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1. Human gut microbiota 

1.1 Composition of a healthy gut microbiota 

The human microbiome is the collection of the microrganisms inhabiting the human 

body. This community is composed by thousands of trillions of microbes including 

eukaryotes, archaea, bacteria and viruses [1]. Bacteria in an average human body are 

ten times more numerous than human cells, for a total of about 1000 more genes than 

those pertaining to human genome [1,2]. A theory defined as symbiogenesis the result 

of the permanent coexistence of various bionts to form the holobiont (namely, the host 

and its microbiota) [3]. Accordingly, the holobiome is the totality of the genomes 

inhabiting a eukaryotic organism, which includes the genome of a specific member of 

a given taxon (the host genome, for example human) and the microbiome (the genomes 

of the symbiotic microbiota). Microbiome is composed by the genes of different 

microbial communities which survived and were not eliminated by natural selection 

[3].   

So far, the knowledge about the adult human microbiota depended on culture-based 

methods [1]. However, the intensity and the duration of the culture methods and the 

difficulty to cultivate and identify some microorganisms growth medium made the 

definition human microbiome composition difficult [1].  

The advent of culture-independent approaches such as high-throughput and low-cost 

sequencing methods changed such scenario, enabling to elucidate the microbial 

composition of several body areas [1]. Hence, metagenomics disclosed millions of 

microbes, and allowed to extract sequence data from microbial communities exactly 

as they exist in nature. 

The NIH Common Fund Human Microbiome Project (HMP) was established in 2008, 

with the mission of generating resources that would enable the comprehensive 

characterization of the human microbiome and the analysis of its role in human health 

and disease. Its repository is the Data Analysis and Coordination Center (DACC) 

website [2]. The Metagenomic of the Human Intestinal Tract (MetaHit) Consortium 

Europe is a project financed by the European Commission which started in 2008 with 

the central objective to establish associations between the genes of the human intestinal 

microbiota and human health and disease [4]. 
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The above-mentioned projects together have provided a comprehensive view of the 

human-associated microbial repertoire, and combined data from these studies 

identified 

2172 species isolated from humans, classified into 12 different phyla mainly belonging 

to Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Only three of the 12 

identified phyla contained species isolated from humans, and among them intestinal 

species, Akkermansia muciniphila, representative of the Verrucomicrobia phyla, was 

found. In humans, some of the identified species are anaerobic and hence are usually 

found in oral cavity and the gastrointestinal (GI) tract [5,6].  

The GI tract is an important and abundant interface between the host, exogenous 

factors and in the human body [5]. 

The totality of bacteria, archaea and eukarya colonizing the GI tract is called the ‘gut 

microbiota’. Human co-evolved with microbes, finally tolerating them and eventually 

developing a beneficial relationship [1,5].  

Human healthy gastrointestinal tract contains a number of microbes reaching 

approximately 1014 cells in the entire gut [1,4].  

As regards to bacteria over 1000 gut bacterial species have now been characterized. 

Overall, a healthy gut microbiota, as characterized by sequencing, is dominated by 

bacteria belonging to main two phyla—Bacteroidetes and Firmicutes [1,7-9]. 

Bacterioides, which have been further classified into 5 additional genera (Alistipes, 

Prevotella, Paraprevotella, Parabacteroides, and Odoribacter) [1,10] are Gram-

negative bacteria able to digest carbohydrates [9,11]. Firmicutes on the contrary are 

mostly Gram-positive bacteria able to digest vegetal fibers, such as cellulose, and less 

involved in carbohydrate digestion [9,12]. 

Even if mainly predominated by bacteria, gut microbiota is also composed by Archaea, 

Eukaryotes and Viruses.  

Among archaea, the Methanobrevibacter genus are frequently found in the gut [1,13]. 

They collaborate with other microbes to digest dietary polysaccharides [1,14] and to 

synthesize methane from H2 produced by bacterial catabolism [1,15,16].  

Candida, Malassezia, and Saccharomyces are constant inhabitants of the human gut, 

being other distinct fungi usually found under pathological conditions [1,17]. 

