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Abstract
Tree tissues still occupy a relatively small niche as bioindicators 
when compared to other more classical bio substrates such as 
mosses and lichens. Tree bark, because of its structural porosity, 
is potentially very efficient for the accumulation and retention 
of aerosol particles, making this substrate an excellent indicator 
in air pollution monitoring studies, especially for heavy metals.

Mercury (Hg) is possibly the ideal element to be monitored 
through barks because a) generally, it is scarcely bioavailable in 
soils; b) its presence in bark is mainly ascribable to atmospheric 
transport; c) it could be retained in tree bark both physically and 
chemically. Recent studies in the Monte Amiata (central Italy) 
area documented the ability of Pinus sp. barks to take up from the 
atmosphere extremely high levels of Hg. We present here the results 
of a reconnaissance study conducted in the urban area of Firenze 
(Florence; Italy), documenting the sensitiveness of Pinus sp. barks 
in recording small variations of Hg concentration in atmosphere. 
The study includes a former industrial zone, where anomalous 
concentrations of Hg in soils and atmosphere are still present. 
Barks sampled in this area show Hg concentrations statistically 
higher than in other zones of Firenze, lending further support to 
the concept that tree barks may be useful tools for biomonitoring 
the airborne Hg levels.
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Introduction
Our environment is being increasingly affected by chemical 
substances of all kinds. Atmospheric pollution constitutes one of 
the major problems in urban and industrial environments [1-5]. 
In addition to traditional air pollutants, such as SO2 or NOx  
(frequently inspected employing automatic monitoring stations), 
heavy metals, emitted by both natural and, in particular, anthropogenic 

sources, severely affect the quality of the environment. Pollutants  
containing heavy metals are released from many different anthropogenic 
sources such as industry (especially mining industry), combustion 
of fossil fuels in vehicular traffic, and energy production [3,5]. 
Heavy metal monitoring has therefore a growing importance, and 
new methods making possible observation of their deposition are 
constantly sought. There are many ways to monitor the pollution 
caused by heavy metals: (a) To measure their concentrations  
directly in air, or in rainwater [6-10] and soil [11,12]; (b) The use 
of bio-indicators, which are easy to collect, are cheaper, and usually 
have higher concentrations than air and rainwater [1,13,14]. The 
first methods are rather expensive, and the contamination risk is 
greater than in analyzing bio-indicators.

Why Tree Barks?
Quoting (14): “Using trees as an atmospheric bioindicator is 
widespread globally because the method is cheap, easy to use, 
and can potentially detect long-term contamination [15,16]”.

Nevertheless, tree tissues still have a relatively small niche as 
bioindicators as compared to other more classical bio substrates 
such as mosses and, in particular, lichens [17]. Mosses and  
lichens, because of the lack of developed root systems, are known 
to capture trace elements from rain and atmospheric particles 
by ion-exchange and chelation [18]. Thus, the strength point of 
these lower organisms for biomonitoring purpose is their ability 
to accumulate and track down airborne contaminants without 
interference from soil elements. This feature, however, is strictly 
true only for epiphytic species, since some lichens may extract 
cations from the growing substrate and entrap mineral particles 
[19], making them less reliable for bio monitoring of aero dispersed 
pollutants. Moreover, lichens are characterized by slow regeneration 
rates and relatively weak tolerance to mycophytotoxic pollutants 
[20]. Therefore, intensive sampling may lead to their reduced 
availability and even disappearance. Furthermore, lichens and 
mosses are characterized by irregular and patchy distribution, and 
their sampling should be done by a specialist able to differentiate 
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between similar-looking species. These limitations become more 
pronounced in industrial and densely populated areas, where severe 
anthropogenic pressure may cause scarcity or even lack of indicator 
species at some sampling points. To overcome this disadvantage, 
the moss bag technique has been proposed, especially for studies 
in the urban environment [21,22]. Moss bags, however, cannot be 
validated for routine application by public authorities, because the 
methodological and theoretical bases for the technique have not yet 
been completely established. In addition, although biomonitoring 
campaigns conducted with moss bags are considered relatively 
cost effective [22], barks are even less expensive, since they do 
not require any preparation or deploying stage.

