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Introduction
A dense sensory innervation, originating from both 
trigeminal and vagal ganglia, supplies the upper and lower 
airways from the nose to the bronchioles. A portion of  
these neurons (50% in rodents) with unmyelinated C or 
scarcely myelinated A-δ fibers are sensitive to capsaicin,  
the principal active component in plants of the genus 
Capsicum. A proportion of capsaicin-sensitive sensory 
neurons contains the neuropeptides calcitonin gene-
related peptide (CGRP) and the tachykinins substance P 
(SP) and neurokinin A (NKA). These neuropeptides 
are released from central and peripheral terminals of  
capsaicin-sensitive neurons, thus contributing to pain 
transmission and to neurogenic inflammation. Capsaicin  
and other capsaicinoids excite sensory neurons by  
activating the transient receptor potential vanilloid 1  
(TRPV1) [1], which belongs to the TRP ion channel 
superfamily [2,3]. Resiniferatoxin, noxious temperatures  
(> 42°C), low extracellular pH, anandamide,  
N-arachidonoyl-dopamine, certain eicosanoids and other 
agents [4-7] also activate TRPV1. In addition to TRPV1, 
capsaicin-sensitive primary sensory neurons express a  
variety of ion channels and receptors on their plasma 
membranes with excitatory and inhibitory functions 
that regulate neuronal activity. Activation of excitatory  
channels causes irritation and pain, generates 
protective reflex responses, and promotes neurogenic  

inflammation. This review focuses on the functions of 
excitatory TRP channels expressed in primary sensory 
neurons of the respiratory tract, and on the role of  
these channels in health and diseases. The potential 
of drugs that target TRP channels as new medicines to  
treat inflammatory airway diseases and cough is also 
addressed.

TRP channels, primary sensory neurons and 
neurogenic inflammation
Vascular neurogenic inflammation encompasses 
arterial vasodilatation (mediated by CGRP and the  
calcitonin receptor-like/receptor activity-modifying 
protein [CL/RAMP1] receptor), as well as plasma 
protein extravasation in, and leukocyte adhesion to, the  
vascular endothelium of postcapillary venules  
(both mediated by the SP/NKA and NK1 receptors). 
Extravascular neurogenic inflammation in mammal  
airways includes trachea or bronchial smooth 
muscle contraction (mediated by the SP/NKA and 
NK2 receptors), mediator release from the airway 
epithelium, and secretion of mucus from airway glands  
(both mediated by the SP/NKA and NK1 receptors) [8]. 
Exogenously administered tachykinins, mainly acting  
hrough the NK2 and NK1 receptors, have been  
demonstrated to contract human airways both in vitro  
and in vivo [9,10]. However, there is no evidence that 
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endogenous tachykinins contract human airways.  
The activation of additional TRP channels, namely the 
TRPV2, TRPV3, TRPV4 and TRP ankyrin 1 (TRPA1)  
channels, may cause protective reflex responses,  
nociceptive behavior and neurogenic inflammation,  
because these channels are co-expressed by  
neuropeptide-containing and TRPV1-expressing sensory 
neurons [11-16]. In contrast, the TRP melastatin 8  
(TRPM8) channel, which is activated by menthol and 
moderately low temperatures, is expressed by a  
different and TRPV1-negative neuronal subpopulation 
[12]. The TRPV2, TRPV3 and TRPV4 channels are gated  
by warm, non-noxious and noxious temperatures and by  
small reductions in tonicity. No evidence has yet been  
provided that these channels play a major role in  
inflammation and tissue injury in the respiratory  
system, but recent findings demonstrating that TRPV2 
participates in early phagocytosis by macrophages  
[17] highlight a fundamental function in innate immunity 
for the TRPV2 channel expressed in non-neuronal cells. 
TRPA1, which is activated by isothiocyanate, thiosulfinate 
and cinnamaldehyde compounds that are the pungent 
ingredients present in mustard, garlic and cinnamo 
n, respectively [18-22], is rapidly gaining research  
interest as a primary proinflammatory mechanism in  
models of airway diseases [23,24]. 

