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Abstract

Complex relational structures are used to represent data in many scientific

fields such as chemistry, bioinformatics, natural language processing and so-

cial network analysis. It is often desirable to classify these complex objects, a

problem which is increasingly being dealt with machine learning approaches.

While a number of algorithms have been shown to be effective in solving

this task for graphs of moderate size, dealing with large structures still poses

significant challenges due to the difficulty in scaling exhibited by the existing

techniques.

In this thesis we introduce a framework to approach supervised learning

problems on structured data by extending the R-convolution concept used

in graph kernels. We represent a graph (or, more in general, a relational

structure) as a hierarchy of objects and we define how to unroll a template

neural network on it. This approach is able to outperform state-of-the-art

methods on large social networks datasets, while at the same time being

competitive on small chemobiological datasets. We also introduce a lossless

compression algorithm for the hierarchical decompositions that improves the

temporal complexity of our approach by exploiting symmetries in the input

data.

Another contribution of this thesis is an application of the aforementioned

framework to the context-dependent claim detection task. Claim detection

is the assessment of whether a sentence contains a claim, i.e. the thesis,

or conclusion, of an argument; in particular we focus on context-dependent

claims, where the context (i.e. the topic of the argument) is a determining

factor in classifying a sentence. We show how our framework is able to take

advantage of contextual information in a straightforward way and we present

some preliminary results that indicates how this approach is viable on real

world datasets.

A third contribution is a machine learning approach to aortic size nor-
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malcy assesment. The definition of normalcy is crucial when dealing with

thoracic aortas, as a dilatation of its diameter often precedes serious dis-

ease. We build a new estimator based on OC-SVM fitted on a cohort of

1024 healty individuals aging from 5 to 89 years, and we compare its results

to those obtained on the same set of subjects by an approach based on lin-

ear regression. As a further novelty, we also build a second estimator that

combines the diameters measured at multiple levels in order to assess the

normalcy of the overall shape of the aorta.
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Chapter 1

Introduction

The amount of information produced by the human race saw an unprece-

dented growth in recent years, thanks to the ubiquity of devices capable of

generating new data such as computers, smartphones, and connected de-

vices. Many important tasks in science and technology involve analyzing

and classifying this information, but employing human beings to make sense

of this amount of data is often infeasible. Fortunately, the same advances in

technology that allowed us to generate this data also brought us a marked im-

provement in computational power, enabling the development of algorithms

that can automatically learn from data, i.e. that can machine learn.

1.1 The objective

Most machine learning algorithms are designed to handle independent ob-

jects, but real world data can often be understood only when also considering

the relationships between them. As a consequence, in the last few years many

researchers started to study how to tackle the problem of learning on struc-

tured (or relational) data, which is usually represented as graphs. Graph

kernels decompose graphs into simpler substructures and compute similarity

between structured objects as the similarity of their sets of parts. Recursive

neural networks, on the other hand, exploit the graph’s structure to build

a vector representation for a node by composing the representations of its

neighbors.

Our goal is to build a method to learn representations for structured

data by combining the strengths of both families of algorithms, and more
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2 Introduction

specifically by using both the decomposition approach of graph kernels and

the iterative vector representation building approach of neural networks.

1.2 Contributions

This thesis makes two contributions to relational learning by proposing a

novel method to apply neural networks to structured data and a possible ap-

plication to a natural language processing task. A third contribution involves

an application of novelty detection in cardiology.

• The first contribution introduces a framework to approach supervised

learning problems on structured data by extending the R-convolution

concept used in most graph kernels [38]. We describe how to represent a

relational structure as a hierarchy of objects and we define how to unroll

a template neural network on it. This approach is able to outperform

state-of-the-art methods on large social networks datasets, while at

the same time being competitive on small chemobiological datasets.

We also introduce a lossless compression algorithm for the hierarchical

decompositions that improves the temporal and spatial complexities of

our approach by exploiting symmetries in the input data.

• The second contribution describes an application of the aforementioned

method to context-dependent claim detection task. Claim detection is

the assessment of whether a sentence contains a claim, i.e. the the-

sis, or conclusion, of an argument; in particular we focus on context-

dependent claims, where the context (i.e. the topic of the argument)

is a determining factor in classifying a sentence. We show how our

framework is able to take advantage of contextual information in a

straightforward way and we present some preliminary results that in-

dicates how this approach is viable on real world datasets.

• The third contribution is a machine learning approach to aortic size

normalcy assesment. The definition of normalcy is crucial when deal-

ing with thoracic aortas, as a dilatation of its diameter often precedes

serious disease. A number of methods have been developed to obtain

the expected aortic diameter starting from demographic and anthro-

pometric characteristics such as height, weight, age and sex. Unfor-

tunately, these methods suffer from several limitations: first, they are
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suitable either only for infants, children, and young adults, or only

for adults; and second, they make strong assumptions on the relation-

ship between predictors and aortic diameters. In this contribution we

overcome these limitations by building a new estimator based on OC-

SVM [77] fitted on a cohort of 1024 healty individuals aging from 5 to

89 years, and we compare its results to those obtained on the same set

of subjects by an approach based on linear regression. We also build

a second estimator that combines the diameters measured at multiple

levels in order to assess the normalcy of the overall shape of the aorta.
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Part I

Relational learning
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Chapter 2

Background

This chapter gives a brief introduction to essential concepts used

in this thesis. We start by introducing some notation on graphs

that we will use. Then, we describe the main techniques used

in machine learning. Finally, we review some related work on

relational learning.

2.1 Graphs

Most relational data can be easily expressed in terms of graphs as they are,

in their simplest form, sets of objects connected by some kind of relationship.

Definition 1 (Graph). A graph is a pair of sets G = (V,E) where V is the

set of vertices (or nodes), and E ⊆ V × V is the set of edges.

Definition 2 (Directed and undirected graph). A graph G = (V,E) is di-

rected if E is a set of ordered pairs of vertices. G is undirected if E is a set of

unordered pairs of vertices, or equivalently if (vi, vj) ∈ E ⇐⇒ (vj , vi) ∈ E.

As we shall see, it is often useful to examine the substructures contained

in a given graph. Among the most commonly used substructures we find

neighborhoods and paths.

Definition 3 (Neighborhood). Given a graph G = (V,E) and a vertex

v ∈ V , the neighborhood of v in G is the set of nodes {w : (v, w) ∈ E}.
Definition 4 (Path, connected graph). Given a graph G = (V,E), a path

π = (π1, . . . , πn), is a sequence of vertices πi ∈ V, i = 1, . . . , n such as

7



8 Background

(πi, πi+1) ∈ E, i = 1, . . . , n − 1. G is said to be connected if for any two

nodes u, v ∈ V there exists a path π = (π1, . . . , πn) such as π1 = u, πn = v

or π1 = v, πn = u.

A useful concept when we need to capture the influence of one individual

object inside a graph (e.g. when dealing with graphs that represent social

networks) is the ego graph. Intuitively, an ego graph rooted in one object o

describe the portion of the original graph that directly interacts with o.

Definition 5 (Induced subgraph). The subgraph of G = (V,E) induced by

Vg ⊂ V is the graph g = (Vg, Eg) where Eg = {(u, v) ∈ E : u ∈ Vg, v ∈ Vg}.

Definition 6 (Ego graph). The ego graph gv,r of G = (V,E) with root v ∈ V
and radius r is the subgraph of G induced by the set of vertices whose shortest

path distance from v is at most r.

2.2 Machine learning

Machine learning is the subfield of artificial intelligence that studies algo-

rithms to enable computers to learn from data, or more specifically to infer

an unknown function from a set of objects (examples). In this thesis we will

focus on supervised learning, where we want to learn a function f : X → Y

from a set of labeled examples T = {(xi, yi)}Ni=1 ⊂ X × Y , yi = f(xi) ∀i.
We can see supervised learning tasks as optimization problems. If we call

f̂ : X → Y the inferred function, and L : Y × Y → R a function estimating

the error (loss) between the expected and the actual outputs, we can express

our supervised learning problem as

minimize
f̂

L
(
f(x), f̂(x)

)
x ∈ X. (2.1)

As it is impractical to minimize over every possible function, supervised

learning algorithms usually restrict the search field to a class of functions

depending on some parameter θ. As mentioned earlier we only have a limited

set T of labelled examples, so the problem becomes

minimize
θ

L
(
yi, f̂(xi; θ)

)
(xi, yi) ∈ T. (2.2)

In this thesis we will focus on classification tasks, i.e. supervised learning

problems where the unknown function f maps the examples to a finite set

of classes Y = {c1, . . . cM}.
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2.2.1 Support Vector Machines

Support Vector Machines [89] are supervised learning models commonly used

for classification problems. The basic idea of linear SVM is to find an hy-

perplane in a high-dimensional feature space capable of separating examples

belonging to different classes. Unseen examples will be then classified based

on their position relative to the hyperplane found during the training phase.

For a given set of data, infinite separating hyperplanes could exist; SVM

searchs for the maximum-margin one, i.e. the one with maximum distance

from the nearest examples.

Let T be a set of training examples xi with labels yi:

T = {(xi, yi) |xi ∈ Rp, yi ∈ {−1, 1}} . (2.3)

Samples belonging to the fist class will be labeled with y = 1, while those

belonging to the second class will be labeled with y = −1. The set is said to

be linearly separable if there exist a vector w and a scalar b such that

w · xi + b ≥ 0 if yi = 1, (2.4)

w · xi + b ≤ 0 if yi = −1, (2.5)

i.e. if a hyperplane able to separate the elements belonging to the two classes

exists. Note that, without loss of generality, it is possible to scale w and b

to obtain

w · xi + b ≥ 1 if yi = 1, (2.6)

w · xi + b ≤ −1 if yi = −1, (2.7)

(2.8)

that can be rewritten in compact form as

yi (w · xi + b) ≥ 1 ∀xi ∈ T. (2.9)

Given a separating hyperplane, unseen examples x can be classified based

on the sign of the decision function

D(x) = w · x + b. (2.10)

For each linearly separable set of examples an infinite number of sepa-

rating hyperplanes could exist. The SVM training algorithm searches for
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the one with the largest margin between the separation boundary and the

training patterns. Knowing that the distance between an hyperplane and a

generic pattern x is
w · x + b

‖w‖ (2.11)

and assuming a separating hyperplane with margin M , then

yk (w · xk + b)

‖w‖ ≥M (2.12)

holds for all (xk, yk) ∈ T . The problem can thus be written as

maximize
w,‖w‖=1

M (2.13)

subject to yk (w · xk − b) ≥M ∀ (xk, yk) ∈ T, (2.14)

where the norm of w is fixed to remove the ambiguity between solutions

that differ only in scaling. The same result can be archieved by fixing the

product M‖w‖ = 1, which leads to reformulate the problem as

minimize
w

1
2‖w‖2 (2.15)

subject to yk (w · xk − b) ≥ 1 ∀ (xk, yk) ∈ T. (2.16)

We can now derive the solution of the optimization problem by using Karush-

Kuhn-Tucker necessary conditions [41, 45] for optimal solutions. Given a

nonlinear optimization problem

minimize
x

f(x), (2.17)

subject to gi(x) ≤ 0 (2.18)

any optimal solutions x∗ must satisfy

−∇f(x∗) =
∑

i

µi∇gi(x∗); (2.19)

µigi(x
∗) = 0. (2.20)

By applying (2.19) and (2.20) to (2.15) and (2.16) we obtain

w∗ =
∑

i

µiyixi; (2.21)

0 = µi (1− yi(w∗ · xi − b)) . (2.22)
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We notice from (2.22) that µi 6= 0 only for xi lying on the margin (i.e.

patterns satisfying yi(w
∗ · xi − b) = 1), called support vector. Let now be S

the set of support vectors. We can rewrite (2.21) as

w∗ =
∑

xi∈S
µiyixi. (2.23)

From (2.22) we can also derive, for xi ∈ S, the offset b:

w∗ · xi − b =
1

yi
= yi (2.24)

b = w∗ · xi − yi. (2.25)

Soft margin

The SVM algorithm seen above will not work when the examples are not

linearly separable and thus cannot deal with mislabeled patterns. The soft

margin method [14] handles these cases by finding an hyperplane that splits

the examples as cleanly as possible. A set of slack variables that allow

for a certain degree of misclassification are introduced in the optimization

constraint and objective leading to the formulation

minimize
w

1
2‖w‖2 + C

∑
k ζk (2.26)

subject to yk (w · xk − b) ≥ 1− ζk ∀ (xk, yk) ∈ T (2.27)

ζk ≥ 0 ∀k. (2.28)

The slack variables in (2.27) allow for samples on the wrong side of the

split, while in (2.26) the same variables are bound to be “small” by the

optimization algorithm. The C parameter controls the tradeoff between

the number of mislabeled examples and the size of the margin between the

hyperplane and the correctly classified examples.

Kernels

While the original SVM algorithm was limited to (almost) linearly separable

data, it can be extended to work as a nonlinear classifier by applying the

kernel trick [10].

It can be proved that the dual form of the optimization problem (which
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leads to the same solution of the primal form) described by (2.26)-(2.28) is

maximize
µ

∑
k µk − 1

2

∑
i,j µiµjyiyjxi · xj (2.29)

subject to 0 ≤ µk ≤ C ∀k (2.30)
∑
k µkyk = 0. (2.31)

Moreover, by combining (2.10) with (2.23) we obtain an equivalent decision

function

D(x) =
∑

xi∈S
µiyixi · x + b. (2.32)

These transformations are important because they let us write both the

training algorithm and the subsequent decision function only in terms of

inner products between patterns.