Interestingly, fungi seem to have constituted a beneficial relationship with humans, as 

shown in the case of the protective role of the probiotic yeast Saccharomyces boulardii 

toward cholera. Interestingly, the opportunistic pathogen C. albicans can pass in a 
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specific and beneficial regulated commensal state called GUT (gastrointestinally 

induced transition) in the host intestine [17]. Candida albicans in the GUT state 

develops a specific benign phenotype, in which virulence-associated genes, such as 

the white-opaque switching and hyphal formation genes, are downregulated, enabling 

fungal adaptation for long-term survival in the large intestine [17,19]. In case of an 

impairment of the host immunity, C. albicans cells in the GUT state can modify their 

phenotype and become pathogens [17]. 

As regards to Saccharomyces, a specific microorganism called S. Cerevisiae has been 

identified in human gut and has been considered so far as a transient gut inhabitant 

[17]. Its role and presence in the human gut at birth is still under investigation, being 

possibly just introduced in GI tract later in life through commonly assumed food and 

beverages (wine, beer, bread) [17]. Recent studies on patients affected by Crohn’s 

disease however found elevated serum autoantibodies directed toward S. Cerevisiae 

[17,20], thus suggesting a possible more active role of this yeast in modulating 

inflammatory and immune responses.  

Some protozoa are even common inhabitants of healthy microbiomes [1,21,22], with 

even greater interpersonal variability as compared to bacteria [1,21]. Some of them, 

such as the Blastocystis, have been associated with a protective role toward 

gastrointestinal disease. Also, Helmints can be occasionally found in gut [1,23], where 

they might have an immunomodulatory role, but their presence is nowadays limited 

due to the western dietary habits [1,23].  

Even if it has been estimated that the human virome might be particularly extensive, 

dataa regarding viruses colonizing the human gut microbiota are still lacking, due to 

the difficulties in the methodologies needed for their characterization. [1,24].  

It has been postulated that each human has a specific and hypervariable virome 

[1,25,26], consisting primarily of bacteriophages [1,24,27]. 

Overall, more than a list of specific microorganisms, a healthy gut microbiota should 

have a collection of microbial species collectively sharing the ability to perform 

metabolic functions necessary for microbial survival or implicated in host-microbe 

interaction, such as the production of several short-chain fatty acids, vitamins and 

essential amino acids (“functional core”) [1]. Moreover, a heathy gut microbiota 

should have high richness and diversity of species, it should counteract exogenous 

perturbation and it should return to a healthy state after damages (resilience) [1]. 
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In general, according to the above-mentioned features, a healthy gut microbiota is 

expected to be mainly composed by Bacteroidaceae, Clostridiaceae, Prevotellaceae, 

Eubacteriaceae, Ruminococcaceae, Bifidobacteriaceae, Lactobacillaceae, 

Enterobacteriaceae, Saccharomycetaceae and Methanobacteriaceae. 

 

1.2 Features of gut microbiota according to different gastro-intestinal districts 

 

Besides the dominant phyla, Bacterioides and Firmicutes, microbiota composition in 

the GI tract is variable, according to specific anatomic, physical and chemical 

properties of the different GI regions. 

The upper digestive tract stomach and small intestine is characterized by high levels 

of acids (Ph 4-5), oxygen and antimicrobials, and a short time of transit [5,9,28]. 

Hence, only rapidly growing, aerobic or facultative anaerobes such as 

Lactobacillaceae and Helicobacteriacee, can resist [5,28-31]. Overall, in the small 

intestine the most frequently found species are Enterococcaceae, Streptococcacee, and 

Lactobacillacee.  

On the contrary, the gut microbiota of the large intestine is more stable and mainly 

composed by anaerobes, which can use in the colon (pH=7) the amount of complex 

carbohydrates previously undigested in the small intestine [29]. Hence, in this district 

the community of bacteria has an increased diversity and is mainly composed by 

Clostridiacee (SFB, segmented filamentous Bacteria), Prevotellaceae, 

Bacterioidacee, Lachnospiraceae and Rikenellaceae is predominant. [5, 28-30]. 