The efferent and afferent functions of 
TRPV1-positive airway primary sensory 
neurons
The administration of capsaicin to guinea pigs causes 
bronchoconstriction, plasma protein and neutrophil 
extravasation, and cough via the activation of TRPV1, 
which is expressed by a dense network of subepithelial 
peptidergic sensory neurons [25]. Some of these  
responses are generated locally, produced by a 
calcium-dependent neurosecretion from peripheral  
sensory nerve terminals of tachykinins or CGRP, both of  
which activate specific receptors on smooth muscle, 
endothelial or other effector cells directly. Additional 
responses are generated by reflex mechanisms via 
the stimulation of TRP channels. These responses 
include cholinergic bronchoconstriction, secretion from  
seromucous glands, and cough. Notably, several of  
these reflex responses have also been documented 
in humans [26]. The ability of capsaicin to contract  
isolated human bronchi, which then undergo 
rapid tachyphylaxis, has been reported; however, 
the neurogenic nature of this response remains  
undetermined [27]. However, the pronounced effect 
of antagonists of the tachykinin NK2 and, in part,  
NK1 receptors in inhibiting SP/NKA-mediated 
bronchoconstriction in humans [10] has been associated 
with negative reports on the potential of these  
compounds to reduce bronchoconstriction in asthma 
provocation tests [28,29], thus limiting the initial  
enthusiasm for this class of drugs. One possible  
explanation for the diversity observed between  
guinea pig and human bronchi is that tachykinins are  

not released in sufficient amounts or at the correct  
anatomical site in humans to produce effects similar to  
those observed in rodents.

In contrast to the differing responses produced by  
activation of the efferent function (neuropeptide release)  
of airway terminals of primary sensory neurons in 
experimental animals and humans, cough evoked by  
capsaicin in guinea pigs demonstrates close similarities  
with the tussive response observed in healthy humans.  
The site of action of capsaicin-evoked cough in humans  
was initially identified to be localized to nerve terminals 
situated in the larynx [30]. However, more recent  
evidence suggests that the distribution of capsaicin  
aerosols is diffuse, located in both the central and  
peripheral airways [31]. Regarding the type of receptors 
responsible for capsaicin-evoked cough, rapidly adapting 
receptors (RARs) that conduct action potentials in the  
A-δ range have been demonstrated to respond to  
capsaicin or PGE

2 in cats in vivo [32]. In contrast to  
these findings, in a different experimental paradigm,  
RARs appeared to be unaffected by bradykinin or  
capsaicin, both of which can stimulate C-fibers,  
characterized by a high threshold for mechanical  
stimulation [33]. However, a distinction between  
aspiration-induced cough (evoked by rapidly adapting  
touch-sensitive A-δ fibers) and the itchy urge-to-cough 
that can be evoked by the stimulation of vagal C-fibers  
by capsaicin may be simplistic. In fact, interactions  
between these cough pathways have been described, 
as the selective stimulation of C-fibers could sensitize  
A-δ fibers to initiate the cough reflex in guinea pigs  
[34]. In addition, hypertonic saline-induced cough  
appears to be independent from TRPV1 [35,36],  
whereas citric acid-evoked cough, which can be  
inhibited by the TRPV1 antagonists capsazepine or  
iodo-resiniferatoxin, is likely mediated by TRPV1 channel 
activation [36,37]. Additional mechanisms, including 
activation of acid-sensing ion channels (ASICs), can  
contribute to acidic media-induced cough [38]. Thus, 
evidence gained from experimental animals and humans 
suggests that TRPV1 plays a major role in the mechanism 
that initiates the cough reflex. The TRPM8 receptor, which 
is not co-expressed in TRPV1-positive neurons, may 
subserve different or even opposing functions, including 
the paradoxical inhibition of the tussive response [39].  
The other TRP channels (ie, TRPV2, TRPV3, TRPV4 and  
TRPA1) present in TRPV1-sensitive neurons might also 
theoretically contribute to the cough response [3]. 
However, this role has been corroborated only for TRPA1  
by experimental evidence [40,41].

