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Abstract The southern Tanganyika Rift, within theWestern rift, Africa, has earthquakes to depths of 37 km,
yet few constraints exist on crustal thickness, or of early stage rifting processes in apparently amagmatic rift
sectors. The aimof the TANGA14experimentwas to constrain bulk crustal properties to testwhethermagmatic
processesmodify the lithosphere in areasof deep seismicity, and thedegreeof lithospheric thinning.Weuse11
broadband seismometers to implement receiver function analysis using H-κ stacking, a method sensitive to
crustal thickness and VP/VS ratio, to determine bulk crustal properties. Analyses include extensive error analysis
through bootstrap, variance, and phase-weighted stacking. Results show the Archean Tanzanian Craton and
Bangweulu Block are characterized by VP/VS ratios of 1.75–1.77, implying a felsic bulk composition. Crust
beneath the fault-bounded basins has high VP/VS (>1.9). Anorthosite bodies and surface sediments within the
regionmaycontribute to localizedhighVP/VS.However, elevatedVP/VSvalueswithin fault-boundedextensional
basins where elevated heat flow, hydrothermal vent sites, and deep earthquakes are observed suggest that
magmamaybe intruding the lower crustbeneath thesouthernTanganyikaRift. Crustal thicknesseson/near the
relatively unextended Tanzanian craton and Bangweulu Block are 41.6–42.0 km. This contrasts with the
Tanganyika Rift where crustal thicknesses are 31.6 km to 39 km from north to south. Our results provide
evidence for~20%crustal thinning localized to fault-boundedbasins. Taken together, theysuggestapreviously
unrecognized role of magma intrusion in early stage continental rifting in the Western rift, Africa.

1. Introduction

Numerical models predict that tectonic forces are insufficient to initiate rifting of thick, strong continental
lithosphere and favor magmatic processes for helping to initiate extension of the East African rift system
(EARS) (Bialas et al., 2010; Buck, 2004; Koptev et al., 2015). The EARS lies above a large-scale mantle low-
velocity zone interpreted as one or more mantle plumes (e.g., Debayle et al., 2001; Ebinger & Sleep, 1998;
Hansen & Nyblade, 2013; Halldórsson et al., 2014). Yet magmatism in the Western rift is volumetrically small
and spatially restricted to isolated volcanic complexes such as the Katwe-Kikorongo, Virunga, S. Kivu, and
Rungwe volcanic provinces (Ebinger, 1989; Halldórsson et al., 2014) (Figure 1). Regional surface wave studies
of the Rukwa-Malawi region show mantle low-velocity zones localized to the Rungwe volcanic province
(Accardo et al., 2017). Using Pn and Sn phases from sparsely distributed seismic stations along other sectors
of the Western rift, tomographic models of O’Donnell et al. (2014) reveal seismic velocities indicative of nor-
mal mantle temperature. The spatial scale of localized magmatic processes, however, may be less than the
resolving power of these tomographic methods.

The Western rift system is characterized by unusually long (80–120 km) border faults, broad uplifted flanks,
and broad basins containing ~7 km of sedimentary strata (e.g., Morley, 1988; Morley et al., 1992; Rosendahl
et al., 1986). Rift morphology and long faults can be explained by stretching of strong, cold continental litho-
sphere (e.g., Ebinger et al., 1991). Frequent earthquakes at depths of 25–40 km in the Tanganyika Rift have
been interpreted as evidence for strong, cold crust and upper mantle, although earlier interpretations were
limited owing to the lack of information on the depth to the crust-mantle boundary (Craig et al., 2011; Foster
& Jackson, 1998; Yang & Chen, 2010).

In order to address the current inconsistency between observations that lack evidence for magmatic activity,
and models which suggest tectonic forces are not sufficient to initiate rifting, we use receiver function
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analysis from the first dense network of seismic stations deployed on the southern Tanganyika Rift section of
the EARS in Tanzania. We image crustal thickness and bulk crustal VP/VS, the ratio of the compressional wave
velocity to the shear wave velocity of a seismic ray. This enables us to test the hypothesis of whether mag-
matic intrusion and/or partial melt are present within the crust. Bulk crustal composition has been success-
fully used to evaluate the presence of magmatism in other regions such as the Cameroon Volcanic Line
(Gallacher & Bastow, 2012), the Main Ethiopian Rift (MER) (Cornwell et al., 2010), and the Eastern rift in
Tanzania and Kenya (Plasman et al., 2017).

By performing a receiver function analysis of bulk crustal seismic structure, the crustal thickness (H) and VP/VS
ratio (κ) of the Tanganyika Rift are obtained. The identification of bulk VP/VS values gives an insight into the
bulk composition of the crust at a given location. While it is difficult to constrain percent partial melt and per-
cent solidified mafic intrusion versus continental crust with seismological techniques (Hammond & Kendall,
2016), it is expected that magmatic modification of the crust would result in bulk VP/VS values greater than
around 1.8 (Christensen, 1996). Insight into the crustal thickness variation should improve our understanding
of deep earthquakes in continental rift zones, and the manifestation of continental crust extension between
the two rift segments Tanganyika and Rukwa.

