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Abstract-The interest in global spectrum allocation techniques 
is growing with the always increasing spectrum demand for 
mobile communications. However, the best algorithms suffer 
from high computational times that reduce the possibility of 
a practical implementation. This paper deals with a dynamic 
channel allocation (DCA) technique based on an energy function 
whose minimization gives the optimal allocation. Due to the par- 
ticular formulation of such an energy function, the minimization 
can be performed by a Hopfield neural network for which a 
fast hardware implementation has been recently proposed in 
the literature. The performance of the proposed DCA technique 
is here derived by computer simulations. Comparisons with a 
classical fixed allocation technique (FCA) and a different DCA 
technique are shown to highlight the better performance of the 
proposed DCA technique. 

I. INTRODUCTION 

N a cellular radio system, the territory is divided into 
hexagonal cells, with each cell being served by a base 

station located at its center. Each mobile user needs a channel 
to communicate with the base station of the cell the user 
belongs to.’ In this paper, we refer to a channel as a generic 
communication resource, which can be alternatively a radio 
channel in a specified band for a frequency-division multiple 
access, a code for a code-division multiple access, or a time 
slot for a time-division multiple access. 

The same channel can be simultaneously used in different 
cells at a suitable distance (D) .  The minimum distance be- 
tween cells in which the use of the same channel is possible 
(reuse distance) depends on the level of the co-channel inter- 
ference accepted in order to allow reliable communications. 

The channel assignment to the cells can be performed 
resorting to the FCA technique or to the DCA technique [2]. In 
the case of the FCA technique, a set of channels is permanently 
assigned to each cell. The same set of channels is reused in 
cells at a distance D away. The basic FCA concept implies 
that a new call generated in a cell can only be served by an 
available channel belonging to the set of channels assigned to 
that cell. If no channel is available, the call is blocked and 
lost. The number of channels permanently allocated to each 
cell is equal to M I K ,  where M is the number of the system 
resources and K the Yeuse factor [2]. 
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Actually, for bidirectional communicabon, each mobile user needs two 
channels the first for the mobile-to-base station link and the second for the 
base station-to-mobile link These two channels are assigned always in pairs 
so in our study we can consider only one link 

Fig. 1. Cellular network model. 

Differently from the FCA technique, in the DCA technique 
the channels are not permanently assigned to the cells. In 
this case, channels are assigned on a call-by-call basis in 
order to obtain a better performance and a narrower spectrum 
utilization, especially under nonuniform traffic load conhtions. 

E. THE PROPOSED DCA TECHNIQUE 
In order to make each channel assignment technique suitable 

for application in actual cellular systems, we should limit the 
number of operations to be performed when a new call arrives. 
In this paper we assume that the rearranging operations must 
be carried out only in the cell involved in the new arrival. 
Raymond [3] proposed a channel allocation algorithm that 
rearranges the assignment channels in the whole network every 
time a new call arrives. This technique permits to lower the 
blocking probability at the expense of an excessive increase 
of the implementation complexity. 

The topological model considered in this paper is a group 
of hexagonal cells, as shown in Fig. 1. 

The number of cells along the x-axis is equal to the number 
of those along the y-axis. The “number of cells in a side” is 
considered as a parameter as well as the “number of available 
channels” for the whole cellular structure. 

We assume that the interference order is I ,  i.e., a cell C 
interferes with all the cells (X) belonging to I rings centered 
in C, as shown in Fig. 2. 
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I s 1  I = 2  

Fig. 2. Interfering cells. 

It is not possible to use simultaneously the same channel 
in two interfering cells. This condition cannot be violated and 
so we refer to it as a hard condition. Whenever the channel 
selected according to a suitable assignment algorithm does not 
satisfy this constraint, the corresponding service request (new 
call) is blocked. Other conditions, named soji conditions, have 
also been provided. Soft conditions differ from hard ones as 
they can be violated at the expense of a slight decrease of the 
performance of the allocation algorithm. 

The most important soft conditions proposed are the packing 
condition and the resonance condition. 

With the packing condition, assignment solutions that tend 
to use the minimum number of channels to satisfy the global 
channel demand are preferred. The impact of this condition 
on the assignment is to prefer channels already used in other 
cells, without violating any hard condition. If more choices 
are possible, channels used in the nearest cells are taken into 
account. We are going to explain later how to translate this 
condition and the subsequent ones into terms of a quadratic 
energy function to minimize. 

With the resonance condition, we tend to assign the same 
channels to the cells that belong to the same reuse scheme, 
obtained by jumping from one cell to another with steps of 
length exactly equal to the reuse distance, as shown in Fig. 3. 

