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ABSTRACT 

In this study, the eigenfilter approach is applied to de- 
signing Infinite Impulse Response (IIR) filters having 
an arbitrary magnitude frequency response. A causal 
rational transfer function having an arbitrary number 
of poles and zeros is achieved. The procedure works 
in the frequency domain. Some numerical examples 
showing the application of the presented method to the 
design of multiband filters with different gains and dif- 
ferent magnitude shape in each band are presented. 

1. INTRODUCTION 

The eigenfilter approach is an appealing way of design- 
ing digital filters, mainly because of the simplicity of its 
implementation. In fact, it can be applied to designing 
several types of Finite Impulse Response (FIR) or IIR 
filters [1]-[$I. The method consists in expressing the 
error between a target and a digital filter response as 
a real, symmetric, positive-definite quadratic form in 
the filter coefficients. The error can be referred either 
to the time, the frequency domain, or both of them. 
The eigenvector corresponding to the minimum eigen- 
value yields the optimum filter coefficients according to 
the chosen error measure. Applying the eigenfilter ap- 
proach to the IIR case is more difficult than in the FIR 
case. Design of IIR eigenfilters in the time domain has 
been addressed in [5]. A disadvantage of such approach 
is that it is more difficult to define a frequency weight- 
ing function. In [6][7] the eigenfilter approach is applied 
to the design of allpass sections with a given phase re- 
sponse. By summing up suitable allpass functions a 
lowpass or multiband frequency response filter can be 
designed [7][8]. In this case, however, the degrees of the 
numerator and the denominator of the global transfer 
function are related to the degrees of the allpass sec- 
tions composing the system and can not be completely 
arbitrary. In [9] the solution of an eigenvalue problem 

yields the IIR filter coefficients, even though the classi- 
cal eigenfilter approach, based on the Rayleigh's prin- 
ciple [l] and on the search for the minimum eigenvalue 
of a positive-definite matrix, is not used. 

In this study the eigenfilter approach is used to de- 
sign causal IIR filters with an arbitrary number of zeros 
and poles, whose magnitude frequency response can be 
arbitrarily shaped. The method and the results that 
will be shown represent an improvement of the work 
presented in [lo]. The examples that will be given 
in the experimental results section will illustrate how 
the proposed method works to design multiband filters 
with an arbitrary magnitude frequency response. 

2.  EIGENFILTER APPROACH TO DESIGN IIR 
FILTERS 

The main problem in designing IIR eigenfilters is ex- 
pressing a measure which indicates the difference be- 
tween a. target function and the filter frequency re- 
sponse as a quadratic form in the filter coefficients. 
This task is easier in the FIR case, where the trans- 
fer function is not rational. 

Let H ( z )  be a rational function having M zeros and 
N poles (with arbitrary M and N ) ,  i.e., 

where a , , i  = 0,1 ,  . . . ,  N, and b i , i  = 0,1,  ..., M ,  are 
real coefficients. Let H d ( u )  be a target function rep- 
resenting, in the simplest cases, a lowpass, highpass, 
bandpass filter frequency response. Suppose H d ( u )  is 
defined in a generic interval Ik = (wk , wk+1) as H,d(w) = 
f k ( ~ ) e j ( O k ( ~ )  , where f k ( w )  is a given real function. Con- 
sider we are interested in approximating only the mag- 
nitude of the target function H d ( u ) ,  so that $& ( U )  can 
be any arbitrary real function. In the absence of other 
information we could assume ( P k ( W )  = Kw, with Ir' a 
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given constant. In general, H d ( w )  is approximated by 
H ( w ) = H ( z )  I z = e j w  so that the error function 

& ( U )  = H d ( W )  - H ( w )  (2) 
is minimized in some sense. The function E ( W )  is not 
linear in the ai's  and bi 's  and therefore 1 1  E ( W )  112 is not 
a quadratic form in the filter coefficients as in the FIR 
case. Therefore, a new function related to E ( W )  must 
be used. Consider 

E(w) = & ( W ) D ( W )  (3) 

and let E k ( w )  be the function E ( w )  in the interval I k ,  
that is 

E k ( w )  = H,d(w)(ao + a l e - j w  + . . . + u N e - j N w ) -  

-bo - ble-3,  - . . . - b M e - j M w .  