As recently noted by several authors [1,20] the search for alternative 
biological indicators to mosses and lichens is becoming of  
relevance. In this context, the use of higher plants for air monitoring 
purposes is becoming more and more widespread, since they 
generally exhibit a greater tolerance to environmental changes, 
which is especially important for monitoring areas with elevated 
anthropogenic pressure. Other main advantages are a greater  
availability of biological material, simplicity of species identification, 
sampling and treatment, and ubiquity of some genera, which makes 
it possible to cover large areas. Among the different tissues, tree 
bark, because of its structural porosity, is potentially very efficient 
for the accumulation and retention of aerosol particles, making 
this substrate prone to be an excellent indicator in air pollution 
monitoring studies.

As recently pointed out by [2], tree bark may retain pollutants 
into its tissues both physically and chemically. According to the 
studies of [23,24], metals accumulated onto the outer bark were 
deposited from ambient air. For some elements, such as Zn, that 
actually have a key functional role in plant physiology [20], their 
content in bark may be partly inherited through root assimilation 
from soil; other elements, such as Hg for example, having no 
known physiological functions and generally a remarkably low 
bioavailability [1,25], are essentially deposited on bark through 
its interaction with atmosphere.

Comparative studies between bark and lichen chemistry demonstrated 
that a good correlation exists between concentrations in bark and 
in the lichen species; the accumulation capability of the bark was 
found to be as effective as for lichens, and in some cases even better 
[1,20,26]. These results contributed to enlighten the role of barks 
for biomonitoring studies and prompted their use to inspect the 
accumulation of air pollutants (particularly metals) emitted from 
anthropogenic sources ([1,2,13,23,27-39] for a comprehensive 
review). However, as emphasized by Berlizov et al., [20], although 
there is a growing number of air pollution biomonitoring studies 
conducted employing barks, there are contradictory data (and 
opinions) concerning the accumulating capability of bark with 
regard to atmospheric pollutants compared to other substrates, as 
well as about the adequacy of barks as reliable bioindicators of 
atmospheric pollution [1]. For instance, in their comprehensive 
review of Hg biomonitoring methods, Siwik et al., [25] reports 
that bark has been indeed used in airborne Hg surveys, but some 
researchers e.g., [40] consider tree bark less suitable for this 
purpose, due to small variations in Hg concentration, which 
discourages its use for regional surveys.

In our opinion, the skepticism of some researchers could be  
overcome by deepening the knowledge into the processes governing 
the uptake/deposition mechanisms on barks, and standardizing  
sampling and analytical procedures. Thus, there is a need for a deeper 
insight into properties and capabilities of bark as an alternative  
(or complementary) indicator of atmospheric air pollution. In  
addition, it is of paramount relevance, before comparing barks to 
other substrates, to deepen some general aspects on bark composition 
in order to correctly evaluate their adequacy as a bioindicator of 
atmospheric pollution. These aspects include:

1.	 How high could be the concentration of heavy metals in barks?
2.	 How the concentration varies with the bark portion taken 

into consideration?
3.	 Which is the speciation of heavy metals in barks?
4.	 Is it possible to formulate a sampling and analytical protocol 

for barks in order to standardize the analytical results?

Mercury Atmospheric Cycle and Uptake 
in Plants and Barks
Mercury in the atmosphere mainly exists in two oxidative states, 
Hg° or Hg2+; Hg° is the most abundant (>95%) and the most 
volatile form [41]. Once Hg° enters the atmosphere, it can be 
carried to long distances (up to tens of thousands of kilometers 
from the emitting source), thanks to its long residence time in the 
atmosphere (ca. 1 yr; [42]).

Mercury vapour can be oxidized to Hg2+ and fall as wet or dry 
deposition in terrestrial and aquatic environments. Hg2+ can exist 
in a particulate-bound or a gaseous state. The gaseous state, known 
as Reactive Gaseous Mercury (RGM), is usually a Hg-halide 
compound, often HgCl2 [43]. These species are extremely soluble 
in water, allowing them to adsorb to moisture droplets during rain 
formation, with a high rate of dry deposition (>100 times those 
of Hg°; [44]).