Modulation of TRPV1, TRPA1 and their 
putative endogenous stimulants in the 
airways
Although TRPA1 was originally cloned in human lung  
fibroblasts [42], and has been reported to be present  
in airway epithelial cells [43], functional TRPV1 and  
TRPA1 channels have only been described in sensory  
nerve terminals. Accordingly, the description herein is  
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limited to the neuronal function of these two channels. 
Of relevance is the observation that, under inflammatory 
conditions, the TRPV1 receptor is activated and 
the expression of several mRNAs and proteins are  
upregulated, including nerve growth factor (NGF) [44], 
bradykinin [44,45], protease-activated receptor 2 (PAR2) 
agonist peptides [46,47] or prostanoids [45,48]. All of  
these mediators or receptors have been proposed to play  
a role in the mechanism of asthma and other airway 
inflammatory diseases. In addition, exogenous stimuli 
may also cause TRPV1 sensitization, thereby potentiating 
channel-mediated responses. For example, ethanol  
reduces the threshold temperature for TRPV1 activation 
from 42° [1] to 34°C [49], consequently resulting in 
the stimulation of neuronal TRPV1 at normal body  
temperatures. In the airways, this effect of ethanol  
results in the complete induction of the repertoire of 
neurogenic inflammatory responses [35], including  
cough [50]. These findings may explain the still poorly 
understood clinical entity defined as ethanol-induced  
asthma [51], and are consistent with the recent report 
that inhalation of ethanol in patients with sensory  
hyper-reactivity (SHR), but not in healthy individuals, 
increased the cough response to capsaicin [52].

Various pollutants have been demonstrated to activate 
or sensitize TRPV1-mediated responses, including those  
evoked by subacute exposure to sulfur dioxide [53]  
or the malodorous gas and endogenous mediator  
hydrogen sulfide [54,55]. The eicosanoid 20-hydroxy-
eicosatetraenoic acid (20-HETE), a product of  
cytochrome P450 ω-hydroxylase, is another endogenous 
mediator that has emerged as a potential TRPV1 agonist 
with a bronchoconstrictor action [56]. Furthermore,  
TRPV1-positive nerve fibers, but not protein gene  
product 9.5 (Pgp-9.5)-positive nerve fibers (Pgp-9.5 is  
a non-specific marker that labels all nerve fibers),  
were increased in airway epithelium from patients 
with chronic cough, and this increase correlated with 
an enhanced tussive response to capsaicin [57]. While 
individual endogenous agonist levels may be insufficient 
to activate TRPV1, the combination of different stimuli  
(eg, low extracellular pH, anandamide, N-arachidonoyl 
dopamine or various eicosanoids) with the contribution of 
sensitizing pathways (eg, the bradykinin pathway) might  
lead to channel activation [58]. However, there is no  
evidence that endogenous activators of TRPV1 alone or 
in combination may reach the concentrations required for 
TRPV1 activation at sites of inflammation. Accordingly, 
the role of TRPV1 antagonists in the treatment of  
inflammatory diseases and chronic cough requires  
further investigation.

TRPA1 is also present in airway sensory nerves, and is 
co-expressed with TRPV1 [24]. Studies undertaken in the 
past several years have demonstrated that TRPA1 acts as  
a sensor of oxidative and nitrative stress, and can be  
activated by a variety of byproducts of reactive oxygen  
species (ROS). These ROS molecules not only include 
the metabolites of plasma membrane phospholipids, 

4-hydroxy-2-nonenal (HNE) and acrolein, but also  
hydrogen peroxide, nitrolenic acid, cyclopentenone 
prostaglandins and isoprostanes [58-60]. TRPA1 activity  
is upregulated by PAR2 activation via a phospholipase 
C (PLC)- and phosphatidylinositol 4,5-bisphosphate  
(PIP2)-dependent pathway [61], or by the bradykinin 
B2 receptor via PLC- and protein kinase A  
(PKA)-dependent pathways [62]. Thus, the observation  
that HNE is present in millimolar concentrations in the  
lungs of patients with COPD [63] emphasizes the  
possibility that one or more of the putative endogenous 
TRPA1 agonists are encountered at sites of inflammation  
or tissue injury in concentrations exceeding those  
required for the activation of neuronal TRPA1.

Sneezing, cough and TRPV1 
Sneezing and cough produced by TRPV1 agonists is  
well described in humans [64]. Several studies suggest 
that inflammation specifically enhances the reflex  
response mediated by the capsaicin (TRPV1) receptor.  
For example, the reduced threshold for capsaicin-evoked 
cough in a large series of inflammatory airway diseases, 
including asthma, cough-variant asthma, interstitial lung 
disease (ILD), rhinitis and COPD [65,66], highlights the 
importance of TRPV1 as a marker of airway inflammation. 
Capsaicin (TRPV1)-evoked cough has been demonstrated  
to be insensitive to bronchodilators [31]. In addition,  
patients with upper respiratory tract infections (URTIs) 
demonstrated a selective potentiation of their sensitivity 
to cough by inhaled capsaicin [67]. Patients treated with 
angiotensin-converting enzyme inhibitors who developed 
a dry, persistent cough also exhibited an increased and 
selective sensitivity to cough in response to capsaicin 
[68]. However, in patients with cough induced by  
asthma, gastroesophageal reflux disease (GERD), or  
rhinitis-specific treatment of the underlying disease,  
the capsaicin response was diminished [69]. Collectively, 
these findings support the intriguing hypothesis that  
TRPV1 antagonists may be effective medicines for the 
treatment of chronic cough.