These conditions tend to give an optimum assignment in the 
presence of a uniform distribution of incoming calls among the 
cells. When a nonuniform traffic is present, this condition still 
seems to perform well. 

Others soft conditions are formulated in order to effect the 
following: 

Assign, where possible, the same channels assigned be- 
fore, i.e., limiting the infracell rearranging; 
Try to assign the exact number of channels requested in 
the cell involved in a new arrival (or the termination of a 
call). A violation of this condition means the impossibility 
of serving an incoming call that is obviously blocked. 

All these conditions lead to the definition of a quadratic 
energy function, discussed below. In performing our analysis 
the following definitions are assumed: 

CE 
CH 

total number of cells in the system 
number of channels available to the 
system 
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Fig. 3. Reuse schemes. 

A% 3 an element of the allocation table 
whose value is 1 if channel j is 
allocated to cell i ( i  =1, CE and 
j =I, C H ) ,  0 otherwise 
cell involved in a new arrival or a 
termination of a call 
number of requested channels at cell i* 
assignment of the cell of interest, i.e., 
the variables of the assignment 
problem 
function generating a value of 1 if 
cells i and i* are interfering according 
to the previous definitions, 0 otherwise 
determines the distance between cells i 
and i* normalized to the intercenter 
distance between two adjacent cells 
value of 1 if cells i and i* belong to 
the same reuse scheme defined before, 
0 otherwise. 

i* 

Traf ( i * )  
% * , 3  

Interf ( i ,  i * )  

Dist ( i ,  i * )  

Res ( i ,  i * )  

We can define the energy function associated with the 
cellular network under consideration as follows: 

A CH C E  
E =? . K * , ~  . A ~ , ~  . Interf(i, i * )  

l 2  + - . K * , j  -Traf(i*) ["" j = 1  

[I - Interf ( i ,  i * ) ]  
Dist ( i ,  i * )  

C C H  C E  
- - %,.7 ' f L , j  ' 

3=1 z=1 
z f z "  

2 

C H  C E  

+ a . % * , 3  . A2,3  . [l - Res(i, i * ) ] .  (1) 
j=1 2 = 1  

z#z'  

The first term adds a positive constant to the energy function 
if there are some interfering cells using the same channels; the 
second term is positive if the requested number of channels 
has not been assigned to cell i*; with the third term, we fulfill 
the packing condition as stated before; the fourth term lowers 
the value of the energy function if the actual assignment is 
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equal to the previous one; and the fifth term accomplishes the 
resonance condition. 

Constants A, B,  C, D ,  and F are determined in order to 
decide which are the conditions that can be violated and in 
which order, as will be shown later. 

Every time a new call arrives (or ends) in a cell i*, the 
algorithm searches for a pattern of 1’s and 0’s that, when 
substituted to x * , J ,  minimizes the energy function E. The 
best pattern found, i.e., corresponding to the lowest value 
of the energy function, represents the solution to the DCA 
problem only if it satisfies the channel demand condition. 
On the contrary, if the pattern violates it, the arriving call 
is blocked. 

With this formulation, the problem complexity grows ex- 
ponentially with the number of channels; so we proposed an 
approach based on Hopfield neural networks, as described in 
the following section. 

111. HOPFIELD NEURAL NETWORKS 

The combinatorial optimization problem, i.e., finding a 
solution that minimizes a cost function and whose variables 
assume only two possible values, falls in the more general class 
of NP-complete (nondeterministic polynomial time complete) 
problems. Several complex methods have been proposed to 
find solutions to NP-problems [4]. 

Of particular interest is the neural network approach formu- 
lated by Hopfield and Tank [5]-[7], claimed to be a method 
that could be realized by hardware circuits with response times 
much shorter than those of other algorithmic methods. 

Nevertheless, the original formulation suffered from a 
tendency to produce nonfeasible solutions called “spurious 
states.” 

Abe [SI proposed a modification to the original Hopfield- 
Tank’s approach [5]-[7] to eliminate all the spurious states 
from the solution space. This type of neural network has been 
used in performing our simulations. 

Let the energy function be defined as 

E = $ x‘Tx + b‘x (2) 

where T is a symmetric n x n matrix, z is an n-elements vector 
representing our variable, and b is a constant n-elements vector 
of inputs. 

The problem is equivalent to finding x in order to minimize 
E under the constraint that every single element of z can take 
the final value 0 or 1. 

The value of each z,-the ith component of E-falls into 
the real interval [0, 11. 