2. Background

Faults bounding the Tanganyika Rift transect three major geological terrains: the Tanzanian Craton, the
Bangweulu Block, and a series of Proterozoic belts bounding each craton (Figure 2). The Tanzanian Craton

Figure 1. Map of Lake Tanganyika and surrounding region showing the distribution of stations (purple inverted triangles)
and the fault-bounded area of low topography that previously connected the Tanganyika and Rukwa lake basins. TheWNW
striking oblique-slip fault system is referred to as the Tanganyika-Rukwa Transfer Zone (TRTZ). Inset: the East African Rift
with the Eastern and Western branches bounding the Tanzanian Craton, the Main Ethiopian Rift (MER), the Southwestern
Rift (SWR) and the study area outlined in blue.
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comprises Archean terrains that coalesced ~2.6 Ga (Bellucci et al., 2011 and references therein) which can be
characterized by very low surface heat flow (~34 mW/m2) (Nyblade et al., 1990). The Tanzanian Craton has
deep buoyant roots, enabling stability over several Ga (Bellucci et al., 2011, and references therein). The
Bangweulu block also appears to be deeply rooted from regional surface and body wave tomography
studies (Fishwick & Bastow, 2011; Mulibo & Nyblade, 2013).

The Tanzanian Craton and Bangweulu Block were linked by several Proterozoic belts in the Precambrian (e.g.,
Lenoir et al., 1994; McConnell, 1950) (Figure 2). The Ubendian belt was accreted laterally onto the Tanzanian
Craton during the collision between the Tanzanian Craton and Bangweulu Block (Lenoir et al., 1994) during
the African orogeny 2.1–2 Ga. Since the Paleoproterozoic the NW-SE trending structures of the Ubendian belt
have experienced periods of reactivation along sheared structures (Lenoir et al., 1994). The belt hosts gneiss
layers which dip steeply at terrane boundaries. The most prevalent lithology within the belt is amphibole-
bearing orthogneiss (diorite to granite) with rare quartzites and metacalcareous rocks hosting remnants of
high P-T rock associations (Lenoir et al., 1994).

The Tanganyika Rift hosts 80–100 km long, NW striking, large-offset, normal faults creating broad asymmetric
rift basins containing up to 7 km fluviolacustrine sedimentary rocks (Ebinger, 1989; Morley, 1988; Rosendahl,
1987). The border faults accommodate most of the strain across the basins, based on balanced reconstruc-
tions and flexural models (e.g., Ebinger et al., 1991; Morley, 1988; Morley et al., 1992). Along the length of
the rift, strain is transferred via time-varying transfer fault zones that are oblique to the opening direction
(e.g., Morley, 1988; Rosendahl et al., 1986). Using seismic reflection data, Morley (1988) showed that the
amount of crustal extension locally decreased along single basins toward the transfer zones, providing evi-
dence that transfer zones include en echelon and sometimes overlapping, extensional faults that form locally
broader zones of extension.

The southern Tanganyika rift study area comprises from north to south parts of the Moba, Karema, Marungu,
and Mpulungu border faults and corresponding half-graben basins (Ebinger, 1989; Morley, 1988). The

Figure 2. Tectonic map of the region of interest (Coussement et al., 1994; Ebinger et al., 2013; Lenoir et al., 1994). Eastern
Rift (ER), Southwestern Rift (SW Rift), Holocene (Ho), and Quaternary (Q).

Tectonics 10.1002/2017TC004477

HODGSON ET AL. CRUSTAL STRUCTURE AT THE TANGANYIKA RIFT 2808



Tanganyika-Rukwa Transfer Zone (TRTZ) is a WNW striking oblique-slip fault zone linking strain in the
Tanganyika rift to the subparallel Rukwa rift to the east (Ebinger, 1989; Morley, 1988) (Figures 1 and 2).

There are few constraints on the age of Western rift initiation, with estimates of ~12 Ma from projection of
modern depositional rates (Cohen et al., 1993; Scholz et al., 2011). Volcanic provinces to the north and south
of the rift initiated at 12 Ma and 17 Ma (e.g., Kampunzu et al., 1998), although U-Pb dates of carbonatitic tuffs
in the Rukwa area dated at ~25 Ma, suggesting parts of the Western rift may be older (Roberts et al., 2010).
Roberts et al. (2012) argue synchronous rifting of the Western and Eastern rifts can be attributed to
extensional stresses caused by widespread plume uplift derived from either singular or multiple
plume source(s).

The order of magnitude difference in volume of erupted volcanic products between the Western and Eastern
rifts is linked to the presumed location of one or more mantle upwelling(s) on the eastern side of the deeply
keeled Tanzanian craton, which blocks the flow of hot plume material susceptible to adiabatic decompres-
sion melting (e.g., Ebinger & Sleep, 1998; Koptev et al., 2015; Weerarante et al., 2003). This negates the
requirement for multiple plumes and is consistent with geochemistry assigning a single mantle source for
both branches either side of the craton (Chakrabarti et al., 2009; Halldórsson et al., 2014).

Although no Tertiary eruptive volcanic products have been mapped along the length of the Tanganyika Rift,
Coussement et al. (1994) identified hydrothermal sites with sulfides in Lake Tanganyika, suggesting
magmatic contributions (Tiercelin et al., 1989). These hydrothermal sites may be surface expressions of
deep-seated magma chambers below fault junctions at the base of the crust which may also be responsible
for elevated heat flow measurements (e.g., Ebinger, 1989; Nyblade et al., 1990).