Terrestrial environments thus represent a sink for atmospheric 
Hg [45], and in particular for Hg2+, which is quickly sorbed to 
vegetation, to the humus, and to mineral components of the soil 
[46,47]. Once deposited on land, part of Hg2+ can be reduced by 
sun light, and re-released to the atmosphere as Hg°.

Most Hg forms are not bioavailable, but some Hg in the aquatic 
or terrestrial environment can be transformed into the highly 
bioavailable and toxic form Methylmercury (MeHg) by  
sulfate-reducing bacteria.

Beside animals, that can accumulate Hg, also trees can take up 
Hg from their environment. Mercury enters in the tree foliage 
primarily through the stomatal openings during respiration as 
Hg°, but can also accumulate on leaves as wet or dry deposition 
from the atmosphere [48-50], or enter in the tree tissues through 
the uptake of dissolved Hg from soil through the vascular system 
[51]. Gaseous Hg° is readily taken up by stomata, but due to 
its volatile nature it may be released back into the atmosphere  
[52-54]. Wet and dry deposition on foliage may be sorbed to the 
leaf tissue, or be washed off during precipitation events [55,56].
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The Hg content in foliage increases over time [57-60] during leaves 
growth, but may reach a plateau where it stops [57]. Laboratory 
studies have shown that Hg content in foliage is directly related 
to the Hg concentration in the atmosphere [57,61].

Roots are thought to play a very small role in transporting Hg from 
soil to other parts of the tree [25]. Root and the surrounding soil 
may contain high concentrations of Hg, but generally, because of 
the usually low bioavailability of this element even in polluted 
soils, there is little transportation to the above-ground portions 
of the tree [59]. In general, the foliage Hg concentrations are not 
dependent on the soil Hg concentrations [57,59,61].

Mercury cycling in trees can have important implications for the 
fate of Hg in both atmosphere and soils. In particular, the extent 
to which vegetation is either a source of Hg to the atmosphere by 
transporting Hg from the soil to the leaves and ultimately to the 
atmosphere, or a sink, by sequestering atmospheric Hg in the leaves 
and ultimately adding it to the soil through litterfall, is crucial for 
understanding the role that vegetation plays in the global Hg cycle. 
Gamby et al., [62] demonstrated that Hg concentrations in surficial 
soils were significantly higher in forests than in cultivated fields. 
These authors conclude that deforestation and cultivation would 
exacerbate Hg loss from soils in temperate regions. In cultivated 
soils, this effect is amplified by the absence of forest foliage that 
captures the airborne Hg, transferring this element to the soil 
[63]. Recently, Chiarantini et al., [1] pointed out that the fate of 
Hg in the environment could be influenced also by tree barks, that 
can provisionally sequester Hg (both as particulate and as Hg2+ 
chemically bound to bark tissues; [2]) from the atmosphere, and 
subsequently return it to the soil through litterfall.

Mercury is possibly the ideal element to be (bio)monitored through 
barks [64]. As stated above, this element is generally so scarcely 
bioavailable in soils that its intake through root in the tree tissues 
is considered negligible [25]. The highest concentrations of Hg 
in barks were observed in highly anthropized areas. In a study 
conducted in Germany on barks of Pinus sylvestris L., Schulz et 
al., [23] detected up to 1180 μg/kg Hg. Reimann et al., [65] and 
Siwik et al., [25] measured Hg concentrations ranging from 11.5 
to 26 μg/kg in barks of different tree species from contaminated 
areas. Higher values (320 μg/kg) were recorded by Sanjo et al., [66] 
on Ginkgo Biloba L. barks in the urban area of Tokyo. Recently, 
Chiarantini et al., [1] found in barks of Pinus nigra (J.F. Arnold) 
from the Monte Amiata Hg mining district (the third largest 
Hg-producing district worldwide; [67]) concentrations as high as 
~8600 µg/kg, to our knowledge the highest value ever reported in 
the literature. These results are not surprising; according to Rossini 
Oliva and Mingorance [68], metal accumulation in bark and plant 
foliage in urban and industrial areas can be considerable, with the 
greatest amount of the heavy metal burden located in the bark. 
This effectiveness is apparently comparable to that of lichens. As 
an example, in the Monte Amiata area the concentration of Hg in 
the outermost portions of Pinus nigra barks [1] is similar to that 
found in lichens at the same sites [69,70]. Similar results were 
presented by Cocozza et al., [13], comparing the composition 
of barks, leaves and lichens sampled near an industrial area in 
Central Italy.