Suppose now that there exists a function φ : S → V that maps the

patterns from source space S to a space V where the examples are more

easily separable and where an inner product 〈·, ·〉V is defined. We could then

apply the SVM algorithm to the transformed patterns inthe destination space

by using the objective function

maximize
µ

∑

k

µk −
1

2

∑

i,j

µiµjyiyj 〈φ(xi), φ(xj)〉V (2.33)

during training and the decision function

D(x) =
∑

xk∈S
µkyk 〈φ(xk), φ(x)〉V + b. (2.34)

It’s often convenient to describe the algorithm in term of a kernel function

k(xi,xj) = 〈φ(xi), φ(xj)〉V (2.35)

instead of explicit space maps and inner products. This let us work with

high or even infinite-dimensional feature spaces without actually having to

compute pattern projections.

2.2.2 Neural networks

Artificial neural networks use a mathematical model inspired by biological

neurons to represent computations. Given an input vector x ∈ Rn, the out-

put y of a generic artificial neuron is produced by applying a non-linear func-

tion f to a weighted sum of the components of x, i.e. y = f(
∑
i wixi + b). A
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common choice for activation function is the logistic function σ(x) = 1
1+e−x ,

which produces outputs between 0 and 1 and is therefore suitable for repre-

senting probabilities. A more practical function [46] is the hyperbolic tan-

gent tanh(x) = ex−e−x
ex+e−x , which produces outputs between −1 and 1, making

it more likely to generate outputs that on average are close to zero, and so

speeding up the convergence when these outputs are used as inputs of other

units. Another common choice for activation function is the rectified linear

activation [31] relu(x) = max(0, x).

Neurons that share the same inputs are called a layer, and their transfer

functions can be easily expressed as matrix operations. Given an input (row)

vector x ∈ Rn, the vector y ∈ Rm of the outputs of the neurons in the layer

is obtained as y = f
(
x ·WT + b

)
, where each element wi,j of W ∈ Rm×n

is the weight associated to the j-th input of the i-th neuron, each element

bi of b ∈ Rm is the bias term of the i-th neuron and the activation function

f is applied elementwise. It is easy to extend this notation to allow for

concurrently evaluating multiple inputs by replacing the vector x with a

matrix, each row being a different input vector, and the vector b with a

matrix, each row being the same vector of bias terms.

Neural networks usually consists of multiple stacked layers, where the

inputs of each layer is given by the outputs of the previous one, i.e.

yL = fL
(
yL−1 ·WL + bL

)

. . .

yk = fk
(
yk−1 ·Wk + bk

)

. . .

y1 = f1

(
x ·W1 + b1

)
.

Neural networks that only use differentiable activation functions can learn

their parameters (weight matrices Wk and biases vectors bk) by gradient

descent via backpropagation. Moreover, neural networks can be used directly

as classifiers by choosing a suitable activation function for the top layer (e.g.

the logistic function for binary classification tasks), making it possible to

automatically learn both the function that map the examples in a space

suitable for classification and the classifier itself, as opposed to SVM-based

methods that require either an handcrafted feature map or an handcrafted

kernel function.
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2.3 Related works

A large body of literature exists on the subject of relational learning. This

section will describe methods based on the two most common approaches:

graph kernels and neural networks on graphs.

2.3.1 Graph kernels

As we have seen in Section 2.2.1, SVM depends on a kernel function ca-

pable of comparing domain objects. While comparing data expressed as

real vectors is relatively straightforward, how to compare structured ob-

jects is not obvious. Most graph kernels address this problem by adopt-

ing the approach proposed by Haussler [38]: the graphs to be compared

G,G′ are decomposed in sets of substructures (parts) R−1(G),R−1(G′), and

the graph kernel k(G,G′) is expressed in terms of a substructure kernel kp;

k(G,G′) =
∑
s,s′ kp(G,G

′), s ∈ R−1(G), s′ ∈ R−1(G′).

A graph kernel is then defined by both the kind of decomposition applied

to the graphs, that defines what kind of patterns will be generated, and

by the substructure kernel used, that defines how the sets of parts will be

compared.

Among the patterns considered from the graph kernel literature we have

paths, shortest paths, walks [42], subtrees [69, 78] and neighborhood sub-

graphs [15]. The similarity between graphs G and G′ is computed by count-

ing the number of matches between their common the substructures (i.e. a

kernel on the sets of the substructures). The match between two substruc-

tures can be defined by using graph isomorphism or some other weaker graph

invariant.

When the number of substructures to enumerate is infinite or exponential

with the size of the graph the kernel between the two graphs is computed

without generating an explicit feature map. Learning with an implicit feature

map is not scalable as it has a space complexity quadratic in the number of

training examples (because we need to store in memory the gram matrix).

Other graph kernels such as the Weisfeiler-Lehman subtree kernel [78]

and the Neighborhood Subgraph Pairwise Distance Kernel (nspdk) [15] de-

liberately choose a pattern generator that scales polynomially and produces

an explicit feature map. These kernels, however, cannot handle graphs where

nodes are labeled with continuous attributes.

Orsini et al. [61] proposed a general formulation called Graph Invariant
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Kernels that extend existing graph kernels to handle graphs with continuous

attributes. Their approach compares the sets of vertices of two attributed

graphs by combining a kernel on their attributes and a weighting function

dependent on the count of common graph invariants.

2.3.2 Neural networks on graphs

Early attempts to build neural networks capable of learning on graphs were

based on recursive neural networks (rnn) [33, 75, 81]. These approaches

build a vector representation by applying to each node a neural network

that aggregates the representations of the node’s neighbors; these in turn

are recursively built by other istances of the same template network. These

representations are typically derived from a loss minimization procedure,

where gradients are computed by the backpropagation through structure

algorithm [33].

Neural networks for graphs (nn4g) [54] are feedforward neural network

architectureis for l-attributed graphs that first apply a single layer neural

network to the vertex attributes l(v) to produce the an initial encoding

x1(v) for the vertices v in the graph G and then iteratively find new vector

representations xi(v) for the vertices of the input graph G. During the

successive iterations the state encoding xi(v) of a vertex v is obtained by

stacking a single neural network layer with sigmoid activation functions that

take as input the continuous attributes l(v) of v and the state encodings

xi′(u) of the neighbors u of v during all the previous iterations i′ < i. Finally,

nn4g can either learn an output representation yo(p) for the vertices (i.e.

p = v) or for the whole graph (i.e. p = G). While the former is obtained

by stacking a single layer neural network over the encoding of the vertices

produced across all the iterations, the latter is obtained by aggregating for

each iteration i the vertex representations xi(v) over the vertices v of G,

producing a graph representationXi(G) for each iteration i and then stacking

stacking a single layer neural network. Differently from rnns, nn4g can learn

from graph inputs without imposing weight sharing and using feedforward

neural networks.

Deep graph kernels (dgk) [95] upgrade existing graph kernels with a

feature reweighing schema. dgks represent input graphs as a corpus of

substructures (e.g. graphlets, Weisfeiler-Lehman subtrees, vertex pairs with

shortest path distance) and then train vector embeddings of substructures
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with cbow/Skip-gram models. 1 Each graph-kernel feature (i.e. the number

of occurrences of a substructure) is reweighed by the 2-norm of the vector

embedding of the corresponding substructure. Experimental evidence shows

that dgks alleviate the problem of diagonal dominance in gks.

patchy-san [59] casts graphs into a format suitable for learning convo-

lutional neural networks (cnns). First, a fixed-length sequence of vertices

is selected from the graph. Then, a fixed-size neighborhood is assembled

for each of them. Finally, the vertices in each neighborhood are ordered

according to a normalization algorithm and casted to a sequence on which a

1-dimensional convolutional neural network can be applied.

GraphSAGE [36] generates representations for nodes of a graph using an

algorithm inspired by the Weisfeiler-Lehman isomorphism test. The initial

representation h0
v of each node v is set to the corresponding attribute vector

xv. Then, for a fixed number of times K, a new representation for v is built

by applying a single neural network layer to the concatenation of the node’s

previous representation hk−1
v and an aggregated representation hkN (v) of the

neighborhood of v (according to a neighborhood function N (v)).

Finally, Hamilton et al. [37] provide a comprehensive review of methods

to embed vertices and graphs, and introduce a unified framework to describe

these approaches. More specifically, the reviewed approaches are described

in term of an encoder and a decoder functions: the former maps nodes to

vector embeddings, while the latter decode a user-specified graph statistic

from a pair of embeddings produced by the encoder.

1The cbow/Skip-gram models receive as inputs cooccurrences among substructures

sampled from the input graphs.



Chapter 3

Shift aggregate extract networks

We introduce an architecture based on deep hierarchical decom-

positions to learn effective representations of large graphs. Our

framework extends classic R-decompositions used in kernel meth-

ods, enabling nested part-of-part relations. We also introduce a

lossless compression algorithm that reduces both space and time

complexity by exploiting symmetries. We show empirically that

our approach outperforms current state-of-the-art graph classifi-

cation methods on social network datasets.1

3.1 Introduction

Structured data representations are common in application domains such as

chemistry, biology, natural language, and social network analysis. In these

domains, one can formulate a supervised learning problem where the input

portion of the data is a graph, possibly with attributes on vertices and edges.

While learning with graphs of moderate size (tens up to a few hundreds of

vertices) can be afforded with many existing techniques, scaling up to large

networks poses new significant challenges that still leave room for improve-

ment, both in terms of predictive accuracy and in terms of computational

efficiency.

Most graph-kernels- and neural-networks-based approaches have been ap-

plied to relatively small graphs, such as those derived from molecules [5, 8,

1This chapter has been submitted as “Shift aggregate extract networks” to Frontiers

in Robotics and AI [62].

17
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68], natural language sentences [79] or protein structures [3, 9, 91], and only

some recent works Niepert et al. [59], Yanardag and Vishwanathan [95] have

been applied successfully to small graphs but also to graphs derived from

social networks. Large graphs (especially social networks), in fact, typically

exhibit a highly skewed degree distribution that originates a huge vocabulary

of distinct subgraphs. This scenario makes finding a suitable representation

much harder as kernels based on subgraph matching would suffer diagonal

dominance [76], while rnns would face the problem of composing a highly

variable number of substructure representations in the recursive step.

In this chapter, we introduce a novel architecture for machine learning

with structured inputs, called shift-aggregate-extract network (saen). Struc-

tured inputs are first decomposed in a hierarchical fashion. A feedforward

neural network is then unfolded over the hierarchical decompositions using

shift, aggregate and extract operations (see Section 3.4). Finally, gradient

descent learning is applied to the resulting network.

Like the flat R-decompositions commonly used to define kernels on struc-

tured data [38], H-decompositions are based on the part-of relation, but al-

low us to introduce a deep recursive notion of parts of parts. At the top level

of the hierarchy lies the whole data structure. Objects at each intermediate

level are decomposed into parts that form the subsequent level of the hierar-

chy. The bottom level consists of atomic objects, such as individual vertices,

edges or small graphlets.

saen compensates some limitations of recursive neural networks by adding

two synergetic degrees of flexibility. First, it unfolds a neural network over a

hierarchy of parts rather than using the edge set of the input graph directly;

this makes it easier to deal with very high degree vertices. Second, it im-

poses weight sharing and fixed size of the learned vector representations on

a per level basis instead of globally; in this way, more complex parts may be

embedded into higher dimensional vectors, without forcing to use excessively

large representations for simpler parts.

A second contribution of this work is a domain compression algorithm

that can significantly reduce memory usage and runtime. It leverages math-

ematical results from lifted linear programming [55] in order to exploit sym-

metries and perform a lossless compression of H-decompositions.

The chapter is organized as follows. In Section 3.2 we introduce H-

decompositions, a generalization of Haussler’sR-decomposition relations [38].

In Section 3.4 we describe saen, a neural network architecture for learning
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vector representations of H-decompositions. Furthermore, in Section 3.5 we

explain how to exploit symmetries in H-decompositions in order to reduce

memory usage and runtime. In Section 3.6 we report experimental results

on several number of real-world datasets. Finally, in Section 3.7 we discuss

some related works and draw some conclusions in Section 3.8.

3.2 H-decompositions

In this section, we define a deep hierarchical extension of Haussler’s R-

decomposition relation [38].

AnH-decomposition is formally defined as the triple ({Sl}Ll=0, {Rl,π}Ll=1, X)

where:

• {Sl}Ll=0 are disjoint sets of objects Sl called levels of the hierarchy.

The bottom level S0 contains atomic (i.e. non-decomposable) objects,

while the other levels {Sl}Ll=1 contain compound objects, s ∈ Sl, whose

parts s′ ∈ Sl−1 belong to the preceding level, Sl−1.

• {Rl,π}Ll=1 is a set of l, π-parametrizedRl,π-convolution relations, where

π ∈ Πl is a membership type from a finite alphabet Πl of size n(l) =

|Πl|. At the bottom level, n(0) = 1. A pair (s, s′) ∈ Sl × Sl−1 belongs

to Rl,π iff s′ is part of s with membership type π. For notational

convenience, the parts of s are denoted as R−1
l,π(s) = {s′|(s′, s) ∈ Rl,π}.

• X is a set {x(s)}s∈S0
of p-dimensional vectors of attributes assigned

to the elements s the bottom layer S0.

The membership type π is used to represent the roles of the parts of an

object. For L > 1, an H-decomposition is a multilevel generalization of

the classic R-convolution. It represents structured data as a hierarchy of π-

parametrized parts. Some concrete examples of H-decompositions are given

in the following section.