In addition, microbial composition is variable among the faecal/luminal and mucosal 

regions. [5,32,33].  

Bacteroidetes appears to be higher in faecal/luminal samples than in the mucosa 

[5,32,34], while Firmicutes, specifically Clostridium cluster XIVa, are most frequently 

found in the mucus layer, as compared to the lumen [5,34]. 

 

1.3 Changes in gut microbiota across life 

 

The composition of gut microbiota changes during life and the process of colonization 

starts at birth. 

The intrauterine environment has been considered so far sterile [5,35,36] and the 

occurrence of any microbe in uterus is largely considered as a harmful and worrying 
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event [35]. Recently, some investigations changed such credence, since they reported 

the presence of a diversified microbiota in the placenta [37], umbilical cord blood [38], 

amniotic fluid [39], fetal membranes [40] and in the spontaneously released meconium 

of pre-term infants [41]. 

Following birth, gut is characterized by low diversity and predominance of the phyla 

Proteobacteria and Actinobacteria [35,36]. During the growth of the neonate, the 

presence of Firmicutes and Bacteroides increases [35,36], finally reaching an adult-

like gut microbiota by the 2.5 years of age [5,42-44]. 

The adult gut microbiota is overall stable, while it tends toward a change with elderly 

[5,35,45-47]. It has been demonstrated that over the age of 65 there is an increase in 

Bacteroidetes phyla and Clostridium cluster IV (while in younger people cluster XIVa 

is more present) [5,35,45-47]. Gut microbiota in centenarians shows further reduced 

diversity, with an increase in facultative anaerobes such as Escherichia coli and 

decrease in butyrate producers (e.g. Faecalibacterium prausnitzii) [5,35,46,48]. Such 

changes imply increased inflammatory status, reduced immune competence, reduced 

short chain fatty acids (SCFA) production and increased proteolysis [5,47,49,50].  

 

1.4 Factors shaping gut microbiota composition 

 

Some factors have been reported to affect the composition of gut microbiota. 

Delivery mode can affect early gut microbiota [1,5,35,51], since caesarean section 

leads to an increase of microbes usually found in the skin or in the hospital, such as 

Haemophilus spp., Enterobacter cancerogenus/E. hormaechei, Veillonella dispar/V. 

parvula [51,52-56], and Staphylococcus [57], while vaginal delivery on the contrary 

implies to the colonization by maternal vaginal and fecal microbes, such as 

Lactobacillus and Bifidobacterium spp [58-60]. 

Furthermore, preterm birth implies a reduced diversity and number of 

Bifidobacterium and Bacteroides [61], compared to full-term infants, while the use of 

perinatal short-term antibiotics leads to an increase in Proteobacteria [41,62]. 

Infant diet is another shaping factor, since breast feeding implies an exposure to more 

than 700 different kinds of bacteria contained in human milk [35,63]. Moreover, 

mother’ milk holds complex oligosaccharides [63,64] with prebiotic activity, able to 

facilitate the growth of beneficial bacterial groups [35,63,64]. Accordingly, formula-
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fed infants have been reported to have a different gut microbiota composition than 

breastfed neonates. [5,36,65,66]. 

Since the introduction of solid food progressively increases the ratio of butyrate 

producers such as Bacteroides and Clostridium species, the age of weaning can affect 

gut microbiota composition too. 

Diet is another essential factor able to modify gut microbiota, both in children and in 

adults.  

Gut microbiota composition depends on the presence of microbiota-accessible 

carbohydrates (MACs) contained in fibers assumed by diet [5]. Totally ‘animal-based’ 

or ‘plant-based’ diets lead to changes in gut microbiota composition [5].  

In case of normal dietary carbohydrates intake and in physiological conditions, there 

is an equilibrium between bacteria able to ferment carbohydrates and those able to 

utilize and modify the protective mucus overlying gut epithelial cells. A depletion of 

dietary carbohydrates leads to a condition of dysbiosis and mucus layer thinning, 

because of a shift of the functions of bacteria which become from usually 

carbohydrates fermenting to mucus utilizing [29,67,68].  