(4) 
The function D(w)  depends on the poles of H(.z) .  For 
w in the passband, eJW is close to the poles of H ( t )  and 
I D ( w )  I can take on small values. However, since poles 
can not be placed on the unit circle, I D(w)  I is al- 
ways nonzero valued in useful filters. Minimizing E(w)  
in some sense means a weighted minimization of the 
error function ~ ( w ) ,  where D(w)  acts as the weighting 
function. Lower weight is assigned to regions in cor- 
respondence to the poles closer to the unit circle, but, 
since a nonzero weighting function is used, infinite or a 
very large value of the error E ( W )  at these frequencies 
is not expected. Consider the global cost function @ 
given by 

where @k is a positive constant that weights the k-th 
interval cost function i$k given by 

A = [a0 a1 . . . a N  bo bl  . . . bh.11~ (8) 
where eL(w)  = [l e - j w  . . . e - j L w  ] , then the cost func- 
tion $'k can be expressed as 

$'k = ~ ~ ~ k k + ,  A T C ; ( W ) C z ( w ) A  wk(w) d w s  

+ J;kk+l A * C ; ( w ) C ? ( w ) A  W k ( w )  dw 

(9) 

where superscript T and * denote the transposition and 
conjugation operations, respectively (A* = A since the 
filter coefficients are assumed real). Therefore, i$k is 
given by 

i$k = ATP& (10) 
where 

is a symmetric, real, positive-definite ( M  + N + 2) x 
( M  + N + 2) matrix. The global cost function can 
be expressed as 

@ = A T ( x p k P k ) A  = ATPA. (12) 
k 

By using the eigenfilter approach, the optimal filter 
coefficients that minimize the cost function @ are the 
elements of the eigenvector of the matrix P correspond- 
ing to the minimum eigenvalue. The computation of 
the matrices Pk can be performed numerically in each 
band ( w k , w k + l ) .  

The procedure that has been described gives the co- 
efficients that minimize the cost function in a weighted 
least-square sense. However, the designed frequency 
response may have a behavior not completely satisfac- 
tory. The reasons why this happens and suitable coun- 
termeasures are now discussed. 

In this study we are interested in approximating 
only the magnitude of H d ( w ) .  However, the cost func- 
tion E(w)  also depends on p(w), i.e., the phase of 
H d ( w ) .  Therefore, different frequency responses can 
be obtained according to the choice of p(w). In the ab- 
sence of any information we could assume p(w) = Kw, 
where K is a given constant. This choice, hovever, 
leads to an amplitude frequency response that can con- 
siderably differ from the target function I H d ( w )  1. An 
iterative procedure we have found to  be effective to  
reach well-behaved filter frequency responses is the fol- 
lowing. Let A(n)  be the coefficient vector at the n-th 
step and let H ( n ) ( w )  be the corresponding frequency re- 
sponse. Let ' p ( n ) ( w )  be the phase of H d ( w )  at the n-th 
step. Suppose ~ ( ~ ) ( w )  = L H ( " - l ) ( w )  and compute the 
coefficient vector A(n) by solving the eigenfilter prob- 
lem. At the first step p(O)(w) is assumed linear. 

