite.

We claim that G := G/R has finite exponent at most (n + 1)! where n
is such that n > dg(H) for each H < G . In fact, for each x € G, there is
N <1 G such that [N : (N N {x))] <n. Thus N* < (z) and N <1 G. Hence
N™ =1 and 2" = 1.

By the positive answer (for all exponents) to the Restricted Burnside
Problem, there is a positive integer k such that every finite image of G has
order at most k. Since G is finitely generated, this means that the finite
residual K of G has finite index and is finitely generated as well. Since also
G is locally graded (see [7]), we have K = 1 and G is finite. Therefore G is
abelian-by-finite, a contradiction. 0
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