Example 1. In Figure 3.1 we propose a 4-level H-decomposition by decom-

posing graph Graph ∈ S3 into a set of radius-neighborhood (radius ∈ {1, 2})
subgraphs Ball ∈ S2 (see Figure 3.2 for a pictorial representation of the

parts) and employ their radius as membership type. Furthermore, we extract

edges Edge ∈ S1 from the radius-neighborhood subgraphs. Finally, each edge

is decomposed in vertices V ∈ S0. The elements of the Rl,π-convolution are
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level 3

Graph

level 2

Ball(root=1, radius=1)Ball(root=2, radius=1) Ball(root=3, radius=1)Ball(root=4, radius=1)

Ball(root=3, radius=2)Ball(root=1, radius=2) Ball(root=2, radius=2) Ball(root=4, radius=2)

level 1

Edge(V3, V4) Edge(V1, V2)Edge(V2, V3) Edge(V2, V4) Edge(V1, V3)

level 0

V2 V1V4V3

radius=1radius=1

radius=1radius=1

radius=2radius=2 radius=2
radius=2

S3

S2

S1

S0

Figure 3.1: Pictorial representation of a sample H-decomposition. We pro-

duce a 4-level H-decomposition by decomposing graph Graph ∈ S3 into a set

of radius-neighborhood (radius ∈ {1, 2}) subgraphs Ball ∈ S2 and employ

their radius as membership type. Furthermore, we extract edges Edge ∈ S1

from the radius-neighborhood subgraphs. Finally, each edge is decomposed

in vertices V ∈ S0. The elements of the Rl,π-convolution are pictorially

shown as directed arcs. Since membership types π for edges and vertices

would be all identical their label is not represented in the picture.
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Figure 3.2: Pictorial representation of the substructures that are contained

in each node of the H-decomposition showed in Figure 3.1. The objects of

the H-decomposition are grouped to according their Sl sets (l = 0, . . . , 3).

For each radius-neighborhood subgraph we show the root node in red.
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Figure 3.3: The egd is an H-decomposition structured in 3 levels. Level

2 contains the input attributed graph G = (V,E,X) where V is the set of

vertices and E is the set of edges and X is a set of p-dimensional vectors of

attributes assigned to the vertices v ∈ V of the graph G. The input graph

G is then decomposed into ego graphs g of radius r = 0, . . . , R where R is

the maximum radius that we allow in the decomposition. The ego graphs g

are elements of level 1 and are parts of G with π-type r. Ego graphs g are

further decomposed into vertices v. We use the π-types root and elem to

specify whether a vertex v is the root of the ego graph g or just an element

respectively. The vertices v which are the elements of level 0 and are labeled

with vectors of vertex attributes.

pictorially shown as directed arcs. Since membership types π for edges and

vertices would be all identical their label is not represented in the picture.

3.3 Instances of H-decompositions

We describe three H-decompositions based on ego graphs, on pairs of ego

graphs, and on shortest paths. They are inspired from closely related graph

kernels.

3.3.1 Ego Graph Decomposition

The ego graph H-decomposition (egd) has L = 3 levels defined as follows

(see Figure 3.3):

• Level 2 consists of the whole attributed graph G = (V,E,x) where x is

a labeling function that attaches a p-dimensional vector of attributes

x(v) to each vertex v.
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• Level 1 consists of all ego graphs gv,r with roots v ∈ V and r ∈ [0, R].

The π-type of gv,r is simply r. Note that for r = 0, all ego graphs gv,0
consist of single vertices.

• Level 0 consists of single vertices with two possible π-types: root and

elem to specify whether a vertex v is the root gv,r or not.

3.3.2 Nested Ego Graph Decomposition

The nested ego graph H-decomposition (negd) has L = 3 levels defined as

follows:

• Level 2 (S2) consists of the whole attributed graph G = (V,E, fV , fE)

where fV and fE are two labeling functions that attach respectively a

p-dimensional vector of attributes fV (v) to each vertex v and a symbol

fE(u,w) from a finite alphabeth Π1 to each edge (u,w).

• Level 1 (S1) consists of all ego graphs gv,1 = (Vv, Ev) with roots v ∈ V .

The π-type of gv,1 is the number of vertices |Vv|.

• Level 0 (S0) consists of the ego graphs gw,1, ∀w ∈ Vv, with π-type

root if w = v, or π-type fE(v, w) otherwise.

• A bijection x : S0 → N associates a different identifier to each distinct

ego graph in S0, i.e. x(s1) = x(s2) ⇐⇒ s1 = s2, ∀s1, s2 ∈ S0.

3.4 Learning representations with SAEN

A shift-aggregate-extract network (saen) is a composite function that maps

objects at level l of an H-decomposition into d(l)-dimensional real vectors.

It uses a sequence of parametrized functions {f0, . . . , fL}, for example a

sequence of neural networks with parameters θ0, . . . , θL that will be trained

during the learning. At each level, l = 0, . . . , L, each function fl : Rn(l)d(l) →
Rd(l+1) operates as follows:

1. It receives as input the aggregate vector al(s) defined as:

al(s) =





x(s) if l = 0∑

π∈Πl

∑

s′∈R−1
l,π(s)

zπ ⊗ hl−1(s′) if l > 0 (3.1)

where x(s) is the vector of attributes for object s.
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Figure 3.4: Pictorial representation of the saen computation explained in

Eq. 3.1 and Eq. 3.2. The saen computation is unfolded over all the levels

of an H-decomposition. On the top-right part we show an object obj ∈ Sl
decomposed into its parts {parti}5i=1 ⊆ Sl−1 from the level below. The

parametrized “part of” relation Rl,pi is represented by directed arrows, we

use colors (red, blue and green) to distinguish among π-types. In the bottom-

left part of the picture we show that each part is associated to a vectorial

representation. In the bottom-right part of the picture we show the shift

step in which the vector representations of the parts are shifted using the

Kronecker product in Eq. 3.1. Then the shifted representation are summed

in the aggregation step and in the extract step a feedforward neural is applied

in order to obtain the vector representation of object obj.
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2. It extracts the vector representation of s as

hl(s) = fl(al(s); θl). (3.2)

The vector al(s) is obtained in two steps: first, previous level representa-

tions hl−1(s′) are shifted via the Kronecker product ⊗ using an indicator

vector zπ ∈ Rn(l). This takes into account of the membership types π.

Second, shifted representations are aggregated with a sum. Note that all

representation sizes d(l), l > 0 are hyper-parameters that need to be chosen

or adjusted.

The shift and aggregate steps are identical to those used in kernel design

when computing the explicit feature of a kernel k(x, z) derived from a sum∑
π∈Π kπ(x, z) of base kernels kπ(x, z), π ∈ Π. In principle, it would be

indeed possible to turn saen into a kernel method by removing the extrac-

tion step and define the explicit feature for a kernel on H-decompositions.

Removing the extraction step from Eq. 3.1 results in:

al(s) =





x(s) if l = 0∑

π∈Πl

∑

s′∈R−1
l,π(s)

zπ ⊗ al−1(s′) if l > 0 (3.3)

However, that approach would increase the dimensionality of the feature

space by a multiplicative factor n(l) for each level l of the H-decomposition,

thus leading to an exponential number of features. When the number of

features is exponential, their explicit enumeration is impractical. A possible

solution would be to directly define the kernel similarity and keep the features

implicit [13]. However, this solution would have space complexity that is

quadratic in the number of graphs in the dataset. Some approaches overcome

this limitation by employing hash or hash-like functions to build a compact

representation of hierachical structures [26, 96]; these methods, however,

cannot learn how to build that representation as the hash function is fixed.

When using saen, the feature space growth is prevented by exploiting

a distributed representation (via a multilayered neural network) during the

extraction step. As a result, saen can easily cope with H-decompositions

consisting of multiple levels.
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3.5 Exploiting symmetries for domain com-

pression

In this section we propose a technique, called domain compression, which al-

lows us to save memory and speed up the saen computation. Domain com-

pression exploits symmetries in H-decompositions to compress them without

information loss. This technique requires that the attributes x(s) of the el-

ements s in the bottom level S0 are categorical.

Definition 7. Two objects a, b in a level Sl are collapsible, denoted a ∼ b,

if they share the same representation, i.e., hl(a) = hl(b) for all the possible

values of the parameters θ0, . . . , θl.

According to Definition 7, objects in the bottom level S0 are collapsible

when their attributes are identical, while objects at any level {Sl}Ll=1 are

collapsible if they are made of the same sets of parts for all the membership

types π.

A compressed level Scompl is the quotient set of level Sl with respect to

the collapsibility relation ∼.

Before providing a mathematical formulation of domain compression we

provide two examples: in Example 2 we explain the intuition beyond domain

compression showing in Figure 2 the steps that need to be taken to compress

a H-decomposition, in Example 3 we provide a pictorial representation of the

H-decomposition of a real world graph and its compressed version.

Example 2. Figure 3.5 a) shows the pictorial representation of an H-

decomposition whose levels are denoted with the letters of the alphabet A,

B, C, D. We name each object using consecutive integers prefixed with the

name of the level. We use purple and orange circles to denote the categorical

attributes of the objects of the bottom stratum. Directed arrows denote the

“part of” relations whose membership type is distinguished using the colors

blue and red.

Figure 3.5 b) shows the domain compression of the H-decomposition in

a). When objects are collapsed the directed arcs coming from their parents

are also collapsed. Collapsed arcs are labeled with their cardinality.

Figures 3.5 c), d), e) and f) describe the domain compression steps start-

ing from level A until level D.

• Figure 3.5 c) shows that since A3 and A4 have the same categorical

attribute of A1 (i.e. purple) they are grouped and collapsed to A1. Fur-
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Figure 3.5: Intuition of the domain compression algorithm explained in Ex-

ample 2.
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compressed H-decompositionoriginal H-decomposition

ego graph patterns

domain
compression

Figure 3.6: Pictorial representation of the H-decomposition of a graph taken

from the imdb-binary dataset (see Section 3.6.1) together with its com-

pressed version.

thermore, the arrows in the fan-in of A3 and A4 are attached to A1 with

the consequent cardinality increase of the red arrows that come from B3

and B4.

• In Figure 3.5 d) we show the second iteration of domain compression

in which objects made of the same parts with the same membership

types are collapsed. Both B1 and B2 in Figure 3.5 c) were connected

to A1 with a blue arrow and to A2 with a red arrow and so they are

collapsed. In the same way B3 and B4 are collapsed because in c) they

were connected to A1 with a red arrow with cardinality 2.

• In Figure 3.5 e) C1 and C3 are collapsed because in d) they were both

connected to B1 with a blue arrow and B3 with a red arrow.

• Finally in f) since C1 and C3 were collapsed in the previous step we

increase to 2 the cardinality of the red arrow that connects D1 and C1

and remove the red arrow from D1 to C3 since C3 was collapsed to C1

in Figure 3.5 e).

The final result of domain compression is illustrated in Figure 3.5 b).

Example 3. In Figure 3.6 we provide a pictorial representation of the do-

main compression of an H-decomposition (egd, described in Section 3.3.1).

On the left we show the H-decomposition of a graph taken from the imdb-binary

dataset (see Section 3.6.1) together with its compressed version on the right.

In order to compress H-decompositions we adapt the lifted linear program-

ming technique proposed by Mladenov et al. [55] to the saen architecture. A
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matrix M ∈ Rn×p with m ≤ n distinct rows can be decomposed as the product

DM comp where M comp is a compressed version of M in which the distinct

rows of M appear exactly once.

Definition 8. The Boolean decompression matrix, D, encodes the collapsi-

bility relation among the rows of M so that Dij = 1 iff the ith row of M falls

in the equivalence class j of ∼, where ∼ is the equivalence relation introduced

in Definition 7.2

Example 4. (Example 2 continued)

The bottom level of the H-decomposition in Figure 3.5 a) has 4 objects

A1, A2, A3 and A4 with categorical attributes indicated with colors.

Objects A1, A2, A4 have a purple categorical attribute while A3 has a

orange categorical attribute. If we give to purple the encoding [0, 3] and to

orange the encoding [4, 1] we obtain an attribute matrix

X =




0 3

0 3

4 1

0 3


 (3.4)

in which each row contains the encoding of the categorical attribute of an

object of the bottom stratum and objects were taken with the order A1, A2,

A3, A4.

Since the rows associated to A1, A3, A4 are identical we can compress

matrix X to matrix

Xcomp =

[
0 3

4 1

]
(3.5)

as we can notice this is the attribute matrix of the compressed H-decomposition

shown in Figure 3.5 b).

Matrix X can be expressed as the matrix product DXcomp between the

decompression matrix D and the compressed version of Xcomp where

D =




1 0

1 0

0 1

1 0


 (3.6)

2 Mladenov et al. [55] lifts linear programming and defines the equivalence relation

induced from the labels obtained by performing color passing on a Gaussian random

field. We use an the equivalence relation in Definition 7 because we are working with

H-decompositions.
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and was obtained applying Definition 8.

As explained in Mladenov et al. [55] a pseudo-inverse C of D can be com-

puted by dividing the rows of D> by their sum (where D> is the transpose

of D).

However, it is also possible to compute a pseudo-inverse C ′ of D by

transposing D and choosing one representer for each row of D>. For each

row of D> we can simply choose a nonzero element as representer and set

all the other to zero.

Example 5. The computation of the pseudo-inverse C of the D matrix of

Example 4 results in the following equation:

C =

[
1/3 1/3 0 1/3

0 0 1 0

]
(3.7)

the matrix multiplication between the compression matrix C and the X leads

to the compressed matrix Xcomp (i.e. Xcomp = CX).

In the first row of matrix C there are 3 nonzero entries that correspond

to the objects A1, A2, A4, while on the second row there is a nonzero entry

that corresponds to object A3.

As we said above, since we know that the encodings of those objects are

identical instead of making the average we could just take a representer.