Infants from rural Africa have a diet mainly composed by starch, fibers and plant 

polysaccharides. Hence their microbiota has been found to be abundant in the 

Actinobacteria  and Bacteroidetes phyla [69]. On the contrary, in European children, 

that have a diet rich in sugar, starch and animal protein, the presence of the 

abovementioned groups is lower [69]. Some short chain fatty acids (SCFAs) 

producers, such as Prevotella, can be only recognized in the gut microbiota of African 

children [69].  

The abundance of carbohydrates introduced with diet is reduced in the Westernized 

populations, both in children and in adults. Hence, there might be a consequent 

decreased production of SCFAs, with potential harmful effects of human wellbeing 

and possibly leading to the onset of the diseases. 

Also, the mucus layer overlying the intestinal epithelium in the whole GI tract 

strongly affects gut microbiota composition [35,70-75]. Namely, as previously 

mentioned as regards to diet, the thickness and glycosylation pattern of the mucus layer 

influences the kind of resident microbes, which in turn affect and regulate the mucus 

layer status [35,70].  

Obviously, the use of antibiotics affects the composition of human gut microbiota, 

leading to a reduction in richness and diversity of microbial species [76]. 
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It is possible that some host genetic factors could affect gut microbiota composition 

too. Although results by different studies are quite contrasting and further studies are 

needed, an interesting study reported a similarity between gut microbiota in 

monozygotic twins, as compared to controls [35,77]. More convincing evidences 

regarding a possible, yet to be elucidated, role of genetics in shaping gut microbiota, 

come from mouse models in which the biases related to diet, environment and genetic 

can be experimentally overpassed [35]. 

Host immune system also affect gut microbiota composition, due to the ability of 

some cells in the GI tract, such as Paneth cells, to produce antimicrobial molecules 

which limit pathogen microbes’ growth [78]. Experimental models of mice lacking 

NOD2 or TLR5 (specific kinds of pattern recognition receptors), display pathogenic 

bacterial colonization and a condition of dysbiosis [79-81]. Further evidences of the 

role of an active and competent host immune system in shaping a proper and healthy 

gut microbiota come from investigations on patients affected by HIV infection, in 

which have been found high levels of pro-inflammatory pathobionts such as 

Erysipelotrichaceae and Enterobacteriaceae (which include Salmonella, Escherichia, 

Serratia, Shigella and Klebsiella), together with reduced abundance of genera of 

Bacteroides and Alistipes [82,83]. 

 

1.5 Role of the gut microbiota in human health 

 

Evidences for the role of the microbiota in human health derive from comparative 

studies of mice under germ-free versus conventional microbiota conditions, from in 

vitro studies using human faecal incubations, or complex culture gut models and from 

clinical studies comparing the gut microbiota in healthy patients and in patients 

affected by several disorders. Main roles of gut microbiota are to metabolize foods and 

provide nutrients, to protect against pathogens, to maintain the integrity of the mucosal 

barrier and to regulate both local and systemic immune functions [5,79].  

The GI microbiota synthetizes autonomously vitamin B12, lactic acid bacteria, folate 

(Bifidobacteria), vitamin K, riboflavin, biotin, nicotinic acid, panthotenic acid, 

pyridoxine and thiamine [5,9,84,85]. Colonic bacteria can also metabolize bile acids 

eventually not previously reabsorbed [5,85,86] and express carbohydrate-active 

enzymes needed to ferment carbohydrates, whose degradation leads to the generation 

of metabolites such as SCFAs [5,79,85]. The main SCFAs in colon are propionate, 
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butyrate and acetate, which are respectively mainly produced by Bacteroides, 

Firmicutes and several different gut anaerobes [1,5,79,85]. These fatty acids are 

absorbed by GI tract epithelial cells and exert several actions, such as production of 

energy sources [79,87], as shown by the conversion of propionate to glucose in 

intestinal gluconeogenesis [79,88,89], stimulation of the proliferation and turnover of 

colonocytes (butyrate) [90], improvement of the gut barrier function [88], regulation 

of the tight-junction assembly and stimulation of the mucin synthesis (butyrate) 

[88,91], activation of liver gluconeogenesis (oropionate) and lipogenesis (acetate and 

butyrate) [88].  

