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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of
death with a five-year survival of less than 5%. The dismal survival rate
and prognosis are due to its aggressiveness, high incidence of metastasis,
inability to detect the disease at an early stage, lack of specific symptoms
and diagnostic methods. Despite the therapeutic advancement, there are few
or no e�ective therapies for advanced pancreatic cancer. Most of the drugs
tested fail due to the usage of drug testing models that are physiologically
irrelevant. In this regard we studied three human PDAC cell lines PANC1,
BxPC3 and MiaPaCa2 in di�erent cell culture systems including 2D, 3D
spheroids and 3D microfluidic chip to understand its growth characteristics
and more importantly drug responses. In addition, we developed the math-
ematical models for growth kinetics of three PDAC cell lines cultured in 2D
culture.

Initially, we studied the PDAC cell lines in conventional two-dimensional
(2D) culture. In 2D culture, all the three cell lines, PANC1, MiaPaCa2,
and BxPC3 showed similar growth rate. As three-dimensional (3D) culture
bridges the gap between 2D and in vivo culture, we studied the PDAC cell
lines in 3D culture using U tube technique. Interestingly, in 3D culture
BxPC3 showed compact spheroids of null growth compared to larger Mia-
PaCa2 and PANC1 spheroids where cells were of loosely assembled. Later we
have cultured the same human PDAC cell lines in the novel microfluidic chip,
HepaChip® coated with collagen1, the most abundant extracellular matrix
in PDAC tumor microenvironment, having a combination of microfluidics
and dielectrophoresis (DEP) as well as perfusion systems for the continuous
supply of nutrients. In HepaChip® microfluidics, both PANC1 and BxPC3
cells greatly attached to the collagen1 whereas MiaPaCa2 cells were poorly
attached, perhaps due to low expression of collagen1 binding adhesion recep-
tors in MiaPaCa2. We have shown PDAC cells cultured into the HepaChip®

vii



viii

(1) are vital and grow, provided they properly attach to collagen; (2) show
morphological appearance and growth characteristics closer to those of cells
grown as spheroids than in conventional 2 dimensional (2D) in vitro cultures.

Further, for drug testing in the above in vitro cell culture models we used
the only PANC1 because BxPC3 cells showed null growth as 3D spheroids
and MiaPaCa2 cells failed to attach to the collagen1 matrix in the 3D mi-
crofluidic chip. We tested the cytotoxic e�ect of cisplatin, commonly used
chemotherapeutic drug, on PANC1 in 2D, 3D, microfluidic chip and in vivo.
The IC

50

s of Cisplatin determined for PANC1 cells cultured as a 2D mono-
layer in vitro is 3.25 µM, and around 14.6 µM when PANC1 cells were cul-
tured as 3D spheroids. However, PANC1 cells in collagen1 in 3D microfluidic
chip showed more resistance to cisplatin where even 100µM of cisplatin treat-
ment did not induce more than 30% cell death whereas for in vivo we used
cisplatin at 10mg/kg equivalent to 250µM and observed significantly smaller
tumor formation.

Finally, we studied the growth characteristics of PDAC cell lines cultured
in 2D culture using mathematical modeling to understand the growing be-
havior of di�erent cell lines. We built a mathematical model for cell growth
of three PDAC cell lines using discrete non-linear autoregressive model of
the form

Y (k) = G(Y (k ≠ 1))¸ ˚˙ ˝
growth rate

Y (k ≠ 1)

We have tested mathematical modeling for cell growth data of 42 cases
for three PDAC cell lines, PANC1, MiaPaCa2, and BxPC3. Initially, we
tested nine di�erent structures for all the three cell lines and selected the
most suitable three models based on a special error index, which is a measure
to represent the ability of the model to describe the actual data. Then, the
selection of best sampling time for these best three models followed. The top
three models with their best sampling times were finally re-identified using
data from all the experiments. Among them, the best model of each cell line
has been chosen according to the least error index paradigm.

All the three best model identified so far showed monotonically decreasing
growth rates, with some di�erence in the slopes. However, since each cell line
had a couple of experiment definitely not reliable, we narrowed the data only
to the reliable sets and repeated the identification. The new results showed
an interesting convergence of all the three cell lines to third order growth
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rates, which, however, di�er for their peaks. For example, for MiaPaCa2
the peak is reached when the cell count is still small, while PANC1 has the
biggest growth rate for an intermediate value. Moreover, BxPC3 showed
slower growing behaviors with 6H sampling time compared to others having
3H sampling time.



x



Contents

Contents xi

1 Introduction 1
1.1 Pancreatic ductal adenocarcinoma (PDAC) and PDAC pro-

gression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Precursor of pancreatic ductal adenocarcinoma (PDAC) and

its microenvironment . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Pancreatic tumor microenvironment . . . . . . . . . . . . . . 4

1.3.1 Pancreatic stellate cells (PSCs) . . . . . . . . . . . . . 4
1.3.2 Extracellular matrix proteins . . . . . . . . . . . . . . 5
1.3.3 Immune cells in TME . . . . . . . . . . . . . . . . . . 5

1.4 Three-dimensional (3D) cell culture of cancer cells . . . . . . 8
1.4.1 Sca�old-free 3D cell culture . . . . . . . . . . . . . . . 8
1.4.2 Sca�old-based 3D cell culture . . . . . . . . . . . . . . 9

1.5 Microfluidic technique . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Di�erential drug responses between 2D and 3D cell culture

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . 16
1.8 Mathematical Modelling in Biology . . . . . . . . . . . . . . . 17
1.9 Mathematical Modelling in Cancer . . . . . . . . . . . . . . . 18
1.10 Mathematical models of tumour growth . . . . . . . . . . . . 20
1.11 Stages of Modelling . . . . . . . . . . . . . . . . . . . . . . . . 21
1.12 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Characterisation of Pancreatic ductal adenocarcinoma (PDAC)
cells in di�erent culture systems 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xi



xii CONTENTS

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Cell lines . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Two dimensional (2D) cell culture . . . . . . . . . . . 28
2.2.3 Three dimensional (3D) cell culture . . . . . . . . . . 29
2.2.4 Microfluidic device cell culture . . . . . . . . . . . . . 32
2.2.5 In vivo experiments on nu/nu mice . . . . . . . . . . . 35
2.2.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . 35

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Two dimensional Culture (2D Culture) . . . . . . . . . 36
2.3.2 Three dimensional Culture (3D Culture) . . . . . . . . 38
2.3.3 Cell culture on Microfluidic device . . . . . . . . . . . 41

2.4 E�ect of Cisplatin on PANC1 . . . . . . . . . . . . . . . . . . 47
2.4.1 E�ect of cisplatin in 2D culture . . . . . . . . . . . . . 47
2.4.2 E�ect of cisplatin in 3D culture . . . . . . . . . . . . . 49

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Developing Mathematical model for growth curves of pan-
creatic ductal adenocarcinoma (PDAC) cells 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . 58
3.2.2 Data Resampling . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Data Normalization . . . . . . . . . . . . . . . . . . . 59
3.2.4 Data Reliability . . . . . . . . . . . . . . . . . . . . . 60

3.3 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Model Equation . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Growth Rate . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 Delayed Models . . . . . . . . . . . . . . . . . . . . . . 66
3.3.4 Di�erent forms of Model Equation . . . . . . . . . . . 68

3.4 Parametric Identification of Coe�cients . . . . . . . . . . . . 71
3.4.1 Generalised model equation . . . . . . . . . . . . . . . 71
3.4.2 Matrix Form . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.3 Linear approach to estimate the coe�cients V . . . . 72
3.4.4 Identified Model Equation . . . . . . . . . . . . . . . . 73
3.4.5 Error Index . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Steps followed for identification of Best Model . . . . . . . . . 75
3.6 Identification of best mathematical models for 2D PANC1

growth data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS xiii

3.6.1 Identification of best 3 models for PANC1 growth . . 76
3.6.2 Selection of best-identified model out of 3 identified

models for PANC1 . . . . . . . . . . . . . . . . . . . . 81
3.7 Identification of best mathematical models for 2D BxPC3

growth data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.7.1 Identification of best 3 models for BxPC3 growth . . . 85
3.7.2 Selection of best-identified model out of 3 identified

models for BxPC3 . . . . . . . . . . . . . . . . . . . . 89
3.8 Identification of best mathematical models for 2D MiaPaCa2

growth data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.8.1 Selection of best-identified model out of 3 identified

models for MiaPaCa2 . . . . . . . . . . . . . . . . . . 98
3.9 Tetra Model is the best model for all the cell lines of reliable

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Conclusion 109

A Appendix 113
A.1 Cell count data of PANC1 . . . . . . . . . . . . . . . . . . . . 113
A.2 Cell count data of BxPC3 . . . . . . . . . . . . . . . . . . . . 114
A.3 Cell count data of MiaPaCa2 . . . . . . . . . . . . . . . . . . 116

B Publications 119

Bibliography 121



xiv CONTENTS



Chapter 1

Introduction

1.1 Pancreatic ductal adenocarcinoma (PDAC)
and PDAC progression

Cancer in simple terms defined as a disease that stemmed from the uncon-
trolled growth of the normal cell. According to the National Cancer Institute
(NCI) “Cancer is the name given to a collection of related diseases”. Cancer
is caused by multiple factors including exposure to cancer-causing agents
(carcinogens), chronic infections (such as hepatitis viruses, papilloma virus),
lifestyles (eating, drinking, smoking habits, physical activities) and inherited
a genetic susceptibility to environment factors (Ames and Gold, 1998).

The pancreas is a complex organ consisting of three cell lineages; Islet
(endocrine), Acinar and Ductal cells (exocrine). Pancreatic cancer is classi-
fied based on the function part that is a�ected either in endocrine or exocrine
part. Pancreatic cancer related to endocrine constitutes only 3% of pancre-
atic cancer whereas exocrine cancer of pancreas begins in glands or ducts
of exocrine and accounts for about 95%. Most of the exocrine cancer of
pancreas arises from ductal cells and it is called as pancreatic ductal ade-
nocarcinoma (PDAC). PDAC is one of the most trivial types of pancreatic
cancer and the most lethal form of cancer with a five-year survival rate of less
than 5% and characterized as highly desmoplastic with significant deposition
of extracellular matrix, especially collagen1. PDAC, like any other cancer,
is caused by multiple factors such as; advanced age (> 65), smoking (Fuchs
et al., 1996), sex (male has 30% higher risk than female) and long-standing
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2 Introduction

chronic pancreatitis (Guerra et al., 2007) are the major risk factors followed
by dietary like high in meats and fat, obesity, diabetes and family history of
PDAC patients (Hezel et al., 2006, Kloppel, 2011; Swartz et al., 2002).

1.2 Precursor of pancreatic ductal adenocar-
cinoma (PDAC) and its microenvironment

Between the normal pancreas and metastasized cancer stage PDAC progres-
sion has been classified into precursor lesions, infiltration, dissemination and
metastasis [32] (Figure 1.1). There are three types of precursor lesions; pan-
creatic intraepithelial neoplasias (PanIN-1, 2 and 3), Intraductal Papillary
Mucinous Neoplasms (IPMN) and mucinous cystic neoplasms MCN, that
are indicators of future PDAC. PanIN1 lesions first observed around 40 years
ago and are histologically characterized to be small and clinically di�cult
to detect precursor lesions to invasive ductal adenocarcinoma (Cubilla and
Fitzgerald, 1976). PanIN 2 and 3 are, by comparison, have larger lesions,
characterized by moderate and severe disorganized architectural atypia [51].
As depicted in figure 1.1 below the earliest precursor lesions (PanIN1) pos-
sess some of the prominent alternations in genetic landscapes like telomere
shortening and K-Ras mutation followed by acquiring several more muta-
tions that transform the normal ductal cells to malignant invasive cells. The
estimated timeline from telomere shortening to invasive behavior of cells is
approximately 12 years [32]. Deep global genomic analyses and copy number
variations from 100 PDAC reveal that each patient contains on average 119
somatic chromosomal variants ranging from 15-558, exceeding the previously
reported average of 63 mutations. Most importantly these gene mutations
are implicated in twelve-core cell signaling pathways that range from 67-
100% tumors. Other lesser-studied precursor lesions like IPMN arises from
ducts or its branches and resembles PanIN like structure. However, large
enough to detect clinically and serves as an indication of pancreatic cancer.
IPMNs have also shown to harbor mutations like KRAS and GNAS that are
associated with invasive PDAC (Wu et al., 2011). MCNs are large mucin-
producing columnar epithelial cystic lesions that typically occur in women
in the body and tail of pancreas [86] and [22] Unlike the IPMNs the MCN
lesions are not directly related to pancreatic duct and patients with non-
invasive MCN have 5-year survival is almost of 100%, while patients with
invasive MCNs have 5-year survival of up to 60% [22].
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Figure 1.1: Schematic representation of the approximate timeline for trans-
formation of normal pancreatic ductal epithelial cells towards metastasis and
the changing tumor microenvironment associated with the tumor progression
(Adapted from [32])

From genetics point-of-view, PDAC occurs due to the accumulation of so-
matic mutations in normal ductal epithelial cells. Firstly, a most common
phenomenon in the initiation of PDAC might be the telomere shortening fol-
lowed by mutations in the oncogene KRas that shows constitutively gain of
function in >90% of the PDAC [22]. In addition, there are three more com-
monly identified mutations that occur in tumor suppressor genes (leading to
loss of function); CDKN2A, TP53, and SMAD54 in subsequent stages to-
wards PDAC [3]. During the course of progression towards PDAC, there are,
on average, as many as 119 genetic mutations on average. Intriguingly, the
predictive duration required between the occurrence of telomere shortening
and time of PDAC diagnosis is approximately 20 years, which suggests how
slow and stealthy is the evolution and clonal expansion of these cancer cells
(Campbell et al., 2010; Yachida et al., 2010). However, the computational
analysis of 200 patient samples predicts that the rate of pancreatic cancer
growth increases exponentially during the time of diagnosis (Haeno et al.,
2012). Early stage detection provides a significant window of opportunity
for e�ective chemotherapy or surgical interventions.

The invasive cells from a primary tumour escape the primary tumor site
and disseminate through blood or lymphatic system into distant organs caus-
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ing metastasis. Metastasis is the main perpetrator of cancer-related deaths.
Albeit, the PDAC cancer progression is more than a decade-long process the
metastasized tumor might retain most if not all of the mutations that were
present in the primary tumor (Yachida et al., 2010). Loss of SMAD4, a tu-
mor suppressor gene, has been shown to be closely associated with metastasis
in PDAC (Iacobuzio-Donahue et al., 2009). Moreover, the tumor microen-
vironment plays a larger role towards tumor progression and metastasis of
PDAC cells is by the tumor microenvironment. Tumor microenvironment
(TME) is composed of desmoplastic stroma containing pancreatic stellate
cells, cancer-associated fibroblasts, immune cells and increased deposition of
extracellular matrix and secreted growth factors, cytokines etc. [108] [81].
Below is the brief description of the role of significant components in TME.

1.3 Pancreatic tumor microenvironment

1.3.1 Pancreatic stellate cells (PSCs)

PSCs form one of the key components in TME. In healthy tissues, PSCs, exist
in a quiescent state as circular shaped cells that have large lipid droplets rich
in vitamins. Under pathophysiological conditions such as acute or chronic
pancreatitis (inflammation), a major risk factor in developing PDAC (Lowen-
fels et al., 1993) the PSCs are activated, which exhibits elongated phenotype
with loss of lipid storage and gain of alpha-smooth muscle actin (–-sma).
The activated PSCs then, through secretion of various growth factors, ROS,
proteases induce epigenetic changes, genomic instability and mutations in
normal ductal epithelial cells and thus transforming into a malignant cell.
This malignant PDAC cells then activate the quiescent PSCs and the cycle
of activation of one another continues [98]. Two-dimensional tandem mass
spectrometry was employed by researchers to analyze the secretome of both
quiescent and activated human PSCs. The most striking di�erence between
the quiescent and activated PSCs is the secretomes between the two states
of cells with quiescent PSCs secreting up to 46 types of proteins into its
microenvironments whereas activated cells secrete as many as 641 (Wehr
et al., 2011). Accordingly to KEGG database, ˜50% of the secretomes of
activated PSCs, according to KEGG database, are associated with cellu-
lar metabolism, genetic information processing, signaling pathways, cellular
processes and human diseases (Wehr et al., 2011). These secretomes include
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many types of growth factors, cytokines, interleukins, proteases and most
importantly extracellular matrix proteins (Figure 1.2). There is an exhaus-
tive list of experimental evidence reviewed on how PSCs promote PDAC cell
proliferation, migration, invasion, and tumorigenesis and help acquire resis-
tance to chemotherapy and radiation in both in vitro and in vivo models [43]

1.3.2 Extracellular matrix proteins
PDAC is characterized to be highly desmoplastic with large amounts of ECM
proteins deposited around the tumor cells. PSCs are the chief source of
ECM consisting of collagen-1 (more than 90%), fibronectin, proteoglycans,
hyaluronic acid and other ECMs. The constant accumulation of these ECMs
distorts the normal architecture of the pancreas tissue and induces abnormal
blood and lymphatic vessels as well as brings the ECMs and PSCs closer to
cancer cells (Gnoni et al., 2013; Armstrong et al., 2004). In addition, ECM
deposition around the tumor cells protects them against any therapeutic
drugs and, also confines the tumor cells within the microenvironment. How-
ever, ECM turnover (synthesis, secretion, and degradation) is critical in tis-
sue remodeling in both normal as well as pathological processes. PSCs, when
exposed to proinflammatory proteins like TGF-B, IL-6, secrete enzyme class
matrix metalloproteinases (MMPs) that degrade ECM (Phillips et al., 2003).
Cancer cells exploit this well-coordinated ECM turnover to migrate closer to
blood vessels and further induce angiogenesis for eventual dissemination to
distant organs.

1.3.3 Immune cells in TME
The TME has shown to be infiltrated by various inflammatory immune cells
as an act of immune surveillance. This includes cells of adaptive immunity
like T lymphocytes, dendritic cells and occasionally B cells as well as cells of
innate immunity like macrophages, natural killer (NK) cells etc. (Whiteside,
2008). The size of the infiltration of these cells could vary from tumor-to-
tumor. Despite the recruitment of these immune cells as a defense mechanism
against tumor cells, the tumor continues to grow: it could be because the
adaptive immunity is weak and largely ine�cient (Arcangeli, 2011). In ad-
dition, the cellular and molecular events in TME are often orchestrated and
dominated by tumor cells in which tumor cells cause dysfunction and death
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Figure 1.2: Schematic representation of interaction between PSC, PDAC and
immune cells in tumor microenvironment (TME) (adapted from [98]). (A)
The role of PSCs (activated state) in transforming normal human pancre-
atic ductal epithelial (HPDE) in to malignant PDAC cells. Firstly, quies-
cent PSCs could be activated by chemical or biochemical as well as foreign
agents in chronic pancreatitis. These PSCs secrete growth factors like TGF-
b, PDGF, FGF-2 and other cytokines that induce epigenetic changes, ge-
nomic instability and mutations in HPDE and transform to PDAC. PDAC
cells then stimulate the (remaining) quiescent PSCs further and constant
stimulation of one-another continues. (B) PSCs further involved in immuno-
suppression mechanism. When recruited T cells in immune surveillance en-
counter antigens secreted by PSCs they undergo angeric state and eventually
apoptosis.
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of immune cells or in worst cases immune cells are involved in promoting
the growth of tumor cells (Whiteside, 2008; Arcangeli, 2011). For example,
tumor-infiltrating lymphocytes (TIL) the major components of immune in-
filtrates in tumors obtained from tissue samples, the major component of
immune infiltrates in the tumor, showed inhibited proliferation in response
to antigens, compromised signaling through a T-cell receptor (TCR) and
inability to induce cytotoxicity towards tumor cells. It is also shown that
except for e�ector T cells, immunosuppressive cells like tumor-associated
macrophages, myeloid-derived suppressor cells (MDSC) and T regulatory
cells (Treg) are recruited to the tumor site at the early stage and persist till
invasive cancer but tumor still grows. This suggests that e�ective immune
defensive mechanism against the tumor is undermined from the start (Clark
et al., 2007). Recently, a comprehensive study identifies some of the key
immune cells that, when recruited to TME in higher levels, are either asso-
ciated with shorter or longer survival of PDAC patients (Ino et al., 2013).
The treatment for cancer includes mainly surgical resection, radiation ther-
apy, chemotherapy, immunotherapy, hormonal therapy (breast and prostate
only), targeted therapy and to lesser extent stem cell transplant and pre-
cise medicine. Surgical resection remains a most desirable form of treatment
followed by radiation therapy, provided cancer has not formed distant metas-
tasis. However, most of the cancers at the time of diagnosis show multiple
metastases leading to patients to opt for chemotherapy. Small molecule drugs
are the chemotherapeutic agents that are designed and developed to target
tumor cells at primary and distant metastasized sites. In vitro studies are
conducted to screen for the ‘promising’ drug, from the library of hundreds of
thousands of small molecule drugs in the pharmaceutical industries, which
has the ability to arrest growth and kill the cancer cells. Even the so-called
promising drug will be not able to arrest growth and kill 100% cancer cells as
some cancer cells exhibit resistance. In addition, most of the drugs screening
tests are conducted on two-dimensional (2D) cell culture system that by no
means represents the physiological three-dimensional (3D) systems. Hence
the there’s an increase in the trend towards using more robust screening tests
like 3D in vitro tests.
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1.4 Three-dimensional (3D) cell culture of can-
cer cells

The first known isolation and maintenance of animal organ part were per-
formed by Ludwig in 1985 and principle of tissue culture was established
by Wilhelm Roux in 1885 [116]. Since then the advancements in tissue cul-
ture techniques has led to a tremendous understanding of cell responses to
drug treatment. In vitro, cell-based assays have long been and continue to
be the approach for drug discovery against many diseases. Two-dimensional
(2D) cell culture technique is the best characterized, easy to expand cell
line banking and easy-to-handle cell culture technique that is widely used
drug-screening assays. However, 2D culture does not represent the actual
physiological organization of the cells in vivo that has a 3D architecture
and the drug responses also vary greatly between the 2D and 3D systems.
Therefore, 3D culture is gaining increasing attention towards understanding
the cell behavior, especially towards drug responses. In fact, the first re-
ported (in PubMed) 3D cell culture was nearly 50 years ago [9] and there
has been little application of 3D techniques culture until 2000. Recently,
the 3D culture techniques have received tremendous importance due to the
natural advantages in understanding drug screening, cytotoxicity assays, cell
growth, gene expression, cell di�erentiation that are a step closer to in vivo
conditions [88]. The advancements in (bio) material science has enabled sci-
entists to develop novel 3D cell culture methods including simple suspension
of cells as 3D droplets [60], growing cells as spheroids on low attachment
plates or agarose coated flat bottom plates [33], embedding the cells in ex-
tracellular matrix as organoids [60], levitating the cells [42].