Little is known of upper mantle structure beneath the Western rift, in large part owing to the lack of data from
the Democratic Republic of the Congo (DRC), which borders the western side of the rift. Global and regional
arrays provide some background. O’Donnell et al. (2015) use Pn and Sn tomography to image variations in
uppermost mantle velocity associated with heating and magmatism. They find little evidence for reduced
Pn or Sn velocities beneath southern Lake Tanganyika and argue against magmatic modification. Body wave
tomography from temporary arrays in East Africa reveals low velocities beneath the southern Tanganyika and
Rukwa Rift zones, with the largest velocity anomalies beneath the Miocene-Recent Rungwe volcanic province
(Accardo et al., 2017; Mulibo & Nyblade, 2013). Surface and body wave tomographymodels of East Africa indi-
cate that lithospheric thickness is ≥200 km beneath the Congo and Tanzania cratons, and between 100 and
200 km beneath the Western rift zone (Craig et al., 2011; Fishwick & Bastow, 2011). Lithospheric thinning,
therefore, could be as much as 30%. Elastic plate thickness (Te) derived from coherence analysis of topogra-
phy and Bouguer anomaly (Pérez-Gussinyé et al., 2009) and forward modeling of gravity and topography
(Ebinger et al., 1991) shows reduction of Te to 15–30 km within the fault-bounded basins. The continental
scale crustal model for Africa derived by modeling the free-air gravity anomaly developed from Gravity
Recovery and Climate Experiment data (Tedla et al., 2011) predicts crust in the region of the Tanganyika rift
to be between ~35 and 40 km.

Using the evidence for a lack of significant magmatism in the western rift, O’Donnell et al. (2015) suggest that
a combination of gravitational stresses, combined with dynamic feedbacks between faulting, topography,
and weathering could add to tectonic stresses and facilitate rifting (e.g., Stamps et al., 2015). Alternatively,
mantle buoyancy forces and tractions facilitate rifting (e.g., Sembroni et al., 2016). Receiver function analyses
of widely spaced stations along the Western rift show little difference in crustal structure between the
Archean craton and Proterozoic belt, suggesting that crustal structure has had little influence on the location
of rifting (Tugume et al., 2012). Our study utilizes a denser network of seismometers within the rift and across
the broad uplifted flanks. The array has sufficient spatial resolution to image crustal thinning and any mag-
matic modification within the Ufipa horst between the Tanganyika and Rukwa rift (Figure 2).

3. Method

Thirteen broadband seismometers were deployed on the southeastern shore of Lake Tanganyika (Figure 1)
for 15 months from June 2014. Eleven stations of the network were used, and 457 teleseismic earthquakes
were recorded. Teleseismic earthquakes with magnitudes ≥6.5 were filtered between 0.04 Hz and 3 Hz using
a Butterworth filter. Manual quality control based on a high signal-to-noise ratio and spectral energy with no
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highmode energy interference was performed and the epicentral distance restricted to between 30° and 95°.
After the quality control, 40 very high quality events were selected for receiver function analysis (Figure 3).

A teleseismic body wave consists of an initial Pwave followed by a coda made up of mode-converted energy;
the result of the impedance contrasts at the Moho (Phinney, 1964). If we approximate the crust as a single
horizontal layer, deconvolving the vertical component of the teleseismic arrival from the radial component
yields a receiver function. This receiver function contains the initial P wave arrival, followed by phase arrivals
that represent four phase conversions (Figure 4). The assumption of a single crustal layer can lead to anom-
alous results, as a complex Moho can cause additional phase arrivals (e.g., Hayes & Furlong, 2007). The

Figure 3. The global distribution of all the teleseismic events used to produce receiver functions following quality control
plotted with an azimuthal equidistant map projection. Concentric circles indicate 30° intervals from the center.

Figure 4. (left) An idealized receiver function produced using a (right) velocity model with the reverberation phase arrivals
labeled. Upgoing incident waves and downgoing reflected crustal waves are denoted by uppercase letters; upgoing
converted waves are denoted by lowercase letters. In practice, the receiver function contains much more noise, effectively
hiding the PsSs phase. By stacking the data, the signal-to-noise ratio is increased.
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deconvolution of the vertical component is a mathematically unstable procedure; this study uses the
Extended-Time Multitaper Frequency Domain Cross-Correlation Receiver Function method of Helffrich
(2006). This method develops upon earlier spectral analysis work by Park and Levin (2000) and
Thomson (1982).

We completed quality control of the computed receiver functions by observing the noise present prior to the
Pwave arrival and then use the H-κ stacking method of Zhu and Kanamori (2000). This provides crustal thick-
ness results (H) and bulk crustal VP/VS ratios (κ) by using the following equations:

tPs ¼ H
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where tX is the arrival time of each respective phase and p is the ray parameter of the teleseism. Zhu and
Kanamori (2000) found that the arrival times of the distinct phases are not sensitive to changes in P wave
velocity such that a 0.1 km s�1 change in VP leads to <0.5 km uncertainty in crustal thickness. Therefore, a
global continental crustal average VP of 6.6 km s�1 is assumed for the crust (Christensen & Mooney, 1995)
due to the lack of local constraints for the study region. As the incident angle of the incoming teleseism is
~90° the phase arrival times are less affected by lateral variations in the crust; thus the receiver function
can be approximated as a point measurement (Zhu & Kanamori, 2000). A grid search is applied across the
reverberation arrival times until they are coherently stacked. A crustal thickness and VP/VS range of 20 km
to 50 km and 1.6 to 2.2 were used through the grid search stack as these were deemed the most geologically
reasonable values.