Repeated topical application of capsaicin results in  
transient sensory nerve function impairment [70,71]  
and diminished pain perception from the skin area  
affected by a painful condition [72]. Although a topical  
route of administration, which is ideal for the treatment  
of skin conditions, does not appear feasible in the  
lower airways because of the intrinsic irritant potential of 
capsaicin, this route of administration has been exploited 
successfully in the nasal mucosa, which contains a  
dense sensory innervation network in both rodents and 
humans [73]. Indeed, pain, sneezing and nasal secretion  
are produced by topical capsaicin administered to the  
noses of both rodents and humans [74,75].

Following a pioneering study demonstrating the feasibility 
of human nasal mucosa desensitization after repeated 
topical capsaicin applications [75], the beneficial 
effects of this treatment were reported in patients with  
perennial rhinitis, variably defined as either vasomotor 
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rhinitis [76,77] or chronic rhinitis [78]. An augmented  
pain response to capsaicin suggests that sensory nerve  
hyper-responsiveness may characterize allergic airway 
diseases. Mechanistic studies have suggested a role for 
sensory nerve activation in models of asthma [79] and 
allergic rhinitis [80]. However, a recent meta-analysis 
collected insufficient data to assess the use of capsaicin  
for allergic rhinitis in clinical practice [81].

Cigarette smoke, oxidative stress, 
mechanosensation and TRPA1 
Sensory nerves and neurogenic inflammation contribute  
to acute inflammatory and defensive responses in a  
variety of models of airway disease. For example,  
cigarette smoke is the major causative agent of COPD.  
A seminal study by Lundberg and Saria demonstrated  
that the early inflammatory response to cigarette  
smoke inhalation is mediated entirely by a neurogenic 
mechanism [82]. However, a subsequent study clarified 
that the response was independent of TRPV1 [8].  
Only after 25 years of research, and by selectively  
stimulating the TRPA1 channel co-expressed with TRPV1  
on sensory nerve endings, were the two major  
α,β-unsaturated aldehydes (ie, crotonaldehyde and  
acrolein) contained in cigarette smoke demonstrated 
to be responsible for the bronchoconstriction [24], 
plasma extravasation [82] and neutrophil accumulation 
[83] resulting from cigarette smoke in rodent airways.  
Neurogenic inflammation has also been implicated in  
various acute responses caused by antigen challenge 
in rabbits [84] and guinea pigs [85,86]. In addition,  
asthma-like symptoms, including cough, wheezing, 
chest tightness and dyspnea, have been reported to 
occur after accidental exposure to a broad series of  
environmental irritants or industrial pollutants. 
These symptoms, labeled as irritant-induced asthma 
[87], reactive airways dysfunction syndrome [88] or  
occupational asthma [89], may outlast the short-lived 
exposure to the irritant molecule by months or years  
[87]. Several of these substances, including chlorine 
gas and ROS [90], acrolein [24,58], nitric oxide via  
nitro-oleic acid formation [91], isocyanates [92] and 
toluene diisocyanate [93], have been identified as  
TRPA1 stimulants.

In the allergic response in airways, the contribution of  
TRPV1 to is unknown, although preliminary observations 
appear to negate the involvement of this receptor  
[23]. However, a recent study demonstrated that  
TRPA1-null mice do not develop hyper-reactivity to 
methacholine, and have reduced levels of cytokines and 
other markers of allergic inflammation compared with  
their wild-type littermates, suggesting that TRPA1 and 
its putative endogenous ligands are major contributors  
of allergic reactions [23]. An additional emerging role  
of TRPA1 in cough has been proposed by two recent  
studies [40,41]. Exogenous or endogenous TRPA1 agonists 
and cigarette smoke (which contains large amounts of  
TRPA1 agonists) caused coughing in guinea pigs and  

humans. Thus, in addition to TRPV1, TRPA1 may be 
considered as a major target for the development of 
antitussive medicines.