Three-dimensional (3D) cell culture techniques can be broadly classified
into two main categories; sca�old-free and sca�old based culture systems.

1.4.1 Sca�old-free 3D cell culture
Sca�old-free cell culture involves that cells resuspended in single cells form
loosely arranged clumps or multi-cellular aggregates, in which cells produce
their own extracellular matrix proteins. This multi-cellular aggregates or
spheroids can be formed by hanging-drop methods where cells are resus-
pended in growth media and added as droplet on the lid of cell culture dish
and inverted (figure 1.3, left) or alternatively cells are seeded in low adher-
ence wells where cells aggregate and form multi-cellular clumps (figure 1.3,
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Figure 1.3: Simple three-dimensional (3D) cell culture methods. A) Sca�old-
free based 3D cell culture includes (i) hanging drop and (ii) U-tube methods
where cells form aggregates at the apex of the drop or tube and are not un-
der the influence of any external support. B) Simple sca�old-based method
include (iii) agarose gel bed where cells are seeded. The agarose gel forms
concave shaped bed like structure where cells collect form aggregates and grow
as spheroids.

right) at the apex of the droplet. The growth of cells in the spheroids mim-
ics the artificial environment that resembles in vivo organization of the cells.
This is of particular importance in studying in vitro stem cell di�erentiation
where such spheroids are called as embryoid bodies (EBs) and the size of EBs
is one of the key parameters that a�ect cell di�erentiation [75] [73]. From
cancer studies point-of-view the growth of cells in spheroids lead to a hetero-
geneous population of cells where cells at the periphery of the spheroids are
highly proliferative in contrast to quiescent cells at the core of the spheroids.
This could be due to the gradient in terms of nutrient availability, and di�u-
sion of gas creating the hypoxic core and normoxic periphery, a phenomenon
observed in cancer tissues [68].

1.4.2 Sca�old-based 3D cell culture

Use of sca�old-based 3D culture presents with additional advantages as scaf-
fold materials increase the complexity of the 3D organization of the cells.
Sca�olds include natural materials like collagen, fibronectin, laminin, fibrin,
agarose, hyaluronic acid etc. and synthetic materials like polymers, ceramic-
based bioactive glasses, self-assembled peptides [60]. Synthetic sca�olds, due
to defined chemical or biochemical compositions, provide reproducibility in
terms of experimental studies whereas the natural sca�olds consist of sites
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that enable near physiological interaction with cells [60]. Sca�old-based 3D
culture methods are further classified into hydrogels based and solid sca�olds
based 3D culture. Agarose hydrogels are an example of simple sca�olds that
are used to form 3D cell spheroids and require minimal optimization of con-
centrations of agarose depending on cell type. ECM proteins are another
set of hydrogel-based sca�olds that are widely used that mimic the in vivo
cell microenvironment. ECM sca�old usage for 3D culture includes either
mixture of ECMs like matrigel that consists of laminin, collagen 1, entactin
etc. or single ECM like collagen1, fibronectin etc. ECM based 3D culture is
created by either sandwiching the cells between two layers of coated ECM
proteins [64] [6] or cells are mixed with ECMs, added as droplets [105] where
ECMs solidify at the growth temperature. Despite providing the cell-tissue
matrix interactions in vitro the ECM based 3D systems also has its intrinsic
limitations in creating highly complex and well-controlled microenvironment.

1.5 Microfluidic technique
The development of microfluidics in the 1990s provides an opportunity to
create highly complex, reproducible and well controllable microenvironment
for 3D cell culture. Microfluidics deals with small volumes of fluid flow that
are precisely controlled and manipulated in the constrained geometry. Fur-
ther advancements in the integration of microfluidics and cell biology have
reached a significant milestone with the development of “organs-on-chips”,
smart technological platforms that, once applied to the study of human dis-
eases, such as cancer, might ultimately contribute to design personalized
treatments and hence improve health outcomes [1] [114]. There are sev-
eral advantages over conventional methods as simple demonstrations of bi-
ological cells being transported and manipulated in microchannels for basic
short-term analysis, has now advanced to the point where we can engineer
living cellular microsystems with controllable microenvironments that be-
have and function – with organ-level complexity – like their counterparts in
vivo [7] [53]. Organ-like features include continuous perfusion and physiologi-
cal cell–matrix and cell-cell interactions. Development of these techniques as
“cell-on-chips”, “tissue-on-chips” and “organs-on-chips” resulted in a major
contribution to drug testing and toxicological studies.

There are several types of the microfluidic chamber that work on dif-
ferent principles and used for di�erent application. A lot of review articles
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can be found in their applications. Wlodkowi and Cooper reviewed on the
usage of a microfluidic chip in the field of cell imaging techniques and micro
sorting technology. Huh, et al. described the possibilities and challenges of
microfluidic technology for next generation of cell culture. Young reviewed
on verities of design consideration of microfluidic devices used in culturing
tumor microenvironment for both solid and liquid tumors. Navid Kashmin-
jad has categorized the chip based on a tumor and described chip design,
fabrication, and characterization of tumor microenvironment [57].

Di�erent types of microfluidic systems have been established to support
cancer cell detection, sorting, and drug testing. These microfluidic chips are
fabricated on di�erent platforms. Mainly there are 3 types of fabrication
have been used in microfluidic chip [40].
1) Glass \Silicon Based Systems: These enhance the optical properties
and are useful in high-resolution microscopy. These can also be used for
longer-term studies with reproducibility. These are impermeable to oxygen
and helpful for only hypoxic studies. Silicon systems are not much popular
because of their high cost and complicated fabrication procedure.
2) Polymer Based System: These are dominated because of its perme-
ability to oxygen and cost-e�ectiveness. Various polymers such as PDMS,
Polycarbonate, Polyester, Polymethyl methacrylate can be used for fabrica-
tion. All these devices are optimized for the flow of medium and perfusion
of oxygen. Typically, these have 2 ports one for inlet of medium and other
for remaining medium ejection.
3) Paper Based System: These are very simple and cost-e�ective ap-
proach compared to glass and polymer system. Multiple papers are stacked
over each other to mimic the 3D architecture.

Microfluidic chips or devices are engraved with channels for liquid flows
that are typically in sub microliters rage. Microfluidic devices for cell culture
also use sca�olds such as polydimethylsiloxane (PDMS), agarose, collagen,
fibronectin etc. [66] As we know that extracellular matrix (ECM) plays an
important role in cancer growth, di�erentiation and cell-to-cell signaling, the
ECM can be utilized to support the 3D culture as a sca�old. This sca�old
dependent microfluidic chips are called gel-supported system and without
sca�old are called gel free system [40]. In-gel supported system sca�olds are
made up of hydrogels and this supports the development of complex and clini-
cally relevant 3D cellular architecture. As these hydrogels limit the transport
of nutrients and oxygen through thick sca�olds, e�orts have made to get rid
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of these gels. There are many microfluidic chips that support the 3D culture
by di�erent techniques such as hanging drop, polyethyleneimine-hydrazide
an intracellular polymer linker and dielectrophoresis (DEP) technique.

Cells grown in microfluidics are sorted by various methods, namely cell
a�nity chromatography, magnetic activated cell sorting and di�erences in
cellular biophysics such as cell size, adhesion, deformability, dielectrophore-
sis, and impedance [13].
1) Cell a�nity micro chromatography sorters: In this method cancer
cells selectively bind to substrate immobilized high-a�nity ligands by sepa-
rating healthy cells from a heterogeneous mixture (Du et al.).
2) Magnetic activated cell sorters: In this cell, sorting happens on the
interaction between cell surface antigens and antibodies conjugated to sus-
pended magnetic particles. This technique readily permits the manipulation
of captured cancer cells using a magnetic field.
3) Size based sorters: In this system separation happens based on the size
of the cell. Mohamed et al. reported the 1st size based sorter microfluidic
chip with four decreasing channel width.
4) Dielectrophoresis (DEP) based sorters: DEP uses the polarization
of cells in the non-uniform electrical field to exert forces on cells.

Collagen-based microfluidics is one of the commonly used 3D cell culture
systems to study cancer cell behaviors like cell migration, response to drug
candidates [65] [4]. Scientists have also attempted to recapitulate some parts
of the TME by co-culturing cancer-stromal cells. Drifka CR et al. studied
the interaction between PDAC and PSC cells and paclitaxel drug response
in tri-layered ECM coating in microfluidic chip [23].

Cells were grown as a 2D monolayer on plastic or glass surface typically
show spread morphology and experience uniform access to nutrients whereas
cells in 3D grow as multilayer aggregates, experience gradient nutrient ac-
cessibility that is usually observed in vivo. Interestingly certain cells like
colorectal cancer cells, HEK293, mammary epithelial cells when grown in 2D
show higher proliferating rates than grown as 3D whereas some breast cancer
cells grow faster in 3D than in 2D. This could be because cells show di�eren-
tial gene expression patterns, between 2D and 3D culture, that are associated
with cell proliferation, migration, invasion, angiogenesis, and chemosensitiv-
ity [23]. Comparison studies in gene expression show ˜30% of the genes are
di�erentially expressed between cancer cell lines like breast, colon, lung etc.
and their tissue origins [23]. Intriguingly, cells when removed from in vivo



1.6 Di�erential drug responses between 2D and 3D cell culture models 13

and cultured in 2D loose native characteristics but, when the same cells are
placed back either in vivo or in basement membrane based 3D they retain
their characteristic features [23], [59], This indicates the importance of using
3D based cell culture systems that recapitulate the in vivo like phenotype
and genotype. In fact, the 3D cell culture system is increasingly recognized
as an attractive alternative to most commonly used 2D cell culture systems
to study cancer cell behavior particularly screening for anti-cancer drugs.

1.6 Di�erential drug responses between 2D and
3D cell culture models

Various research groups have studied drug responses by cancer cells in 2D
and 3D culture models. Cancer cells especially were grown in 3D respond to
drugs di�erently depending on both cell type and the sca�old used in culture.
For ex-human breast cancer line, SKBR3 cells grown on polyHEMA showed
more sensitivity to trastuzumab than even cells grown in 2D [84]. Whereas
SKBR3 and other cells were grown in matrigel exhibited increased resistance
to trastuzumab in contrast to cells in 2D monolayer [106]. However, another
drug screening study against breast cancer cell line JIMT2 reveals that cells
in 3D matrigel are more sensitive than cells in 3D polyHEMA [49]. Simi-
lar higher drug resistance was observed in ovarian cancer cells treated with
paclitaxel when they were grown in 3D hydrogel matrix that consists of inte-
grin binding motifs (RGD peptides) in contrast to cells in the 2D model [69],
breast cancer cells in 3D biodegradable polymer and bladder carcinoma in 3D
spheroids treated with doxorubicin. The reasons for higher chemoresistance
in 3D models could be due to the ine�cient drug penetration, cell-matrix
interaction mediated increased cell survival signaling [50] [29].

For PDAC treatment fluorouracil-based chemotherapy was the mainstay
of since the 1950s which showed a mean survival duration of ˜3 months [78].
Since then there have been many drugs that are developed and used either
solely or in combination with other drugs against PDAC that improved the
survival duration ranging between 4 to 9 months [99]. For example, patients
receiving gemcitabine was the first drug to increase the overall survival of
patients more than Fluorouracil by 2.7 months [11]. Gemcitabine, in combi-
nation with other drugs like cisplatin, oxaliplatin, erlotinib etc., is currently
most widely used the drug in the treatment of PDAC with the marginal
increase in overall survival by up to 3-6 months [99] [82]. The mechanism
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of action of gemcitabine on pancreatic cancer cells and the mechanism of
resistance shown by pancreatic cancer is outlined somewhere else [37].

In our work, we employed a single chemotherapeutic agent, cisplatin to
study the di�erential responses of cells grown in di�erent culture systems.
Cisplatin, [Pt(NH3)2Cl2], was first synthesized in 1844 by M Peyrone and
its chemical structure was resolved by Alfred Werner in 1893. However,
cisplatin gained the importance in medical investigations only since 1965,
when Rosenberg et al., at Michigan State University showed for the first
time that cisplatin treatment inhibited the cell division of E. coli but not
cell growth. This discovery prompted attention to use cisplatin as a poten-
tial drug against cancer. Cisplatin has indeed showed anticancer activity in
many solid cancers such as cancers of ovaries, testes, head, and neck. Even-
tually, cisplatin became the first platinum-based drug that was approved
by Food and drug administration (FDA) authority for cancer treatment in
1978 [58]. The mechanism by which cisplatin inhibits cell growth and exhibit
cytotoxicity is not fully understood but believed to induce DNA damage in
the cells.

In our studies, we employed three of the most commonly used PDAC cells,
BxPC3, MiaPaCa2 and PANC1 for comparative studies in terms of growth
kinetics and cisplatin drug responses in 2D, agarose-based 3D spheroids, 3D
collagen-based microfluidics systems and in vivo. Scientists have isolated
various PDAC cell lines from the patients, either from the primary site or
metastasized organs, and characterized the genotypic as well as phenotypic
behaviors in vitro and in vivo. Table 1.1 is the compilation of characteris-
tic features of three of the most commonly used PDAC cell lines; PANC1,
MiaPaCa2 and BxPC3 cells that we employed in our studies.
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Table 1.1: Characteristic features of three PDAC cell lines; PANC1,
MiaPaCa2 and BxPC3

Description PANC1 MIAPACA2 BXPC3

Source

56y old male
Caucasian. Isolated
from the head
of pancreas.
Metastasis was
observed in
peripancreatic lymph
node [67]

65y old male. Tumor
involved both tail
and body of
pancreas
and metastasized
in to periaortic
area [113]

61y old female.
Tumor
development
on the body of
pancreas. No
evidence of
metastases
observed [97]

Key
Gene
Mutations

KRAS: G12D, KRAS: G12C KRAS: WT
TP53: R273H TP53: R248W TP53: Y220C
CDKN2A: HD CDKN2A: HD CDKN2A: WT/HD
SMAD4: WT SMAD4: WT. SMAD4: HD
[18]

Anchorage
independent
growth
[63]

>800 colonies
(seeding cell
number
3000)

≥700 colonies
(seeding cell
number
3000)

≥200 colonies
(seeding cell
number
5000)

Cell adhesion

Collagen1 PANC1 and BxPC3 show almost similar a�nity to
collagen1 substrate that is higher than MiaPaCa2.
Collagen IV: Between the three cell lines, Panc1 shows highest
a�nity followed by MiaPaCa2 as moderate and
BxPC3 has lowest a�nity for Col-IV.
Fibronectin: Studies show that the degree of a�nity of these
three cell lines for fibronectin is inconsistent and inconclusive
as summarized by Deer L et al., 2010
Laminin: In summary all three-cell lines show similar a�nity
towards laminin binding [39] [79] [5]

Pro-angiogenic
factors

Cox-2: BxPC3 has more than 30X levels of cox-2 than PANC1
and MiaPaCa2 [18]
VEGF: BxPC3 has more than 1.7X fold VEGF than PANC1
and 5.3X fold than MiaPaCa2 [72]
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Figure 1.4: Pictorial representation of mathematical modelling key features

Table 1.1: Characteristic features of three PDAC cell lines; PANC1,
MiaPaCa2 and BxPC3

Description PANC1 MIAPACA2 BXPC3

Invasive
abilities

Matrigel: Various studies have consistently shown that all
three cells are equally invasive in matrigel [39],
[96], [35], [80]. Invasion comparison of

all three cells on other ECMs has
not been performed.

1.7 Mathematical Modelling
Oxford English dictionary states, a model is “a simplified or idealized de-
scription, representation or conception of a particular system, situation, or
process, often in mathematical terms, that is put forward as a basis for
theoretical or empirical understanding, or for calculations, predictions, etc.”
Mathematical Models can be simple as possible, yet as complex as necessary
to describe the given question of interest.

George Box states that ‘All models are wrong, but some of them are
useful’.

In other words, mathematical modeling represents the existing system in
a usable form. So the models are in a simplified form not the replicates of
reality. This simplification allows presenting the essential features leaving the
burden or unnecessary details [94]. While building a mathematical modelling
we should consider key features such as 1) List of quantities, which can be
measured or observed called as ‘output’ 2) List of quantities, which can be
controlled or acted upon called as ‘input’ and 3) System, where the process
takes place (Figure 1.4 ).

Mathematical models typically consist of 1) Variables: These are either
dependent or independent. 2) Parameters: These can be varied during the
experimental conditions and 3) Constants: Fixed values.
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Based on the above concept, there is a great variety of mathematical mod-
eling. The following are the some of the main categories [94] [110]. Firstly,
categorized based on type of outcome they predict such as 1) Deterministic
Model: These model always predict the same output from the starting point
by ignoring the random variation 2) Stochastic Model: In this model, the
outcome is more statistical and has all the possible outcomes. Secondly, cat-
egorized based on the level of understanding of the data. In this again there
are two types 1) Mechanistic Model: In this type of modeling they take an
account of the mechanism through which the change occurs. 2) Empirical
Model: These type of modeling they don’t consider any mechanisms. In-
deed, it is a change occurred. Thirdly, categorized based on the relationship
between the parameters used in mathematical modeling. 1)Linear Model:
In this input and output parameters are linearly related 2)Nonlinear Model:
In this input and output parameters are not linearly related

1.8 Mathematical Modelling in Biology
These mathematical models are used in biology process for a long time to
simulate the data. This has many advantages as [110]

1. It helps in summing up of large volume of experimental data

2. In exploring the concepts and testing the hypothesis

3. Predicting the behaviour of the systems under non-tested conditions

4. Identifying the conditions for optimal performance of a process

In addition to understanding, mathematical models also simulate the
complex system in a relatively fast time without the enormous cost of lab
expenditure and biological variation. These mathematical models have the
power to reveal the previously unknown or counterintuitive physical princi-
ples that might have been overlooked or missed by a qualitative approach
to biology. These models can be adapted to complement or even replace
in vivo or in vitro experiments for the interpretation of biological phenom-
ena. Mathematical models have proved in understanding the mechanism and
processes in cancer and have been in a silicon trial that predicts di�erent
treatment modalities [8]. These mathematical models systematically eval-
uate assumption, investigate alternative mechanism and make predictions.
These predictions can be validated.
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With the recent advances in medical and computational methods, math-
ematical biology has grown extensively. Mathematical biology has covered a
submicron length of DNA polymers to the kilometer length scale of migra-
tion patterns of animal herds. It has been applied in a broad spectrum of
life science. The main contribution of mathematical modeling in the areas
of biology and medicine are epidemiology, cell physiology, cancer modeling,
genetics, cellular biology, and biochemistry.

1.9 Mathematical Modelling in Cancer
As we stated earlier cancer is a complex disease, multiple factors involved in
the carcinogenesis of this disease such as DNA replication, errors in cells, in-
teractions between cells and the tissue microenvironment and environmental
factors such as radiation and diet. Therefore, an understanding of this dis-
ease is required from the point of the cell to its environment. Mathematical
models have proved in understanding this disease from the mechanism and
processes involved in this [2].
The use of mathematical models to study cancer dates back to many decades.
The evolvement of mathematical models in cancer is represented in figure
1.5. The first mathematical modeling to study cancer was in 1950, during
those days’ models were simple in terms of maths. The advancement in the
mathematical filed in 50 years has enormously increased the knowledge of
modeling [2]. There are many mathematical models to describe cancer at
various stages of cancer.

Cancer initiation and hierarchy can be explained by the mathe-
matical model using ‘Branching process’ and its commonly used model in
cancer evolution. It helps in understanding dynamics of mutation accumu-
lation. Passenger mutation and driver mutation of the tumor growth have
been analyzed using branching process. Branching process is a stochastic
process model of cell division, mutation events and cell death that leads to
increase or decrease in total population size. The model starts with single
cell harboring a specific driver mutation then accumulates the further mu-
tation during the subsequent cell division. As the mutation accumulates in
a cell population, each new cell type has a new set of rates. These models
depend only on the current state of the population and not the past. Later
in the improvement of these models, epistatic interactions are added to this
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Figure 1.5: History of mathematical modelling of cancer (Adapted from [12])
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branching process. These epistatic interactions help in understanding the al-
terations depend on the genetic background of the cell. Still, these branching
process rarely describe the interactions between the cells and microenviron-
ment. The dynamics of mutation accumulation can also be studied using
other stochastic models such as Wright-Fisher process.
Modelling the tumour microenvironment need complex mathematical
models. Usually, partial di�erential equations are used for describing uniform
spherical spheroidal growth. They also use the discrete model to describe
individual cell and continuum deterministic model for the cell population.
These models also include dynamic of nutrients, chemical factors, and extra-
cellular matrix. Markov process of discrete stochastic models describes cell
growth, migration, and interaction.
Mathematical modelling of metastases has long been recognized. Ear-
lier mathematical models explain the competition between cancerous and
healthy tissues. Now a day many mathematical models describe develop-
ment and predictors of metastases by modeling dormancy and cell kinetics.
Treatment response and resistance acquired are modeled using stochas-
tic processes. Linear and quadratic models have been used in radiotherapy.