For example in Figure 3.5 c) we chose A1 as representer for A2 and A4,

obtaining the compression matrix

C ′ =

[
1 0 0 0

0 0 1 0

]
. (3.8)

In the first row of matrix C ′ there is a nonzero entry that correspond to

the object A1 (which is the chosen representer), while on the second row there

is a nonzero entry that corresponds to object A3 (as in C).

While from the compression point of view we still have Xcomp = C ′X,

choosing a representer instead of averaging equivalent objects is advanta-

geous when using sparse matrices because the number of nonzero elements

decreases.

We apply domain compression to saen by rewriting Eqs. 3.1 and 3.2 in

matrix form.

We rewrite Eq. 3.1 as:

Al =

{
X if l = 0

RlHl−1 if l > 0
(3.9)
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where:

• Al ∈ R|Sl|×n(l−1)d(l) is the matrix that represents the shift-aggregated

vector representations of the object of level Sl−1;

• X ∈ R|S0|×p is the matrix that represents the p-dimensional encodings

of the vertex attributes in V (i.e. the rows of X are the xvi of Eq. 3.1);

• Rl ∈ R|Sl|×n(l)|Sl−1| is the concatenation

Rl =
[
Rl,1, . . . , Rl,π, . . . , Rl,n(l)

]
(3.10)

of the matrices Rl,π ∈ R|Sl|×|Sl−1| ∀π ∈ Πl which represent the Rl,π-

convolution relations of Eq. 3.1 whose elements are (Rl,π)ij = 1 if

(s′, s) ∈ Rl,π and 0 otherwise.

• Hl−1 ∈ Rn(l)|Sl−1|×n(l)d(l) is a block-diagonal matrix

Hl−1 =



Hl−1 . . . 0

...
. . .

...

0 . . . Hl−1


 (3.11)

whose blocks are formed by matrix Hl−1 ∈ R|Sl−1|×d(l) repeated n(l)

times. The rows of Hl−1 are the vector representations hj in Eq. 3.1.

Eq. 3.2 is simply rewritten to Hl = fl(Al; θl) where fl(·; θl) is unchanged

w.r.t. Eq. 3.2 and is applied to its input matrix Al row-wise.

Domain compression on Eq. 3.9 is performed by the domain-compression

procedure (see Algorithm 1). which takes as input the attribute matrix

X ∈ R|S0|×p and the part-of matrices Rl,π and returns their compressed ver-

sions Xcomp and the Rcompl,π respectively. The algorithm starts by invoking

(line 1) the procedure compute-cd on X to obtain the compression and

decompression matrices C0 and D0 respectively. The compression matrix

C0 is used to compress X (line 2) then we start iterating over the levels

l = 0, . . . , L of the H-decomposition (line 4) and compress the Rl,π matrices.

The compression of the Rl,π matrices is done by right-multiplying them by

the decompression matrix Dl−1 of the previous level l − 1 (line 5). In this

way we collapse the parts of relation Rl,π (i.e. the columns of Rl,π) as these

were identified in level Sl−1 as identical objects (i.e. those objects corre-

sponding to the rows of X or Rl−1,π collapsed during the previous step).
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Algorithm 1 domain-compression

domain-compression(X,R)

1 C0, D0 = compute-cd(X)

2 Xcomp = C0X

3 Rcomp = {}
4 for l = 1 to L

5 Rcol comp = [Rl,πDl−1, ∀π = 1, . . . , n(l)]

6 Cl, Dl = compute-cd(Rcol comp)

7 for π = 1 to n(l)

8 Rcompl,π = ClR
col comp
π

9 return Xcomp, Rcomp

The result is a list Rcol comp = [Rl,πDl−1, ∀π = 1, . . . , n(l)] of column com-

pressed Rl,π−matrices. We proceed collapsing equivalent objects in level Sl,

i.e. those made of identical sets of parts: we find symmetries in Rcol comp by

invoking compute-cd (line 6) and obtain a new pair Cl, Dl of compression,

and decompression matrices respectively. Finally the compression matrix Cl
is applied to the column-compressed matrices in Rcol comp in order to obtain

the Πl compressed matrices of level Sl (line 8).

Algorithm 1 allows us to compute the domain compressed version of

Eq. 3.9 which can be obtained by replacing: X with Xcomp = C0X, Rl,π
with Rcompl,π = ClRl,πDl−1 and Hl with Hcomp

l . Willing to recover the orig-

inal encodings Hl we just need to employ the decompression matrix Dl on

the compressed encodings Hcomp
l , indeed Hl = DlH

comp
l . This is possi-

ble as the domain compression procedure guarantees that, for l = 1, . . . L,

Hl = fl (Al; θ) = fl (DlClAl; θ) = Dlfl (ClAl; θ), as the functions fl operate

row-wise and the compression algorithm only removes duplicated rows, col-

lapsing them to a single representer. Other matrix decomposition approaches

such as SVD would not offer such guarantee, making the compression and

decompression matrices dependent on the trainable representation-building

functions and their parameters. As a consequence of that, any potential

advantage of using those matrix decompositions would be negated by the

fact that it would be necessary to run the compression algorithm after ev-

ery training step to take into account the variation of the parameters of the

network.
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The domain compression strategy of saen is similar to the hierarchi-

cal compression method described by Aiolli et al. [2], where a whole forest is

compressed to a single directed acyclic graph by collapsing identical subtrees.

In saen, however, we preserve the hierarchy by collapsing only objects be-

longing to the same level, whereas in the forest compression algorithm every

set of identical objects is collapsed regardless of their position in the original

hierarchical structure.

As we can see by substituting Sl with Scompl , the more are the symme-

tries (i.e. when |Scompl | � |Sl|) the greater the domain compression will be.

This makes the proposed algorithm particularly effective when dealing with

matrices resulting from H-decompositions, as having nested part-of relation-

ships make it likely to have multiple objects composed of identical sets of

parts.

3.6 Experimental evaluation

We perform an experimental evaluation of saen on graph classification datasets

and answer the following questions:

Q1 How does saen compare to the state of the art?

Q2 Can saen exploit symmetries in social networks to reduce the memory

usage and the runtime?

3.6.1 Datasets

In order to answer the experimental questions we tested our method on six

publicly available datasets first proposed by Yanardag and Vishwanathan

[95].

• collab

is a dataset where each graph represent the ego-network of a researcher,

and the task is to determine the field of study of the researcher between

High Energy Physics, Condensed Matter Physics and Astro Physics.

• imdb-binary, imdb-multi

are datasets derived from IMDB where in each graph the vertices rep-

resent actors/actresses and the edges connect people which have per-

formed in the same movie. Collaboration graphs are generated from
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Table 3.1: Statistics of the datasets used in our experiments.

dataset size
avg. avg. max.

vertices degree

collab 5000 74.49 73.62

imdb-binary 1000 19.77 18.77

imdb-multi 1500 13.00 12.00

reddit-binary 2000 429.62 217.35

reddit-multi5k 5000 508.51 204.08

reddit-multi12k 11929 391.40 161.70

mutag 188 17.93 3.01

ptc 344 25.56 3.73

nci1 4110 29.87 3.34

proteins 1113 39.06 5.79

movies belonging to genres Action and Romance for imdb-binary and

Comedy, Romance and Sci-Fi for imdb-multi, and for each actor/ac-

tress in those genres an ego-graph is extracted. The task is to identify

the genre from which the ego-graph has been generated.

• reddit-binary, reddit-multi5k, reddit-multi12k

are datasets where each graph is derived from a discussion thread from

Reddit. In those datasets each vertex represent a distinct user and

two users are connected by an edge if one of them has responded to

a post of the other in that discussion. The task in reddit-binary

is to discriminate between threads originating from a discussion-based

subreddit (TrollXChromosomes, atheism) or from a question/answers-

based subreddit (IAmA, AskReddit). The task in reddit-multi5k

and reddit-multi12k is a multiclass classification problem where each

graph is labeled with the subreddit where it has originated (worldnews,

videos, AdviceAnimals, aww, mildlyinteresting for reddit-multi5k

and AskReddit, AdviceAnimals, atheism, aww, IAmA, mildlyinterest-

ing, Showerthoughts, videos, todayilearned, worldnews, TrollXChromo-

somes for reddit-multi12k).

Even if our objective was to build a method suitable for large graphs, for the

sake of completeness we also tested our method on some small bioinformatic

datasets.
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• mutag [21] is a dataset of 188 mutagenic aromatic and heteroaromatic

nitro compounds labeled according to whether or not they have a muta-

genic effect on the Gramnegative bacterium Salmonella typhimurium.

ptc [87] is a dataset of 344 chemical compounds that reports the car-

cinogenicity for male and female rats and it has 19 discrete labels.

nci1 [92] is a dataset of 4100 examples and is a subset of balanced

datasets of chemical compounds screened for ability to suppress or in-

hibit the growth of a panel of human tumor cell lines. proteins [9]

is a binary classification dataset made of 1113 proteins. Each protein

is represented as a graph where vertices are secondary structure ele-

ments (i.e. helices, sheets and turns). Edges connect nodes if they are

neighbors in the amino-acid sequence or in the 3D space.

3.6.2 Experiments

E1 We experiment with saen applying the egdH-decomposition on proteins,

collab, imdb-binary, imdb-multi, reddit-binary, reddit-multi5k, and

reddit-multi12k, and the negd H-decomposition on mutag, ptc, and

nci1. We used the colors resulting from 4 iterations of the Weisfeiler-Lehman

algorithm [78] as identifiers for the ego graphs contained in the bottom level

of negd.

In order to perform classification we add a cross-entropy loss on the

extraction step hL(s) (see Eq. 3.2) of the top level L (i.e. L = 2) of the

egnn H-decomposition. We used Leaky relus [52] as activation function on

all the units of the neural networks {fl(.; Θl)}2l=0 of the extraction step (cf.

Eq. 3.2).

saen was implemented in TensorFlow and in all our experiments we

trained the neural network parameters {Θl}2l=0 by using the Adam algo-

rithm [44] to minimize a cross-entropy loss.

The classification accuracy of saen was measured by 10-times 10-fold

cross-validation. With respect to the selection of the hyper-parameters for

each social network dataset, we chose the number of layers and units for each

level of the part-of decomposition, the size of each layer, and the coefficient

for L2 regularization on the network weights by training on 8/9th of the

training set of the first split of the 10-times 10-fold cross-validation and using

as validation set the remaining 1/9th to evaluate the chosen parameters. For

each social network dataset we report the mean and the standard deviation
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Table 3.2: Comparison of accuracy results on social network datasets.

dataset
dgk patchy-san saen

[95] [59] (our method)

collab 73.09± 0.25 72.60± 2.16 78.50± 0.69

imdb-binary 66.96± 0.56 71.00± 2.29 71.59± 1.20

imdb-multi 44.55± 0.52 45.23± 2.84 48.53± 0.76

reddit-binary 78.04± 0.39 86.30± 1.58 87.22± 0.80

reddit-multi5k 41.27± 0.18 49.10± 0.70 53.63± 0.51

reddit-multi12k 32.22± 0.10 41.32± 0.42 45.27± 0.30

Table 3.3: Comparison of accuracy on bio-informatics datasets.

dataset patchy-san saen

[59] (our method)

mutag 92.63± 4.21 82.48± 1.43

ptc 62.29± 5.68 56.80± 1.40

nci1 78.59± 1.89 78.62± 0.40

proteins 75.89± 2.76 72.73± 0.96

of the 10 accuracy values in Table 3.2 where we compare our results with

those by Yanardag and Vishwanathan [95] and by Niepert et al. [59]. In

Table 3.3 we compare the results obtained by our method on bioinformatic

datasets with those obtained by Niepert et al. [59] reporting mean and the

standard deviation obtained with the same statistical protocol.

In Table 3.4 we report for each dataset the radiuses r of the neighborhood

subgraphs used in the egd decomposition and the number of units in the

hidden layers for each level.

E2 In Table 3.5 we show the file sizes of the preprocessed datasets before and

after the compression together with the data compression ratio. 3 We also

estimate the benefit of domain compression from a computational time point

of view and report the measurement of the runtime for 10 epochs with and

without compression together with the speedup factor. We do not report

the compression algorithm runtime as it adds up at most one minute to the

3The size of the uncompressed files are shown for the sole purpose of computing the

data compression ratio. Indeed the last version of our code compresses the files on the fly.
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Table 3.4: Parameters used for the egd decompositions for each datasets.

dataset decomposition hidden units

S0 S1 S2

collab egd, r = 1 15− 5 5− 2 5− 3

imdb-binary egd, r = 2 2 5− 2 5− 3− 1

imdb-multi egd, r = 2 2 5− 2 5− 3

reddit-binary egd, r = 1 10− 5 5− 2 5− 3− 1

reddit-multi5k egd, r = 1 10 10 6− 5

reddit-multi12k egd, r = 1 10 10 20− 11

mutag negd 20 40− 20 40− 20− 1

ptc negd 50 100− 50 100− 50− 1

nci1 negd 50 100− 50 100− 50− 1

proteins egd, r = 3 3 3 9− 6− 1

Table 3.5: Comparison of sizes and runtimes (for 10 epochs) of the datasets

before and after the compression.

dataset
size (mb) runtime

original comp. ratio original comp. speedup

collab 337 119 0.35 2’ 27” 1’ 06” 2.23

imdb-binary 24 18 0.75 8” 6” 1.33

imdb-multi 31 25 0.81 19” 17” 1.12

reddit-binary 129 47 0.36 47” 16” 2.94

reddit-multi5k 368 132 0.36 2’ 10” 55” 2.36

reddit-multi12k 712 287 0.40 4’ 25” 2’ 02” 2.17
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decomposition time, which is negligible compared to the training time.