One of the main advantages of this stacking method is that the arrival times of each phase conversion do not
need to be manually picked: consequently, vast amounts of teleseismic data can be processed efficiently. By
calculating the theoretical arrival time for each phase conversion and plotting these on the receiver func-
tions, quality control of the data can be undertaken and the accuracy of the results is improved.
Furthermore, by using teleseismic events with a wide range of azimuths and distances the effects of proximal
lateral structures are minimized.

4. Error Analysis

Error analysis of the data establishes the accuracy and reliability of the obtained results. A combination of
error analysis techniques, outlined below, were implemented to ascertain whether our results were robust.
As outlined in the discussion, the error analysis conducted herein is more comprehensive than reported in
earlier studies by Tugume et al. (2012), and offers insight into differences between results.

The 95% confidence interval (Figure 5a) is a gauge for the accuracy of the H- κ analysis. In addition, Zhu and
Kanamori (2000) use the Taylor expansion of s(H,κ) at the maximum and omit the higher-order terms to
determine the variances (σ2

H=κ) of H and κ:

σ2H ¼ 2σs=
∂2s
∂H2 (4)

σ2κ ¼ 2σs=
∂2s
∂κ2

(5)

where σs is the standard error of the stack at the maximum. However, Eaton et al. (2006), found this method
unsuitable as the error of H and κ tends to increase with the number of receiver functions used in a stack. This
is counterintuitive, as one would expect accuracy to increase when more data are stacked. Furthermore, the
error derived from equations (4) and (5) produced symmetrical ellipses which do not denote the trade-off
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between H and κ values indicated by the inclined elongated contours of the stacking function. To remedy
these problems Eaton et al. (2006) suggest estimating uncertainties in H and κ by plotting contours in the
stack that are one standard error below the maximum value and represent the variance of the stack, this is

given as σ2s =N
� �0:5

. We plot the standard error as a contour below the maximum (Figure 5b). Once the H

and κ values have been obtained, the phase arrivals tPs, tPpPs, and tPpSs + PsPs (calculated using
equations (1)–(3)) can be used to visually inspect the dependence of the stack on each phase (Zhu &
Kanamori, 2000) (Figure 5c).

We also use the phase-weighted stacking method to provide a further measure of the robustness of our
results (Schimmel & Paulssen, 1997; Thurber et al., 2014). This method assists in the detection of weak, coher-
ent signals typical of lower mantle P-to-S conversions and removes incoherent noise from the receiver func-
tions. Each receiver function is assigned a stack weighting dependent on the receiver function coherency
with respect to other receiver functions for a station. The phase stack varies between 0 and 1 as a function
of time and is calculated by

c tð Þ ¼ 1
N

∑
N

j¼1
e iϕj tð Þ½ �

����
����; (6)

where N is the number of receiver functions used and Φj(t) is the instantaneous phase of the jth receiver
function. The instantaneous phase is obtained by separating phase and amplitude information using a
Hilbert transform and allows the comparison of receiver functions based on phase rather than amplitude
(Schimmel & Paulssen, 1997). If the phases of a receiver function are incoherent c(t) will equal 0 and the
receiver function will be discarded from the stack. However, if the phases are coherent and c(t) equals 1,

Figure 5. Examples of synthetic H-κ stacks with the linear stacking result (red point). Shown are error analysis techniques:
(a) 95% confidence (purple contour); (b) standard error contour (orange contour); (c) H and κ values derived from tPs (solid
green), tPpPs (dashed green), and tPpSs + PsPs (dotted green) arrivals; and (d) the bootstrap result (blue point).
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the receiver function will be incorporated into the stack. Each linear
stack is weighted by the coherency of the instantaneous phases. To
determine the coherency, the linear stack is multiplied by equation (6).
The result is

g tð Þ ¼ 1
N

∑
N

j¼1
sj tð Þ 1

N
∑
N

k¼1
e iϕk tð Þ½ �

����
����
V

; (7)

where V governs the effect the coherency values have on the H-κ stack. V
remains 0 during a linear stack and has been taken as 2, an empirically
derived constant, in this project for the phase weighted stack. Although
the phase-weighted method aims to remove incoherent noise to make
weaker signals more evident, it also has a tendency to remove later arrivals
that have been misidentified as noise (Thurber et al., 2014). In addition, by
manually selecting receiver functions that agree with calculated phase
arrival times, the phase-weighted stacking becomes less important.