1.10 Mathematical models of tumour growth
There are several growth models to explain the tumor growth kinetics in het-
erogeneous tumors and its interaction with subclonal population, di�erential
response to therapy and di�erential metastatic characteristics. Here we ex-
plain only about the growth of cancer cells, which has unbounded growth
rate theoretically exponential having constant doubling time. Practically
exponential growth is true for small tumors, but it decelerates as the time
progress. To address this deceleration of growth there are many growth mod-
els [87]. Here we explain few models, which are widely used in cancer studies
to address the growth and deceleration rate of cancer cells. The classical
growth models are logistic, Gompertz and von Berta-lan�y models [77].
Logistic Model: The Logistic model is the most commonly used model
for estimation of tumor growth. It was first formulated by Pierre Fran coins
Verhulst in 1838 [36]. This model is used to explain the dynamics of a popu-
lation using growth rate, whose population is limited by a carrying capacity.
Carrying capacity is at which cells reach maximum growth. According to
this model, there is a linear decay in the volume of the relative growth.
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Figure 1.6: Steps involved in building mathematical modelling

Gompertz model: It is widely used model to show the growth of a variety
of tumors of mouse, rat, and rabbit. Gompertz means the equal proportion
of the ‘power to oppose destruction’. According to this model, the growth is
considered as exponential process limited by an exponential retardation. In
this, the growth of a tumour is interpreted based on the exponential prolif-
eration of tumor cells according to the exponential equation [62].
Von Berta-lan�y Model: According to Van Bertanla�y, both the rate of
production and destruction follow the law of allometry. The law of allometry
states that they scale with a power of the total size. The van Bertanla�y
equation was developed by Beverton and Holt in 1957. It is used mostly in
fishery biology to study the fish population dynamics. When the destruction
term is neglected, the von Bertalan�y model reduces to a power law for ap-
plications to tumor growth [62]. These growth models are based on balance
equations of metabolic processes.

1.11 Stages of Modelling
There are mainly four stages involved in modeling any data. The schematic
representation stages involved in building model is represented in figure 1.6

1. Building Model

• Objective: Getting started we need to be clear about our objec-
tive so that we know the purpose and usage of the model. After
setting up the objective, divide the system (data) into 2, one
which can be modeled another one has the surrounding system,
which can’t be modeled.
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• System Analysis: In this assumption of the data has to be done.
Later we need to give the basic framework for the model, which
explains how the model works.

• Choose the mathematical equation: Once we know our sys-
tem structure, we should select the mathematical equation that
describes the system. This can be done from the literature since
some areas of science are intensively studied so it’s appropriate
and safe to choose them. We can also choose the equations by
fitting the data got from our experiments.

• Solving equations: Then these mathematical equations can be
solved to get the numerical solutions.

2. Studying Model
Once we build the model, we need to understand the qualitative and
quantitative behavior of the model. Qualitative helps in understanding
‘how’ the model is fitted, however, quantitative helps in knowing ‘how
much’. Later we need to identify the sensitivity of the model, which
identifies the weak point of the model.

3. Testing the Model
After identifying all the factors, we need to test our built model against
di�erent observations, this is also called as validation. This helps in
the verification of the predictions and how much the model is faithful.

4. Using Model
Model is ready to use with all the information. It can be used to test
a new set of data.

We followed these stages to build the mathematical model for pancreatic
ductal adenocarcinoma cells (PDAC) growth.

1.12 Objectives
Pancreatic cancer is the fourth leading cause of death in western society
presenting a 5-year survival rate of 3% and a median survival of fewer than
6 months. This is due to its aggressiveness, high incidence of metastasis,
inability to detect the disease at an early stage, lack of specific symptoms and
diagnostic methods strongly limit the treatment options for patients a�ected
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by pancreatic cancer. In spite of recent advances in medicine there are few
or no e�ective therapies for advanced pancreatic cancer, clearly, there is a
thorough understanding of this disease is strongly needed to design e�ective
interventions. Hence we aimed to study pancreatic ductal adenocarcinoma
(PDAC) human cell lines in di�erent models.

1. Characterisation of Pancreatic ductal adenocarcinoma (PDAC) cells in
di�erent culture models

• Studying PDAC cells in Two-dimensional culture (2D) system
• Studying PDAC cells in Three-dimensional culture (3D) system
• Studying PDAC cels in novel microfluidic chip
• Comparison of drug Cisplatin resistance within in vitro system

and in vivo

2. Developing mathematical model for pancreatic ductal adenocarcinoma
(PDAC) cells
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Chapter 2

Characterisation of Pancreatic
ductal adenocarcinoma (PDAC)
cells in di�erent culture systems

2.1 Introduction
The understanding of a tumor biomolecular features and growth dynamics
and the identification of novel targeted therapeutic strategies is being one of
the major challenges in oncological research. Various cell culture platforms
have been developed and employed both in vitro and in vivo models for pre-
clinical studies [74], [31]. Two-dimensional (2D) cell culture has been the
cornerstone of many studies including drug testing ever since the success in
growing the mammalian cells in vitro. However, 2D cell culture is a simple
system that fails to mimic the complexity of biological systems, especially
diseases like cancers. In particular 2D culture is a monolayer of cells whereas
cells situated in vivo are organized as 3D architecture which is surrounded
by other cell types, extracellular matrix proteins and other factors. Due to
these fundamental di�erences cancer cells grown as 2D monolayers do not ex-
perience the ECM-cancer cell interactions, intra-tumoral gradients in terms
of pH, oxygen and nutrients availabilities that are typical characteristics of
the cancer microenvironment. Hence many drugs, that pass pre-clinical in
vitro testing, fail in the patients [16], [26], [10], [101]. In vivo studies, on
the other hand, typically use mouse models for ex-subcutaneous or ortho-
topic xenografts of human tumour cells in immuno-compromised mice that
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poorly recapitulate the proper tumour behavior and undermine the impact
of the tumour microenvironment, in particular of acquired immunity. More-
over, animal models are expensive, time-consuming and under some aspects
“non-ethical” [26], [10].

In order to bridge the gap between simple 2D and in vivo animal models
for cancer studies scientists have been using an alternative 3D cell culture
model. 3D cell culture can be broadly classified as sca�old-free and sca�old-
based. Sca�old-based 3D includes growing the cells on a simpler hydrogels
likes agarose or complex ECM like collagen or matrigels. Cells grown on
agarose forms 3D spheroids likes structures that mimic physiological condi-
tions over 2D monolayers, as 3D resembles more accurately the architecture
and biomechanical properties of the tumour tissue.

Further, 3D spheroid cultures lead to reproducing several parameters of
the tumour microenvironment, including oxygen and nutrient gradients as
well as the development of a dormant tumour region [46], [89]. Overall, 3D
cultures allow to monitor cell growth dynamics and response to treatments
more appropriately, and could hence fill the gap between in vitro and in
vivo systems for preclinical oncological research. As a result, there has been
increasing focus in developing 3D techniques, and many di�erent platforms
have been proposed, with di�erent grades of complexity and expression of a
tumour microenvironmental conditions [10], [28].

To further increase the complexity of the 3D culture, cells can be grown
under the influence of ECM like collagen1 that are particularly abundant
in pancreatic ductal adenocarcinoma (PDAC). However, the possibilities to
manipulate the cells under 3D are also desirable feature of the cell cul-
ture systems. Advancement in microfluidic technologies where cells are
transported and manipulated in micro-channels and we can engineer liv-
ing cellular microsystems with controllable microenvironments that behave
and function – with organ-level complexity like their counterparts in vivo
[7], [52], [103], [30], [53]. Further microfluidics enable the possibilities to
control few parameters like fluid flow, perfusion systems for the continuous
supply of nutrients and drugs and collection of cell-spent media for analysis.
Recently microfluidics reached a significant milestone with the development
of “organ-on-chip” technologies Organ-like features include continuous per-
fusion and physiological cell–matrix and cell-cell interactions. More recently,
the “organ on chip” technology has been transferred to study human disease
models, including cancer [1], [21], [92], [104], [112], [114]. As a further step,
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the combination of microfluidics and dielectrophoresis (DEP) to assemble
primary human cells, has enabled the automated in vitro construction of
micro-organs, which mimic proper in vivo structures. As a unique feature of
organ-on-chip technology, the use of DEP selectively assembles only viable
cells [91], [47]. For the HepaChip® organ-specific 3D cell culture cham-
bers are designed and validated by multiphysics simulations and realised by
injection moulding of the cyclic olefin polymer (COP) [91], [41], [48]. Propri-
etary surface functionalization enables selective deposition of ECM proteins
in a simple perfusion process [90]. High resolution optical imaging of micro-
organs along with the complete set of staining technologies is possible due to
the exceptional optical properties of COP. We applied these concepts to cre-
ate a novel platform for studying pancreatic ductal adenocarcinoma (PDAC),
one of the human cancers with worst prognosis, for which the design of novel
therapeutic options is urgently needed. For these reasons, various model
systems are being developed, from in vitro 2D and 3D cell cultures, to whole
animal models [54].

In this chapter, we explain about culturing human PDAC cells in all the
three di�erent culture systems and studied the di�erences in morphological
appearance, growth characteristics and response to chemotherapeutic drugs.

1

2.2 Materials and Methods

2.2.1 Cell lines

Three human pancreatic ductal adenocarcinoma (PDAC) cell lines; PANC1,
BxPC3 and MiaPaCa2 were used for our experimental work. The PANC1
and MiaPaCa2 cells harbor a mutation in KRAS and TP53, homozygous
deletion (HD) in CDKN2A/p16 and wild type (WT) SMAD4, while BxPC3
cells harbor mutation in TP53, HD in SMAD4 and WT KRAS [18].

1
This chapter has been published as “A novel microfluidic 3D platform for culturing

pancreatic ductal adenocarcinoma cells: comparison with in vitro cultures and in vivo

xenografts” in Scientific Reports 7, Article number: 1325 (2017)
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2.2.2 Two dimensional (2D) cell culture
Cell culture

PANC1 and MiaPaCa2 cells were cultured using Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% defined fetal bovine serum and
4mM glutamine. BxPC3 was cultured using RPM1-1640 medium supple-
mented with 10% defined fetal bovine serum and 2mM glutamine. Cells
were cultured in a humidified 5% CO

2

at 37¶C.

Growth Profile

For studying growth profile of PANC1, BxPC3 and MiaPaCa2, ten thousand
cells were initially seeded into each well of 96 well plate containing 200 µL of
respective media. Cells were maintained in a humidified 5% CO

2

at 37¶C.
Cell growth was estimated every day by trypsinizing the cells and manual
counting using trypan blue method.

Live/Dead cell imaging

Cell viability was done by Calcein-acetoxymethyl(AM) and Propidium Io-
dide (PI) staining. Calcein-AM is a membrane permeable live-cell labeling
dye. After acetoxymethyl (AM) ester group enters the live cells, cleaves the
intracellular esterases, yielding the membrane-impermeable Calcein fluores-
cent dye, which gives a green color to the live cells. Calcein is excited at 495
nm and has a peak emission of 515 nm (Green color). Propidium Iodide is
a membrane impermeable. PI binds to DNA of dead cells by intercalating
between the base pairs and gives red color. PI is excited at 488 nm and has
a peak emission at 617nm (Red color). We used this technique to observe
the cells. After 48H of culturing, cells were incubated with Calcein-AM (2
µg/mL) propidium iodide (10 µg/mL) for 20 minutes in the fresh culture
medium. Then washed with PBS and Images were taken using Nikon fluo-
rescence microscope.

E�ect of cisplatin

Cisplatin is a platinum-based drug used in the treatment of most of the can-
cers. We used this drug to identify the IC

50

(which is the concentration to
kill 50% of the cells) value for PANC1.
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Drug treatment:To find out the IC
50

value, ten thousand cells were
seeded per well in 96 well plate. After 24H of culturing, cells were treated
with di�erent concentration of cisplatin such as 1, 2.5, 5, 10, 25, 50 and
100µM. Meanwhile cells were maintained without cisplatin also for control
conditions.

Analysis of drug e�cacy: After 24H of drug treatment, cells were
detached using trypsin and counted manually using trypan blue.

Estimation of IC
50

: IC
50

values were calculated using origin, by fit-
ting sigmoid dose-response curve for the cell density calculated at di�erent
concentration of cisplatin-treated cells.

Cytoskeleton Staining

Cytoskeleton structure was studied by staining on actin filaments. To stain
the actin filaments firstly thin glass-cover slips were ethanol and flame steril-
ized. Then cells were seeded on the glass coverslips for 24H. The unattached
cells were washed away with PBS and cells were fixed with 4% methanol-
free para-formaldehyde (PFA) for 20 minutes at RT. Cells were permeabi-
lized with 0.01% Triton-X for 5 minutes at room temperature, washed with
PBS. Nonspecific sites were blocked using 10% BSA for 1H. Then cells were
stained using Rhodamine-conjugated phalloidin at room temperature for 1
hour at dark, followed by nucleus staining using DAPI (Invitrogen). Then
these coverslips were mounted using ProLong antifade mounting solution
(Invitrogen). Images were captured using a C1 confocal microscope (Nikon).

2.2.3 Three dimensional (3D) cell culture

Cell Culture

Three-dimensional spheroids were generated using liquid overlay technique.
Cells were trypsin treated and counted using trypan blue. Subsequently cells
were seeded onto agarose-coated (1.5% agarose 50µL/well) 96 well plate in
100 µL of medium [14]. Figure 2.1 shows the spheroid formation on agarose-
coated well. After 72H, 100 µL medium was added and afterward for every
48H, 50% of the supernatant was replaced with fresh medium. Spheroids
were cultured in a humidified 5% CO

2

at 37¶C.
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Figure 2.1: Schematic representation of agarose coated well with cells form-
ing spheroids [107]

Figure 2.2: Volume estimation by SpheroidSizer program. The volume was
calculated using major and minor axis. L - major axis: the line segment
connecting a single pair of farthest points on the contour (referred to length);
W - minor axis: the longest line perpendicular to the major axis (referred to
width) (taken from [14])

Growth Curve

For growth curve experiments, five hundred cells were seeded on to agarose
coated 96 well plate and maintained for 10 days as mentioned above. Every
day spheroids were imaged using bright field microscopy (Nikon) to estimate
cell growth with a 10x objective. Volume was calculated using the major
and minor axis of the spheroid as shown in the figure 2.2. Image resolution
at this objective was 0.757 µm/pix. Spheroid volume was calculated using
MATLAB SpheroidSizer program as reported by Chen W. et al. ( [14]).
Figure 2.3 shows the screenshot of volume estimating using MATLAB.
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Figure 2.3: Screenshot of SpheroidSizer, in which the volume is displayed
based on the volume measurement (taken from [14])

Live/Dead cell imaging

After 72H of culturing, cells were incubated with Calcein-AM (2 µg/mL)
propidium iodide (10 µg/mL) for 20 minutes in the fresh culture medium.
Then washed with PBS and Images were taken using Nikon fluorescence
microscope.

E�ect of cisplatin

To determine the IC
50

of cisplatin, the cisplatin concentration to kill 50% of
the cells, we treated PANC1 3D spheroids with di�erent concentrations of
cisplatin.
Drug Treatment: Initially, 1000 cells were seeded per well (96well plate).
Once the spheroids attained specific volume i.e. after 72H, spheroids were
treated with 0, 5,10, 20, 50 and 100µM of cisplatin diluted in 200µL of
the medium. Untreated spheroids were also cultured in parallel as control.
Spheroids were maintained without changing medium for the whole experi-
ment.

Analysis of drug e�cacy: After 72H of drug treatment, 20 to 30
spheroids were collected, washed with PBS. Spheroids were dissociated using
5mM Ethylenediaminetetraacetic acid (EDTA) and incubated with propid-
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ium iodide (PI) (0.05µg/mL) for 5 min. Stained cells were analyzed using
flow cytometer.
Estimation of IC

50

: IC
50

values were calculated using origin, by fitting
sigmoid dose-response curve for the cell density calculated at di�erent con-
centration of cisplatin-treated cells.

Cytoskeleton staining

Cytoskeleton structure was studied by staining actin filaments. To stain
the actin filaments, we started culturing 1000 cells per well (agarose coated
96well plate). Once the spheroids attained specific volume i.e. after 72 h
of culturing, spheroids were fixed with 4% formaldehyde, then permeabi-
lized using 0.01% Triton-X for 5 minutes at room temperature, and washed
with PBS. Cells were then blocked using 10% BSA for 1 h at room tem-
perature and then stained using rhodamine- conjugated phalloidin at room
temperature for 1 hour under dark condition. The nucleus was stained us-
ing DAPI (Invitrogen). Images were captured using a confocal microscope
(Nikon Eclipse TE2000-U).

2.2.4 Microfluidic device cell culture
Microfluidic Chip design

Microfluidic chips were made of cyclic olefin copolymer (COC) Topas 5013
by microfluidic ChipShop, Jena, by microinjection molding [91], [41], [48].
The COC chip was cleaned with isopropanol and dried under nitrogen flow.
Subsequently, the COC surface was irradiated through a mask using a low-
pressure mercury lamp (Heraeus Noblelight, Hanau, Germany, NIQ lamp,
l 1

4185 nm, quartz tube, 5 W) to achieve site-specific formation of reactive
carbonic acid groups (Figure 2.4 ). These activated groups were blocked by
Collagen from a 20 µM solution for 90 min and nonactivated groups were
blocked with Pluronic F127 [90]. Then chip was sealed with an adhesive foil
(polyolefin cover foil, HJ-Bioanalytik Moenchengladbach).2

The device comprises eight identical cell chambers, containing three cell
culture regions each, sized 1 mm x 60 µm, i.e. 24 cell culture regions per chip.
On the sidewalls of each cell chamber electrodes are integrated which are used
to generate an inhomogeneous high-frequency electrical field. This gives rise

2
Microfluidic work was done in collaboration with NMI Germany
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Figure 2.4: Process scheme applied for patterned surface biofunctionalization
in microfluidic devices by UV-irradiation and subsequent binding of collagen
and Pluronic F-127 (Taken from [90])

to dielectrophoretic forces by which cells entering the cell chamber are drawn
into the assembly areas. Only viable cells will be selectively assembled as
only they exhibit intact cell membranes with their intracellular permittivity
di�ering from that of the extracellular medium they are suspended in.

The microfluidic device was mounted in a fixture providing for fluidic,
electrical, and thermal contact and control of the chip by an external pe-
riphery unit containing Polytetrafluoroethylene (PTFE) tubes and syringe
pumps as well as a function generator, amplifier and electronic heat control
as shown in figure 2.5.

Cell assembly and culture in HepaChip

Cells were suspended in a DEP medium exhibiting an especially low conduc-
tance of 80 to 200 µS/cm. It comprised 95 g/L sucrose, 1 g/L glucose, 57.9
mg/L sodium pyruvate, 28.4 mg/L calcium chloride and 24.6 mg/L MgSO4
(aq). From this suspension, cells were assembled by dielectrophoresis at a
flow rate of 100 µl/min, a peak to peak voltage between 140 and 150 V
and a frequency of 350 kHz, for durations of 3 to 5 min. After cell assem-
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Figure 2.5: Experimental setup: the chip is inserted into a chip fixture, which
is mounted onto a fluorescence microscope (adapted by [91])

bly, the culture medium was perfused through the chip for 3 to 9 days at
a perfusion rate of 3.125 µl/min. During culture the chips were maintained
at temperatures between 35¶C and 37¶C while the medium reservoirs were
heated to between 37¶C and 39¶C. To make sure that no gas or air bubbles
enter the microfluidic chips, a bubble trap was inserted in the inlet tubing
of each chip. In this trap, the medium flows underneath a gas permeable
PTFE membrane where bubbles can exit but the medium is kept inside the
system.

Viability assay in HepaChip

Each day the cells in the microfluidic chip were stained with green fluorescent
Calcein AM (2 µg/mL) and red fluorescent propidium iodide (10 µg/mL) in
order to visualize viable cells in green and nuclei of dead or dying cells in red.
After incubating with the staining solution for 20 min at 7µL/min the chip
was washed with culture medium before the perfused culture restarted. Im-
ages were captured with Nikon DS 2MBWc microscope camera using Nikon
Eclipse Ti.
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Phalloidin staining in HepaChip

The chip was flushed with 4% paraformaldehyde for 20 min at 15 µL/min
to fix the cells. Next the cells were permeabilized by pumping phosphate
bu�ered saline (PBS) with 1% Triton X through the chip for 10 min at
a flow rate of 50µL/min. Then cells were stained with green fluorescent
Phalloidin and DAPI in PBS for 20 min at 15 µL/min and finally washed
with PBS at 50 µL/min. The cells in the chips were then imaged as those
stained in the viability assay.

E�ect of cisplatin in HepaChip

After 24H of culturing PANC1 and BxPC3 on microfluidic culture, 0µM,
25µM, and 100µM cisplatin were continuously perfused for 72 hours at a
rate of 3µL/min. Then viability was checked as stated in viability assay.

2.2.5 In vivo experiments on nu/nu mice
In vivo experiments were performed at Dival Toscana Srl, inside the Animal
Facility of the University of Florence. All experiments on live vertebrates
were performed in accordance with relevant guidelines and regulations. We
confirm that the Ethical Committee of the University of Firenze approved
all the experiments described. Female, 9 weeks aged, athymic nude nu/nu
mice (Envigo-Harlan Italy; Udine) were subcutaneously (s.c.) injected with
3x106 PANC1 cells per mouse.

E�ect of cisplatin in vivo

Mice were treated daily intraperitoneal (i.p.) with cisplatin (10 mg/kg) (n=4
masses) or with saline (n=4 masses) for one week, starting the day the masses
reached the measure of (0,2 x 0,2 cm). Tumor growth was monitored daily by
measuring two perpendicular diameters, the volume of the tumor masses was
calculated using the ellipsoid equation. At the end of the treatment, all mice
were sacrificed, and tumor masses were collected measured and weighted.

2.2.6 Statistical Analysis
Data are generally given as mean values ± standard error of the mean (SEM),
with n indicating the number of independent experiments. When the mean
± standavd deviation (SD) was calculated, it is indicated in the figure legend.
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Figure 2.6: Growth rate comparison of three PDAC cell lines in terms
of increase in a number of cells per day (n = 3). Data represented are
means ± SEM of three separate experiments each carried out in triplicate.
At the 0.05 level, the PANC1, MiaPaCa2, and BxPC3 are not significantly
di�erent in growth rate. (Taken from B in which I am a first co-author).