For the purpose of this experiment, all tests were run on a computer

with two 8-cores Intel Xeon E5-2665 processors and 94 GB ram. saen was

implemented in Python with the TensorFlow library.

3.6.3 Discussion

A1 As shown in Table 3.2, egd performs consistently better than the other

two methods on all the social network datasets. This confirms that the cho-

sen H-decomposition is effective on this kind of problems. Table 3.1 shows

that the average maximum node degree (amnd) 4 of the social network

datasets is in the order of 102. saen can easily cope with highly skewed

node degree distributions by aggregating distributed representation of pat-

terns while this is not the case for dgk and patchy-san. dgk uses the

same patterns of the corresponding non-deep graph kernel used to match

common substructures. If the pattern distribution is affected by the degree

distribution most of those patterns will not match, making it unlikely for

dgk to work well on social network data. patchy-san employs as patterns

neighborhood subgraphs truncated or padded to a size k in order to fit the

size of the receptive field of a cnn. However, since Niepert et al. [59] exper-

iment with k = 10, it is not surprising that they perform worst than saen

on collab, imdb-multi, reddit-multi5k and reddit-multi12k since a

small k causes the algorithm to throw away most of the subgraph; a more

sensible choice for k would have been the amnd of each graph (i.e. 74, 12,

204 and 162 respectively, cf. Tables 3.1 and 3.2).

Table 3.3 compares the results of saen with the best patchy-san in-

stance on chemoinformatics and bioinformatics datasets. Results obtained

by saen are comparable with the ones obtained by Niepert et al. [59] on

nci1 and proteins, confirming that saen is best suited for large graphs.

Moreover, saen does not perform well on mutag and ptc, as these datasets

are too small to afford the highly expressive representations that saen can

learn and in spite of regularization with L2 we consistently observed signifi-

cant overfitting.

A2 The compression algorithm has proven to be effective in improving the

computational cost of our method. Most of the datasets halved their run-

4The amnd for a given dataset is obtained by computing the maximum node degree of

each graph and then averaging over all graphs.
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times while maintaining the same expressive power. Moreover, we reduced

the memory usage on the largest datasets to less than 40% of what would

have been necessary without compression.

3.7 Related works

In this section we compare saen with other relational learning approached

described in literature.

Many graph kernels computer the similarity between graphs without an

explicit feature map. These approaches, however, are not applicable to large

datasets as they have a space complexity quadratic in the number of training

examples. One advantage of graph kernels such as the Weisfeiler-Lehman

subtree kernel (wlst) [78] and the Neighborhood Subgraph Pairwise Dis-

tance Kernel (nspdk) [15] is the possibility to efficiently compute explicit

feature vectors, thus avoiding to solve the optimization problem in the dual.

As we explained in Section 3.4, we could in principle turn saen into a graph

kernel by removing the extraction step; this approach however would be

impractical because of the exponential growth of the number of features.

Additionally, the corresponding feature map would be fixed before observ-

ing data, as it happens with all graph kernels.

Micheli [54] proposed neural networks for graphs (nn4g) as an iterative

algorithm that refine node representations in multiple steps. This approach,

however, propagates the representations using the connectivity of the input

graph, while saen enables the user to choose how to propagate representa-

tions by choosing a suitble H-decomposition. Moreover, the saen user can

specify how the vector encoding should be shifted before the aggregation

by using the π-membership types of the H-decompositions. Furthermore,

saen can be trained end-to-end with backpropagation while nn4g cannot,

as at each iteration of the computation of a state encoding nn4g freezes the

weights of the previous iterations.

Deep graph kernels (dgk) [95] upgrade existing graph kernels with a fea-

ture reweighing schema that exploits embedding derived from cbow/Skip-

gram models. This approach, however, inherit from graph kernels a flat

decomposition (i.e. just one layer of depth) for the input graphs. Moreover,

the vector representations of the substructures are not trained end-to-end as

saen would do.

patchy-san [59] casts graphs into a format suitable for learning convo-
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lutional neural networks. This algorithm, however, select a fixed number of

neighborhood subgraphs that are then casted to a fixed-size receptive field.

These operation involve either padding or truncation operations, that can

be detrimental for the statistical performance of the downstream cnn since

it throws away part of the input graph. On the other hand saen is able to

handle structured inputs of variable sizes without throwing away part of the

them.

A related neural network architecture was recently introduced by [86] to

extend the multi-instance learning framework to data represented as bags of

bags of instances. That network can be seen as a special case of SAEN using

maximum as the aggregation operator and no π-types (i.e. no shifts).

GraphSAGE [36] generates representations for vertices of a graph us-

ing an algorithm inspired by the Weisfeiler-Lehman isomorphism test. The

approach used by GraphSAGE to propagate representations is similar to

the application of saen’s shift-aggregate operators between level 0 and 1

of ego graph decompositions; unlike saen, however, the new node descrip-

tor is built via a single neural network layer instead of a generic extract

operation. Furthermore, the algorithm in GraphSAGE is forced to use

a fixed neighborhood function for all the propagation steps, whereas saen

is explicitly designed to be able to handle different “part of” relationships

at different levels of the hierarchy. Finally, while the special handling of

the neighborhood’s center is hardcoded in GraphSAGE, in saen the more

generic π-types mechanism is used to describe the role of each node in the

ego graphs, and of each ego graph in the whole graph.

Hamilton et al. [37] proposed a comprehensive review of methods to em-

bed vertices and graphs. While saen could, in principle, be adapted for

node classification tasks by building a suitable decomposition, in our work

we focused on classifying whole graphs. Sum-based approaches such as the

ones proposed by [16] and [24] build graph representations by summing node

embeddings or edge embeddings; these approaches however cannot represent

more complex decompositions and cannot distinguish between vertices with

different roles. According to Hamilton et al. [37], other approaches based on

graph-coarsening [11, 22] have cubic complexity on number of vertices, and

are thus unsuitable for large social networks classification.
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3.8 Conclusions

Hierarchical decompositions introduce a novel notion of depth in the context

of learning with structured data, leveraging the nested part-of-parts relation.

In this work, we defined a simple architecture based on neural networks

for learning representations of these hierarchies. We showed experimentally

that the approach is particularly well-suited for dealing with graphs that

are large and have high degree, such as those that naturally occur in social

network data. Our approach is also effective for learning with smaller graphs,

such as those occurring in chemoinformatics and bioinformatics, although in

these cases the performance of saen does not exceed the state-of-the-art

established by other methods. A second contribution of this work is the

domain compression algorithm, which greatly reduces memory usage and

allowed us to halve the training time on the largest datasets.
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Chapter 4

Context-dependent claim

detection using SAEN

In this chapter we introduce an application of Shift Aggregate Ex-

tract Networks to context-dependent claim detection task. Claim

detection is the assessment of whether a sentence contains a

claim, i.e. the thesis, or conclusion, of an argument; in par-

ticular we focus on context-dependent claims, where the context

(i.e. the topic of the argument) is a determining factor in classi-

fying a sentence. We show how Shift Aggregate Extract Networks

are able to take advantage of contextual information in a straight-

forward way and some preliminary results that indicates how this

approach is viable on real world datasets.1

4.1 Introduction

Argumentation studies the way humans debate and reason. Having its roots

in logic, rhetoric, and philosophy, this ancient discipline has recently be-

come a hot topic also for computer science, giving birth to the research field

of computational argumentation. The problem of automatically extract-

ing arguments from unstructured text has defined a novel area of interest

for artificial intelligence and computational linguistics, called argumentation

1A manuscript based on this chapter is under preparation as “SAEN for Argumentation

Mining” [4].

43
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mining [51]. Although several, different formal definitions of an argument

have been given throughout the years, in this chapter we will mainly con-

sider the general framework described by Walton [93] where an argument is

defined by a claim, a set of premises, and an inference from the premises to

the claim.

A wide range of artificial intelligence and machine learning techniques

have been recently employed to address this challenging task. In particu-

lar, they have been successfully applied to specific domains like legal doc-

uments [56], microtexts [64], Wikipedia articles [47, 48] or student essays [83].

On the other hand, the problem of cross-domain generalization is still open [20].

Nevertheless, some initial study on cross-domain claim identification has

shown that there are properties, at least on the lexical level (e.g., the oc-

currence of keywords such as “should”), that some diverse domains seem

to share [20], which further motivates the ambitious challenge of detecting

arguments and their relations in texts of any kind and genre.

There is a wide range of applications that have been triggered by ad-

vancements in argumentation mining. Recent works have been proposed in

the context of claim retrieval [72], argument synthesis [6], claim classifica-

tion [34], analysis of political debates [12, 49], automatic essay scoring [60].

A crucial task in argumentation mining is claim detection. The goal there

is to assess whether a sentence contains a claim, which is the thesis, or con-

clusion, of an argument. Typically, the machine learning classifiers that have

been employed in claim detection consider the sentence to be classified as

argumentative or not independently of the rest of the document [47, 48, 82].

Only a few recent approaches have tried to exploit contextual information2

to describe a sentence for this task.

The majority of such approaches explicitly encodes contextual informa-

tion in specific features, for example by considering the presence of known

indicators or discourse markers in preceding and subsequent sentences [57,

65, 82, 83]. Most often, methods are proposed for domains where documents

follow predefined structures, like in the case of student essays, legal texts,

or scientific articles. There, some early works in argument mining consid-

ered argumentative zoning [85] to identify and classify sections on scientific

2The word context in argumentation mining has sometimes been used as a synonym

of topic [47, 48]: context-dependent claim detection has been defined as the extraction

of claims from a text, when a topic is given in advance. In this work, by indicating

the context of a sentence we mean the information regarding the document in which the

sentence appears.
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documents using features such as the location of a sentence within a docu-

ment and within subsections and paragraphs, sentence length, whether the

sentence contains a word from the title, etc. [63]. Recently, knowledge of

the document structure has been used by Persing and Ng [65], Stab and

Gurevych [83], and Wei et al. [94] in domains such as student essays, where

global constraints are enforced to tie the output of the system to the docu-

ment structure. All these works heavily rely on handcrafted features. These

would have to be manually adapted to and designed for each new sample of

data, which is hardly sustainable [25].

In [35], claim detection is performed at sentence level with structured

output support vector machines [88], hence by taking into account the se-

quential correlation among sentences. Even in this case, several handcrafted

features are employed, such as the relative position of the sentence within the

paragraph and the document, the output of a sentiment classifier, a seman-

tic role labeler, and a semantic coreference chain resolver. In order to take

into account contextual information, to describe each sentence, the feature

vectors of a few preceding and subsequent sentences are also used.

In other cases, the topic has been used as an external, additional piece

of information to be exploited when looking for claims [47]. While this

approach is certainly relevant in tasks where the topic to be debated is

given in advance, yet it presents two limitations: first, the outcome of the

argumentation mining system would be affected by the way the topic is

phrased, which might not be desirable; second, in many cases the assumption

of knowing the topic in advance simply does not hold.

In this chapter, we show that the context in which sentences are em-

bedded provides effective features for argumentation mining, even when the

document structure is unknown and the topic is unknown. We also show

that contextual information can be exploited by applying the same method

across different domains. In particular, we propose a novel strategy for

claim detection in which we learn two separate representations, one for the

sentence to be classified, and one for the rest of the document where that

sentence occurs. The second representation is meant to provide topical con-

textual information so that the classifier may detect whether the claim of an

argumentative sentence does actually fit the topic being debated.

We learn sentence and context embeddings by exploiting an architecture

based on shift aggregate extract networks (see Chapter 3). We exploit the

hierarchical approach of saen to handle context in a very natural way: the
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target sentence and the remaining portion of the document serve as the top

level of the hierarchy, while fragments of dependency graphs and individual

words are used at the lower levels.

4.2 Argumentation Mining

Mining arguments from text is a challenging problem that encompasses sev-

eral tasks, or steps. The way these tasks are formulated and addressed

strongly depends on a variety of factors, including the underlying argument

model, the document genre, the application domain. Generally speaking,

argumentation mining systems have to identify argumentative entities (e.g.,

premises and claims) and the relations between them [51]. Many approaches

address these tasks following a pipeline scheme, while recently there has been

some effort in jointly addressing multiple tasks [35, 65]. In this work we fo-

cus on the detection of sentences containing claims, which is still considered

the main issue in argumentation mining [20]. The task is typically formu-

lated as a sentence classification task, and many different machine learning

and natural language processing approaches have been proposed to address

it, including logistic regression or support vector machines with rich feature

sets [47, 82], tree kernels [48], convolutional and recurrent neural networks

with word embeddings [20].

Very often, the chosen methods have been adapted and calibrated on the

specific application that was targeted. There have been mainly two reasons

behind this rationale. The first reason is that applications are typically

linked to a specific document genre, such as legal documents for argument

detection and retrieval in law [56, 63], or user-generated content in web

resources [35, 47]. This in turn implies that specific features are commonly

designed for each task (and thus, for each method), such as the presence of

discourse markers, or the syntactical structure of sentences and paragraphs.

The second reason has to do with corpora. Datasets, in fact, are hard to build

in argumentation mining, since they require a significant effort in defining

guidelines and performing annotations. This activity is made particularly

difficult by the inherent ambiguity and subjectivity in the definition and

identification of an argument [35, 51].