Ozone [94], cold air [95] and low pH [96] represent  
additional examples of agents that cause an early 
inflammatory response in the airways, with sensory nerve 
endings contributing to this response. More recently, 
exposure to hot air was demonstrated to activate  
TRPV1-dependent bronchoconstriction in guinea pigs [97]. 
In addition, acid instillation into the airways caused  
neurogenic inflammation [98] and cough [37], with 
both responses being sensitive to TRPV1 antagonism.  
Remarkable decreases from the normal pH level of 7.7  
in the exhaled breath condensate obtained from patients 
with asthma, COPD exacerbations, cystic fibrosis and 
other diseases have been reported (for a review, see  
reference [99]). Therefore, an acid-driven and  
TRPV1-dependent mechanism may be hypothesized to 
contribute to the local and reflex responses observed 
in patients with asthma. However, evidence that these  
changes in pH are sufficient to trigger responses  
mediated by TRPV1 and neurogenic mechanisms in  
humans is lacking. Neurogenic inflammation in 
the respiratory system, via a hitherto unknown  
neuro-anatomical pathway, is produced by the presence  
of acid in the esophagus [100]. Moreover, the acidic 
component of gastroesophageal reflux is considered 
to be a major causative agent of the inflammatory 
response associated with GERD-induced asthma, and 
an association between GERD and asthma has been  
proposed [101]. 

Although a genetic study excluded a role of TRPV1 
in mechanical hyperalgesia [102], pharmacological 
data obtained with different TRPV1 antagonists have 
challenged this proposal [103,104]. Although not  
supportive of a primary role for TRPA1 in  
mechanosensation, available data suggest that TRPA1 
modulates the excitability of mechanosensitive afferent 
neurons [104,105]. However, the relevance of these 
observations, generally obtained at the somatic level, has  
not been determined at the level of visceral  
mechanosensation. Therefore, while the hypothesis 
that TRPV1/TRPA1 activators (eg, low extracellular pH, 
micromolar concentrations of anandamide or  
α,β-unsaturated aldehydes) may be sufficient for tonic 
channel activation under physiological conditions cannot  
be rejected, this idea has not yet been supported by 
conclusive experimental evidence. Phasic TRPV1/TRPA1 
stimulation by mediators generated during inflammatory 
circumstances may be a more plausible explanation.

Conclusion
Neurogenic inflammation is regarded as a self-limiting  
primary defensive mechanism. From an historical  
perspective, peptidergic somatosensory neurons 
may be considered to be the major component of the 
nocifensor system [106]. An example of the protective 
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function of neurogenic inflammation is provided by  
pharmacological and genetic evidence that activation 
of lung TRPV1 receptors reduces bronchial hyper-
reactivity in endotoxin-induced airway inflammation [107].  
However, if triggering factors are produced continuously, 
neurogenic inflammation may cause exaggerated and  
self-perpetuating detrimental effects that could contribute 
to the mechanism of airway inflammatory diseases.  
In this scenario, the roles of TRPV1 and, more recently,  
TRPA1 are emerging. Support for the hypothesis that  
TRPV1 and TRPA1 play a role in airway inflammatory 
disease is provided by chronic cough, which may result 
from conditions such as asthma. The established role 
of TRPV1 in the exaggerated cough response observed 
in a variety of inflammatory airway diseases, and the 
novel identification of TRPA1 as a sensor of oxidative 
and nitrative stress and as a powerful cough mediator,  
indicate these two channels are suitable targets for  
antitussive and, perhaps, anti-inflammatory drugs.  
Various TRPV1 antagonists have undergone clinical 
development, including for inflammatory pain [108];  
thus clinical testing in other indications may soon 
be possible. In contrast, although the first drug 
targeting TRPA1, HC-030031 (Hydra Biosciences Inc/ 
Cubist Pharmaceuticals Inc), has been reported [109],  
the design and development of potent and selective  
TRPA1 antagonists is still at an early stage. However, on  
the basis of pathophysiological findings obtained regarding 
the putative endogenous ligands of the TRPA1 channel 
and their role in models of airway diseases, this channel 
is anticipated to exert a primary role in airway disease; 
thus, antagonists of both TRPV1 and TRPA1 may represent 
innovative therapeutics for respiratory diseases.
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