A further improvement can be obtained by includ- 
ing within the procedure a function of the error com- 
puted at the n-th step. In previous articles [1][4][q a 
recursive updating of the weighting function was in- 
troduced to obtain an almost equiripple frequency re- 
sponse. This approach can be used here to reduce am- 
plitude errors. If we define the magnitude error in the 
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interval at the n-th iteration as 

e c ’ ( w )  = 1 I H,d(w) I - I H r ) ( w )  I I .  (13) 

then the weighting function to be used in the (n+l)-th 
iteration is 

W,“”(w) = Wi”’(w) env(ep)(w)) (14) 

where env(g(z)) is the envelope of the positive function 
g(z) (we have used a linear interpolation between the 
local maxima of g(z)). By using this approach, larger 
weights are assigned to frequencies where larger magni- 
tude errors occur. The function W,’”’(w) is normalized 
at each step so that l/(27r) SI, Wln)(u)dw = 1. The 
choice of the BA’s determines the weights to be assigned 
to the different intervals. 

3. EXPERIMENTAL RESULTS 

The effectiveness of the presented method can be shown 
through some numerical examples. The integrals that 
appear into the definition of the matrices Pk have been 
computed numerically by using a grid of 100 points in 
each band. The iterative procedure stops when max( I 
A(”+’) - A(”) 1) < cl or maxk max,(j/ ~ r + l ) ( w )  I - 

I f f r ) ( w )  1 1 )  < €2 (in our design examples we used €1 = 
and €1 = The filter characteristics are 

given in the frequency domain by using the normalized 
frequency F = w/(2n). 

Example 1. Lowpass filter with passband for 0 51 
F 15 0.1 and stopband for 0.12 51 F 15 0.5. The 
transition band is considered as a “don’t care” band. 
By using M = 8 and N = 5 we have obtained the result 
shown in Fig. 1. The weights {,&} = { 1, I} were used. 

Example 2. Multiband filter with a linearly shaped 
passband for 0 51 F 15 0.2, a constant gain (equal to 
0.7) passband for 0.4 51 F 15 0.5 and an attenuation 
band for 0.25 5)  F 15 0.35. The transition band are 
shaped with a fifth order polynomial with null deriva- 
tives at the points where the adjacent passband and 
stopband are joined. The target function is shown in 
Fig. 2 with solid line. By using M = 11 and N = 7 
we have obtained the frequency response shown in Fig. 
2 with dashed line. The weights {@k}=={l, 1, 5, 1, 5) 
were used (the weights refer to passbands, transition 
bands and attenuation band in the order of increasing 
frequencies). Fig. 3 reports the designed magnitude 
frequency response in logarithmic scale. 

Example 3. Multiband filter with a constant gain 
(equal to 1) passband for 0 51 F 15 0.1, a constant 
gain (equal to 0.5) passband for 0.13 51 F 15 0.3 and 
an attenuation band for 0.33 51 F 15 0.5. Also in 

this case fifth order polynomial shaped transition bands 
have been used. The target function and the frequency 
response obtained with M = 15 and N = 9 are shown 
in Fig. 4 with solid line and dashed line, respectively. 
The designed magnitude frequency response in loga- 
rithmic scale is shown in Fig. 5. The weights {,&}={5, 
1, 5, 1, 110) were used. 

As can be seen, in all the cases that are presented 
the target function has been closely approximated by 
the designed magnitude frequency responses. 

4. CONCLUSIONS 

In this study a method for applying the eigenfilter ap- 
proach, based on the Rayleigh’s principle, to the design 
of IIR digital filters is shown. The method works in the 
frequency domain and allows to design filters with an 
arbitrary magnitude frequency response. The number 
of zeros and poles of the filter transfer function is also 
ar bit r ar ,y, 
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Figure 1: Example 1. Frequency response of the filter 
designed with orders M = 8 and N = 5. 

Figure 2: Example 2. Target function (solid line) and 
designed frequency response obtained with orders M = 
11 and N = 7 (dashed line). 
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Figure 3: Example 2. Designed frequency response in 
logarithmic scale. 
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Figure 4: Example 3. Target function (solid line) and 
designed frequency response obtained with orders M = 
15 and N = 9 (dashed line). 
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Figure 5: Example 3. Designed frequency response in 
logarithmic scale. 
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