In this chapter we aim at exploiting contextual information in order to

detect sentences containing claims. Context is a very general term, and it

has been used from different perspectives in the literature. Levy et al. [47]
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first introduced the term context with the meaning of topic, with the aim of

identifying context-dependent (i.e., topic-dependent) claims. Their approach

proposes to directly use a definition of the topic of interest within the claim

detector, so as to retrieve only those claims that refer to that topic. Yet,

this approach suffers from the limitations mentioned in Section 4.1, that is

that the phrasing of the topic would affect the classifier, and moreover know-

ing the topic in advance is not always a reasonable assumption. Habernal

and Gurevych [35] exploit contextual information in a different way, that is

by employing a structured support vector machine (namely, SVM-HMM) to

tag sentences. In this way, the classification of a sentence will depend also

on the classification of neighbor sentences. In addition, they describe each

sentence with features also coming from the preceding and subsequent sen-

tences. More recently, Eger et al. [25], Niculae et al. [58], Persing and Ng [65],

have presented different approaches that share the common idea that some

tasks in argumentation mining should be jointly addressed in a multi-task

setting. Structured support vector machines and recurrent neural networks

are proposed within this context. In particular, Eger et al. [25] remark the

limitations of exploiting hand-crafted features in computational argumenta-

tion, highlighting how deep neural architectures have the potential to learn

rich and effective representations.

4.3 Context-aware hierarchical decomposition

We propose an approach to automatically detect context-dependent claims

by exploiting the contextual information given by the documents in which

each sentence appears. More specifically, we take advantage of the flexibil-

ity of H-decompositions (described in Section 3.2) to build context-aware

hierarchical decompositions that make use of contextual information in a

straightforward way. To do so, we introduce the concept of contextualized

sentences.

Definition 9 (Contextualized sentence). Given D = {si}Ni=1 a document

represented as a set of sentences, we define the set of contextualized sen-

tences of D as the set of pairs {(si, D \ {si})}Ni=1.

If we represent sentences as graphs (perhaps by using a dependency

parser), we can easily build context-aware variants of existingH-decomposition

by stacking an additional level on top of the hierarchy. This level will con-

sist of contextualized sentences, and each of them will be decomposed in the
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graph representing the sentence itself (with π-type “self”) and the graphs

representing each other sentence in the document (with π-type “context”).

The computation defined in Section 3.4 will then be able to combine the

representation for each sentence with an aggregated descriptor of the rest of

the document.

For this work we focused on the context-aware extension of the ego graph

decomposition described in Section 3.3.1, and more specifically:

• Level 3 consists of all the contextualized sentences contained in a doc-

ument;

• Level 2 consists of all the sentences contained in a document, repre-

sented as graphs obtained from a dependency parser;

• Level 1 and Level 0 are defined in the same way of egd;

• A function x : S0 → Rp associates to each vertex (word) in level 0 a

corresponding p-dimensional word vector.

Context-aware hierarchical decompositions have several advantages. First,

sentence and context representations are learned at the same time, without

requiring a separate preprocessing step to extract contextual information.

Second, the domain compression algorithm (described in Section 3.5) greatly

reduces the temporal complexity of the algorithm when classifying all the

sentences in a document. In this case, in fact, the decomposition of all the

contextualized sentences would generate N2 objects. However, most of them

would be duplicates, as each original sentence would appear one time with

π-type “self” and N−1 times with π-type “context”. Therefore, the domain

compression algorithm would be able to collapse all these identical struc-

tures and reduce the number of them back to N . Figure 4.1 exemplifies this

process with a simple context-aware hierarchical decomposition.

4.4 Experimental Evaluation

We performed an experimental evaluation of our approach on three differ-

ent datasets: IBM Wikipedia Corpus, Consumer Debt Collection Practices

(CDCP), and Persuasive Essays.
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Figure 4.1: Pictorial representation of top two levels of a context-aware

hierarchical decomposition before and after the application of the domain

compression algorithm. Solid lines indicate part-of relationships with π-type

“self”, dashed lines indicate part-of relationships with π-type “context”.

Table 4.1: Statistics of the datasets used in our experiments.

Dataset Documents Sentences Avg. sentences for doc.

CDCP 731 4932 6.75

ESSAYS 402 7124 17.72

IBM 522 76869 150.56
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4.4.1 Datasets

IBM Wikipedia Corpus

The first dataset that we used is the IBM Wikipedia Corpus [1, 70].3 This

dataset consists of 522 Wikipedia articles, each one of them annotated for

claims and evidences. Overall, the corpus contains 2080 claims out of a total

of 76869 sentences. Following the conventions described in [70], the articles

are associated with 58 topics, of which 39 are used for training and testing

via a leave-one-topic-out cross validation procedure while the other 19 are

used as validation set.

As many articles are associated to multiple topics, the same article could

appear both in the training and in the test sets while performing the cross

validation. To address this problem, we adopted the following strategy for

each of the 39 runs:

• when a document appear both in the test set and in the training and/or

validation sets, we remove it from the training/validation sets;

• when a document appear both in the validation set and in the training

set, we remove it from the validation set;

• we remove duplicate documents from the training and the validation

sets.

Consumer Debt Collection Practices (CDCP)

As a second benchmark, we use the recently released CDCP [58] corpus4

which consists of a collection of user comments from the eRulemaking web-

site, about rule proposals regarding Consumer Debt Collection Practices by

the Consumer Financial Protection Bureau. The dataset presents phrases al-

ready segmented and labeled according to five different classes, namely pol-

icy, value, testimony, fact, and reference. According to the dataset

guidelines, the first two classes (policy and value) represent subjective

judgements and interpretations, while the remaining three categories typi-

cally support such conclusions. We thus formulated a binary classification

task, where policy and value make up the positive class. Overall, the cor-

pus contains 2,997 positive sentences out of 4,932. A single train/test split

is provided, and segmented sentences are already given as well.

3Available at https://www.research.ibm.com/haifa/dept/vst/mlta_data.shtml
4Available at http://joonsuk.org.

https://www.research.ibm.com/haifa/dept/vst/mlta_data.shtml
http://joonsuk.org


4.4 Experimental Evaluation 51

Persuasive Essays

Finally, as a third dataset we employed the Persuasive Essays corpus de-

veloped by Stab and Gurevych [83]. This corpus has been widely used in

many argumentation mining papers, as it is one of the few datasets with

a complete annotation that comprises the detection of argumentative enti-

ties, their relations, and the stance of such relations. The corpus consists of

402 persuasive essays, split into a training set of 322 documents, and a test

set of 80 documents. Argumentative entities are annotated as claims, ma-

jor claims, and premises. For our purpose, we considered claims and major

claims as positive class (as in [20]), which resulted in a total of 2,117 positive

sentences out of 7124 examples.5

4.4.2 Experiments and results

We applied the context-aware ego graph decomposition described in Sec-

tion 4.3 with radius 1 to each dataset, and we trained a shift aggregate

extract network on each of them. For each dataset we followed the ex-

perimental setting described by the conventions described by their authors:

leave-one-topic out for IBM Wikipedia Corpus and a single train/test split

for CDCP and Persuasive Essays.

We compare the results obtained by our method (SAEN+C) with those

obtained by the method described by Lippi and Torroni [50] (SSTK) and with

those obtained by saen with a context-unaware ego graph decomposition

(SAEN). For the experiment on IBM Wikipedia Corpus we considered for

SAEN and SAEN+C the average output of four identical saens initialized

with different random weights, as we noticed that these architectures were

very sensible to the choice of the initial state.

In Table 4.2 we report the results obtained on IBM Wikipedia Corpus in

terms of AUROC and F1@2006, in Table 4.3 we report the results obtained

on CDCP in terms of AUROC and F1, and in Table 4.4 we report the results

obtained on Persuasive Essays.

Our context-aware approach outperforms both SSTK and saen with a

context-unaware ego graph decomposition. On CDCP and Persuasive Es-

5There is a tiny difference with respect to the number of sentences reported in [83],

although we employed the same software (DKPro) for segmentation.
6Please note that the results reported here are not directly comparable to those pub-

lished in other works, due to the removal of duplicate articles with the procedure described

in Section 4.4.1
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Table 4.2: Comparison of results on the IBM Wikipedia corpus.

Method AUROC F1@200

SSTK 0.784 0.163

SAEN 0.812 0.149

SAEN+C 0.821 0.176

Table 4.3: Comparison of results on CDCP.

Method AUROC F1

SSTK 0.837 0.808

SAEN 0.856 0.846

SAEN+C 0.825 0.829

says, however, our approach does not perform well. This is probably caused

by the fact that documents contained in these datasets do not provide enough

contextual information, as the average number of sentences per document

(shown in Table 4.1) is an order of magnitude smaller in these datasets with

respect to IBM Wikipedia Corpus.

4.5 Conclusions

Cross-domain claim identification is still an open challenge. In this chapter

we proposed a machine learning approach that leverages the contextual infor-

mation embedded in the document in which a sentence appears. We describe

how to build context-aware extensions to existing H-decompositions, an ap-

proach that allows shift aggregate extract networks to exploit the context in

a straightforward way. Moreover, decompositions built with this approach

can be easily compressed via saen’s domain compression algorithm, greatly

reducing the cost of classifying all the sentences contained in a document.

Table 4.4: Comparison of results on Persuasive Essays.

Method AUROC F1

SSTK 0.794 0.605

SAEN 0.767 0.556

SAEN+C 0.766 0.525
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Preliminary results show that our approach is able to outperform exist-

ing methods when applied to documents that contains sufficient contextual

information. Our method, however, has still two issues that need to be

addressed. First, the instability of our approach required us to run our

algorithm multiple times. To deal with this problem we would need to inves-

tigate the dynamics of our algorithm when dealing with complex hierarchical

structures. Our conjecture, in fact, is that the computation of saen requires

special care when choosing how to initialize weights and how to regularize

the network, and that the existing approaches for these problems have to be

tuned to work with our kind of hierarchical networks. Second, results show

that saen performs worse than existing method on IBM Wikipedia Corpus

when contextual information is not taken into account. This problem could

be addressed by building a claim-detection-specific H-decomposition: in our

experiments we only used the context-aware extension of the ego graph de-

composition, which is very general and thus is not suited to take advantage of

additional information deriving from dependency graphs. A possible exten-

sion of our method could explore how to embed this additional information,

perhaps by embedding part-of-speech and dependency tags in a custom de-

composition.
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Chapter 5

A machine learning approach to

assess normalcy of aortic size

This chapter describe a machine learning approach to aortic size

normalcy assesment. The definition of normalcy is crucial when

dealing with thoracic aortas, as a dilatation of its diameter often

precedes serious disease. In this contribution we build a normalcy

estimator based on OC-SVM and fitted on a cohort of 1024 healty

individuals aging from 5 to 89 years, and we compare its results

to those obtained on the same set of subjects by an approach

based on linear regression. We also build a second estimator that

combines the diameters measured at multiple levels in order to

assess the normalcy of the overall shape of the aorta.1

5.1 Introduction

Thoracic aorta (TA) is a geometrically complex structure which is rou-

tinely assessed by standard two-dimensional (2D) transthoracic echocardio-

graphy (TTE) [32, 67]. Aortic dilatation is an important predictor of out-

come [18, 19, 43], and its detection prompts the need for accurate clinical

and imaging follow-up [7, 40, 67], in order to prevent catastrophic events

1This chapter will be submitted as “Two-dimensional echocardiographic aortic size

in 1024 healthy individuals aged 5 to 89 years. Development of a machine learning ap-

proach to assess normalcy” to Journal of American College of Cardiology: Cardiovascular

Imaging [27].

57
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(such as dissection) by appropriate therapeutic choices including drugs and

prophylactic surgery. Thus, an accurate definition of normalcy and the avail-

ability of tools for assessing normalcy are crucial for diagnosis and follow-up

strategies.

In order to be usable in a practical general context, a normalcy calculator

should fulfil the following desiderata. First, it should assess the aortic size at

several levels (at least sinuses of Valsalva, sinotubular junction, and proximal

ascending aorta). Second, it should predict normalcy on a single patient basis

taking into account the influence of demographics and anthropometrics on

TA size. Third, it should also be uniformly applicable to the whole range

of patients, thus avoiding the introduction of age or body-size groups that

make decisions difficult for subjects situated near the range extrema.

Although a large body of literature exists on the description of nor-

mal limits of TA size, no standard normalcy calculator meeting the three

above desiderata is currently available. There are several reasons why TA

normalcy assessment is still an unsettled matter. To begin with, the find-

ings in previous studies are not immediately comparable because of different

demographic and anthropometric characteristics of the study populations,

different TTE modes, and different strategies for measurements including

interfaces (leading-to-leading vs. inner- to-inner), and timing (end-systole

vs. end-diastole). Moreover, the usability of the results of these studies for

practical purposes may be limited since some of them (e.g. [73]) assessed the

aortic size at only one level of the TA (usually sinuses of Valsalva). Further-

more, most studies provide ranges of normalcy or a graphical approach to

assess normalcy, while relatively few provided algorithms to predict normalcy

on a single patient basis taking into account the influence of demographics

and anthropometrics on TA size. Overall, the available algorithms are only

applicable to specific cases: those assessing the aortic size at each of the

4 TA sites are confined to neonates, infants and young adults, or provide

graphic nomograms separated for gender, body size and age groups; while

those predicting only the aortic root are based on different echocardiographic

conventions for childhood and adulthood.

Many previous approaches to establish nomograms of aortic diameters

are based on linear regression modeling via ordinary least squares. Diame-

ters are predicted from demographic and/or anthropomorphic explanatory

variables such as height, weight, age, and sex, or derived attributes such as

body surface area (BSA) and body mass index (BMI). Regression models
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(typically one separate model per diameter and sometimes separate models

for different genders) assume that the noise is additive and normally dis-

tributed with zero mean and constant variance (homoscedasticity). Once

fitted, these models produce normalcy calculators based on Z-scores. More

precisely, Z is calculated as the difference between the measured and the

predicted diameters, divided by the standard deviation estimated from the

mean squared error on the training data. The calculators are eventually used

to infer the abnormality of diameters (e.g. using the criterion Z > 2).