We perform a bootstrap analysis using both the linear and phase-
weighted stacking, developing upon work by Efron and Tibshirani (1991)
and Thompson et al. (2010), to test the robustness of our results. Before
bootstrap analysis can be implemented the number of iterations required
to achieve convergencemust be determined. H-κ stacking is performed on
a bootstrap sample which is randomly sampled, allowing for duplication,
such that the number of receiver functions in the bootstrap sample is
equal to that used in the linear H-κ stacking. The H and κ values are then
calculated, and we calculate a moving average. This process is repeated
until convergence in the H and κ values is observed in themoving average.
Figure 6 shows convergence at 200 iterations in both the H and κ values.
Therefore, 200 iterations of resampling were completed for each station.
We use the variance in averages of each iteration to quantify the
associated error.

Provided there is agreement between the linear and phase-weight stack-
ing, defined as being where the results are within the range of error, and
the magnitude of associated errors are acceptable we can interpret our
results with a high level of confidence.

5. Results

Derived from the 40 events deemed high enough quality for analysis, 66
receiver functions were produced across the 11 seismometers (Table 1,
Figures 7 and 8, and supporting information S1). We find that our results

are reliable, with the exception of stations NINA and SUMA, which have relatively large errors associated with
them (Table 1). The results for these two stations should therefore be treated with caution. We discuss our
results as a range of acceptable results, as determined by the comprehensive error analysis. Crustal thickness
and bulk VP/VS ratios have been presented independently for the region to make the results easier to follow.

5.1. Crustal Thickness

The 11 stations show variation in crustal thickness results from linear stacking from 31.6 km to 42 km with an
average of 37.5 km. The second largest crustal thickness (41.1–42.1 km) is found at the northernmost station,
SITA, near the dipping contact between Proterozoic Ubendian orogenic belt and the Archean craton. The
majority of stations lie along the Ufipa Horst, also in the Ubendian belt, between the Tanganyika and
Rukwa Rifts, where results for crustal thickness range from ~33 km to ~39 km.

Crustal thickness beneath stations within the fault-bounded sedimentary basins spans the range of values
and shows a northward increase in crustal thinning, consistent with sedimentary thickness and age of
faulting (e.g., Cohen et al., 1993; Morley, 1988). The smallest crustal thicknesses (32.4 km, 34.3 km, and

Figure 6. The convergence plots for (top) crustal thickness and (bottom)
VP/VS ratio using bootstrap resampling. Convergence is observed for both
characteristics at 200 iterations.
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Figure 7. Examples of (left column) H-κ stacks and the (right column) receiver functions used to produce them showing
the tPs, tPpPs, and tPpSs + PsSs arrivals. Consistent agreement in the reverberation arrivals can be seen across all of the
receiver functions used for analysis.

Table 1
Results From the H-κ Analysis

Latitude
(deg)

Longitude
(deg) NRF

HLIN_BS
(km)

HLIN_BS
error κLIN_BS

κLIN_BS
error

HPW_BS
(km)

HPW_BS
error κPW_BS

κPW_BS
error

CHAA �7.59 31.27 10 40.7 6.7 1.85 0.12 39.7 6.2 1.89 0.09
KALA �8.13 30.97 5 36.3 2.3 1.92 0.04 36 2.8 1.93 0.06
KASA �8.44 31.15 4 42 1.1 1.75 0.03 41.9 1.1 1.75 0.03
KIPA �7.43 30.59 9 34.3 8.7 1.95 0.17 33 11.8 1.91 0.17
KISA �7.19 31.02 8 32.4 8 1.84 0.13 35.9 12.6 1.77 0.17
KOLA �7.17 30.54 3 31.6 8.4 1.97 0.22 38.8 12.2 1.93 0.1
LAEA �8.58 32.04 6 39 9.5 1.87 0.18 39.6 20.1 1.77 0.28
NAMA �7.52 31.04 4 37.3 5.9 1.95 0.15 35.3 8.8 1.96 1.96
NINA* �7.69 30.72 9 39.6 14.9 1.86 0.28 35 19.5 1.84 0.25
SITA �6.62 31.14 5 41.6 0.5 1.77 0.02 41.5 0.7 1.77 0.03
SUMA* �7.96 31.63 3 37.9 12.6 1.93 0.19 34.9 10.8 1.95 0.15

Note. NRF = number of receiver functions used in a stack. LIN = linear stack. PW = phase-weighted stack. BS = bootstrap results. Results at stations marked with an
asterisk should be treated with caution due to large bootstrap errors. Entries in bold are the result values.
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31.6 km) are obtained at stations KISA, KIPA, and KOLA within the fault-bounded Moba basin segment, with
the largest crustal thickness value of 42 km found at KASA at the southern end of the lake within the thinly
sedimented Mpulungu basin, at the junction of the Southwestern and Western rift zones (Figures 1 and 8).

5.2. VP/VS Ratio

VP/VS ratios show large variations within the study area. The lowest VP/VS ratios are found near the Ubendian-
Archean craton suture (1.77, SITA) and within the Bangweulu Block (1.75, KASA). The highest VP/VS values
occur within the fault-bounded basins, at KOLA (1.97), and KIPA (1.95). These elevated VP/VS values may be
caused by Moho complexity such as is observed in Northern California (Hayes & Furlong, 2007). KOLA and
KIPA are near hydrothermal vent sites and elevated heat flow measurements (Figure 2). The average VP/VS
ratio within the Ufipa Horst is 1.90, with some spatial variability.