Considering x ,  as the output of the zth neuron of the 
network, the internal state u, is introduced, for which 

2,  = f(u,); i = 1 . . . TI, (3)  

where f(u,) is a monotone nonlinear function; for instance, 
Hopfield suggests a hyperbolic tangent function f(u,) = 

[l + tanh (u,)]. If we consider the energy function 

Fig. 4. Output transfer function of the neuron. 

the time derivative of such a function is 

thus by considering a system for which 

we have 
- - -- dzi dui dE 

d t  d t  d t  
i 

(4) 

for the monotonicity of z = f(u). SO E is a Lyapunov function 
for (4) 

d E  - < o  
d t  - (5) 

confirming that the set of (4) leads E toward lower values; so 
for an arbitrary initial internal state U O ,  a local minimum of 
the energy is achieved. 

Under the hypothesis of using a piecewise-linear function 
f ( z l ) ,  as shown in Fig. 4, the system (4) becomes a linear 
system operating on a closed hypercube 

!!? - - -Tx - b 0 5 x, 5 1 i = 1 . . .  n. ( 6 )  d t  

It is proved that no equilibrium points are found on the 
surfaces of the hypercube except for its vertexes. So it is 
possible to make all the feasible solutions be the only stable 
points [SI. 

The example in Fig. 5 shows the time evolution of a 
three-neuron Hopfield network whose stability points are the 
vertexes marked by a point in the state-space ( X I ,  X2 ,  X3). 

It is not difficult to show that E in (1) can be expressed as 
a quadratic form of the variables x * , j  and if we call Z the 
vector whose components are V,*, with j = 1 . . . CH for a 
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R4 
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C I reuse packing preferred 
D 
F I resonance condition preferred 

I minimum variation from previous assignment p r e f e d  

Fig. 5. Three-neurons time evolution in the state space 

fixed i * ,  expression (2) represents (1) with 

T j , j ~  = B 
A 

' - 2  
b .  - - . Ai,j . Interf(i, i * )  

i 
- B . Traf(i*) 

F 
2 

+ - . Ai,,(l - 6,,,*)[1 - Res(i, i * ) ]  (8) 
i 

where S,, is the Kronecker delta. 
In order to make the system (6) stable for every possible 

T ,  we make the following substitutions without changing the 
values of E at the vertexes of the hypercubic domain. 

T,,'i 4 0  V j  (9) 

(10) 
T("'4 

3r3' b, 4 b, + - 
2 '  

On the border of the hypercube we can find vertexes and 
nonvertexes points. The former are characterized by the fact 
that their components have only a value of 0 or 1. The latter 
have at least one component in the interval [0, 11. Among 
the vertexes, we can see both the feasible solutions, which are 
compatible with the reuse and the channel demand constraints, 
and the nonfeasible ones. 

The next step is to make all the feasible solutions be stable 
points of system (6). 

Let c be a vertex and c ( j )  an adjacent vertex obtained by 
substituting the j th  component of c with its complement to 
one. 

If c represents a feasible solution and E(c)  is its energy 
value, in order to make c a strongly stable point, we have 
to find values for constants A, B ,  C, D,  and F for which 
E[c(j)]  > E(c)  for every j. 

TABLE I 
DECISION RULES 

Rule: I Constant: I Description: 
R I  I A I nn inte&n=nrp 
R2 I B I channeldemandsatisfied 

We decide whether a vertex represents a feasible solution 
on the basis of five rules, as shown in Table I. 

We start from a generic solution c; then, we change one (or 
more) of its components from 0 to 1 or vice versa. Due to the 
priorities of our rules, we are interested in the four following 
types of transitions: 

Transitions that violate rule R1, but lower energy value 
for rules R2, R3, R4, and R5, 
Transitions that increase energy for R2, but lower energy 
for R3, R4, and R5 leaving the term associated with R1 
unchanged, 
Transitions that increase energy for R5, but lower energy 
for R3, R4, leaving the terms associated with R1 and R2 
unchanged, 
Transitions that increase energy for R3, but lower energy 
for R4 leaving the terms associated with R1, R2, and R5 
unchanged. 

Since system (6) tends to lower the energy during its 
evolution we have to find some relations among the constant 
terms of (1) so that each of the above named transitions 
coincides with an energy increment. The following relations 
make all our feasible solutions be the only stable points in 
the system: 

C >  

E >  I B >  
If: 

'&ells 
El-I 

- l ) + D  

[E] - 1) + D. 

(1 1) 

In (1 1) d,,,,, is the reuse distance, and kreUs, denotes the 
reuse factor related to the reuse pattern of the cellular network. 