Several limitations of these approaches to normalcy have been discussed [53].

First, the relationship between predictors and a certain aortic diameter is not

necessarily linear. To correct this, some methods assume that linearity holds

in the log-log space [29], while others have used polynomial models [17]. For

example, in [29] it is proposed to predict log d = β1 log BSA + β0. A second

problem is that the homoscedasticity assumption is often violated and not

accounted for [53]. While methods that operate in the log-log space some-

what do take heteroscedasticity into account (when mapping back to the

original spaces, variance increases with the independent variable), the way

variance varies with predictors remains constrained by the model assump-

tions. A third issue is that data might not satisfy the model assumptions of

normally distributed additive noise [53].

Paradoxically, success and effectiveness of these methods are linked to

their inaccuracy in predicting aortic diameters. Indeed, if a diameter of a

new subject was predicted with a small error (by a very accurate model),

then the resulting Z-score would be small. While this is desirable for healthy

subjects, it may be problematic for pathological subjects, potentially yielding

a low sensitivity when using the calculator as a diagnostic tool. Indeed, few

existing normalcy studies have extensively tested the diagnostic power of the

proposed calculators in terms of sensitivity and specificity, measured on an

independent test set of healthy and pathological subjects.

In this chapter, we aim at developing a general tool for TA normalcy

measured at 4 levels by 2D-TTE, applicable to a large group of healthy in-

dividuals ranging from pediatric to elderly. For this purpose, we considered

two alternative approaches: a conventional approach based on linear regres-

sion models, and a novelty detection approach based on one-class support

vector machine (OC-SVM) [77]. Novelty detection techniques are common

in the context of industrial applications (see, e.g., [66] for a review) and

they have also found a few successful applications to some medical con-
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texts [28, 80, 84]. However, to the best of our knowledge, they have never

been applied before in the context of TA normalcy. As an advantage over

conventional approaches, OC-SVM is able to delimit regions of high density

without making any assumption about the underlying probability distribu-

tion, thus potentially overcoming some of the above mentioned limitations

of regression models. As a second advantage, OC-SVM allows normalcy to

be assessed for the whole aorta morphology, taking all level measurements

into account simultaneously, while conventional linear regression typically

assesses normalcy for individual levels separately. We validated and com-

pared the two approaches using an independent cohort of subjects deemed

at risk of having aortic dilatation.

5.2 Materials and methods

5.2.1 Study population

Healthy individuals aged 5 years or older were prospectively and consecu-

tively identified and enrolled in 3 independent echocardiographic laborato-

ries if they had: normal 12-lead ECG, left ventricular (LV) ejection fraction

≥ 55% and normal wall motion score index. Subjects were excluded if they

were first-degree relatives either of patients with bicuspid aortic valve or TA

aneurysm/dissection, or Marfan syndromes or related disorders (also if the

subject him/herself was free from that disease) and/or had:

a. arterial systemic hypertension and/or were on active anti-hypertensive

treatment;

b. overt coronary artery disease (defined as previous acute coronary syn-

drome and/or revascularization procedures, or positive stress tests of

inducible ischemia);

c. primary cardiomyopathy and/or genetic cardiovascular disease;

d. congenital heart disease;

e. mitral valve prolapse, mitral or aortic valvular insufficiency of higher

degree than trivial, valvular stenosis of any degree, or any previous car-

diac or vascular surgery or interventional procedure (including ablation

of accessory pathways);
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f. previous chemotherapy and/or chest radiotherapy;

g. documented episodes of atrial fibrillation or flutter (even if paroxysmal

and remote), either complex or frequent (i.e. > 10 ectopic beats/hour

at Holter monitoring) supra-ventricular or ventricular arrhythmias;

h. any kind of cardiovascular therapy;

i. previous cardioembolic stroke, including transient ischemic attacks;

j. diabetes mellitus or any kind of endocrinologic disorder.

As an independent cohort of subjects deemed at risk of having TA dilatation,

we enrolled patients with either clinical diagnosis of Marfan syndrome or

related disorders, or bicuspid aortic valve or consecutive outpatients with

aortic diameter > 40 mm at any TA levels studied in the same laboratories

by the same echocardiographers.

5.2.2 Echocardiography

Comprehensive echocardiographic examinations were performed using com-

mercially available systems equipped with a multifrequency phased-array

transducer according to a predefined protocol for the performance of the

echocardiographic exam, its storage, review and measurement, by 3 board-

certified cardiologists with more than 10 years of clinical experience in per-

forming and interpreting echocardiographic examinations, during ECG –

monitoring for proper timing of all the measures. Left ventricular (LV)

end-diastolic and end-systolic volumes and ejection fraction (EF) were cal-

culated using the modified biplane Simpson’s rule; LV mass was calculated

using linear measurements of 2D recordings of the left ventricle [7]. Left

atrial volume was assessed by the biplane area-length. Pulsed Doppler of LV

mitral inflow was recorded in the apical 4-chamber view at the tips of the

mitral valve: early (E) and atrial (A) peak velocities (m/s) were measured

and E/A ratio was calculated. Early diastolic e′ velocities were measured at

the septal and the lateral site of the mitral annulus by pulsed Tissue Doppler

averaged. The ratio between transmitral E and average e′ (E/e′ ratio) was

calculated.

The aortic diameters were measured in 2D-TTE mode at 4 levels [i.e.:

aortic annulus (AAn), sinuses of Valsalva (SoV), sinotubular junction (SJ),
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and proximal ascending aorta (PAA)]. Care was used to adjust the paraster-

nal long-axis view to align the echocardiographic plane with each of the 4

aortic levels in order to obtain the largest aortic diameters; magnified views

were used for greater precision. All measurements were made at end-diastole,

perpendicular to the long axis of the aorta, using the leading-edge to leading-

edge technique. Specific measurements were made by the average of 3 to 5

cardiac cycles. Height (in m) and weight (in Kg) were measured at the

time of the TTE; body mass index (BMI) was computed as weight/height

squared and body surface area (BSA) calculated by the Du Bois and Du

Bois formula. Systolic and diastolic blood pressure were measured using a

cuff sphygmomanometer at the end of the examination.

To assess reproducibility, the main investigator repeated the analysis af-

ter a period of 2 weeks. A second independent observer, blinded to principal

observer’s results, performed the measurements in a randomly chosen sub-

group of 50 subjects from each laboratory. Interobserver variability were

studied as intraclass correlation coefficients (ICCs). Reproducibility of the

entire set of aortic measurements was good to excellent at each aortic level,

without any difference between echo-labs. In particular, ICCs was 0.92 for

the AAn, 0.98 for the SoV, 0.95 for the STJ, and 0.98 for the ascending

aorta.

5.2.3 Regression analysis model

Classic multivariate regression analysis was employed to predict aortic diam-

eters from age, sex, and BSA. As in previous approaches, the mean squared

error on training data was used to estimate (homoscedastic) variance and

to derive Z-scores. Unlike previous approaches (in particular [29, 73] that

focused on specific age groups, and trained separate gender-specific models)

a single model was trained on all the available data (n = 1024), yielding

a single normalcy calculator that is applicable to any individual for the 4

different aortic levels. We also defined a global Z score as the maximum Z

score among the 4 levels.

5.2.4 One-class support vector machine model

The one-class support vector machine (OC-SVM) is a machine learning

method that estimates the support (i.e. the high-density region) of the un-

known joint probability p over a given set of variables [77]. Given a data
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set of instances drawn from p, the learning algorithm infers a real valued

function f such that for any realization x of the variables, f(x) > 0 if x

belongs to the support of p. In the following, f(x) will be referred to as the

O-score. In our context, x is a vector representing normalized (by dividing

for the maximum observed value) age, sex, BSA, and the single or all 4 aortic

diameters as our goal is to estimate normalcy of the combination of these

features. When x contains age, sex, BSA, and one individual aortic diameter,

f(x) will be referred to as the local O-score (relative to the particular chosen

diameter). When x includes all four diameters, f(x) will be referred to as

the global O-score. To the best of our knowledge, this is the first normalcy

indicator that takes into account the whole aorta morphology. The decision

function is computed as

f(x) =

n∑

i=1

αik(xi, x)− ρ (5.1)

where the index i ranges over the subjects in the training set, k is a kernel

function that measures the similarity between two vectors of variables, and

αi and ρ are coefficients determined by the learning algorithm. Unlike linear

regression (that results in one coefficient for each variable and one intercept)

the nature of this model makes it difficult to report the results of the training

algorithm in the paper.2 The OC-SVM approach offers several advantages:

• it does not rely on any assumption on the density of interest and it

is therefore not affected by problems such as heteroscedasticity and

residues that are not normally distributed;

• it can exploit a kernel function to measure the similarity between a new

test subject and the subjects in the study population; kernel functions

implicitly map a realization x to a point in an infinite dimensional

feature space, thus allowing to model complex nonlinear relationships

among variables;

• as mentioned above, the global O-score can take into account the inter-

play among aortic diameters (thus incorporating global morphological

information of the whole aorta), by including them in x together with

all other demographic and anthropomorphic variables.

2For this reason, we make available a calculator implementing the above formula at

http://aorta-normalcy.dinfo.unifi.it.

http://aorta-normalcy.dinfo.unifi.it
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Figure 5.1: Example of heatmap of O-score obtained by a OC-SVM model

that predicts normalcy by using only PAA and SOV diameters. The solid line

is the contour associated with O-score = 0. Note that this contour delimits

a closed region thanks to the use of a radial basis function (RBF) kernel:

inside the yellow region, scores are negative thus indicating normalcy.
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In the impossibility to represent the seven dimensions feature space of our

OC-SVM model (4 aortic levels, BSA age and sex), as an illustrative example,

Figure 5.1 shows a heatmap of O-score obtained by a OC-SVM model that

predicts normalcy by using only PAA and SOV diameters. As a reference,

the TA dilatation region defined by the current guidelines (> 40 for at least

one aortic segment) has been slightly darkened. Inside the yellow region,

O-scores are positive, indicating normalcy. The solid line is the contour

associated with O-score = 0. Note that this contour delimits a closed region

thanks to the use of a radial basis function (RBF) kernel. By contrast,

linear regression models are unable to delimit closed regions: If we used

linear regression on the data of Figure 5.1, the normalcy region would have

been delimited by two parallel lines, resulting in many clearly abnormal

cases (e.g. patients with PAA and SoV approximately equal but both larger

than 40 mm) being predicted as normal. It should be remarked a second

important difference between Z-scores and O-scores: the former has a direct

probabilistic semantics (under the assumption of Gaussian residuals); by

contrast, the absolute value of the latter is not directly interpretable as

a population percentile but still it represents an indication of the model’s

confidence about normalcy (if positive) or abnormality (if negative). OC-

SVM has two parameters to be tuned: ν (an upper bound to the number of

outliers) and γ (the RBF kernel width). We set ν = 0.04 since this is roughly

the proportion of population that would have a Z-score > 2 when using the

traditional linear regression approach; γ was set to 2 in order to obtain a

high sensitivity in detecting pathological subjects (one diameter > 40 mm)

without deteriorating specificity above the 4% level.

5.2.5 ROC analysis

Receiver operating characteristic (ROC) curves were used to assess and com-

pare the discriminatory power of linear regression and OC-SVM in distin-

guishing between pathological and normal individuals. Significance in the

pairwise comparisons between the areas under the curve (AUC) was assessed

by a DeLong test [23] using the pROC package [71]. For each model, the

best cutoff that maximized the sensitivity-specificity sum was determined

and gives an indication of the optimal model’s sensitivity and specificity. A

value of p < 0.05 was chosen as the cut-off level for statistical significance.
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Table 5.1: Demographic and echocardiographic characteristics of the 1024

healthy subjects.

Characteristics Median (IQR)

Age (years) 30 (16-48)

Sex F n (%) 553 (54)

Height (cm) 165 (156-173)

Weight (Kg) 61 (50-73)

Body mass index (Kg/m2) 21.99 (19.53-25)

Body surface area (m2) 1.66 (1.50-1.86)

Systolic blood pressure (mm Hg) 120 (110-130)

Diastolic blood pressure (mm Hg) 70 (65-80)

Heart rate (beats per minute) 74 (66-85)

Left atrial volume index (ml/m2) 21.62 (16.8-27)

Left ventricular end-diastolic volume index (ml/m2) 55 (46.8-64)

Left ventricular ejection fraction (%) 64 (61-68)

Left ventricular mass index (g/m2) 70 (60.1-82)

E/A 1.5 (1.15-1.98)

E/e’ 5.9 (5.1-6.9)

5.3 Results

5.3.1 Characteristics of normalcy and deemed-at-risk

cohorts

We prospectively enrolled 1024 healthy subjects, aging from 5 to 89 years,

mostly female (n = 553, 54%). Two-hundred fifty (24.4%) were ≤ 15 years,

n = 317 (30.9%) were from 16 to 35 years, n = 308 (30.1%) were from

36 to 55 years, and n = 149 (14.6%) were ≥ 56 years. In Table 5.1 de-

mographic and echocardiographic characteristics of the study group are re-

ported. Women were significantly older than males [43 (21-55) years vs.

18 (12-36) years, respectively, p < 0.0001] and had smaller body size, left

atrial and LV indexed volumes, and smaller LV mass index (data not shown).

We identified (A) 82 patients with unequivocal increased aortic size (LG),

i.e. > 40 mm in at least one aortic level, and 404 patients deemed at risk

of aortic dilatation due to either, (B) Marfan syndrome (n = 115), or (C)

patients with isolated congenital bicuspid aortic valve (n = 289). Normal

aortic size, raw and indexed for BSA, are reported in Table 5.2 as median and
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Table 5.2: Aortic size at aortic annulus, sinuses of Valsalva, sinotubular

junction and proximal ascending aorta level (raw diameter and diameter

indexed for BSA) of the 1024 healthy subjects.