The variation of Hg concentration across bark thickness has been 
investigated in few studies. Sanjo et al., [66] found a continuous 
decrease of Hg content from the outermost portion toward the 
phloem, whereas Suzuki [71] reports a remarkable fluctuation of 
the bark composition. Interestingly, both Chiarantini et al., [1] and 
Harju et al., [72] evidenced that in some samples of their data set 
the heavy metal concentration of barks reached a maximum not 
at the bark surface, but at few centimeters below it. Chiarantini 
et al., [1] provided some preliminary hypotheses to explain this 
evidence, including: a) elemental loss from the very external  
portion of barks due to evaporation, a process that is well documented 
for Hg in barks [73]; b) bark ageing, with consequent reduction of 
adsorption capacity; and c) peculiar elemental speciation which 
may have influenced the extent of leaching by rainfall.

These general features clearly indicate that the metal (Hg) content 
of barks may be similar to lichens and other well tested substrates, 
and possibly as informative as lichens. A weak point for barks is the 
absence of a precise sampling and analytical protocol, contrarily 
to lichens that may rely on a customary, consolidated approach 
[17,74,75]. This is a major limitation for the use of barks as bio 
indicators. There are in fact some important factors that contribute 
to create a systematic distortion between different data sets. Among 
these, two appear to be the most relevant. The first one concerns 
the tree species: since bark structure and chemistry is expected to 
be very different among different tree species [34], it is likely that 
barks may chemically and physically retain pollutant in response 
of their specific nature, making results not comparable if barks 
of different species are considered. This issue can be addressed 
by extending bark studies to different tree species exposed to the 
same environment and, possibly, by adopting a small number of 
sufficiently diffused species. 

The second factor concerns the size of the sample: the scarce 
information available in literature indicates that the distribution 
of pollutants in the bark thickness is uneven. Consequently, the 
different thickness of bark samples taken into consideration by 
different authors introduces an inevitable bias. This issue could 
be solved quite easily by simply making uniform the thickness 
of the samples.

Hg Speciation in Barks
To our knowledge, papers describing the speciation of heavy 
metals in barks are rather scarce, apart from the study conducted 
by Vázquez et al., [76], who propose procyanidin as the most 
likely binder of divalent metals. Sawidis et al., [5] analyzed by 
SEM-EDS (Scanning Electron Microscopy-Energy Dispersion 
Spectrometry) some airborne particles entrapped in bark tissues, 
thus demonstrating that this substrate can, in principle, physically 
entrap particles containing heavy metals. The main limitation to 
the study of heavy metal speciation in bark is given by the low 
concentration generally observed, typically too low to encourage 
specific investigation. Recently, Chiarantini et al., [1] reported 
in Pinus nigra barks Hg concentrations that are high enough to 
allow the determination of Hg speciation using X-ray Absorption 
Spectroscopy (XAS). Indeed, the same research group applied this 
technique to the study of these bark samples [2], and concluded 
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that Hg is partly present as inorganic species such as metacinnabar, 
and subordinately as elemental Hg. On the other hand, in  
addition, XAS spectra clearly indicate that Hg is partly bound to 
thiol-containing molecules or tannins. The organic-bound fraction 
markedly increases from the outermost bark layer to deeper 
layers. The studies of Chiarantini et al., [1] and Chiarantini et 
al., [2] add further support to the concept that tree barks, and 
specifically Pinus nigra barks, may represent suitable tools for 
monitoring airborne Hg. The Hg speciation data presented by 
Chiarantini et al., [2] provide evidence of Hg dynamics and fate 
in bark: initially, the metal is mechanically captured at the bark 
surface as particulate, or physically adsorbed as gaseous species, 
but eventually a stable chemical bond is established with organic 
ligands of the substrate. As a consequence, it could be argued that 
deep bark Hg may be a long term, time integrated proxy for Hg 
exposure, while surface bark Hg is more important for short term 
monitoring near Hg point sources.