Statistical comparisons between two groups of data were performed with the
Mann-Whitney test.

2.3 Results

2.3.1 Two dimensional Culture (2D Culture)

Growth Profile

Three human PDAC cell lines (PANC1, BxPC3, and MiaPaCa2) were cul-
tured to study the growth characteristics. Thorough characterization of these
cell lines, along with other PDAC cells, with respect to genotypic and phe-
notypic properties, are reviewed by Deer EL et al., 2010 [18]. To compare
the growth rate, ten thousand cells were seeded per well in a 96 well plate
containing 200µL of media. Every day cell density was estimated by trypan
blue method. All the three cell lines grew at the same rate with a maximum
cell count of 3 ◊ 105 cells/ml after 72 hours of incubation (Figure2.6).
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Figure 2.7: Microscopic images of PDAC cell lines after 48 h of culturing.
The di�erence in morphology was observed among the cell lines. Scale bars
represent 100 µm. (Taken from B in which I am a first co-author).

Morphology

Pancreatic ductal adenocarcinoma (PDAC) cell lines morphology was stud-
ied using phase contrast image of 48H of the cultured cell shown in figure 2.7.
PANC1 displayed heterogeneity in phenotype with not fully epithelial, more
mesenchymal structure, but more adherent to the substrate. MiaPaCa2 has
two types of structure (1) adherent cells with a mesenchymal morphology,
with round body and more or less long and substrate adherent cytoplasmic
extensions and (2) round, fewer adherent cells. Similar observations were
made by Rui et al [38]. in immunohistochemistry analysis. BxPC3 cells
showed flattened morphology unlike PANC1 and MiaPaCa2 cells and also
with the tendency to grow as small “islands”. These cells are more adherent
to substrate compared to PANC1 and MiaPaCa2 cells.

Live/Dead cell imaging

Cell viability was also studied by fluorescence microscopy in which cells were
incubated with calcein and propidium iodide (PI) as mentioned in material
and methods. In live cells esterase will convert non-fluorescent calcein into
green fluorescent whereas only dead cells take up PI, red fluorescent. Roughly
all the PDAC cells in 2D cultures are vital after 48 hours of incubation, as
witnessed by the Figure 2.8.
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Figure 2.8: Live and dead cells staining, showing live cells by green (Calcein)
and dead cells by red (PI) after 24 h of culturing. Scale bars represent 100 µm.
(Taken from B in which I am a first co-author).

Cytoskeleton structure

One of the functional characteristics of cancer is their propensity to mi-
grate, an essential step for metastatization. During cell migration cells un-
dergo morphological changes in cytoskeleton organization, particularly actin
structures. Hence invasive cancer cells are characterized by a particular
organization of their actin cytoskeleton which can underlie the formation
of lamellipodia [111] We then chose to determine the organization of actin
cytoskeleton, determined by the phalloidin staining in di�erent PDAC cell
lines as a functional indication of their pro-migratory propensity, and hence
“invasive” behavior.

All PDAC cells have a cancer-type organization of their cytoskeleton,
with dendritic arrays of actin filaments (Figure 2.9). PANC1 on 2D cul-
ture shows elongated actin filaments and distributed across the cytoplasm.
BxPC3 actin structures are short and present outside the cells, whereas Mi-
aPaCa2 has short and localized near the membrane level, giving a clear
structure to the cells.

2.3.2 Three dimensional Culture (3D Culture)
Growth Profile

In this study, all the three PDAC cells, PANC1, MiaPaCa2 and BxPC3
were seeded as individual suspension cells on agarose-coated 96 well plate
with a starting cell density of 500 cells per well and maintained for 10 days.
Solidified agarose forms concave shaped curvature where cells aggregate to
form spheroid like structure. PANC1 and MiaPaCa2 cells collected to form
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Figure 2.9: Actin filaments of all the three cell lines were stained with
rhodamine-conjugated Phalloidin (Red) and nucleus was stained with DAPI
(Blue). Scale bars represent 10 µm. (Taken from B in which I am a first
co-author).

spheroids and size of the spheroids increased with time as cell grew. PANC1
and MiaPaCa2 cells had comparable growth rate over the 10 days’ culture
period. On the other hand, BxPC3 showed very low or null growth rate
shown in figure2.10. Interestingly, the compactness of the spheroids formed
by all the three PDAC cells varied.

Morphology

Morphological appearance of PDAC was studied using the microscope im-
ages shown in figure 2.11 at di�erent stages of growth. Interestingly, the
compactness of the spheroids formed by all the three PDAC cells varied.
Morphology of the PANC1 spheroids showed cells at the core of the spheroid
showed tight compact cell-cell attachment whereas cells at the periphery of
the spheroid were loosely attached with some cells indeed migrating away
from the spheroid, perhaps suggesting the invasiveness phenotype. Moreover,
they showed a clear distinction between tightly formed round central dor-
mant and loosely ru�ed peripheral cells. MiaPaCa2 cells grown as spheroids
were uniformly shaped with a compact core and loosely attached periphery
similar to PANC1 spheroids. On the contrary, BxPC3 formed very small and
highly compact spheroids, with only a few scattered cells outgrowing from
the original mass, with no distinction between central and peripheral region.

Live/Dead cell imaging

Calcein/PI staining was done after 72 h of culture. Live/dead cell staining
showed after 72 h of incubation majority of cells in the spheroid were viable.
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Figure 2.10: Comparison of 3D cultured PDAC cell lines growth rate (n = 3).
Data are means ± SEM of three separate experiments each carried out in
triplicate. PANC1 and MiaPaCa2 are not significantly di�erent at 0.05 level,
whereas MiaPaCa2 are significantly di�erent from BxPC3 (p = 0.003) and
PANC1 are significantly di�erent from BxPC3 (p = 0.002). (Taken from B
in which I am a first co-author).

Figure 2.11: Microscopic images of three PDAC cells at 72 h (top layer),
120 h (middle layer) and 168 h (bottom layer). Scale bars represent 100 µm.
(Taken from B in which I am a first co-author).
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Figure 2.12: Live and dead cell staining after 72 hours of culturing show-
ing live green cells (Calcein) and read dead cells (PI). Scale bars represent
100 µm. (Taken from B in which I am a first co-author).

(Figure 2.12).

Cytoskeleton structure

We had seen the di�erences in morphology of 3D PDAC cells compared
to 2D culture and, as cytoskeleton assembly supports cell morphology, we
studied the cytoskeleton assembly by staining filament actin (F-actin) of
3D spheroids. The PDAC cells in the spheroids showed actin cytoskeleton
arranged with short actin filament distributed around the periphery of cells,
especially at the cell-cell interaction and aggregation took place in all the 3
cell lines (figure 2.13), whereas in 2D culture actin filaments were elongated
as cells showed spread morphology. A similar arrangement of f-actin was
observed by Ying et al in mesenchymal studies of actin filaments in 3D
culture; they also observed small and loose aggregates, and show that this
is associated with a decline in the level of F-actin stress fiber and cell size
(35).

2.3.3 Cell culture on Microfluidic device
Cell growth in HepaChip

The same PDAC cell lines were cultured in a novel type of microfluidic cell
culture chamber, the HepaChip®. Figure 2.14 A shows the HepaChip®, The
device comprises eight identical cell chambers, containing three cell culture
regions each, sized 1 mm x 60 µm, i.e. 24 cell culture regions per chip with
fluid inlet and outlet, microchannels addressing eight cell chamber, electrodes
contacting the lateral faces of each cell chamber (Figure 2.14 B). On the
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Figure 2.13: Actin filaments of 3D spheroids were stained with rhodamine-
conjugated Phalloidin (Red) and nucleus was stained with DAPI (Blue). Red
filaments are short and found around the cell periphery and cell-cell inter-
actions. Scale bars represent 100 µm. (Taken from B in which I am a first
co-author).

sidewalls of each cell chamber electrodes are integrated which are used to
generate an inhomogeneous high-frequency electrical field. This gives rise to
dielectrophoretic forces by which cells entering the cell chamber are drawn
into the assembly areas. Only viable cells will be selectively assembled as
only they exhibit intact cell membranes with their intracellular permittivity
di�ering from that of the extracellular medium they are suspended in. Figure
2.14 C shows a multiphysics simulation of hydrodynamic and electrical forces
acting on cells. The trajectory of a cell is calculated using multiphysics
simulation of hydrodynamic and electrical forces acting on cells. [53] [15].3

Figure 2.15 A and B show PANC1 cells on assembly ridges after assembly
and after 146 h of culture under continuous perfusion, respectively.

All the three PDAC cells were assembled inside the HepaChip® using
DEP. All the cell lines showed initial adherence to the chip surface. PANC1
(Figure 2.16) cells PANC1 cells showed less adhesion to collagen-coated areas
but tended to slide over the surface before adhering. They were incubated
for 10 to 15 min in DEP medium and left to sink onto the microstructured
surface before the DEP medium was exchanged for culture medium. After
that, PANC1 adhered everywhere in the chip, on collagen coating as well as
on pluronic coated ramps of the ridges (2.16 Day-0), on channel walls and
on gold electrodes. They spread on any of these surfaces and grew one on
top of others (2.16 Day-1 to Day-6). In order to demonstrate the cell growth
inside the 3D microstructure, 2.16 Day-6 was taken in two focal planes: that

3
Microfluidic work was done in collaboration with NMI Germany
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Figure 2.14: HepaChip: (A)HepaChip having 8 cell culture chambers, fluidic
inlet and outlet and gold electrodes. (B)the chamber containing 2 electrodes
and 3 assembly ridges coated with collagen. (C) Simulation of flow veloc-
ity and trajectories of cells during DEP assembly inside a culture chamber.
(Taken from B in which I am a first co-author).
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Figure 2.15: PANC1 on HepaChip: (A) PANC1 cells assembled on one as-
sembly ridge right after assembly. (B) Live/Dead staining of PANC1 cells
after 146 hours of perfused culture inside the HepaChip® chamber. (Taken
from B in which I am a first co-author).

of the channel (left) as well as that of the collagen-coated ridge (right). It
shows that PANC1 also formed small aggregates on any of these surfaces
after 6 days of cell culture. Overall, PANC1 cells behave inside the chip as
a spheroid forming type.

BxPC3 cells adhered and spread on the collagen coated ridges until they
formed a dense layer. During perfused culture for several days, they slowly
extended up the ramp and formed a thick rim. This rim grew thicker with
culture time rather than further extending into the channel region (Figure
2.17 Day-0). After 24 and 48 h, we observed mainly adherent, flattened
cells, which continuously changed their shape. Furthermore, we observed
small spheroids growing on top of the adherent cells as shown in Figure 2.17
Day-1 to Day-3.

Cells grew inside the HepaChip® under perfusion with culture medium
shown the increase in cell number and density. We observed mitosis of both
BxPC3 and PANC1 cells, as a clear index of their functionality. Figure 2.18
shows a representative example thereof obtained with BxPC3 cells.

MiaPaCa2 cells showed very weak adhesion to the collagen-coated sur-
faces. This fact could be related to the di�erential expression, of integrin ad-
hesion receptors on plasma membrane with lower a�nity for collagen (Manoli
S., personal communication). While some of them spread on the surface dur-
ing the first 24 hours, others remained in a spherical shape and aggregated
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Figure 2.16: Microscopic images of PANC1 cells in the microfluidic chip
after increasing culture time starting from the first change from DEP medium
to the culture medium to 6 days (Live/Dead cell staining ). PANC1 cells
spread as well on channel walls and bottom, so the pictures after 6 days were
taken in two focal planes at the bottom and on the ridge. Scale bars: 100µm.
(Taken from B in which I am a first co-author)

.

Figure 2.17: Microscopic images of BxPC3 in the microfluidic chip after
increasing culture time starting from the first change from DEP medium to
the culture medium for 3 days. BxPC3 grow selectively on the ridge. Scale
bars: 100µm. (Taken from B in which I am a first co-author).
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Figure 2.18: Mitosis of BxPC3: Mitosis was observed inside the chip on the
collagen-coated area after 16 h culture. From left to right pictures taken after
0 min – 1 min – 4 min – 16 min using an inverted microscope. Scale bars:
10µm. (Taken from B in which I am a first co-author).

Figure 2.19: Microscopic images of MiaPaCa2 in the microfluidic chip after
assembly using DEP. MiaPaCa2 cells viability decreased after 24H of cultur-
ing. Less viable cells are seen at 69H and 91H. Scale bars: 100µm. (Taken
from B in which I am a first co-author).

at columns and edges inside the chip. During the following three days of
perfused culture, the majority of MiaPaCa2 cells was transported out of the
chip while vitality of the remaining cells decreased as shown in (Figure 2.19).

Cytoskeleton assembly in HepaChip

Actin stained with Phalloidin extended over the entire cytoplasm of both
BxPC3 (Figure 2.20) and PANC1 (Figure 2.21) cells cultivated in the chip.
As expected, actin filaments appeared denser along the cell membrane. PANC1
showed additional short actin filaments that extend from the membrane both
into the cell and outside, a sign of the maintenance of their pro-migratory,
cancerous features, even when cultured on the chip.

Morphological and functional features of PDAC cells cultured in 2D, 3D
and inside the microfluidics HepaChip device is shown in figure 2.22.



2.4 E�ect of Cisplatin on PANC1 47

Figure 2.20: Cytoskeleton assembly of BxPC3 staining with phalloidin and
DAPI (taken from B in which I am a first co-author).

Figure 2.21: Cytoskeleton assembly of PANC1 staining with phalloidin and
DAPI(taken from B in which I am a first co-author).

2.4 E�ect of Cisplatin on PANC1
Finally, we tested chemotherapeutic drugs in the di�erent system. In partic-
ular, we tested the e�ects of Cisplatin, a widely used drug for many cancer
types including PDAC, on PANC1 cells. We chose to test Cisplatin as a
model drug, since Platinum-based drugs are used in both the neo-adjuvant
and the adjuvant settings for PDAC treatment. Cisplatin acts as an antitu-
mor agent by inhibiting the synthesis of DNA and RNA transcription, cell
cycle arrest and induction of apoptotic pathways [56]. It is also shown that
cisplatin induces the apoptosis by deactivation of proapoptotic factors such
as Bad and Caspase-3 in pancreatic cells [56].

2.4.1 E�ect of cisplatin in 2D culture
After 24H of culturing PANC1 cells were treated with di�erent concentra-
tions of cisplatin. Post 24H of cisplatin treatment, cell viability was deter-
mined using trypan blue exclusion method as mentioned above in materials
and methods. The concentration of cisplatin drug to kill 50% of the viable
cells called, as ‘IC

50

’ value was determined for PANC1was 3.25 ± 0.2 µM
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Figure 2.22: Morphological and functional features of PDAC cells cultured in
2D, 3D and inside the microfluidics HepaChip device. *Maximum aggregate
thickness in the HepaChip® culture chamber was in the range of the measured
width of the aggregates on the ramps. It is limited by the 3D geometry of
the chamber between 40 µm on the assembly ridges and 190 µm inside the
channels if assuming that at maximum aggregates can fill the height between
the lid of the chamber and this ramp at the channel bottom. (Taken from B
in which I am a first co-author).
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Figure 2.23: Dose-response curve of Cisplatin on PANC1 cells in 2D culture
conditions after 24H of treatment. The calculated IC

50

was 3.25 ± 0.2 µM.
Data are means ± SD of two separate experiments, each carried out in trip-
licate. (Taken from B in which I am a first co-author).

(n = 2) (Figure 2.23).

2.4.2 E�ect of cisplatin in 3D culture

Cisplatin exerted cytotoxic activity on 3D PANC1 cells, with IC
50

values
of 14.6 ± 1.6 µM (n = 2) after 72H of treatment. This is more than 4 fold
higher than 2D culture and also in 2D culture IC

50

value was determined just
after 24H of cisplatin treatment. The dose-response curve is shown in figure
2.24 (Left panel). In 3D cultures 100 µM Cisplatin caused a decrease in cell
viability (roughly 80%) after 72 h of incubation, and caused the spheroids to
disaggregate after 72 h of treatment (Figure 2.24 right panel).

E�ect of cisplatin in in vivo

We also tested the e�ects of Cisplatin in vivo, in immunocompromised mice
subcutaneously injected with PANC1 cells, at 10 mg/kg [34]. As expected,
this Cisplatin dose fully blocked tumor growth after 10 days as shown in the
figure 2.25.
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Figure 2.24: Dose-response curve of Cisplatin on PANC1 cells in 3D cul-
ture conditions after 72H of drug treatment. The calculated IC

50

was
14.6 ± 1.6 µM. Data are means ± SD of two separate experiments, each car-
ried out in triplicate. Panels on the right show the live/dead cell staining
of the spheroids in control (panel on the top), 25 µM (panel in the middle),
and 100 µM (panel at the bottom). (Taken from B in which I am a first
co-author).

Figure 2.25: E�ect of cisplatin on PANC1 cells subcutaneously injected into
mice (in vivo). The trend line shows the volume of the masses during the
duration of experiment, histogram on the right shows the tumour masses of
explant from the animals. (Taken from B in which I am a first co-author).
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Figure 2.26: Cisplatin e�ect in the microfluidic chip: (A) PANC1 cells in-
side the HepaChip® under continuous perfusion of 3 µL/min of cisplatin.
Live/Dead cell staining after 72 h incubation with 0 µM, 25 µM, and 100 µM
cisplatin; inset: black-framed area of the chip cell culture before incubation
with 100 µM Cisplatin. Scale bars 100 µm. (B) Di�erent cisplatin concentra-
tion was tested on PANC1 cells cultured inside the HepaChip. (Taken from
B in which I am a first co-author).

E�ect of cisplatin in microfluidic chip

Cisplatin e�ect on PANC1 cells cultured in the microfluidic chamber was
analyzed (Figure 2.26). After 72 h of perfusion with 25 µM Cisplatin in the
culture medium, a certain reduction of viability from 95 to 83% was seen in
both chips and a slight decrease in cell density was observed. The highest
concentration of 100 µM Cisplatin perfused through the cell culture chip
started to reduce viability from 92 to 85% after 24 h incubation, reaching
68% after 3 days. At this time an overall reduction of the cell density in the
chip was observed as shown in the black framed area of Figure 2.26 A on
the right compared to the inset below that shows the same area of this chip
before incubation with Cisplatin. Viabilities in the control chips without
Cisplatin remained between 90 and 78% over a culture time of 5 days in
total. Overall a trend in concentration dependence of Cisplatin e�ects is
evident in the graph in Figure 2.26 B.

Overall our study suggests that PANC1 cells, when cultured on colla-
gen matrix coated in microfluidic chip under continuous perfusion systems,
showed higher resistance to Cisplatin even at higher doses compared to classi-
cal in vitro cultures. Our data showing no adsorption of the drug to polymer
surfaces, lead to excluding drug adsorption as the cause of this chemoresis-
tance. We tested the recovery of a number of compounds covering a wide
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Figure 2.27: Recovery of di�erent compounds from uncoated and coated poly-
mer. (Taken from B in which I am a first co-author).

range with respect to hydrophobicity. Uncoated chips showed a consider-
able degree of adsorption, so that that the most hydrophobic compounds
tested (Bupropion, Amodiaquine) were recovered at below 50% even after
3 hours of perfusion. On the contrary, coated chips identical to those used in
this study, exhibited almost complete recovery after only 1 hour of perfusion
(Figure 2.27). So cisplatin adsorption to polymer surface can be ruled out.
The proper culture in the chip needs cell adhesion to collagen, that can re-
establish the cell-cell and cell-ECM interactions that, at least in part, mimic
the physiological microenvironment.

2.5 Discussion
In this chapter we explain about three di�erent cell culture systems for study-
ing biomolecular characteristics of PDAC cells. We chose to study PDAC
cells since PDAC is one of the human cancers with poor prognosis, with a
5-year survival rate less than 5%. Due to its aggressiveness, high rate of
metastasis and inability to detect at an early stage, strongly limit the treat-
ment options for patients. Overall new strategies are needed for e�ective
interventions. Many cancer models have been developed in this regard [54]
from in vitro 2D and 3D cell cultures to whole animal models to study the
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PDAC.
Cells grown in the static dish are monolayers of 2D culture and cells

assuming spread morphology display epithelial like characteristics. All the
PDAC cell lines grown in 2D culture proliferated to the same extent with
similar growth rate. However, in terms of phenotypic appearance, BxPC3
showed to form uniform tight colonies and grow as cobblestone, while Mi-
aPaCa2 cells consist of a pool of round and elongated (mesenchymal-like)
structures and Panc1 cells intermediate morphology between mesenchymal
and epithelial. This is coherent with the results of Rui Gradiz et al. showing
the polymorphism of MiaPaCa2 and pleomorphic expression of PANC1 cells.

In three-dimensional (3D) culture, cells, when seeded on concave shaped
agarose, aggregate to form 3D spheroids and leads to cell-cell attachment
and interaction partially mimicking the in vivo environment. We used U
tube technique to culture PDAC cells that do not include extracellular ma-
trix components (ECM). In contrast to the similar growth rate in 2D, we
observed significant di�erences in the growth rate when these three cell lines
were grown in 3D systems. Interestingly, the aggregation and formation of
3D spheroids also varied drastically between the three cell lines. BxPC3 cells
formed small smoothly arranged tight spheroids (non invasive phenotype),
whereas MiaPaCa2 and PANC1 cells were loosely arranged and formed sig-
nificantly larger spheroids that have ru�ed periphery with some cells leaving
the spheroids, perhaps an indication of invasive property. Actin filaments
in cells grown in 3D culture were considerably smaller and localized around
the periphery of the cell. A similar arrangement of f-actin was observed by
Ying et al. in mesenchymal studies of actin filaments in 3D culture; they
also observed small and loose aggregates that is associated with a decline in
the level of F-actin stress fibre and cell size [115].