5.3. Comparison to Previous Constraints

At the two sites (NAMA and LAEA) where we have obtained receiver functions at the same positions as earlier
analyses by Tugume et al. (2012), we do not reproduce their crustal thickness (47.5 km and 46.7 km) or VP/VS
(1.7 and 1.72) values. In general, we find crustal thicknesses vary far more from site to site, with stations in the
Ubendian belt yielding lower crustal thickness and higher VP/VS than by Tugume et al. (2012). We attribute
differences in results to the very narrow (43.5–48.5 km) window across which Tugume et al. (2012) restricted
the grid search for crustal thickness and VP/VS ratio (1.48–1.98) during the H-κ stacking process.
Consequently, the smaller crustal thicknesses of 37.3 and 39 km that we resolve would not have been possi-
ble solutions in their analysis.

6. Discussion
6.1. Crustal Thinning

Our crustal thickness results for KASA and SITA lie within the typical crustal ranges of Archean shields (Zandt
& Ammon, 1995). The spatial variations in crustal thickness reveal fairly uniform thickness crust beneath the
uplifted flanks of the Tanganyika and Rukwa Rift zones: 35–42 km which is similar to values found in
Archaean-Pan-African crust in East Africa (Fishwick & Bastow, 2011; Tugume et al., 2012). The crust is much

Figure 8. Variations in (left) crustal thickness and (right) VP/VS ratio taken from the linear stacking results (Table 1). Crustal
thickness varies between 31.6 km and 42.0 km. Thinner crust can be seen flanked by thicker crust to the north and south.
VP/VS ratios vary from 1.75 to 1.97 where high VP/VS ratios correspond to low crustal thicknesses.
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thinner beneath the fault-bounded sedimentary basins. KISA (32.4 km) lies within the NW striking transfer
fault zone linking the Rukwa border fault to the Tanganyika transfer faults, which continue beneath the lake.
If an initial Proterozoic crustal thickness of 40 km is assumed, crustal thicknesses beneath the Marungu basin
and within the accommodation zone between theMarungu andMpulungu basins suggest a stretching factor
of 1.23. The 25% decrease in crustal thickness from the flanks to the fault bounded Tanganyika basins reveals
more stretching than originally estimated from balanced reconstructions of basement-involved faults
imaged in seismic reflection profiles (10%; Morley, 1988), which only consider the brittle deformation within
the crust, and from flexural modeling of basin and flank morphology (~15%; Ebinger et al., 1993), which were
loosely constrained by assumed crustal thickness.

Crustal thicknesses in the Tanganyika Rift increase progressively southward. This along-rift change in crustal
thickness is consistent with the southern Tanganyika Rift and northern Rukwa Rift overlapping in en echelon
rift segments. Extension in the southern Tanganyika Rift is progressively transferred to the Rukwa Rift, and to
the Mweru rift and Southwestern Branch (Figures 2 and 8). The crust between the overlapping rifts is also
thinned (mean of 36.5 km) relative to the stable cratons, suggesting distributed strain occurs across the inter-
vening Ufipa Horst.

Moho gradients have been shown to affect the results of H-κ stacking (Lombardi et al., 2008; Tomlinson et al.,
2006). The crustal thickness results that we present here suggest a Moho that dips away from the rift
(Figure 11), a pattern observed in the Eastern rift (Plasman et al., 2017). The majority of the earthquakes used
in our study have a back azimuth in the northeast direction (Figure 3). They will be arriving, therefore, from
the downdip direction of the Moho. Models of receiver functions by Lombardi et al. (2008) show that receiver
functions with a back azimuth in the downdip direction will cause a slight overestimation in crustal thickness
and a slight underestimate in VP/VS, whereas the affect is much stronger and opposite for receiver functions
from the updip direction. The greatest difference in crustal thicknesses in our study are at KOLA and SITA,
which are ~90 km apart (Figure 1). The Moho dip between these stations is ~5.6° NE. This dip would result
in a maximum error in crustal thickness and VP/VS of ±0.5 km and ±0.02, respectively (Lombardi et al.,
2008). We can therefore conclude that errors related to Moho gradients do not significantly affecting
our results.

6.2. VP/VS Ratio

The largest crustal thicknesses obtained (42 km and 41.6 km), at KASA and SITA correspond with the lowest
VP/VS values (1.75 and 1.77). Zandt and Ammon (1995) found Archean Shields to have VP/VS ratios of 1.78,
attributing this to the abundance of quartz and plagioclase feldspar. These characteristics are a result of for-
mation occurring prior to the onset of modern plate tectonics, when mantle temperatures were higher dur-
ing the Archean (Durrheim & Mooney, 1991).

The average VP/VS ratio obtained in this study is 1.89, which is substantially higher than the Late Proterozoic
crustal average of 1.73 (Guerri et al., 2015), and of VP/VS values in the Ugandan sector of the Western rift
(Gummert et al., 2015). Excluding the results from stations on cratonic lithosphere, an average VP/VS ratio
within the Ufipa Horst of 1.91 is found. Anorthosite and ultramafic bodies in the Ubendian belt locally may
contribute to the regionally high VP/VS values (e.g., Lenoir et al., 1994). The ultramafic components and high
plagioclase content of anorthosite leads to high VP/VS values of 1.9 (Christensen, 1996). The isolated bodies of
anorthosite and ultramafic rocks are not sufficient to explain our high VP/VS values. It may be that the up to
7 km thick sedimentary strata, which typically have VP/VS ratios of 1.83–2.10 (Zhao et al., 2010), locally contri-
bute to the high VP/VS ratio. A thick sedimentary layer will produce a converted PS phase from the base of the
layer. The resolution of the receiver function method rarely is sufficient to distinguish between such con-
verted phases and the direct P arrival (e.g., Cornwell et al., 2010). A significant sediment layer therefore results
in a delayed direct P arrival (Cornwell et al., 2010; Langston, 2011; Yu et al., 2015), we do not observe this in
any of our receiver functions and we conclude that sediments do not significantly affect our results.
Therefore, a mafic component to the bulk composition of the crust (Figure 9), may be required to explain
the elevated VP/VS.