Case Histories: Hg Distribution in The 
Firenze Urban Area
The previously mentioned studies [1,2] in the Monte Amiata area 
(southern Tuscany, Italy) make a significant case history to demon-

strate the application of tree barks as biomonitors of airborne Hg. 
As previously noted, many bark samples from that area showed 
exceptionally high Hg contents. We present here another case, 
a reconnaissance study conducted in the urban area of Firenze 
(Italy; figure 1a and b), where the measured Hg concentrations 
are much lower (tens of µg/kg).

The occasion for the study was the discovery of a heavy metal 
contaminated area at Coverciano, an eastern neighborhood of 
the city of Firenze (Figure 1). The area (approximately 1,000 
m2) had previously been the seat of industrial activities, and had 
been subjected to remediation (in 2006) after decommissioning 
of the factories. In spite of remediation, a new set of soil analyses 
at the occasion of house building works in 2014 revealed heavy 
metal contents locally exceeding the limits established by Italian 
laws for residential soils [77]. Specifically, analyses by the Tuscan 
regional environmental agency (ARPAT) detected Hg levels up 
to 51.9 mg/kg - average of 12 samples 11.9 mg/kg, against a 
limit of 1 mg/kg. As a consequence of this soil contamination, 
the existence of a moderate, but distinctly recognizable, Hg 
anomaly in air was ascertained by a reconnaissance survey 
(unpublished data) carried out by O. Vaselli and his group 
(Dipartimento Scienze della Terra, University of Firenze) by 
means of a portable Zeeman mercury analyzer (Lumex 915M). 

Figure 1: Map of the city area of Firenze with locations of tree bark sampling; 1a: large scale view with the urban background sample 
sites and the Coverciano area indicated by the black rectangle contour; 1b: enlarged view of the area highlighted in a) and the related bark 
sampling points; the past industrial ground is shown by the red polygon.

The species selected for this study were Pinus pinea L. and Pinus 
pinaster (Aiton). The species are quite similar, specifically the bark 
has an almost identical appearance and structure. Both species 
are fairly widespread in public and private gardens and green 
areas of Firenze (according to the city garden service, more than 
4,000 individuals of Pinus pinea are known within the city limits; 

http://verdeonweb.comune.fi.it/alberature/patrimonio_arboreo.
html). Notably, several individuals occur in close proximity of the 
study area (see details below). Similar to Pinus nigra, the bark of 
Pinus pinaster and Pinus pinea is easily split into distinct layers, 
favouring a study of Hg distribution as a function of depth. A total 
of nine trees were sampled near the study area: three were at a 
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distance of 30 m only to the north, three were located about 150 
m to the west, and three about 200 m to the east (Figure 1b). For 
a comparison with the urban background, a total of eleven trees 
were sampled at seven different locations (Figure 1a). All sampled 
trees were approximately of the same size (trunk radius about 35 
cm measured at a height of 60 cm above the ground level); the 
exact age is unknown, however considering the overall evolution 
trend of public green areas in Firenze, the sampled trees should 
be about 50 year old.

Bark sampling was carried out in May 2015 by means of a ce-
ramic knife at a height of about 1.5 m above the ground. For all 
trees, it was sampled the outermost layer (thickness about 1-2 
mm); for a number of trees two more layers at increasing depths 
(approximately 10-15 mm, and 25-30 mm from the surface) were 
sampled. Following the procedure of Chiarantini et al., [2], each 
bark sample was divided into two subsamples. One subsample 
was oven dried at 110°C until a stable weight was achieved, thus 
allowing calculation of the water loss. This heated subsample 
most probably suffered a partial loss of Hg due to volatilization, 
and was discarded. Mercury was instead analyzed in the other 
subsample; the obtained value of Hg concentration was then 
corrected for water loss as determined for the other subsample, 
and reported on a dry weight basis.