In addition to 3D spheroid culture, scientists have developed more so-
phisticated cell culture systems that enable to regulate and manipulate the
cells as required. Cells grown in the microfluidic chip has gained consider-
able attention for its versatility in allowing manipulation of cells, enabling
to build complex cell culture systems that are physiologically more relevant.
For ex-incorporation of the multicellular system, chemical stimuli gradient
for chemotaxis study, the extracellular matrix for drug testing etc. We cul-
tured the PDAC cells onto a novel microfluidic chamber, the HepaChip®.
In HepaChip cells maintained the cell vitality, morphological appearance
and growth characteristics that are more similar to 3D cultures. Cells cul-
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tured on the microfluidic chip also showed a functional marker of proper
pro-migratory, neoplastic phenotype actin organization. There are many
microfluidic structures to culture the PDAC cells, in which the cells are
entrapped inside the hydrogel sca�old containing ECM proteins [54] [70].
These microfluidic chips are allowing microscopic images [70] [54] but do
not mimic the flow of nutrients as in vivo [45] [93]. In this chapter, we
have shown novel microfluidic chip (HepaChip) with continuous perfusion
of cell culture without entrapping the cells inside. Cells retain the vitality
by forming aggregates. These cell aggregates formed especially in reduced
flow between the pillars. These aggregates are still in direct contact with the
medium flow at a perfusion rate of 3.125 µl/min. Oxygen was supplied at a
rate of 1.2 nmol/min to the chipin vivo [61].

Later we tested the cisplatin in all the three systems, as cisplatin is con-
sidered as a prospective drug for the combined chemotherapy of early and
advanced or metastatic PDAC. Pancreatic cancer cells are expected to sensi-
tive to cisplatin [76] [17]. A major hindrance to testing the chemotherapeutic
drug in vivo is lack of response applying drug concentrations derived from in
vitro data, obtained in standard 2D cultures [20] [44] [55]. Our results have
supported this data showing IC

50

s of cisplatin in PANC1 cells cultured in
2D culture is around 3 µM and slightly higher, 15 µM, in 3D spheroids. On
the contrary, the dose used to obtain complete growth inhibition (10 mg/kg)
in vivo is much higher, corresponding to an estimated plasma concentration
of 240 µM [102]. In the microfluidic chip, around 70% of PANC1 cells were
viable even after 72 hours of incubation of high doses (100 µM) of cisplatin.
This is much higher than 2D and 3D cultures IC

50

s. Even though these
are singular experiments and dose response assay was not performed, our
results supported the earlier reports stating the necessity of higher doses of
a chemotherapeutic drug to decrease the cell viability [70] [23]. Although we
can’t compare the results with in vivo, our data suggest that the e�ects of
cisplatin perfused in the chip are similar to in vivo. This result is consistent
with the data reported in [100] showing IC

50

s of five model drugs tested in
microfluidic chip correlate with the IC

50

s determined in vivo.

Overall PDAC cells cultured in microfluidic chip under continuous per-
fusion withstand higher concentration of cisplatin compared to classical in
vitro culture. The proper culture in the micro chip requires cell adhesion to
collagen, that re-establish the cell-to-cell and cell-to-ECM interactions that
mimic in vivo [83]. Hence we can argue that cells cultured in the chip be-
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have di�erently than 2D and could form a thin layer of ECM around the
cells, which acts as a shield from perfused compounds. It is known that the
ECM acts as chemoresistance [85], through triggering di�erent molecular
mechanisms [109]. Therefore 3D cell culture in presence of ECM represents
physiologically more relevant system for stringent drug screening platform
and acts as a potential bridge between conventional 2D and expensive and
time-consuming in vivo animal models towards improved treatment.



56
Characterisation of Pancreatic ductal adenocarcinoma (PDAC)

cells in di�erent culture systems



Chapter 3

Developing Mathematical model
for growth curves of pancreatic
ductal adenocarcinoma (PDAC)
cells

3.1 Introduction

In this chapter, we explain about the mathematical models, which we de-
signed for two dimensional (2D) pancreatic ductal adenocarcinoma cells
(PDAC) growth. As we mentioned in chapter 1, mathematical models are
used extensively in biology because of their many advantages. Mathematical
models for cell growth and tumor growth are date back to 1972 [71]. There
are numerous mathematical models for tumour cell growth to describe how
the size and structure of three-dimensional multicellular spheroids change
when cultured in di�erent culture conditions [12]. Most of these models are
based on tumor size but we are interested in terms of numerosity of cell
growth. So we chose to build a mathematical model for PDAC cell lines
growth. Hereafter, we consider the 2D culture set up as starting scenario for
our analysis.

We used three di�erent cell lines of PDAC such as PANC1, MiaPaCa2,
and BxPC3 for modeling the growth. All these three lines show di�erent
characteristics as mentioned in detail in chapter 1. Understanding these cell

57
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lines growth in terms of their initial changes, rates of change, periods of
acceleration and deceleration levels in a system is very much essential for
tumorigenesis. We were interested in understanding the growth of these cell
lines so we started with the simple discrete nonlinear autoregressive logistic-
like model. Logistic models are extensively used in modeling of growth, as
they are able to capture the continuous growth. Autoregressive models are
able to predict the present based on the past, so using this concept in our
studies we tested di�erent models and selected the best model to predict the
growth of all the three cell lines.

3.2 Data Processing

3.2.1 Data Acquisition

As we were interested in modeling the cell growth of PDAC cell lines, we
monitored the growth for 10 days maintaining in the same conditions for all
3 cell lines except the change in medium composition for BxPC3 cells. We
started with a cell count of 25000 cell per ml at day 0 (inoculation) in a well
of 96 well plate containing 200µl of media for all the 3 cell lines. We cultured
PANC1 and MiaPaCa2 cells in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% defined fetal bovine serum and 4mM glutamine.
BxPC3 cells were cultured using RPM1-1640 medium supplemented with
10% defined fetal bovine serum and 2mM glutamine. Cells were maintained
in a humidified 5% CO

2

at 37¶C for 10 days. Cell growth was estimated
every day, by trypsinizing the cells and manual counting using trypan blue
method.

All the cell lines, grew continuously for 10 days with increase in cell
numbers. To make data more reliable each experiments was done in triplicate
(in the same manner and at the same time). To generate more data, similar
experiments were done 7 times with triplicates for all the 3 cell lines. Since
then, experiments were done at the di�erent time but with same conditions,
we assume that cells were all in the same state of growth while modeling.
But in the actual data there are few discrepancy as they started with 1 or 2
di�erent passages of cells (number of times that a cell population has been
removed from the culture vessel and undergone a subculture). Although this
discrepancy is acceptable from the point of biology, the error introduced in
the modeling procedure may have a detrimental e�ect on the results. These 7
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set of experiments, cell counting (sampling) time for each day was not exactly
the same and also the ending cell count sampling time was not exact. As
already mentioned, the time window to get samples from the experiments is
always ten day, so to have uniform data. However, the experiment showed
slightly di�erent speeds in their evolutions, and so there is a little loss of
synchronization among them. Nonetheless, the ten days time span covers in
almost all the cases the increasing and stationary stage of the cell evolution.
Detailed data of all the 3 cell lines of 7 set of experiments with triplicates is
mentioned in the appendix. Few examples of this data are shown in figure
3.1 and 3.2 of all the 3 cell lines.

3.2.2 Data Resampling

Since cell counts were aperiodic (Figure 3.1), auto-regressive models can’t be
used on raw data, since their standard formulation uses periodic sampling.
So to overcome this problem, we interpolated and extrapolated the data
to generate uniformly distributed fixed time samples. This interpolation
and extrapolation of data were done using MATLAB command INTERP1
with ‘pchip’ algorithm. ‘PCHIP’ is Piecewise Cubic Hermite Interpolating
Polynomial and it returns the interpolated vector containing a new set of
data at an equally distributed time. We resampled the data with di�erent
time steps such as 3H, 6H, 12H, 18H, 24H and 30H for each cell line and for
each experiment.

3.2.3 Data Normalization

Ideally, since each experiment has been performed under the same assump-
tions, they should exhibit the same behaviors. Nevertheless, during a ten
days experiments there are many factors which may change, ranging from
media to metabolites, and so data show a number of discrepancies. However,
since such di�erences depend on factors we are not interested in taking into
account for our modeling, we try to remove their influence by normalizing
data from each experiment in order to fit a similar scenario. To this aim and
by assuming that each experiment covers the increasing phase up, at most,
to the stationary one, each time series is scaled down to have ending point
at value 1. Three-hour resampling and normalized data are shown in figure
3.1 and 6H sampling with another set of data is shown in figure 3.2
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3.2.4 Data Reliability
As stated earlier all the experiments were done in triplicates to verify and
give the importance (weightage) to the data. As we counted the cells in
triplicates at each data point, an average of these data was considered for
modeling the growth of each experiment. The standard deviation calculated
from triplicates was used for estimating the reliability of the data. Higher
standard deviation has higher variability in the data, which is less reliable
and lower standard deviation data is higher reliable. By normalizing the
standard deviation a reliability index has been designed. It ranges from 0.1
(most reliable) to 1.0 (least reliable), and it will be used to weight, by its
inverse, data during the modeling phase. The idea is that the least reliable
sample weights one tenth (i.e. 1) of the most reliable ones (i.e. 10).The
formula used to calculate the reliability index is as follows

reliability of the k-th element = 0.9 sdt≠1(k) ≠ min(sdt≠1(k))
max(sdt≠1(k)) ≠ min(sdt≠1(k))

+ 0.1

3.3 Model Structure
3.3.1 Model Equation
All the cell lines showed an increase in trend of growth for 10 days with
di�erent slopes of the growth curve. In general, all the cell lines had increased
cell count with maximum (stable) cell count at the end at the end of the
experiment. This increasing mode of cell growth can be described by a
logistic model, which is the most commonly used model for cell growth. So
we selected the general model, which belongs to the logistic family having
autoregressive characteristics with discrete time. Generalised model equation
is represented in equation 3.1.

Y (k) = G(Y (k ≠ 1))¸ ˚˙ ˝
growth rate

Y (k ≠ 1) (3.1)

According to this equation, the previous cell count is multiplied by growth
rate. Along with this structure, the increasing mode is related to always
having a bigger than one growth rate, while the stationary phase is reached
as the growth rate approaches 1. It is worth noticing that according to
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Figure 3.1: One set of experiment for all the 3 PDAC cell lines showing
original data and data normalized with resampling (3H) data
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Figure 3.2: Another set of experiment for all the 3 PDAC cell lines showing
original data and data normalized with resampling (6H) data
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the general structure 3.1 the growth rate is a�ected by the numerosity of
the cells. This reflects the idea that a cell shows it maximum reproducing
capability when alone, i.e. when all the nutrients are available for itself. As
the number of neighbours’ increase, instead, the growth rate varies. Since,
as before mentioned, almost all of our experiments feature an increasing and
a stationary phase, the growth rate is expected to tend to 1 as the maximum
numerosity is approached.

Constraints

According to our general model equation, the growth rate has the control
over the change in cell count so we defined this growth rate with some spec-
ifications, which help us in obtaining a fitting model. The following desired
features have been enforced onto the growth rate, in order to get models
fitting the observations.

• Growth rate should always be positive so that it is able to capture the
increasing , or at most almost stationary, nature of the data

• Growth rate should start strictly positive

• Growth rate should tend to 1 as the maximum value of the cell count
is approached.

This can be written as follows,

G

!
Y (1)

"
> 1

G

!
Y (end)

"
Ø 1

These constraints should be satisfied by the models to depict the data.

3.3.2 Growth Rate
Since growth rate is crucial in our modeling, in order to have more control
in the model design, we rewrite the growth rate as the combination of two
terms. One is ideally related to the maximum growth potential of the cell
line, while the second stands for all the factors which may negatively a�ect
the increase in cell number. This growth rate G(Y (k)) can be rewritten as

G(Y (k)) = G

a

(Y (k))¸ ˚˙ ˝
Increasing factor

≠ G

b

(Y (k))¸ ˚˙ ˝
Decreasing factor

(3.2)



64
Developing Mathematical model for growth curves of pancreatic

ductal adenocarcinoma (PDAC) cells

Table 3.1: Di�erent forms growth rate with varying decreasing factor
Model Growth rate

Logistic Model G(Y (k ≠ 1)) = a

1

≠ b

1

Y (k ≠ 1)
Cubic Model G(Y (k ≠ 1)) = a

1

≠ b

1

Y

2(k ≠ 1)
Squareroot Model G(Y (k ≠ 1)) = a

1

≠ b1Ô
Y (k≠1

Parabola Model G(Y (k ≠ 1)) = a

1

≠ b

1

Y (k ≠ 1)2 ≠ b

2

Y k ≠ 1)
Tetra Model G(Y (k ≠ 1)) = a

1

≠ b

1

Y

3(k ≠ 1) ≠ b

2

Y

2(k ≠ 1) ≠ b

3

Y (k ≠ 1)
Gompertz Model G(Y (k ≠ 1)) = a

1

≠ b

1

log(Y (k≠1))

Y (k≠1)

Bertalan�y Model G(Y (k ≠ 1)) = a

1

Y

≠1/3(k ≠ 1) ≠ b

1

According to above equation growth rate has two factors, one is increasing
factor and another one is decreasing factor. The above mentioned desired
features boil down to,

G

a

(Y (k)) ≠ G

b

(Y (k)) > 1

in the range (0, Y

M

). Function G

a

(Y (k)) increasing factor define the “stan-
dard” rate of growth of Y (k) i.e. Y (k) is supposed to grow that way in-
definitely if permitted by the environment. Function G

b

(Y (k)) decreasing
factor, instead is a corrective term meant to bring the complete rate to 1
that is to the fixed point Y(end) as,

Y (f) = (G
a

(Y (end)) ≠ G

b

(Y (end))Y (end)
1 = G

a

(Y (end)) ≠ G

b

(Y (end))

When Y reach a certain value, ‘Decreasing factor’ avoids divergence and
put an end to the growth. We varied this decreasing factor in many ways
to capture the best cell growth behavior. We studied 7 di�erent forms of
growth rate, to capture our data. These were designed based on literature
and from our preliminary studies and same is reported in table 3.1,

E�ects of the constraints on the growth rate are hereafter explained in
details for logistic and cubic models. Logistic model has a linear decreasing
growth rate

G

!
Y (k ≠ 1)

"
= a ≠ bY (k ≠ 1)

Then the model constraints can be designed as follows, first we see the
increasing condition is
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a

1

≠ b

1

Y (k ≠ 1) > 1

that is

(a
1

≠ 1) ≠ b

1

Y (k ≠ 1) > 0

Since Y ’(0, Y

M

), one has a

1

≠1 > 0, i.e. a

1

> 1. The worst case is for b

1

> 0
when the above condition is satisfied over the whole interval

(a
1

≠ 1) ≠ b

1

Y

M

> 0

A better way to put this constraint is

≠a

1

+ Y

M

b

1

< ≠1

≠b

1

< 0

Cubic model has quadratic decreasing growth rate

G

!
Y (k ≠ 1)

"
= a

1

≠ b

1

Y

2(k ≠ 1)

Growth constraints can be designed as follows,

a

1

≠ b

1

Y

2(k ≠ 1) > 1

that is

(a
1

≠ 1) ≠ b

1

Y

2(k ≠ 1) > 0

Since Y ’(0, Y

M

), one has a

1

≠ 1 > 0, i.e. a

1

> 1. The worst case is for
b

1

> 0 when the above condition is satisfied over the whole interval. The
growth rate has its maximum value at Y=0, i.e. when the cells are at the
beginning of their increasing phase. when the above condition is satisfied
over the whole interval

(a
1

≠ 1) ≠ b

1

Y

2

M

> 0

A better way to put this constraints are

≠a

1

+ Y

2

M

b

1

< ≠1

≠b

1

< 0

and so on.
We can also add other constraints to G

a

(Y ) and G

b

(Y ) to grant the
whole growth rate is bigger than 1 on a di�erent range of interest.
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3.3.3 Delayed Models
Autoregressive models use the previous data to predict the present but this
previous could be in any rage. Cell growth depends on many factors like
metabolism, doubling time etc and these vary with time. As we were study-
ing cell growth at di�erent sampling time, we wanted to check how these
factors a�ect the cell growth so we considered a delay in our identification.
In our model equation we just used one step previous data to predict, we
didn’t know how much single step was able to capture the data so we in-
cluded 2 steps. So that we could able to cover the bigger range of data to
predict.

The simplest way to extend the previous model structure to a single-step
delay case is the following

Y (k) = G

1

(Y (k ≠ 1)¸ ˚˙ ˝
Primary growth rate

Y (k ≠ 1) + G

2

(Y (k ≠ 2))¸ ˚˙ ˝
Secondary growth rate

Y (k ≠ 2) (3.3)

Primary growth rate acts on one step previous data while the secondary
growth rate on two-step previous data that is, the secondary growth rate
shows a single-step delay with respect to the primary growth rate. So that
we could predict the present depending on the two previous values.

Constraints

To formulate the constraints for the above-delayed model was more di�cult
as two growth rates should be more than 1. As our cell growth was increasing
with time it should be,

Y (k ≠ 2) < Y (k ≠ 1)

Then we restricted the model to hold the relation, based on the assumption
for a certain 0 < Á < 1

Y (k ≠ 2) > ÁY (k ≠ 1)

This was just an assumption so we must be careful in choosing Á since it
shouldn’t negatively a�ect the final result. Under the previous conditions
one had

Y (k) > (G
1

(Y (k ≠ 1)) + ÁG

2

(Y (k ≠ 2))) Y (k ≠ 1)
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that is

G

1

(Y (k ≠ 1)) + ÁG

2

Y (k ≠ 2) > 1

Again, these two steps can be written individually with increasing and de-
creasing factors and restricting them to satisfy the model

G

1a

(Y ) ≠ G

1b

(Y ) > µ

Á (G
2a

(Y ) ≠ G

2b

(Y )) > 1 ≠ µ

For a certain µ (small, and even negative) at every Y in the interval (0, Y

M

),
we have assured the initial constraint. Hence, we can arbitrarily chose a
number of Y 1, Y 2, . . . œ (0, Y

M

), and impose

G

1a

(Y
1

) ≠ G

1b

(Y
1

) > µ

G

2a

(Y
1

) ≠ G

2a

(Y
1

) >

1 ≠ µ

Á

G

1a

(Y
2

) ≠ G

1b

(Y
2

) > µ

G

2a

(Y
2

) ≠ G

2b

(Y
2

) >

1 ≠ µ

Á

Alternatively, we enforced a less strict constraint by imposing the fixed point
of the model to be set above Y maximum (Y

M

). This can be obtained by
considering the final data point, whose solutions Y are the values at which
the model does not change since Y (k) is the same as Y (k ≠ 1). Then the
equation becomes,

Y = (G
1a

(Y ) ≠ G

1b

(Y ))Y + (G
2a

(Y ) ≠ G

2b

(Y ))Y

According to that, Y=0 was always a fixed point, while the others are given
by

G

1a

(Y ) ≠ G

1b

(Y ) + G

2a

(Y ) ≠ G

2b

(Y ) = 1

Usually the above equation gives a certain number of solution.
Let equilibrium of Y (Y

E

) be the smaller one. Then, we ask the model to
satisfy

0 < Y

M

< Y

E
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Table 3.2: Di�erent forms of model equation with higher order
Model Structure

Logistic Model Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y

2(k ≠ 1)
Delayed Model Y (k) = a

1

Y (k ≠ 1) + a

2

Y (k ≠ 2) ≠ b

2

Y

2(k ≠ 2)
Cubic Model Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y

3(k ≠ 1)
Delayed Cubic Model Y (k) = a

1

Y (k ≠ 1) + a

2

Y (k ≠ 2) ≠ b

2

Y

3(k ≠ 2)
Squareroot Model Y (k) = a

1

Y (k ≠ 1) ≠ b

1


Y (k ≠ 1)

Parabola Model Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y (k ≠ 1)3 ≠ b

2

Y

2(k ≠ 1)
Tetra Model Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y (k ≠ 1)4 ≠ b

2

Y

3(k ≠ 1) ≠ b

3

Y

2(k ≠ 1)
Gompertz Model Y (k) = a

1

Y (k ≠ 1) ≠ b

1

log(Y (k ≠ 1))
Bertalan�y Model Y (k) = a

1

Y

2/3(k ≠ 1) ≠ b

1

Y (k ≠ 1)

So that the time series is expected to start close to 0 and move towards
Y

E

, stopping at such a value. This latter constraint can be enforced onto the
model di�erently depending on the form of the functions, and thus it must
be taken into account separately for each case.

3.3.4 Di�erent forms of Model Equation
We wanted to capture di�erent slope of growth of all the cell lines, as simple
linear models couldn’t able to capture this variability we increased the order
of linearity and making the model much more complex with nonlinearity.
These equations were designed on the basis of preliminary outcomes and
literature. All these equations were di�erent forms of the model equation
and mentioned in table 3.2.

These equations are explained briefly based on the above constraints. As
these equations allow the actual rate of growth i.e. G(Y ) = G

a

(Y ) ≠ G

b

(Y ),
to be positive and meaningful behavior in the interval Y ‘(0, Y

M

). Above
models growth rate with constraints behave as follows,

Logistic Model The general equation of this model looks like

Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y

2(k ≠ 1)

According to this equation, growth rate with the above constraints becomes

≠a

1

+ b

1

Y

1

M

< ≠1
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≠b

1

< 0

As we were solving these equations in MATLAB, it allows only lesser than
constraints of the equation. We formulated all the equations in that way.