Aortic levels
Raw diameter

Median (IQR)

BSA-indexed diameter

Median (IQR)

Aortic annulus (mm) 19.0 (17.0-21.0) 11.75 (10.80-12.93)

Sinuses of Valsalva (mm) 28.0 (24.0-31.2) 17.34 (15.62-19.33)

Sinotubular junction (mm) 24.2 (20.5-27.0) 14.71 (13.38-16.24)

Proximal ascending aorta (mm) 25.6 (21.0-29.0) 15.57 (13.87-17.59)

Table 5.3: Association of age, gender and BSA with aortic diameter at the

4 investigated levels (*: p < 0.001, §: p < 0.005).

Aortic

annulus

Sinuses of

Valsalva

Sinotubular

junction

Proximal

ascending aorta

Intercept 9.885 13.092 8.116 8.865

Age (yrs) 0.015* 0.117* 0.113* 0.164*

BSA (m2) 5.942* 7.533* 7.708* 7.017*

Female Sex -1.700* -2.295* -1.066* -0.607§

IQR. All the investigated parameters, namely age, gender, height, weight,

and BSA significantly affected aortic size at each of the 4 aortic level. For

consistency with the practical aims of our study in clinical echocardiography

and for introducing a lower number of variables in the model without losing

information, we utilized age, gender, and BSA for subsequent analyses (see

Table 5.3).

The effect of age was predominant at each aortic level before 20 years, and

was negligible afterward only for AAn (Figures 5.2a, 5.2c, 5.2e, 5.2g). BSA

was a significant determinant of each of the 4 aortic level, with a particularly

large scatter of distribution for SoV, SJ and PAA (Figures 5.2b, 5.2d, 5.2f,

5.2h).

Based on this multivariable regression analysis a Z-score calculator for

each of the 4 TA levels is provided. Taking into consideration the same vari-

ables, a O-score calculator for every single TA region, and a global O-score,

considering the interplay among different aortic diameters is also provided.

In Figure 5.3 outputs of both methods are represented.
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Figure 5.2: Representation of effect of age and BSA at each aortic level

[Aortic annulus (AA), Sinuses of Valsalva (SoV), Sinotubular junction (SJ),

and Proximal ascending aorta (PAA)].



5.3 Results 69

Figure 5.3: Representation of the outputs of the multivariable regression

model Z-score calculator and OC-SVM model O-score calculator.
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Table 5.4: Differences in the attribution of normalcy or dilatation of aorta by

the application of linear regression and OC-SVM models in deemed-at-risk

individuals (n = 404).

Total N = 404 Z-score O-score

Normalcy

(Z-score<2, O-score<0

in all aortic levels)

111 (27.5%) 177 (43.8%)

Pathologic

(Z-score>2, O-score>0

in at least 1 aortic level)

293 (72.5%) 227 (56.2%)

5.3.2 ROC analysis by linear regression model and OC-

SVM model

As a first step, we performed a ROC analysis for the 82 individuals considered

to have TA dilatation according to current guidelines (i.e.: > 40 mm for at

least one aortic segment). The AUC of the OC-SVM global model including

sex, age and BSA (0.995, sensitivity 97.56, specificity 95.51) was significantly

higher than AUC obtained of the linear regression model, including the same

variables (0.958, sensitivity 85.36, specificity 9.75; p = 0.0012).

5.3.3 Performance of linear regression and OC-SVM

models in deemed-at-risk individuals

We separately run the two different models in the cohort of individuals

deemed at risk of having aortic dilatation due either to the presence of MFS

or BAV. Based on the linear regression analysis, the prevalence of TA di-

latation (as Z-score > 2 in at least one segment), was 293/404 (72.5%) while

it was 227/404 (52.2%) as O-score > 0 in at least one aortic region (p¡

0.00001) (see Table 5.4). Seventy-five patients had Z-score > 2 in at least

one TA region but O-score < 0 in all segments (18.6%), while O-score was

> 0 in at least one TA level in 9 patients (2.2%) whose Z-score was < 2

in all aortic segments for a total of 84/404 (20.8%) discordant results. In

Table 5.5, demographic and clinical characteristics of 84 discordant subjects

were reported.
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Table 5.5: Demographic and clinical characteristics of 84/404 discordant

deemed-at-risk subjects.

Patients with Z-score >2,

but O-score <0

n = 75

Patients with Z-score <2,

but O-score >0

n = 9

Age, years 17.33 (12.92 – 41.33) 5.5 (5 – 33)

Sex Female, n (%) 17 (22.67 %) 3 (33.33 %)

Body surface area, m2 1.62 (1.32 – 1.81) 1.38 (0.68 – 2.10)

MFS, n (%) 62 (82.67 %) 3 (33.33 %)

BAV, n (%) 13 (17.33 %) 6 (66.67 %)

Diameter indexed for BSA

Aortic annulus, 13.92 (12.59 – 15.58) 13.40 (11.27 – 16.41)

Sinuses of Valsalva 20.41 (18.16 – 22.08) 18.47 (17.38 – 23.79)

Sinotubular junction 16.47 (14.52 – 18.33) 15.97 (15.21 – 17.61)

Proximal ascending aorta 18.59 (17.38 – 21.42) 18.32 (16.66 – 22.62)

Maximal Z-score 3.8 1.95

Maximal O-score -0.01 0.56

5.4 Discussion

A number of previous studies explored determinants of normal aortic size

measured by TTE, describing reference ranges in healthy individuals. Be-

yond echocardiographic methodological discrepancies between different stud-

ies, available nomograms and algorithms provided to predict normal size of

the TA are of limited usability in a busy clinical echocardiographic labo-

ratory, due to the need of implementing multiple algorithms for different

age-groups and gender, also provided that not all of them assess normalcy

at each and every aortic levels. Moreover, in order to be usable in a practi-

cal general context, a normalcy calculator should ideally fulfill the following

desiderata. First, it should assess the aortic size at several levels (at least

sinuses of Valsalva, sinotubular junction, and proximal ascending aorta).

Second, it should predict normalcy on a single patient basis taking into ac-

count the influence of demographics and anthropometrics on TA size. Third,

it should also be uniformly applicable to the whole range of patients, thus

avoiding the introduction of age or body-size groups that make decisions

intricate for subjects situated near the range extrema.

We have thus developed a general and comprehensive tool for normalcy of

each of the 4 levels of TA, based on a large cohort of healthy individuals with

a wide age range, free from cardiovascular diseases and, as a novelty, also

free from family history either of TA aneurysm/dissection, or MFS or BAV.



72 A machine learning approach to assess normalcy of aortic size

Our tool offers two alternative normalcy assessment methods, one based on

the traditional linear regression model and one based on a novel strategy

that employs the machine learning algorithm OC-SVM. Both models were

trained the same data derived from demographic and anthropometric char-

acteristics of our study group of 1024 normal individuals. Each method pro-

vide a distinctively different score, namely a Z-score and an O-score, allowing

prediction of normalcy for each aortic level. Additionally, the OC-SVM is

able to provide a global O-score, taking into account the morphology of the

whole aorta. As a further novelty, we also verified the effectiveness of the two

methods on a cohort of individuals classified as abnormal based on current

guidelines, and on a cohort of individuals deemed at risk of having aortic

dilatation.

Noteworthy, both scores had an excellent performance in detecting ab-

normality as defined by guidelines. Nonetheless, estimated prevalence of TA

dilatation in deemed-at-risk individuals was different between the 2 methods,

with peculiar discordant patterns (Table 5.1). In particular, O-score was

abnormal despite normal Z-score in about 2% of deemed-at-risk patients,

mostly pediatric subjects more frequently affected by BAV. On the other

hand, Z-score was abnormal differently from O-score in 18% of deemed-at-

risk patients, most frequently affected by MFS, with a higher age and wider

age span. Thus, this observational comparison shows, for the first time,

that the 2 different approaches used to assess normalcy result into differ-

ent prevalence of abnormality although based on the same anthropometric

and demographic variables, supporting the potential role of the novelty de-

tection techniques over the conventional approach to predict normalcy. In

particular, the OC-SVM approach offers several advantages:

• it does not rely on any assumption on the density of interest and it

is therefore not affected by problems such as heteroscedasticity and

residues that are not normally distributed;

• it can exploit a kernel function to measure the similarity between a new

test subject and the subjects in the study population; kernel functions

implicitly map a realization x to a point in an infinite dimensional

feature space, thus allowing to model complex nonlinear relationships

among variables;

• as mentioned above, the global O-score can take into account the inter-

play among aortic diameters (thus incorporating global morphological
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information of the whole aorta), by including them in x together with

all other demographic and anthropomorphic variables.

In conclusion, we provide a new tool to assess TA normalcy and detect

aortic dilatation based on a novel strategy that employs the machine learn-

ing algorithm OC-SVM (i.e.: O-score). When compared with an approach

based on the traditional linear regression model trained on the same data

set (i.e.: Z-score), the OC-SVM was slightly although significantly more ef-

fective in detecting abnormality in individuals with guidelines-defined aortic

dilatation, and provided a distinctively smaller prevalence of abnormal aortic

size in patients at risk of TA dilatation. Future studies should explore the

potential role of novelty detection techniques in the reappraisal of prevalence

of TA dilatation and to assess the natural history of O-score in the general

population as well as in particular groups of patients at risk of aortic events.
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Chapter 6

Conclusions

This chapter summarizes the contribution of this thesis and discusses avenues

for future research.

6.1 Summary of contribution

This thesis makes two contributions to relational learning by proposing a

novel method to apply neural networks to structured data and a possible ap-

plication to a natural language processing task. A third contribution involves

an application of novelty detection in cardiology.

• In Chapter 3 we introduced a framework to approach supervised learn-

ing problems on structured data by extending the R-convolution con-

cept used in most graph kernels [38]. We described how to represent

a relational structure as a hierarchy of objects and we defined how to

unroll a template neural network on it. This approach has shown to be

able to outperform state-of-the-art methods on large social networks

datasets, while at the same time being competitive on small chemobi-

ological datasets. We also introduced a lossless compression algorithm

for the hierarchical decompositions that improves the temporal and

spatial complexities of our approach by exploiting symmetries in the

input data.

• In Chapter 4 we described an application of the aforementioned method

to context-dependent claim detection task. Claim detection is the as-

sessment of whether a sentence contains a claim, i.e. the thesis, or con-

75
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clusion, of an argument; in particular we focused on context-dependent

claims, where the context (i.e. the topic of the argument) is a deter-

mining factor in classifying a sentence. We showed how Shift Aggregate

Extract Networks are able to take advantage of contextual information

in a straightforward way and we presented some preliminary results

that indicates how this approach is viable on real world datasets.

• In Chapter 5 we described a machine learning approach to aortic size

normalcy assesment. The definition of normalcy is crucial when deal-

ing with thoracic aortas, as a dilatation of its diameter often precedes

serious disease. A number of methods have been developed to obtain

the expected aortic diameter starting from demographic and anthro-

pometric characteristics such as height, weight, age and sex. Unfor-

tunately, these methods suffer from several limitations: first, they are

suitable either only for infants, children, and young adults, or only for

adults; and second, they make strong assumptions on the relationship

between predictors and aortic diameters. We overcomed these limi-

tations by building a new estimator based on OC-SVM [77] fitted on

a cohort of 1024 healty individuals aging from 5 to 89 years, and we

compared its results to those obtained on the same set of subjects by

an approach based on linear regression. We also built a second estima-

tor that combines the diameters measured at multiple levels in order

to assess the normalcy of the overall shape of the aorta.

6.2 Directions for future work

As new relational data is produced every day, relational learning tasks are set

to become more and more important. Labeling large datasets to train super-

vised learning algorithms, however, is an operation that in many cases must

still be performed manually. A possible direction for future work would be

to extend the architecture proposed in Chapter 3 for semi-supervised learn-

ing problems, where we can obtain large number of examples, only a small

percentage of which are labeled. More specifically, it would be feasible to

implement an unsupervised learning method using stacked autoencoders [90]

for the extract step, leaving the shift-aggregate steps intact. While it is ob-

vious how to reconstruct representations inside a single hierarchical level,

however, it would be challenging to develop a suitable pseudo-inverse for

shift-aggregation steps.
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A second direction for future work would be to carry out a theoretical

study on the dynamics of learning in the neural networks induced by saen.

While training our architecture on large social graphs, we did notice that the

complexity of these networks led to some instability where a “bad” weights

initialization could lead to suboptimal results. The problem of choosing a

good starting point when learning by gradient descent algorithms has been

extensively researched [30, 39, 46, 74], however the existing results cannot be

applied directly to our method due to the differences between our architec-

ture and standard (deep) feedforward networks. A theoretical study would

both help the choice of good initial weights (and therefore improve the sta-

bility of our method), and improve our understanding of how representations

are built by the learning algorithm.
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1. F. Orsini, D. Baracchi, P. Frasconi. “Shift Aggregate Extract Networks”,

Frontiers in Robotics and AI, 2017.
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1. P. Frasconi, D. Baracchi, B. Giusti, A. Kura, G. Spazian, S. Favilli, A.

Cherubini, A. Di Lenarda, G. Pepe, R. Bonow, S. Nistri. “Two-dimensional

echocardiographic aortic size in 1024 healthy individuals aged 5 to 89 years.

Development of a machine learning approach to assess normalcy”, to be

submitted to Journal of American College of Cardiology: Cardiovascular

Imaging.

Manuscript in preparation

1. D. Baracchi, P. Frasconi, M. Lippi, F. Orsini, P. Torroni. “SAEN for

Argumentation Mining”.
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