Mercury was measured in barks by means of a direct Hg analyzer 
(Milestone DMA-80), based on EPA method 7473 combining 
thermal decomposition, amalgamation, and atomic absorption 
spectrophotometry. For each bark slice, a portion of about 1 cm3 
was finely minced for subsequent DMA analysis. The final weight 
of each sample ranged between 60 and 150 mg. To estimate the 
analytical precision, replicate analyses of the same slice were 
routinely performed; results were reproduced within 10% of the 
average value. Long-term accuracy was evaluated using interna-
tional standards for soils, sediments and leaves (NIST SRM 2711; 
NIST SRM 1573a; NRC-CNRC MESS-3; CCRMP STSD-1). The 
estimated accuracy was within 10%.

The analytical results are reported in table 1. The overall range 
of measured concentrations in the outermost layer was 18 to 74 
μg/kg. For trees where more than one layer was sampled, there 
is a clear-cut trend of decreasing concentration with depth, as 
already observed for Pinus nigra by Chiarantini et al., [1]. This 
finding confirms that most Hg in tree barks is derived from the 
surrounding atmosphere, and not taken up through the root system. 
Considering only the outermost layers, barks collected near the 
contaminated area show an average content of about 53±11.5 μg/
kg against an average of 30±11 μg/kg for the reference set; the 
difference between the two populations is statistically significant 
(Mann-Whitney U test, p<0.01). We further notice that the highest 
values (62 to 74 μg/kg) are recorded for the three samples closest 
to the contaminated area.

In spite of the reconnaissance nature of this study, these results lend 
further support to the concept that tree barks may be useful tools 
for biomonitoring the airborne Hg levels, and can be sensitive even 
to comparatively small variations of atmospheric concentrations.

Bark depth (mm) 
from the outer 
most layer

Hg (µg/kg)Sample IDSampling site

021
Fi 1Piazzale Donatello 1414

307
035

Fi 2Piazzale Donatello 169
308
036

Fi 3Piazzale Donatello 1615
3614
054

Fi 4Via la Farina 1615
3210
031

Fi 5Via Stoppani - Volta 1225
2615
025Fi 6

Via Stoppani – green area 1012
2410
024Fi 7

Via Caracciolo 1012
248
039Fi 8

Via Caracciolo 1228
2414
033Fi 9

Via Bolognese 1416
309
018T1_1

Trespiano 168
325
018T2_1

Trespiano 1614
329
046DEA SX1Viale De Amicis
050DEA SX2Viale De Amicis
044DEA SX3Viale De Amicis
042DANVia Dannunzio
039NOVVia Novelli
055ANGVia Novelli
074BIB 1Via Schiff
062BIB 2Via Schiff
062BIB 3Via Schiff

Table 1: Mercury concentrations in tree (Pinus pinea L. and Pinus  
pinaster Aiton) barks of the Firenze urban area. For site location refer 
to figure 1a and b.
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Concluding Remarks
Barks are a very promisingly substrate for air pollution monitoring 
studies. They have a very large specific area for contact with air, 
and their structure is able to physically and chemically retain 
pollutants. Barks are able to preserve chemicals even better than 
other tree tissues such as leaves, that can be easily washed by 
rain or, in deciduous trees, be lost seasonally. However, it appears 
evident form the recent literature that there is a need to deepen 
our knowledge into the processes governing the uptake/deposition 
mechanisms on barks and, in addition, in standardizing sampling 
and analytical procedures.

The results of our previous study in the Monte Amiata region 
indicate that Pinus sp. barks may accumulate very high (several 
mg/kg) Hg contents; the data presented in this work for the city 
of Firenze suggest that they can also detect small Hg anomalies 
caused by moderately polluted sites. Mercury derives from the 
atmosphere, and is not taken up through the root system. These 
results confirm the capability of barks in recording airborne  
pollution; moreover, the widespread availability of some species 
in urban areas makes it possible to realize monitoring campaigns 
with a relatively low organizing effort and expenditure.
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