The order of magnitude smaller volume of magma erupted in the Western rift has been attributed (1) to
much smaller amounts of thinning, in the Western rift, with a lithosphere too thick for melting to occur
(e.g., Ebinger et al., 1993; Pérez-Gussinyé et al., 2009) and (2) to the location of hot upwelling on the
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eastern side of the Tanzania craton (e.g., Fishwick, 2010; Weerarante et al.,
2003). The lack of surface volcanism and absence of shallow earthquake
swarms characterizing other African diking events, in addition to normal
lithospheric seismic velocities led O’Donnell et al. (2014) to suggest that
the Tanganyika rift is undergoing amagmatic extension.

The highest VP/VS ratios of 1.97 and 1.95 at KOLA and KIPA have been
found at stations near hydrothermal vents and areas of elevated heat flow
within the rift (Coussement et al., 1994; Ebinger et al., 1991; Lenoir et al.,
1994). Fluid circulation along the deeply penetrating normal and
oblique-slip fault systems could explain the hot springs and hydrothermal
vents, but the heat flow values indicate elevated geotherms across the
basin, considering the relativeminor stretching that has occurred. An alter-
native mechanism to explain the high VP/VS, elevated geotherms, and
deep seismicity is through the addition of magma to the base of the crust
beneath some parts of the Marungu basin. If the mantle was stretched by
the same amount as the crust, an originally 130 km thick lithosphere could
be thinned to the liquidus, generating small melt fractions (e.g., Keen,
1985; Van Wijk et al., 2001), with or without the hotter temperatures of a
mantle plume. VP/VS ratios larger than 1.94 are usually representative of
fluid filled pores or fractures (Wang et al., 2009; Zandt & Ammon, 1995),

or partially molten rocks supporting the hypothesis of fluids in the lower crust. With stretching values near
the limit of magma production, one may expect patchy occurrences related to small variations in original
lithospheric thickness, volatile content, and stretching.

Elevated VP/VS ratios have been interpreted as resulting from mafic intrusions at other rifts globally. Using
receiver functions, Plasman et al. (2017) also find elevated VP/VS (1.85–1.97) and a gradational Moho in areas
of magma intrusion imaged in tomography models (Roecker et al., 2017) from the Magadi-Natron-Manyara
sector of the Eastern rift, which formed in Archaean lithosphere. Daly et al. (2008) performed a tomographic
inversion to produce a 3-D P wave model of the Main Ethiopian Rift and identified high κ values (1.81–1.84)
along the rift axis at a consistent depth which were interpreted as cooled mafic intrusions. Furthermore, the
elevated VP/VS values, in addition to supplemental geophysical evidence, implied significant dyking from
midcrustal depths to the surface. Higher κ values (1.85–1.93) across the Main Ethiopian Rift were interpreted

Figure 9. The range of VP/VS values for typical crustal lithologies
(Christensen, 1996) with significant VP/VS values obtained from this project.
The Main Ethiopian Rift and average global values have been taken from
Stuart et al. (2006) and Guerri et al. (2015), respectively. The VP/VS values from
Christensen (1996) were obtained at constant pressure-temperature condi-
tions, it is important to note that Guerri et al. (2015) has revealed greater
variation when a full range of crustal pressure-temperature conditions are
used.

Figure 10. (left) Correlation results between observed receiver functions and modeled receiver functions, calculated
with a maximum frequency of 1 Hz. High relative correlation indicates the best match between observed and mod-
eled receiver functions. Results show that stations within the Ufipa Horst (KISA, KASA, and KIPA) show evidence for a
gradational Moho, whereas stations that lie toward the edge of the rift show evidence for a less altered, flatter Moho
(KALA). (right) Observed receiver function stacks (colored) compared to the synthetic receiver function (black) which
produced the highest correlation.
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as frozen gabbroic sills which could potentially contain some partial melt (Cornwell et al., 2010). Therefore, it
is likely that the elevated VP/VS values obtained by our study are at least partly a result of mafic addition to the
crust, the source of which could be magmatic intrusions into the lower crust.