Delayed Logistic Model For the above model we added 1 more step
previous and equation becomes,

Y (k) = a

1

Y (k ≠ 1) + a

2

Y (k ≠ 2) ≠ b

2

Y

2(k ≠ 2)

Growth rate of the above equation having the constraints then

≠a

1

≠ a

2

+ b

2

Y

2

M

< ≠1
≠b

2

< 0

Cubic Model We increased the power of logistic equation to 3, so that it
could be able to capture the nonlinearity of the data. Then the equation is,

Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y

3(k ≠ 1)

The growth rate of the above model in order to binding to constraints,

≠a

1

+ b

1

Y

2

M

< ≠1
≠b

1

< 0

Delayed Cubic Model For the above cubic model, we added one step
delay and the model equation becomes,

Y (k) = a

1

Y (k ≠ 1) + a

2

Y (k ≠ 2) ≠ b

2

Y

3(k ≠ 2)

The growth rate bounding to constraints are,

≠a

1

≠ a

2

+ b

2

Y

2

M

< ≠1
≠b

2

< 0

Square root Model We also tested our model equation using square root
form since some our data showed lagged growth and this can be explained
by this model and the equation is,

Y (k) = a

1

Y (k ≠ 1) ≠ b

1


Y (k ≠ 1)

Growth rate behaves with the constraint as follows,
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≠a

1

+ 1Ô
Y

M

b

2

< ≠1

Near to the maximum growth Y

M

, the growth has to slow down and pos-
sibly stop, G(Y

M

) ¥ 0 is quite a desired property. We could think of a G(Y )
that starts and ends small, as a more complicated variant of the standard
logistic map. The very simplest models of this form are the following

Parabola Model In this model we tried to capture the variability in
the data between starting and ending point by enforcing two di�erent con-
straints, the equation is

Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y

3(k ≠ 1) ≠ b

2

Y

2(k ≠ 1)

Growth rate with the two di�erent constraints are

≠a

1

+ Y

2

M

b

1

+ Y

M

b

2

< ≠1
≠a

1

+ (4
5Y

M

)2

b

1

+ (4
5Y

M

)b
2

< ≠1
≠a

1

< ≠1

The constraint at 4
5Y

M

is a soft way to enforce the growth rate would be
greater than one even at the 80% of the maximum value in the range, i.e.
close to when the growth is expected to slow down and stop.

Tetra Model As this model able to capture the variability in very e�ective
as the order is high, we used the following form of equation,

Y (k) = a

1

Y (k ≠ 1) ≠ b

1

Y

4(k ≠ 1) ≠ b

2

Y

3(k ≠ 1) ≠ b

3

Y

2(k ≠ 1)

The growth rate with 2 di�erent constraints to capture the change in cell
growth is,

≠a

1

+ Y

4

M

b

1

+ Y

2

M

b

2

+ Y

M

b

3

< ≠1
≠a

1

+ (4
5Y

M

)4

b

1

+ (4
5Y

M

)2

b

2

+ (4
5Y

M

)b
3

< ≠1
≠a

1

< ≠1

We also used widely applied growth models of Gompertz and Bertalan�y
in our model equations with the constraints to examine their behavior with
our data.
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Gompertz Model equation is

Y (k) = a

1

Y (k ≠ 1) ≠ b

1

log(Y (k ≠ 1))

Growth rate constraints are

≠a

1

+ b

1

1
log y

M

< ≠1
≠b

1

< 0

Bertalan�y Model our model equation,

Y (k) = a

1

Y

2/3(k ≠ 1) ≠ b

1

Y (k ≠ 1)

Growth rate with the constraint is

≠a

1

(Y ≠1/3

M

) + b

1

< ≠1
≠b

1

< 0

All the above growth rate equations with constraints are written in a
way, which can be solved using MATLAB.

3.4 Parametric Identification of Coe�cients
3.4.1 Generalised model equation
The equations of all the above models can be written in one general equation
using di�erent functions of Y (k ≠ 1). These functions vary depending on the
model we used. So the very general equation is,

Y (k) = a

1

Y (k ≠ 1)f
a1

(Y (k ≠ 1)) + a

2

Y (k ≠ 1)f
a2

(Y (k ≠ 1))
≠ b

1

Y (k ≠ 1)f
b1

(Y (k ≠ 1)) ≠ b

2

Y (k ≠ 1)f
b2

(Y (k ≠ 1))

In this a

1

and a

2

are the parameters of increasing factor and b

1

and b

2

are the parameters of decreasing factor. As we are intended to identify these
parameters, we could much simplify the equation by denoting

Fa

1

Y (k) = Y (k)f
a1

(Y (k))

So our simplified generalized model equation is

Y (k) = a

1

F

a1(Y (k ≠ 1)) + a

2

F

a2(Y (k ≠ 1)) ≠ b

1

F

b1(Y (k ≠ 1)) ≠ b

2

F

b2(Y (k ≠ 1))

As we are interested in the identification of parameters, which can be done
using MATLAB, and it works on basis of Matrix. We transformed these
equations into matrix form.
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3.4.2 Matrix Form
The above generalised model equation is written in the form of Matrix as
follows,

S

WWWWWWWU

Y (1)
Y (2)

.

.

.

Y (n)

T

XXXXXXXV

=

S

WWWWWWWU

Fa

1

Y (0) Fa

2

Y (0) ≠Fb

1

Y (0) ≠Fb

2

Y (0)
Fa

1

Y (1) Fa

2

Y (1) ≠Fb

1

Y (1) ≠Fb

2

Y (1)
.

.

.

Fa

1

Y (n ≠ 1) Fa

2

Y (n ≠ 1) Fb

1

Y (n ≠ 1) Fb

2

Y (n ≠ 1)

T

XXXXXXXV

S

WWU

a

1

a

2

b

1

b

2

T

XXV

And these matrices can be represented in single letters in very compact form
as follows,

P = MV

Vector V contains the coe�cients (parameters), which need to be esti-
mated.

3.4.3 Linear approach to estimate the coe�cients V

Standard way of estimation

As we were using MATLAB for identification, the standard way of estimating
vector V in MATLAB has two ways,

V = mldivide(M, P )
and V = lsqlin(M, P, [], [])

Both the methods implement the Least Squares Method to find the optimal
set of parameters, but they di�er in terms of constrained problems. In first
method i.e. ‘mldivide’, we cant restrict the constraint but the constraint is
very important in our identification so we chose ‘lsqlin’ method. The lsqlin
method is able to estimate vector V by minimizing the quantity ||P = MV ||2,

which is a value that measures how much P is close to MV . This minimizes
the average absolute error that one would have if a one-step-ahead prediction
would be done on the basis of the actual value at that instant. Moreover,
the function can perform such an optimization under linear constraints.
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Weighted least square method

Weighted least square methods often used to maximize the e�ciency of para-
metric estimation. Usually in the least square method, during the estimation
of the parameter, all the data are equally treated so that less precisely mea-
sured point also have more influence on the estimation and highly precise
points are too little influence on the estimation. Instead of weighted least
square method gives the weight, which is the information of how precise the
data. This weight contributes the final parameter estimation [95]. We used
this concept in our estimation of parameters, by adding reliability index as
weights.

Reliability index was considered as fl, as that fl > 0 is a parameter such
that the reliability of sample Y is somewhat proportional to 1

fl

. Then, we
can modify the least Square Method in order to take into account the dif-
ferences in the reliability of the samples. Such a method is also referred to
as Weighted Least Square Method. Since the reliability indexes are related
to the actual sampling time, while after resampling the data is related to
a new and uniformly distributed set of instants, we tie to each sample the
reliability index of the real data closest to it. This can be done as follows.

1. For each Y (k), we consider the related time instant t = k

ú
< time

s

tep >

and we find the actual sampling time t

ú closest to it.

2. We find out Y

ú corresponding to the sampling time t

ú

3. Given the corresponding fl

ú, we define the weight w(k) = 1

fl

ú

4. We build a diagonal matrix W where the elements onto the diagonal
are the previous weights w(k).

5. Instead of using the couple M, P we use (WM, WP )

Then our identification of V becomes,

V = lsqlin(M ú W, P ú W, [], [])

3.4.4 Identified Model Equation
Above identified coe�cients were used to generate new time series called ‘Z’.
This new ‘Z’ time series can be called as ’identified model equation’ and
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written as follows

Z(k) = a

1

Fa

1

(Z(k ≠ 1)) + a

2

Fa

2

(Z(k ≠ 2)) ≠ b

1

Fb

1

(Z(k ≠ 1)) ≠ b

2

Fb

2

(Z(k ≠ 2))

Where a

1

, a

2

, b

1

and b

2

are the identified coe�cients of vector V ,

a

1

= V (1).......... First element of vector V
a

2

= V (2).......... Second element of vector V
b

1

= V (3).......... Third element of vector V
b

2

= V (4).......... Fourth element of vector V

Using this identified model equation, we can compute model errors. These
model errors are the di�erence between actual data and model simulations
to test the identified coe�cients are good enough. Lesser the error better
the identified model.

3.4.5 Error Index
We used the error between actual data and simulation to select the better
model for the data. As error plays an important role in the identification, we
considered 3 di�erent types of error such as absolute error, percentage error
and weighted (reliable) error for the identified model using the following
formulas,
Absolute error

ABE = Y (k) ≠ Z(k)

This error is then scaled down in the range of 1 to 10, 1 having the least
error and 10 with maximum error and called as ABE index.
Percentage error

PRE = Y (k) ≠ Z(k)
Y (k)

Again this error is normalized in the range of 1 to 10, with minimum having
1 and maximum with 10 and named this scaled down as PRE index.
Weighted error

RE = RlyY (k)((Y (k) ≠ Z(k))
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This error is then scaled down in the range of 1 to 10, 1 having the least
error and 10 with maximum error and called as RE index

Since the single Absolute error index, Percentage error index and Weighted
error index turned out unable to express the actual goodness of model, an
error index has been designed properly by combining all. As all these errors
are merely a numbers in the range of 1 to 10 we summed up all these 3
errors to obtain a single error index. This error index was used in our model
identification, each model was given the ranking based on this overall error
index.

ErrorIndex = ABEIndex + PREIndex + REIndex

3.5 Steps followed for identification of Best
Model

We used the above-mentioned concepts in the identification of the best model
for cell growth of each cell line. We followed the steps below to identify the
best model for each cell line

1. A number of cases were obtained from a combination of 6 di�erent
samplings (3H, 6H, 12h, 18H, 24H and 30H) and 7 set of experiments,
so we had in total 42 cases for each cell line containing cell growth
data.

2. We estimated the best model of each structure (9 types table 3.4) in
each case

3. By comparing the actual data and simulation for these cases, we cre-
ated error index for each case

4. Within a case (tested with 9 structures), a model ranking was given
with respect to each other (least error index is the 1st Best and 2nd
least error index is the 2nd Best)

5. 1st best and 2nd best, each gets a score of one in each case and at
the end all these scores were counted for all the cases and the model is
selected based on the highest score.
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Table 3.3: Ranking of di�erent model structures (equations) for PANC1. 1st
best is number of times least error has appeared and 2nd best is the number
of times 2nd least error has appeared in 42 cases

MODELS 1st Best 2nd Best Total
LOGISTIC 2 3 5

DELAYED LOGISTIC 2 3 5
GOMPERTZ 1 4 5

CUBIC 9 13 22
DELAYED CUBIC 6 9 15

PARABOLA 3 5 8
SQUARE ROOT 0 0 0

TETRA 19 5 24
BERTANLAFFY 0 0 0

3.6 Identification of best mathematical mod-
els for 2D PANC1 growth data

PANC1 normalized and resampled growth data of 7 di�erent experiments
with triplicates were used to identify the best model to explain about the
growth behavior of this cell lines in two-dimensional culture. We followed
the above steps and obtained the results as follows,

3.6.1 Identification of best 3 models for PANC1 growth
As we had 9 models, we wanted to identify the best 3 models and study
them in detail so in that regard we followed the following steps

Selection of best models

To select the best model, we followed the section 3.5 steps, tested all the 42
cases with 9 di�erent model equations (table 3.2) and given the ranking. A
table is created containing the number of times the least error index appeared
for that particular model equation and this table called as ‘Ranking table’.
This has 2 columns, 1st best contains the number of times least error has
appeared and 2nd best is the number of times 2nd least error has appeared
in 42 cases. The ranking table for PANC1 is represented in table 3.3
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Figure 3.3: The best 3 models of PANC1 to predict the cell growth showing
di�erent error index at di�erent sampling time

From the ranking table 3.3, we selected the best 3 models to identify the
growth. For PANC1, Tetra, Cubic and Delayed Cubic models work better
for modeling the PANC1 growth. So we selected these 3 models for further
studies.

Selection of best fixed time

After selecting the best model, we selected the best sampling time for the
above-selected models again based on the least error index. We checked the
error index at 3H, 6H, 12H, 18H, 24H, and 30H for these 3 models (tetra,
cubic and delayed cubic) and Figure 3.3 shows error index at the di�erent
sampling time. From the figure 3.3 its can be seen that for tetra and cubic
model, every 3H sampling time is best and for delayed cubic 18H is the best
fixed time interval for modeling.

Identification of coe�cients for best 3 models

For these three identified models, Tetra, Cubic and delayed cubic models
with respective best sampling time, we redid the identification. While re-
identifying, the coe�cients were estimated in two ways,
1) Average of the 7 models identified for each set of experiment and called
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Table 3.4: Identified Tetra(3H) Model for PANC1 Growth showing both
Average and Cumulative identified coe�cients

Tetra
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.0000 1.0789 1.0000 1.0000 1.0000 1.0000 1.1013 1.0257 1.0045
b1 -0.2738 -0.1431 -1.1347 -0.2486 -0.1961 -0.1961 -0.1221 -0.3306 -0.3698
b2 0.6340 0.2719 1.9497 0.6468 0.5290 0.5290 0.2229 0.6833 0.8250
b3 -0.3625 -0.0518 -0.8382 -0.4154 -0.3436 -0.3436 -0.0089 -0.3377 -0.4464

Table 3.5: Identified Cubic (3H) Model for PANC1 Growth showing both
Average and Cumulative identified coe�cients

Cubic
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.0493 1.0275 1.0588 1.0177 1.0475 1.0389 1.0853 1.0464 1.0219
b1 0.0298 0.0107 0.0588 0.0085 0.0400 0.0365 0.0628 0.0353 0.0085

this coe�cients as ‘Average’. Individually identified model for each set and
then averaging
2) Single identification was done using all the 7 sets at once by defining all
the 7 set of experiments in single P and M matrix as follows

P =

S

WWWWWWWWWU

P

1

P

2

P

3

P

4

P

5

P

6

P

7

T

XXXXXXXXXV

M=

S

WWWWWWWWWU

M

1

M

2

M

3

M

4

M

5

M

6

M

7

T

XXXXXXXXXV

Which can e be rewritten in compact form as earlier

P = MV

This identified coe�cients called as ‘Cumulative’.
Table 3.4 shows identified coe�cients for tetra model, table 3.5 for the cubic
model and table 3.6 for the delayed cubic model. All these tables have both
identified coe�cietn in terms of ‘Average’ and ‘Cumulative’ identification

Behavior of Growth rate

After identifying the coe�cients, we have studied the behavior of growth
rate for Cubic and Tetra model with 3H fixed time for both ‘Average’ and
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Table 3.6: Identified Delayed cubic (18H) Model for PANC1 Growth showing
both Average and Cumulative identified coe�cients

Delayed Cubic
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.5945 1.9585 2.0963 1.2285 1.4393 0.5950 1.3205 1.4618 -0.9874
a2 -0.4466 -0.8474 -0.9514 0.2131 -0.1732 1.1743 0.1964 -0.1193 1.9874
b2 0.0894 0.0433 0.1449 0.2115 0.2245 0.7468 0.3806 0.2630 -1.38E-17

‘Cumulative’ cases. The delayed cubic growth rate is not considered here
because it can not be directly compared with those of the other two models.
By this growth rate, we can understand the growth behavior of the cell.
Same is represented in figure 3.4 and time series stops after growth rate
reaching 1. It is worth stressing that as the cell number reaches 1 the growth
stops. Figure 3.4 shows that Tetra model has a peak of the growth rate at
1.057. This means that the ability of the cell to reproduce is not maximum
when it is isolated. However, since the model does not explicitly take into
account the time necessary to the cell to settle in the new environment, such
a behavior could be the result of this hidden factor. Cubic growth rates
(both averaged and cumulative) show a more intuitive behavior, since they
are at a maximum when the cell is isolated and decrease quadratically as the
cell count grows. Following are the growth rate equations,

Tetra Model
Average: G(Y (k ≠ 1)) = 1.0257 + 0.3306Y (k ≠ 1)3 ≠ 0.683Y (k ≠ 1)2 +
0.3377Y (k ≠ 1)
Cumulative: G(Y (k ≠ 1)) = 1.0045 + 0.3698Y (k ≠ 1)3 ≠ 0.825Y (k ≠ 1)2 +
0.446Y (k ≠ 1)

Cubic Model
Average: G(Y (k ≠ 1)) = 1.0464 ≠ 0.0353Y (k ≠ 1)2

Cumulative: G(Y (k ≠ 1)) = 1.0219 ≠ 0.0085Y (k ≠ 1)2

Equations of best 3 identified models of PANC1

All the 3 identified models tetra, cubic and delayed cubic models equations
with the identified coe�cients are represented below,
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Figure 3.4: Cubic (3H) and Tetra model (3H) showing growht rate behavior
for PANC1 cells culture in 2D with 2 di�erent nature

Identified Tetra Model: Tetra model (3H) identified structure with co-
e�cient (equation) is shown below
Average
Y (k) = +0.3306Y (k≠1)4 ≠0.683Y (k≠1)3 +0.3377Y (k≠1)2 +1.025Y (k≠1)
Cumulative
Y (k) = +0.3698Y (k≠1)4 ≠0.825Y (k≠1)3 +0.446Y (k≠1)2 +1.0045Y (k≠1)

Identified Cubic Model: Cubic model identified equation with the iden-
tified coe�cients are shown below
Average
Y (k) = ≠0.0353Y (k ≠ 1)3 + 1.0464Y (k ≠ 1)
Cumulative
Y (k) = ≠0.0085Y (k ≠ 1)3 + 1.0219Y (k ≠ 1)

Identified Delayed Cubic Model: Delayed Cubic model identified equa-
tion with the identified coe�cients are shown below
Average
Y (k) = ≠0.263Y (k ≠ 2)3 + 1.4618Y (k ≠ 1) ≠ 0.1192Y (k ≠ 2)
Cumulative
Y (k) = +1.38exp ≠ 17Y (k ≠ 2)3 ≠ 0.9874Y (k ≠ 1) + 1.9874Y (k ≠ 2)
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Table 3.7: Error Index estimated from best 3 models for each set of experi-
ment of PANC1 growth

Best Models 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET Sum of 7 sets
error index

Tetra model (3H) 6.5840 13.0448 5.0955 16.9905 5.2378 19.3165 24.2904 90.5595
Delay cubic (18H) 4.8365 10.6270 5.4345 15.6578 14.4887 14.2767 26.4754 91.7966

Cubic (3H) 7.5446 16.1305 7.5742 22.0762 11.6657 8.9332 13.3211 87.2454

Errors of identified models of PANC1

We have re-estimated all the three errors for the identified model with respect
to each data point and also absolute error for each set. Figure 3.6 shows the
error of identified cubic model with respect to each experimental data point
and absolute errors for both cumulative and average identification, figure 3.7
shows the error of identified delayed cubic model and figure 3.5 shows the
error of identified tetra model with respect to experimental data.

3.6.2 Selection of best-identified model out of 3 identi-
fied models for PANC1

As we narrowed down our identification to 3, we wanted to select the best
one model out of them. During our identification we observed cumulative
and average coe�cients were behaving the same way. Nevertheless, since
the averaging procedure can not guarantee that the constraints are always
satisfied, cumulative models turn out more reliable, and we suggest their
use over the average versions. As we wanted to select one best model, again
we estimated the error index using these identified cumulative models, Cubic
(3H), Delayed cubic (18H) and tetra model (3H) and compared among them.
Table 3.7 shows the error index for each of set of experiment estimated using
cumulative identified models. According to the table 21, cubic 3H is the best
model to predict the cell growth of PANC1 cells cultured in 2D culture.
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Figure 3.5: Tetra (3H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of PANC1
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Figure 3.6: Cubic (3H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of PANC1
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Figure 3.7: Delayed cubic (18H) identified model of both Cumulative and
Average identification showing absolute error with respect to experimental
data of all 7 sets of PANC1
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Table 3.8: Ranking table of di�erent models for BxPC3 growth. 1st best
is number of times least error has appeared and 2nd best is the number of
times 2nd least error has appeared out of 42 cases containing BxPC3 2D
growth

MODELS 1st Best 2nd Best Total
LOGISTIC 8 12 20

DELAYED LOGISTIC 2 2 4
GOMPERTZ 2 2 4

CUBIC 15 7 22
DELAYED CUBIC 2 2 4

PARABOLA 6 7 13
SQUARE ROOT 0 0 0

TETRA 6 9 15
BERTANLAFFY 1 1 2

3.7 Identification of best mathematical mod-
els for 2D BxPC3 growth data

For BxPC3 also we used normalized and resampled growth data from 7
di�erent experiments with triplicates to identify the best model to explain
about the growth behavior of this cell lines in two-dimensional culture.

3.7.1 Identification of best 3 models for BxPC3 growth
To begin with, we identified best 3 models out of 9 model equations as follows

Selection of best models

We followed the same protocol mentioned in section 3.5 for all the 42 cases
containing the data of BxPC3 cell growth. Then we selected the best three
models as above based on the ranking table for each model equation. Fol-
lowing table 3.8 is the ranking table for di�erent models of BxPC3 growth
showing a number of times the least error index has appeared.

From the ranking table 3.8, we know that Logistic, Cubic and Tetra
models work better for BxPC3 growth identification. So we selected these 3
models for further studies.
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Figure 3.8: The best 3 models of BxPC3 to predict the cell growth showing
di�erent error index at the di�erent sampling time.

Selection of best fixed time

We selected the best fixed time for the above-selected models of logistic, cubic
and tetra models. We tested error index at a di�erent fixed time interval
such as 3, 6,12,18, 24 and 30H. Figure 3.8 shows the error index of these 3
selected models at a di�erent time interval. From the figure 3.8, it can be
seen that all the 3 models were good at 6H fixed time as they have least
error index.

Identification of coe�cients

For these three identified models we redid the identification with the best
sampling time of 6H as mentioned earlier in section 3.6.1 and found out the
average and cumulative coe�cients for 7 sets of the experiment. Table 3.9
shows identified coe�cients for logistic model, table 3.10 for the cubic model
and table 3.11 for tetra model. All the tables contain identified coe�cients
for both average and cumulative at fixed sampling time 6H.