In order to simulate the behavior of our neural network, we 
built a software model of the network using Euler's method 
to solve the set of differential of (6). 

Let x, be the ith component of the state vector 5, and xi 
the ith component of the state derivative vector Z'. After one 
time step At we have 

x ; = x , - A t { T ,  . Z + b , }  

2: 

O for x: 5 0 

for O < z: < 1 
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0725 m 

Cell load (Erlang) 

Fig. 6. Performance with uniform traffic. 

where 
R 

max, { (i T . i + b) ,}  
at = 

- 
1 = [l, I, 1, ' .  . , 11'. 

For the initial value of 2, we chose ~ ~ ( 0 )  = 0.5 + T,, where 
T,  is a uniformly distributed pseudo-random value in the range 

In our simulation, we chose a value of R = 0.3 and 
[-a/2, ala]. 

= 10-9. 

Iv .  SIMULATIONS AND PERFORMANCE EVALUATION 

The cellular network used by our simulations is made by a 
7x 7 portion of a hexagonal cell layout. We considered two 
rings of interfering cells and 70 channels available to the whole 
system. The performance of the channel allocation proposed in 
this paper has been derived in terms of the blocking probability 
for the incoming calls. 

In the analytical model of a telephone system, the call 
arrivals are supposed to follow the Poisson process with 
the mean arrival rate of X (calldmin). The call duration is 
an exponentially distributed statistical process with mean 3: 
(min.). The quantity 3:. X = p expresses the load offered to 
the cellular network. 

We first computed the probability of refusing an incoming 
call for the nine central cells only and for a uniform traffic 
distribution among all the cells. 

Under these simulation hypotheses, we were able to com- 
pare our results with those obtained by Zhang and Yum [lo], 
[ 111 with the locally optimized dynamic assignment (LODA), 
borrowing with channel ordering (BCO), and borrowing with 
directional channel locking (BDCL) allocation algorithms. 

Curves for theoretical FCA (ERLANG-B) are added to the 
numerical results obtained from the simulations. 

In Fig. 6, the behavior of our technique is shown with 
respect to other DCA techniques for a uniform traffic dis- 
tribution. 

For a nonuniform traffic distribution, we considered the 
traffic pattems proposed by Zhang and Yum [lo], [ l l ] ,  shown 
in Figs. 7 and 9. 

The traffic load for each cell increased by a percent factor 
ranging from 0-140. The simulation results are summarized 
in Fig. 8 for pattem A and in Fig. 10 for pattern B. 

n 

u 

Fig. 7. Nonuniform traffic distribution (calkhour)-pattern A. 
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P 
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0,05 

0 

s 

0 28 56 84 112 140 

Load percentage increment from base pattern A 

Fig. 8. Performance with nonuniform traffic load for pattern A 

Figs. 8 and 10 point out that the performance of the pro- 
posed Hopfield DCA technique is close to that of the BDCL 
technique [ 111. In case of a uniform distribution, the neural al- 
locator behaves even better than all the techniques considered 
in this comparison (see Fig. 6). 

V. CONCLUSION 

In quadratic optimization problems, Hopfield-Tank neural 
networks are not expected to perform much better than other 
methods for minima finding, since they effect a local search 
and the choice of a correct starting point is sometimes a hard 
task. 

In 1991 a Hopfield-Tank neural approach to static channel 
assignment was developed by Kunz [12]. The needs of global 
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Fig. 9. Nonuniform traffic distribution (calkhour)-pattem B. 

0,35 
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z 0 2  n 
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031 

0,05 
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Fig. 10. Performance with nonuniform traffic load for pattern B. 

minima solutions led Kunz to leave the Hopfield-Tank neural 
networks when he proved [13] that these networks in their 
original formulation were not able to find global minima of 
the energy function when applied to the allocation problem. 

However, the problem of channel planning is quite different 
from that of dynamic channel assignment because of the 
absence of time constraints for finding the solution. Hence, 
the suboptimal solutions found by the Hopfield-Tank neu- 
ral network, once deprived of the inconsistencies by Abe’s 

31 

method, seem to achieve a good level of performance, when 
compared with other DCA algorithms. This fact suggests that 
global finding is not so essential for the DCA problem if the 
average quality of the suboptimal solutions found is good. In 
a dynamic channel assignment, decision times are essential 
for the practical utilization of such techniques, and a neural 
approach like the one proposed in this paper seems to achieve a 
good level of performance with short processing times because 
of a massively parallel computational structure. 
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