If magmatic intrusions have affected the lower crust in the region, they would be expected to alter the nature
of the Moho to become more gradational (e.g., Thybo & Artemieva, 2013, and references therein). To inves-
tigate this, we performed forward modeling of receiver functions for a range of crustal models with an
increasingly gradational velocity increase at the Moho (Helffrich, 2006; Langston, 1979; Ligorria & Ammon,
1999; Randall, 1989). We tested a sharp Moho, and gradations of 3 km, 5 km, 7 km, and 9 km. We then calcu-
lated the correlation over the t1 and t2 arrivals of each model with the calculated receiver functions at each
station, selecting the model with highest correlation as the best fit (Figure 10). Each gradation has a P wave
velocity that increases from 6.6 km s�1 to 8 km s�1, with Swave velocities increasing relative to the calculated
VP/VS ratio. In addition, we repeated the modeling with receiver functions calculated with maximum frequen-
cies of 1 Hz, 1.5 Hz, and 2 Hz in order to test the models with increasing vertical resolution. Attenuation within
the crust is not considered in the modeling of receiver functions, and therefore, care must be taken when
comparing the amplitudes of the t1 and t2 phases to the receiver function data, which will be affected by
attenuation. We found that results were consistent across the different frequency ranges.

The results of the forward modeling suggest that the width of Moho gradation generally increases within the
Ufipa Horst (Figure 11). In particular, we see Moho gradations of 9 km at stations KOLA, KISA, KIPA, and NAMA.
These stations also display some of the highest VP/VS ratios (Figure 8). If we assume that prior to any

Figure 11. Results of the forwardmodeling for each station.Displayed results are thebestfitmodel for receiver functions cal-
culatedwith amaximumfrequencyof 1Hz.We see an increase in thewidthof the gradationalMohobeneath theUfipaHorst.
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magmatic modification, the Moho was nongradational, the combination of elevated VP/VS values and
gradational Moho within the Ufipa Horst provides evidence that deep magmatic activity is occurring
beneath the southern Tanganyika Rift (Figure 11). Further, our study suggests that the absence of surface
volcanism is a poor predictor of lower crustal magmatism during early stage rifting. This is especially
important in young rifts, where there has potentially been insignificant time to evolve the widespread and
focused magma plumbing systems required to develop focused surface volcanic centers.

The crustal thickness estimate of ~32 kmmay underestimate maximum stretching across the Marungu basin,
owing to the station location on themonoclinal side of the asymmetric basin. It remains possible that some of
the six teleseisms beneath the Southern Tanganyika rift with focal depths of 30 to 37 km occurred in the
upper mantle. Specifically, the mb 6.5 2 October 2000 Marungu basin earthquake had a focal depth of
37 ± 5 km (Yang & Chen, 2010) (Figure 12). The lower depth limit places the earthquake at the Moho and
could indicate active dike intrusion and underplating as a cause of the unusual seismicity. Further tests of
these interpretations await better seismic network coverage of the lake and its western margins.

7. Conclusions

We analyzed receiver functions from 11 stations at the Tanganyika Rift of the EAR to test whether magma
intrusion has modified the crust during rifting, without geomorphic expression of volcanism. Crustal thick-
ness varies from 31.6 km to 42.0 km with an average of 37.5 km. Crustal thicknesses on/near the relatively
unextended Tanzanian craton and Bangweulu Block are 42.0 km and 41.6 km, respectively. This contrasts
in the Tanganyika Rift where crustal thicknesses are 31.6 to 39.0 km from north to south. Crust in the Ufipa
Horst between the Tanganyika Rift and the Rukwa Rift is thinned relative to the crust along the rift flanks.
Assuming a conservative value of 40 km for prerift crustal thickness (e.g., Last et al., 1997), our new crustal
thickness estimates in the Marungu basin are consistent with a stretching factor of up to 1.25. Crustal stretch-
ing decreases southward between the Marungu and Mpulungu basins, consistent with decreasing sedimen-
tary fill and inferred basin age (Cohen et al., 1993), and with progressive southward transfer of extension from
the Tanganyika Rift to the Rukwa Rift.

The lowest VP/VS ratios of 1.75 and 1.77 are found near the Ubendian-Archaean suture zone, and in the
Bangweulu Block, respectively, consistent with expected felsic composition. Elevated VP/VS elsewhere in
the Ubendian belt (1.84–1.97) are consistent with presence of mafic and ultramafic composition. The high
VP/VS may indicate crustal modification by magmatic intrusion, a hypothesis supported by high heat flow,

Figure 12. A summary of the geological interpretations from this project. Vertical exaggeration of 10:1 above sea level and
1.2:1 below sea level. White squares indicate crustal thickness measurements. Seismogenic layer thickness of 37 ± 5 km
from Yang and Chen (2010). The size of magmatic bodies has been exaggerated. Lower crustal intrusions in the form of
dykes, sills, or ponded magma are assisting SW-NE oriented rifting within the Ubendian Mobile belt. This results in
increased VP/VS ratios within the belt. Isolated anomalously high VP/VS can be attributed to localized anorthosite or
underplated mantle which can feed magma chambers within the crust. These provide a setting for the generation of
hydrothermal fluids. High angle normal faulting provides a potential pathway for the fluids to vent sites at the surface.
Thick, lithospherically strong Archean cratons flank the rift and show no magmatic modification due to rifting.
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the presence of hydrothermal vents, and earthquakes at the crust-mantle boundary. Additionally, Proterozoic
anorthosites and ultramafic bodies may locally contribute to elevated VP/VS. Our results provide the first evi-
dence the onset of magmatic intrusion in the southern Tanganyika Rift, and a potential explanation for the
frequent lower crustal earthquakes in this actively deforming zone.
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