Behavior of Growth rate

Then we tried to understand the growth of BxPC3 using these identified
models, logistic, cubic and tetra with a fixed time of 6H. We have studied
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Table 3.9: Identified Logistic (6H) Model for BxPC3 Growth showing both
Average and Cumulative identified coe�cients

Logistic
coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.1840 1.1788 1.1364 1.2086 1.1987 1.2427 1.2511 1.2001 1.1528
b1 0.1608 0.1733 0.1364 0.1642 0.1987 0.2338 0.2511 0.1883 0.1386

Table 3.10: Identified Cubic (6H) Model for BxPC3 Growth showing both
Average and Cumulative identified coe�cients

Cubic
coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.1470 1.1193 1.0964 1.1782 1.1451 1.1677 1.1689 1.1461 1.1019
b1 0.1353 0.1121 0.0964 0.1467 0.1451 0.1556 0.1689 0.1372 0.0839

the growth rate for the identified model for both ‘Average’ and ‘Cumulative’
cases and its shown in figure 3.9 and as the cell number reaches 1 the
growth stops. All the models are at a maximum when the cell is isolated
at the beginning even in Average and Cumulative cases. The logistic model
shows that cell count decreases linearly as the cell count grows indicating
cells are very sensitive to the surrounding system. Cubic shows a quadratic
decrease in cell count. Tetra also shows a gradual decrease in cell count as
the cell grows. Following are the growth rates for the identified models,

Logistic Model
Average: G(Y (k ≠ 1)) = 1.1495 ≠ 0.1356Y (k ≠ 1)
Cumulative: G(Y (k ≠ 1)) = 1.1527 ≠ 0.1386Y (k ≠ 1)

Cubic Model
Average: G(Y (k ≠ 1)) = 1.146 ≠ 0.1372Y (k ≠ 1)2

Cumulative: G(Y (k ≠ 1)) = 1.1018 ≠ 0.0838Y (k ≠ 1)2

Table 3.11: Identified Tetra(6H) Model for BxPC3 Growth showing both
Average and Cumulative identified coe�cients

Tetra
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.1860 1.2333 1.0932 1.2365 1.1943 1.1295 1.1176 1.1701 1.2045
b1 0.1946 -0.5153 -0.8060 0.5910 -0.0565 -0.5967 -1.6690 -0.4083 -0.3071
b2 -0.2576 0.6830 1.2633 -0.9596 0.0936 1.2224 2.9249 0.7100 0.4131
b3 0.2389 0.0700 -0.3783 0.5544 0.1572 -0.5038 -1.1608 -0.1461 0.1033
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Figure 3.9: Logistic, Cubic and Tetra model showing growth rate behavior for
BxPC3 cells culture in 2D at 6H sampling time

Tetra Model
Average: G(Y (k≠1)) = 1.17+0.4082Y (k≠1)3≠0.71Y (k≠1)2+0.1461Y (k≠1)
Cumulative: G(Y (k ≠ 1)) = 1.2045 + 0.307Y (k ≠ 1)3 ≠ 0.413Y (k ≠ 1)2 ≠
0.1033Y (k ≠ 1))

Equations of best 3 identified models of BxPC3

All the best 3 identified models logistic, cubic and tetra model equations
at 6H sampling time are presented with their identified coe�cients of both
‘Average’ and ‘Cumulative’ are as follows,

Identified Logistic Model equation with the both ‘Average’ and ‘Cumu-
lative’ identified coe�cients are as follows
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Average
Y (k) = 1.2Y (k ≠ 1) ≠ 0.1883Y (k ≠ 1)2

Cumulative
Y (k) = 1.1527Y (k ≠ 1) ≠ 0.1386Y (k ≠ 1)2

Identified Cubic Model equation is shown below with its both ‘Average’
and ‘Cumulative’ identified coe�cients
Average
Y (k) = ≠0.1371Y (k ≠ 1)3 + 1.1461Y (k ≠ 1)
Cumulative
Y (k) = ≠0.0838Y (k ≠ 1)3 + 1.1018Y (k ≠ 1)

Identified Tetra Model equation is shown below with its coe�cients
Average
Y (k) = 0.4082Y (k ≠ 1)4 ≠ 0.71Y (k ≠ 1)3 ≠ 0.146Y (k ≠ 1)2 + 1.17Y (k ≠ 1)
Cumulative
Y (k) = 0.3070Y (k≠1)4 ≠0.4131Y (k≠1)3 ≠0.1033Y (k≠1)2 +1.2045Y (k≠1)

Error of identified models

We have found all three di�erent identified models errors with respect to each
experimental data for both Average and Cumulative identification. Figure
3.10 shows identified logistic model errors with respect to experimental data,
Figure 3.11 shows identified cubic model error with respect to experimental
data and Figure 3.12 shows identified tetra model errors with respect to
experimental data.

3.7.2 Selection of best-identified model out of 3 identi-
fied models for BxPC3

To select a single best model out of best three identified models, we estimated
the error index again using these identified models Logistic (6H), Cubic (6H)
and Tetra (6H) for all the 7 set of experiments and same is shown in table
3.12. According to the table, logistic model with 6H sampling time is the
best-identified model for predicting the growth of BxPC3. We considered
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Figure 3.10: Logistic (6H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of BxPC3
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Figure 3.11: Cubic (6H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of BxPC3
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Figure 3.12: Tetra (6H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of BxPC3
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Table 3.12: Error Index estimated from best 3 models for each set of exper-
iment of BxPC3 growth

Best Model 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET Sum
Logistic model (6H) 15.7915 13.0285 3.4591 7.3326 9.6761 12.4407 28.1945 89.9230
Cubic model (6H) 18.3349 17.4046 6.6309 12.3413 6.3782 10.2367 23.2030 94.5296
Tetra (6H) 17.1330 12.1826 4.8158 7.0221 17.8724 23.1328 26.7592 108.9180

only cumulative since the averaging procedure can not guarantee that the
constraints are always satisfied, cumulative models turn out more reliable,
and we suggest their use over the average versions.

3.8 Identification of best mathematical mod-
els for 2D MiaPaCa2 growth data

As mentioned earlier for PANC1 and BxPC3, we also used normalized and
resampled MiaPaCa2 growth data of 7 di�erent experiments with triplicates
to identify the best model to explain about the growth behavior of this cell
lines in two dimensional culture.

Selection of best models

As earlier, for MiaPaCa2 we have identified the best models as mentioned
in section 3.5. Table 3.13 shows a ranking table of di�erent models for
MiaPaCa2.

From the table 3.13, we selected the best 3 models as Logistic, Cubic and
Tetra models fit better for MiaPaCa2 growth. So we selected these 3 models
for further studies.

Selection of best fixed time

We selected the best fixed time point for logistic, cubic and tetra models
based on the least error index. Figure 3.13 shows the best three models
error index with di�erent sampling time. Form the figure 3.13 it can be seen
that all the 3 models have 3H sampling time the least error index.
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Table 3.13: Ranking table of di�erent models for MiaPaCa2 growth. 1st
best is number of times least error has appeared and 2nd best is the number
of times 2nd least error has appeared out of 42 cases containing MiaPaCa2
2D growth

MODELS 1st Best 2nd Best Total
LOGISTIC 6 12 18

DELAYED LOGISTIC 5 4 9
GOMPERTZ 1 3 4

CUBIC 8 7 15
DELAYED CUBIC 8 2 10

PARABOLA 4 3 7
SQUARE ROOT 0 2 2

TETRA 11 10 21
BERTANLAFFY 0 0 0

Figure 3.13: The best 3 models of MiaPaCa2 to predict the cell growth show-
ing di�erent error index at di�erent sampling time
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Table 3.14: Identified Logistic (3H) Model for MiaPaCa2 Growth showing
both Average and Cumulative identified coe�cients

Logistic
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.0215 1.1416 1.1501 1.1528 1.1188 1.0937 1.1393 1.1168 1.0530
b1 0.0138 0.0979 0.1197 0.1285 0.1078 0.0787 0.1195 0.0951 0.0366

Table 3.15: Identified Cubic (3H) Model for MiaPaCa2 Growth showing both
Average and Cumulative identified coe�cients

Cubic
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.0174 1.1085 1.1123 1.1116 1.0883 1.0584 1.0998 1.0852 1.0327
b1 0.0072 0.0518 0.0714 0.0790 0.0727 0.0412 0.0734 0.0567 0.0156

Identification of coe�cients

We redid the identification for the selected models and identified the coe�-
cients for both Average and Cumulative as mentioned in section 3.6.1 . Table
3.14 shows coe�cients for the identified logistic model, table 3.15 shows coef-
ficients for the identified cubic model and table 3.16 coe�cients of identified
tetra model for both ‘Average’ and ‘Cumulative’ cases at the 3H sampling
time.

Behavior of Growth rate

We studied the growing behavior of MiaPaCa2 using growth rate graph
shown in figure 3.14, It is worth stressing that as the cell number reaches
1 the growth stops. It is clear from the figure 3.14 that all the cumulative
identification growth rates are higher in the initial period then gradually
decreases this indicates that system supports the cell growth higher initially
and then it decreases. Whereas in case of average identification, logistic and

Table 3.16: Identified Tetra (3H) Model for MiaPaCa2 Growth showing both
Average and Cumulative identified coe�cients

Tetra
Coe�cients SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 Average Cumulative

a1 1.0000 1.0000 1.0000 1.0495 1.0808 1.0608 1.0662 1.0368 1.0744
b1 -0.0317 -0.3005 -0.8507 -0.4440 -0.2265 -0.4552 -0.6827 -0.4273 -0.0671
b2 0.1057 0.8224 1.9011 1.0094 0.4781 0.9278 1.3627 0.9439 0.1496
b3 -0.0878 -0.5609 -1.0510 -0.5309 -0.1785 -0.4122 -0.6099 -0.4901 -0.0226
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Figure 3.14: Logistic, Cubic and Tetra model showing growth rate behavior
for MiaPaCa2 cells culture in 2D at 3H sampling time, showing the di�erence
in growth rate between cumulative and average tetra identification

cubic model shows that initially growth is higher and then decreases with
di�erent slopes. In tetra model especially in average identified coe�cients,
the growth rate was slow and then increases and then slows down.

Following are the growth rates for the identified models at 3H fixed sam-
pling time
Logistic Model
Average: G(Y (k≠)) = 1.1168 ≠ 0.0951Y (k ≠ 1)
Cumulative: G(Y (k ≠ 1)) = 1.053 ≠ 0.0366Y (k ≠ 1)

Cubic Model
Average: G(Y (k ≠ 1)) = 1.0852 ≠ 0.0566Y (k ≠ 1)2

Cumulative: G(Y (k ≠ 1)) = 1.0326 ≠ 0.0155Y (k ≠ 1)2
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Tetra Model
Average: G(Y (k ≠ 1)) = 1.0367 + 0.4273Y (k ≠ 1)3 ≠ 0.9438Y (k ≠ 1)2 +
4901Y (k ≠ 1)
Cumulative: G(Y (k ≠ 1)) = 1.0744 + 0.0671Y (k ≠ 1)3 ≠ 0.1496Y (k ≠ 1)2 +
0.0226Y (k ≠ 1)

Equations the identified models of MiaPaCa2

All the 3 identified models structure with the respectively identified coe�-
cients of both ‘Average’ and ‘Cumulative’ are presented below.

Identified Logistic Model equations at 3H sampling time with the iden-
tified coe�cients of average and cumulative identifications are as follows
Average
Y (k) = 1.1168Y (k ≠ 1) ≠ 0.0951Y (k ≠ 1)2

Cumulative
Y (k) = 1.053Y (k ≠ 1) ≠ 0.0366Y (k ≠ 1)2

Identified Cubic Model equations at 3H sampling time with identified
‘Average’ and ‘Cumulative’ coe�cients are as follows
Average
Y (k) = ≠0.0566Y (k ≠ 1)3 + 1.0852Y (k ≠ 1)
Cumulative
Y (k) = ≠0.0155Y (k ≠ 1)3 + 1.0326Y (k ≠ 1)

Identified Tetra Model equation at 3H sampling time with identified
‘Average’ and ‘Cumulative’ coe�cients are as follows
Average
Y (k) = 0.4273Y (k ≠1)4 ≠0.9438Y (k ≠1)3 +4901Y (k ≠1)2 +1.0367Y (k ≠1)
Cumulative
Y (k) = 0.0671Y (k≠1)4 ≠0.1496Y (k≠1)3 +0.0226Y (k≠1)2 +1.0744Y (k≠1)
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Table 3.17: Error Index estimated from best 3 models for each set of exper-
iment of MiaPaCa2 growth

Best Model 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET Sum
Logistic model (3H) 14.6503 15.3426 10.5631 15.5998 4.9847 9.8621 20.8780 91.8805
Cubic model (3H) 14.8368 15.4911 12.3341 17.8637 9.4226 10.0499 13.3247 93.3229
Tetra (3H) 15.4787 13.8955 9.4155 13.3708 7.2518 16.3430 30.0000 105.7553

Error of identified models of MiaPaCa2

All the three identified models logistic, cubic, and tetra models absolute
errors with respect to each set of experiment was calculated. All the three
errors were estimated. Figure 3.15 shows the identified logistic model error.
Figure 3.16 shows all three errors of cubic model identification and figure
3.17 shows the errors of identified tetra model.

3.8.1 Selection of best-identified model out of 3 identi-
fied models for MiaPaCa2

Like earlier from three best models, we identified the best model to pre-
dict the growth of MiaPaCa2 cells. Since the averaging procedure can not
guarantee that the constraints are always satisfied, cumulative models turn
out more reliable, and we used cumulative version over the average versions.
We estimated the error index for the best 3 identified models, logistic (3H),
cubic (3H) and tetra (3H) models for all the 7 set of experiments. The table
3.17 shows the error index for each experiment with respect to identified
model and according to the table logistic model shows the better fitting for
the MiaPaCa2 growth. This model can be considered for understanding the
growth of the cells.

3.9 Tetra Model is the best model for all the
cell lines of reliable data

Earlier best model identification for all the cell lines are based on the sets,
which are not ‘equivalent’ in terms of modeling error. There may be some
di�erence among these sets, which are not evident by a simple look at the
data. So we decided to ‘falsify’ the not good sets by repeating the analysis
considering only first 5 sets of 7 in term of modeling error. The repetition
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Figure 3.15: Logistic (3H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of MiaPaCa2
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Figure 3.16: Cubic (3H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of MiaPaCa2
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Figure 3.17: Tetra (3H) identified model of both Cumulative and Average
identification showing absolute error with respect to experimental data of all
7 sets of MiaPaCa2
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Table 3.18: New Error Index for 5 good sets of PANC1
PANC1
Best 3 models SET 1 SET 3 Set 5 SET 6 SET 7 Sum

Delyaedcubic
model (18H) 4.803 11.291 17.161 11.379 30.000 74.635

Cubic model (3H) 7.502 10.686 24.657 17.160 27.068 87.074
Tetra (3H) 10.515 10.359 21.791 10.164 14.586 67.415

of analysis with bigger reduction of sets resulted in not su�cient consistent
results. The error index of repeating the analysis with 5 sets was completely
di�erent than earlier results. The new error index was shown in Table 3.18
for PANC1 table 3.19 for BxPC3 and table 3.20 for MiaPaCa2 with 5 sets.
Repetition of analysis with 5 good sets error index showed the following
di�erences in comparison with earlier error index, which used to estimate
the best model among three better models,

1. First, we see a major change in the error index in all the three cell lines
with respect to each set.

2. All the three cell lines showed tetra model as the 1st best model with
least sum of error index

3. This tetra identification lead that all the cell line have general shape
of the growth rate

4. Among these cell lines, BxPC3 has di�erent sampling time i.e 6H
whereas other two cell lines have 3H sampling time, which indicates
that BxPC3 growth behavior is ‘slower’ compared to other two cell
lines.

Overall we could say that when the data were less reliable, the best model
was logistic and cubic which were ‘simpler’ compared to tetra model. This
simple model like logistic was able to catch the more evident behavior. When
the data were more reliable, the model was able to grab the details which
might be not evident. The growth rate of tetra i.e. cubic shape was much
better than logistic, which had constant decreasing shape.
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Table 3.19: New Error Index for 5 good sets of BxPC3
BxPC3
Best 3 models SET 1 SET 2 SET 3 Set 6 SET 7 Sum

Logistic
model (6H) 21.182 18.349 5.678 17.827 14.364 77.401

Cubic
model (6H) 21.539 20.755 4.528 18.301 16.229 81.352

Tetra (6H) 21.000 15.616 6.119 15.748 14.581 73.065

Table 3.20: New Error Index for 5 good sets of MiaPaCa2
MiaPaCa2
Best 3 Models SET 4 SET 3 Set 5 SET 6 SET 7 SUM

Logistic (3H) 21.182 13.600 12.280 13.267 12.000 72.329
Cubic model
(3H) 27.159 5.665 7.739 12.117 17.462 70.142

Tetra (3H) 21.891 8.180 9.039 10.447 12.000 61.557

3.10 Discussion
We have used discrete non-linear autoregressive logistic family for building
the growth model for all the cell lines cultured in 2D condition. We studied
the growing capabilities of three di�erent PDAC cell lines PANC1, BxPC3,
and MiaPaCa2. The growth data of these cell lines were acquired for 10 days
and all the experiments were performed seven times in triplicates. We had
42 cases for each cell line by normalizing and resampling the data in order to
build a mathematical model. We compared 9 di�erent structures of model
equation 3.1 based on the ‘growth rate’ paradigm for each case and selected
the three best structures depending on the least error for all the cell lines.
The error is described through a special index which represents the ability of
a model in describing the real data. We selected the best sampling time for
these 3 models based on the least error index followed by re-identification
using the averaging and cumulative methods. These latter methods behave
in a similar way, but Averaging identification is not forced to satisfy the
identification constraints. So we focused only on cumulative identification.

For PANC1 tetra and cubic models with 3H sampling time and delayed
cubic model with 18H were the three most suitable models out of nine for
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fitting the growth. Out of these three models, we re-identified the best model
based on the least error and Cubic model with 3H sampling was best (Table
3.18). According to cubic, the growth rate was simpler, as it was higher
in the beginning and then gradually decreases as the cell grew with time
(Figure 3.4).

For BxPC3 cells logistic, cubic and tetra models with 6H sampling time
were the three most suitable models for fitting the growth. Again we selected
the best among these three identified models using error index. Among these
three models, a logistic model with 6H was best based on the least error
(Table 3.19). According to logistic model, BxPC3 has a higher growth rate
in the beginning and then sharply decreases (Figure 3.9 ). This perhaps
indicates that cells were very sensitive to the presence of the other neighbor
cells.

For MiaPaCa2 cells logistic, cubic and tetra models with 3H sampling
time were the three best models for fitting the growth. Among these three
models, a logistic model with 3H sampling time was best for describing the
growth of the cells (Table 3.20) based on the error index. Logistic growth
rate showed that MiaPaCa2 has higher growing capabilities in the beginning
and then decreases gradually as the cells grew (Figure 3.14).

During the identification certain set of experiments emerged as hard to
model. For each cell line, two sets of experiments were falsified. We narrowed
our identification to only good sets, which were modeled with less model
error. We reidentified the best model, which turned out to be tetra model
for all the three cell lines, indicating some similarity in all of them. We
compared all the three cell lines with a sampling time of 3H for sake of
similarity even though BxPC3 best sampling time was 6H against the 3H of
PANC1 and MiaPaCa2. All the cell lines showed tetra model as the best.
Thus, the three cell lines turned out to share the same growth rate structure.
Figure 3.18 shows the comparison of tetra growth rate with 3H. Even though
all the cell lines have the same structure of growth rate, they di�er in the
other features such as the position of the peak, maximum attained, slope
during the decreasing phase of the growth rate. This may be due to cells
require some time for attaching and adapting to a new environment and also
in tetra growth rate decreasing phase of growth rate can show di�erences
in slope due to lack of nutrients and cell numerosity. PANC1 showed lower
cell count at the beginning as they were isolated. This may be related to
the need of the cell to create a special environment around itself or to adapt
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Figure 3.18: Growth rate for Tetra (3H) identified model for all three PDAC
cell lines

to the new environment. Whereas BxPC3 and MiaPaCa2 showed higher
growing abilities at the beginning. All the three cell lines showed di�erent
decreasing growth rates. We anticipate the growth rate of BxPC3 higher at
the beginning but the best sampling time is 6H.

Figure 3.19 shows the new best models comparison with a single set of
actual data for all the cell lines. We could see the similarity between them.

A posteriori reliability analysis of the identified parameters has been
taken into account for these set of experiments. It has been performed for
all the three cell lines by randomly varying the identified parameters within
intervals of amplitude from 1 to 5 percentage. The resulting randomly varied
models have been simulated and their mean absolute error with respect to
the original identified model has been computed. The average errors of the
varied models with respect to the original identified ones are shown in fig-
ure 3.20. As expected, higher variations generate bigger deviations from the
original identified models. However, within the considered percentage scopes,
the error values are a small fraction of the signals range, and moreover no
sudden increases of the errors have been observed. Therefore, the identified
models have shown a reliable behaviour with respect to small changes in the
parameters.

Overall we can conclude that reliable data are very crucial in the identi-
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Figure 3.19: Comparison of identified tetra model (3H) with the experimental
data of all three cell lines
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Figure 3.20: Variation of identified parameters to understand the sensitivity
of the model
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fication process. This can also be achieved by re-designing the experiments
in order to collect more data, so that the di�erences among the experiments
may be clearly explained. All the cell lines showed qualitatively similar
growth rate. This suggests the possibility of their reproduction is based
on common mechanisms. Cell lines seem to be di�erently a�ected by their
own numerosity. This factor should be carefully checked to understand the
reason. From this analysis more sophisticated models could be designed.



Chapter 4

Conclusion

In spite of continuous advancements in medical treatment pancreatic ductal
adenocarcinoma (PDAC) related high mortality remains unchanged. There
are few or no e�ective therapies for the advanced PDAC [19]. Conventional
and e�ective experimental methods are required to examine the biological
behavior of PDAC and develop the therapeutic strategies for PDAC. We
studied the behavior of PDAC cell lines in terms of growth profiles, cell
morphology, drug responses in 2D, 3D and in vivo systems.

Traditionally cancer cells are cultured in two-dimensional (2D) culture
that has many advantages. 2D culture is more convenient, easy to handle and
perform experiments to explain the mechanisms of disease and helps in drug
development. In this work, we have studied the di�erences in cell growth
profile, cell morphology, and drug resistance capacity in three di�erent cell
lines (PANC1, BxPC3, and MiaPaCa2) of PDAC. In terms of growth profile,
all the PDAC cell lines proliferated to the same extent with similar growth
rates. In terms of cell morphology BxPC3 cells have flattened morphology,
MiaPaCa2 have round and mesenchymal while PANC1 with intermediate
morphology between mesenchymal and epithelial. The actin filaments or-
ganizations, as a pro-migratory functional marker, were long and elongated
and localized in the cytoplasm.

In three-dimensional (3D) culture, cells were grown on agarose sca�old to
form aggregates/spheroids that enhances cell-cell interactions and partially
mimic the in vivo environment. Additionally, 3D spheroids comprised of
di�erent stages of cells that includes cells are highly proliferative, quiescent,
apoptotic, hypoxic and necrotic. The outer layer of a spheroid, which is
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highly exposed to the medium is mainly composed of proliferating cells and
inner core cells receive less oxygen, growth factors and nutrients from the
medium tend to be in a quiescent or hypoxic state [27]. As we studied
the proliferation of these PDAC cell lines PANC1, MiaPaCa2 and BxPC3
in 3D culture, we observed a significant di�erence in their growth rate and
morphology. BxPC3 spheroids were highly compact and almost null growth
rate, whereas MiaPaCa2 and PANC1 showed loosely arranged cells of larger
spheroids with comparable growth rates. Three dimensional (3D) spheroids
showed altered cytoskeleton structure compared to 2D culture having short
actin filaments localized near the cell membrane.

Later we examined the possibility of using more complex 3D cell cul-
ture systems in microfluidic platform suitable for studying characteristics of
PDAC cells. This microfluidic system also called as HepaChip® was coated
with collagen-1, a highly secreted extracellular matrix (ECM) in around
pancreatic cancer that plays a crucial role, among many, in drug resistance
and cancer progression. HepaChip® also uses continuous perfusion of cell
culture system where cells are assembled on the collagen and cells are super-
fused with growth medium. Such a platform could be further employed to
improve drug testing and screening of PDAC. The 3D structure of the Hep-
aChip® enabled the formation of cell aggregates especially in areas of reduced
flow between the pillars. These aggregates were still in direct contact with
the medium flow and hence delivered a continuously high concentration of
nutrients. Media perfused through the chip was assumed to be saturated
by oxygen upon entering the chip as the tubing employed was permeable
to oxygen. We cultured PDAC cells onto a novel microfluidic chamber, the
HepaChip®, maintaining cell vitality, morphological appearance and growth
characteristics that more closely resemble 3D cultures. Furthermore, the
actin organization, taken as a functional marker of a proper pro-migratory,
neoplastic phenotype, showed a typical cancer-type assembly.

After characterizing the cell growth, morphology in the above three cell
culture systems we evaluated the cytotoxic e�ect of cisplatin, a common
chemotherapeutic agent used in against PDAC, in all the three systems.
Pancreatic cancer cells are expected to be sensitive to cisplatin [76] [17]. We
tested cisplatin on PANC1 cells in 2D and 3D spheroids. The determined
IC

50

values in 2D and 3D system are 3.25 ± 0.2 µM and 14.6 ± 1.6 µM respec-
tively. Panc1 cells in collagen-coated microfluidic chip were treated with high
dose of cisplatin of 100 µM, which is much higher dose than used 2D and
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3D agarose spheroids. After 72hours of treatment, 70% of the Panc1 cells
were still viable. We further tested cisplatin in PANC1 cells subcutaneously
injected into mice. The cisplatin dose used to obtain complete growth in-
hibition (10 mg/kg) in vivo is much higher, corresponding to an estimated
plasma concentration of 240 µM [102]. Although experiments performed in
microfluidic chip did not include dose-response the data suggest that drug
responses by cells in collagen coated chip clearly showed higher resistance to
drugs.

Overall Microfluidic chips are better than 2D and 3D spheroid cultures
and mimic the in vivo culture, so it can be used as an alternative system of
in vivo culture, which are expensive and time-consuming.

Mathematical models help in understanding the complex biological sys-
tems such as cells, tissues and even human body. These mathematical models
have been extensively used in cancer research. These quantitative models
address many fields such as tumor initiation, progression and metastases
as well as tumor heterogeneity, treatment response and resistance. It helps
in understanding the mechanism of the disease and provides the quantita-
tive predictions that can be validated. Mathematical models can comple-
ment the experimental and clinical studies and redefine our understanding
of mechanisms driving tumorigenesis. In this regard we studied the PDAC
cell lines growth in terms of mathematical modeling for better understanding
the growing nature and capabilities of PDAC cell lines PANC1, BxPC3, and
MiaPaCa2 cultured in 2D culture

E�ectively modeling, describing and understanding the system is di�cult.
An optimal growth model should allow one to describe the changes in the
system. We used discrete nonlinear autoregressive logistic family of the form

Y (k) = G(Y (k ≠ 1))¸ ˚˙ ˝
growth rate

Y (k ≠ 1)

to model the PDAC cell lines growth. Using nonlinear model we at-
tempted to define the system with respect to change in the cell growth rate
of three di�erent PDAC cell lines of 42 cases for each cell line.

We tested 9 di�erent structures with 6 di�erent sampling (fixed) time to
identify the best model for each cell line. We selected the best 3 structures
for each cell line based on the least error of simulated and experimental data.
We chose cumulative identification as the best over average identification as
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they were not falling under the constraints all the time. BxPC3 showed lo-
gistic, cubic and tetra models with 6H fixed time are better for estimating
the growth rate. According to all these models, BxPC3 have a higher growth
rate in the beginning as the system is rich in nutrients supports the maxi-
mum growth. As the time lapses growth rate decreases sharply according to
logistic model, which means cells are very sensitive to the surrounding sys-
tem. Out of which logistic was best for understanding the growth of BxPC3
cells. For MiaPaCa2, logistic, cubic and tetra models with 3H fixed time
are ideal for modeling the growth. All the cumulative identification showed
higher growth rate in the beginning and the growth rate decreases as the
system was changing with time and cell count. Even for MiaPaCa2, a lo-
gistic model was better. PANC1 showed cubic (3H), delayed cubic model
(18H) and tetra models (3H) were better for modeling the growth rate, out
of which cubic model was the best based on the error index.

Finally, we narrowed our identification to most reliable data and redid
the identification. For all the cell lines tetra model turned out to be the
best model to predict the growth. Despite all the cell lines showed Tetra
model as their best representation, a number of important di�erences are
in order. First, BxPC3 (having 6H sampling time) need a longer time step
to be precisely described. This suggests its dynamics be slower than the
others having sampling time 3H. MiaPaCa2 has the peak of the growth rate
just at the beginning, i.e. when the cell count is still very small, whereas
PANC1 has its maximum peak later. This may suggest for MiaPaCa2 to
reach its maximum reproducing capability when the cells are isolated, while
for PANC1 particularly sensitive of the surrounding, meaning the cells need
a certain time to settle down in the new environment.

Overall we can conclude that reliable data are very crucial in the identi-
fication process. All the cell lines showed qualitatively similar growth rate.
This suggests the possibility that their growth is based on common mech-
anisms. Cell lines seem to be di�erently a�ected by their own numerosity.
From this analysis more sophisticated models could be designed.
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Appendix

This appendix is related to Chapter 3 Here we provide the raw data of all
the cell counts, which we used for the identification of best models for PDAC
cell growth.

A.1 Cell count data of PANC1
SET 1 T01 = [2.5, 5.5, 22, 29.5, 45.5, 51.5, 69.5, 76.75, 94.5, 100.5, 192,
197.5, 215.5, 221.5, 244.5]; X01 = [17777.77, 12222.22, 25555.55, 30000,
22222.22, 24444.44, 27777.77, 54444.44, 78888.88, 67777.77, 238000, 178000,
292000, 210000, 202000]; X02 = [25555.55, 20000, 26666.66, 31111.11, 25555.55,
45555.55, 48888.88, 44444.44, 81111.11, 80000, 214000, 224000, 332000, 182500,
254000]; X03 = [23333.33, 26666.66, 30000, 21111.11, 36666.66, 20000, 51111.11,
38888.88, 56666.66, 78888.88, 254000, 218000, 256000, 186000, 228000];

SET 2 T02= [ 2.75, 18.75, 25.75, 42, 49.5, 67.5, 73.5, 165, 170.5, 188.5,
194.5, 218, 236.5, 242]; X05= [25555.55, 21111.11, 14444.44, 25555.55, 20000,
22222.22, 32222.22, 160000, 158000, 176000, 220000, 174000, 252000, 198000];
X06= [18888.88, 24444.44, 20000, 20000, 13333.33, 21111.11, 27777.77, 140000,
154000, 218000, 164000, 222000, 280000, 202000]; X04= [16666.66, 17777.77,
21111.11, 20000, 18888.88, 27777.77, 35555.55, 236000, (158000+154000)/2,
178000, 156000, 260000, 320000, 132000];

SET 3 T03= [18.25, 36.5, 47.5, 66.5, 72, 138, 144, 186, 213]; X07= [17777.77,
21111.11, 12222.22, 26666.66, 20000, 208000, 168000, 198000, 292000]; X08=
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[31111.11, 25555.55, 18888.88, 38888.88, 35555.55, 216000, 198000, 200000,
260000]; X09= [23333.33, 22222.22, 34444.44, 37777.77, 26666.66, 156000,
174000, 292000, 210000];

SET 4 T4= [4, 21.66, 28.16, 48.83, 123.22, 146.22, 170.83, 194.83, 218.83];
X10= [7777.77, 16666.66, 26666.66, 52222.22, 134000, 120000, 118000, 154000,
114000]; X11= [26666.66, 21111.11, 6666.66, 28888.88, 78000, 80000, 128000,
130000, 94000]; X12= [14444.44, 13333.33, 18888.88, 26666.66, 132000, 138000,
176000, 164000, 102000];

SET 5 T5= [1.41, 17.83, 23.83, 48.33, 72.83, 97.33, 169.33, 193.33, 216.83,
241.33]; X14= [23333.33, 25555.55, 30000, 38888.88, 61111.11, 143333.33,
278000, 284000, 276000, 244000]; X15= [26666.66, 28888.88, 45555.55, 30000,
52222.22, 115555.55, 322000, 290000, 276000, 262000]; X13= [(23333.33+26666.66)/2,
26666.66, 23333.33, 43333.33, 92222.22, 100000, 260000, 260000, 294000,
284000];

SET 6 T6= [6, 22.83, 30.83, 54.16, 78.83, 100.83, 173.16, 197.16, 222.16,
246.16]; X16= [24444.44, 14444.44, 17777.77, 47777.77, 72222.22, 116000,
352000, 298000, 366000, 296000]; X17= [15555.55, 44444.44, 18888.88, 38888.88,
91111.11, 93333.33, 324000, 276000, 340000, 320000]; X18= [32222.22, 33333.33,
20000, 41111.11, 67777.77, 140000, 274000, 254000, 236000, 320000];

SET 7 T7= [4, 21.83, 28.66, 50.66, 70.66, 98.66, 166.16, 189.66, 220.66,
244.66]; X19= [15555.55, 25555.55, 12222.22, 42222.22, 101111.11, 188000,
262000, 318000, 278000, 266000]; X20= [23333.33, 36666.66, 23333.33, 46666.66,
77777.77, 228000, 262000, 298000, 346000, 272000]; X21= [17777.77, 30000,
20000, 48888.88, 64444.44, 136000, 190000, 300000, 274000, 248000];

A.2 Cell count data of BxPC3
SET 1 T1=[22.5, 45, 68.83, 92.83, 163.33, 168.83, 185.83, 192.83, 210.33,
216.83, 238.08 ]; X01=[23333.33, 36666.66, 115555.55, 132000, 460000, 330000,
182000, 322000, 264000, 386000, 462000]; X02=[44444.44, 65555.55, 88888.88,
190000, 396000, 324000, 348000, 296000, 412000, 398000, 510000]; X03=[23333.33,
71111.11, 98888.88, 164000, 348000, 230000, 410000, 420000, 398000, 372000,
314000];
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SET 2 T2=[24.5, 48, 119, 124.5, 141.5, 148.5, 166, 172.5, 193.75, 215.5 ];
X04=[22222.22, 64444.44, 216000, 246000, 216000, 202000, 390000, 264000,
394000, 374000]; X05=[32222.22, 55555.55, 248000, 204000, 278000, 176000,
348000, 272000, 450000, 370000]; X06=[32222.22, 44444.44, (216000+248000)/2,
180000, 218000, 206000, 288000, 232000, 326000, 390000];

SET 3 T3=[21, 27.5, 45, 51.5, 72.75, 94.5, 165, 195, 213, 243 ]; X07=[40000,
61111.11, 106666.66, 52222.22, 87777.77, 175555.55, 330000, 430000, 342000,
450000]; X08=[36666.66, 31111.11, 52222.22, 74444.44, 98888.88, 185555.55,
280000, 188000, 520000, 514000]; X09=[47777.77, 33333.33, 66666.66, 58888.88,
106666.66, 145555.55, 344000, 260000, 506000,(450000+514000)/2];

SET 4 T4=[19.66, 25.5, 48, 70, 93.5, 168, 189.5, 214, 238, 260.5 ]; X10=[38888.88,
15555.55, 42222.22, 88888.88, 147777.77, 366000, 454000, 490000, 254000,
(498000+476000)/2]; X11=[48888.88, 30000, 31111.11, 95555.55, 151111.11,
496000, 478000, 584000, 320000, 498000]; X12=[27777.77, 25555.55, 42222.22,
94444.44, 125555.55, 418000, 390000, 536000, 364000, 476000];

SET 5 T5=[4, 21.66, 28.16, 48.83, 123.33, 146.33, 170.83, 194.83, 218.83
]; X13=[35555.55, 45555.55, 67777.77, 108888.88, 416000, 420000, 404000,
576000, 494000]; X14=[40000, 26666.66, 47777.77, 120000, 398000, 498000,
526000, 464000, 592000]; X15=[28888.88, 41111.11, 56666.66, 103333.33,
436000, 620000, 450000, 614000, 626000];

SET 6 T6=[4.3, 18, 24.25, 44.75, 69.75, 91.5, 166, 190, 214, 233.5 ];
X16=[11111.11, 20000, 16666.66, 52222.22, 27777.77, 196000, 536000, 496000,
522000, 526000]; X17=[13333.33, 14444.44, 24444.44, 61111.11, 52222.22,
190000, 394000, 440000, 492000, 442000]; X18=[13333.33, 12222.22, 32222.22,
47777.77, 35555.55, 158000, 492000, 366000, 510000, 500000];

SET 7 T7=[4, 21.83, 28.66, 50.66, 70.66, 98.66, 166.16, 189.66, 220.66,
244.66 ]; X19=[21111.11, 23333.33, 34444.44, 87777.77, 131111.11, 280000,
480000, 434000, 498000, 508000]; X20=[14444.44, 35555.55, 27777.77, 62222.22,
135555.55, 348000, 414000, 414000, 432000, 350000]; X21=[15555.55, 25555.55,
33333.33, 83333.33, 155555.55, 362000, 324000, 426000, 436000, 532000];
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A.3 Cell count data of MiaPaCa2
SET 1 T1=[ 2.5, 5.5, 22, 29.5, 45.5, 51.5, 69.5, 76.75, 94.5, 100.5, 192,
197.5, 215.5, 221.5, 244.5, 269]; X01=[10000, 13333.33, 26666.66,21111.11,
34444.44, 66666.66, 94444.44, 81111.11,98888.88, 147777.77,330000, 348000,
350000,398000,360000,212000]; X02=[26666.66, 17777.77, 23333.33, 25555.55,
38888.88, 43333.33, 108888.88, 85555.55, 55555.55, 154444.44, 372000, 372500,
274000, 256000, 362000, 298000]; X03=[21111.11, 24444.44, 33333.33, 20000,
20000, 40000, 64444.44, 86666.66, 111111.11, 124444.44, 320000, 382000,
318000, 334000, 352000, 198000];

SET 2 T2=[2.75, 18.75, 25.75, 42, 49.5, 67.5, 73.5, 165, 170.5, 188.5, 194.5,
218, 242]; X04=[21111.11,15555.55, 23333.33, 20000, 17777.77, 52222.22,
47777.77, 418000, 252000, 274000, 342000, 234000, 320000]; X05=[35555.55,
24444.44, 13333.33, 36666.66, 26666.66, 57777.77, 55555.55, 384000, 292000,
344000, 378000, 382000, 244000]; X06=[21111.11, 21111.11, 18888.88, 40000,
32222.22, 61111.11, 54444.44, 434000, 394000, 420000, 372000, 330000, 290000];

SET 3 T3=[18.25, 36.5, 47.5, 66.5, 72, 138, 144, 186, 213]; X07=[20000,
27777.77, 21111.11, 44444.44, 37777.77, 410000, 326000, 428000, 420000];
X08=[22222.22, 16666.66, 40000, 42222.22, 22222.22, 348000, 240000, 582000,
454000]; X09=[17777.77, 24444.44, 30000, 34444.44, 34444.44, 474000, 346000,
442000, 284000];

SET 4 T4=[4, 21.66, 28.16, 48.83, 123.33, 146.33, 170.83, 194.83]; X10=[11111.11,
21111.11, 11111.11, 32222.22, 414000, 470000, 416000, 386000]; X11=[10000,
12222.22, 11111.11, 33333.33, 460000, 498000, 452000, 532000]; X12=[17777.77,
14444.44, 12222.22, 24444.44, 412000, 518000, 560000, 332000];

SET 5 T5=[6, 22.83, 30.83, 54.16, 78.83, 100.83, 173.16, 197.16, 222.16,
246.16]; X13=[14444.44, 20000, 6666.66, 26666.66, 74444.44, 147777.77, 330000,
386000, 280000, 340000]; X14=[16666.66, 17777.77, 16666.66, 31111.11, 53333.33,
128888.88, 386000, 382000, 326000, 310000]; X15=[17777.77, 25555.55, 13333.33,
31111.11, 66666.66, 122222.22, 344000, 254000, 332000, 312000];

SET 6 T6=[4.5, 18, 24.25, 44.75, 69.75, 91.5, 166, 190, 214, 233.5]; X16=[14444.44,
13333.33, 14444.44, 44444.44, 35555.55, 230000, 398000, 520000, 424000,
380000]; X17=[14444.44, 13333.33, 20000, 50000, 64444.44, 266000, 424000,
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412000, 520000, 484000]; X18=[8888.88, 12222.22, 10000, 44444.44, 64444.44,
266000, 430000, 544000, 480000, 376000];

SET 7 T7=[4, 21.83, 28.66, 50.66, 70.66, 98.66, 166.16, 189.66, 220.66,
244.66]; X19=[6666.66, 13333.33, 7777.77, 31111.11, 74444.44, 184000, 280000,
304000, 344000, 304000]; X20=[13333.33, 15555.55, 13333.33, 40000, 72222.22,
216000, 338000, 368000, 338000, 280000]; X21=[7777.77, 8888.88, 13333.33,
31111.11, 60000, 224000, 348000, 384000, 292000, 322000];
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This research activity has led to publication in international journal.

International Journals
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Schulz, Sagar Manoli, Julia Schuette, Christian Schmees, Armando Casazza,
Martin Stelzleú and Annarosa Arcangeliú. “A novel microfluidic 3D platform
for culturing pancreatic ductal adenocarcinoma cells: comparison with in
vitro cultures and in vivo xenografts”, Scientific Reports, 25 April, 2017.
[DOI:10.1038/s41598-017-01256-8]
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[20] T. Denayer, T. Stöhr, and M. Roy, “Animal models in translational medicine:
Validation and prediction,” New Horizons Transl Medicine, vol. 2, no. 1, pp.
5–11, 2014.

[21] L. E. Dickinson, C. Lütgebaucks, D. M. Lewis, and S. Gerecht, “Patterning
microscale extracellular matrices to study endothelial and cancer cell inter-
actions in vitro.” Lab Chip, vol. 12, no. 21, pp. 4244–8, 2012.



BIBLIOGRAPHY 123

[22] M. Distler, D. Aust, J. Weitz, C. Pilarsky, and R. Grützmann, “Precursor
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A. Rost, H. Neuhaus, C. Haag, M. Clemens, B. Heinrich, V. Ursula,



BIBLIOGRAPHY 125

M. Fuchs, D. Fleckenstein, W. Gesierich, D. Uthgenannt, H. Einsele, A. Hol-
stege, A. Hinke, A. Schalhorn, and R. Wilkowski, “Randomized phase III
trial of gemcitabine plus cisplatin compared with gemcitabine alone in ad-
vanced pancreatic cancer.” J. Clin. Oncol., vol. 24, no. 24, pp. 3946–52, 2006.

[45] D. Herrmann, J. R. Conway, C. Vennin, A. Magenau, W. E. Hughes,
J. P. Morton, and P. Timpson, “Three-dimensional cancer models mimic
cell-matrix interactions in the tumour microenvironment.” Carcinogenesis,
vol. 35, no. 8, pp. 1671–9, 2014.

[46] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, M. Wolfgang, and K. L.
A, “Multicellular tumor spheroids: an underestimated tool is catching up
again.” J. Biotechnol., vol. 148, no. 1, pp. 3–15, 2010.

[47] C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, “Rapid
heterogeneous liver-cell on-chip patterning via the enhanced field-induced
dielectrophoresis trap.” Lab Chip, vol. 6, no. 6, pp. 724–34, 2006.
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