Moreover, they regulate inflammatory and immune response [79], [79,92-94] and are 

able to epigenetically control gene expression through their capacity to act as histone 

deacetylase inhibitors [79,88].  

As to the regulation of the epithelium turnover, besides the indirect above-mentioned 

role exerted by butyrate, gut microbes can directly modulate epithelial cell and mucus 

layer proliferation, thus modulating the ability of other pathogens or commensals to 

colonize and proliferate. For example, Lactobacilli rhamnosus GG [95] A. muciniphila 

[96] and Lactobacillus plantarum [97] have been reported to modulate cell turnover, 

while A. muciniphila, B. thetaiotaomicron and F. prausnitzii regulate mucus layer [98-

100].  

The colonic microbiota can also convert ingested dietary protein and endogenous 

proteins (enzymes, mucin, and death intestinal cells) into shorter peptides, amino acids 

and derivatives, short and branched-chain fatty acids, and gases, including ammonia, 

H2, CO2, and H2S [85,101]. 

Interestingly, gut microbiota is also involved in the metabolism of several polyphenols, 

including flavonoids, isoflavones, lignans, hydroxycinnamic acids, ellagotannins, and 

anthocyanins, which are usually poorly absorbed in the small intestine and in the colon 

[85,102], hence affecting their bioactivity [85,103,104]. Human dietary 

supplementation trials and in vitro evaluations regarding the faecal metabolism of 

dietary plant polyphenols pointed out large inter-individual variations in absorption, 

metabolism, and excretion, which could be related to differences in the species 

composing the gut microbiota [105-109]. 

Among the roles of gut microbiota, it is noteworthy and crucial for human 

health its ability to modulate bot immune and adaptive immunity, both at local and 

systemic level. Overall, gut microbiota is able to regulate immune homeostasis leading 
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to immune-stimulatory effects, inducing T reg activation, stimulating neo 

angiogenesis, determining anti-inflammatory effects or strengthening the intestinal 

epithelium barrier functions [79]. Evidences for these functions come from in vitro 

studies and germ-free mice models. 

As regards to the innate immunity, the first line response to microbes depends on the 

presence of a family of receptors called pattern recognition receptors (PRRs), such as 

Toll-like receptors (TLRs) or nucleotide-binding oligomerization domain-like (NOD-

like) receptors [5,29,79,110]. Such receptors sense and recognize specific molecular 

effectors expressed by intestinal microbes known as pathogen-associated molecular 

patterns (PAMPs) [5,79,110]. The activation of such receptors by PAMPs triggers 

immune procedures able to discriminate between beneficial and pathogenic bacteria, 

modulating the activity and recruitment of specific immune cells in order to elicit 

tolerance or elimination [5,79,111]. One of the most recognized kind of PAMPs are 

the unmethylated CpG dinucleotides, present both in prokaryotes [79,112] and 

eukaryotes cells. Mammalian cells express mostly specifically methylated (mt) DNA 

[79,113,114] in case of an apoptosis, necrosis or autophagy, with a consequent prompt 

recognizing by immune cells [79,114]. Interestingly, gut flora DNA can at the same 

time elicit also immunotolerance, through the presence of immunosuppressive DNA 

fragments, able to suppress dendritic cells activity and to activate Treg cells [79,115]. 

Among other important PAMPs can be mentioned the flagellin, that is expressed by 

flagellated bacteria and is detected by TLR5 [29,116] and the lipopolysaccharide 

(LPS), which is expressed by Gram negative bacteria and is sensed by TLR4 [29,117]. 

The development of variants in the flagellin or LPS structures is a strategy used by 

microbes to escape TLRs recognition and immune cell activation. Other species-

specific antigens are the polysaccharide A (PSA), from Bacteroides Fragilis, which 

activates CD11c+ dendritic cells through a mechanism involving TLR2 [118] and 

Segmented Filamentous Bacteria (SFBs), a spore forming Clostridia-related gut 

commensals, which induce a strong immune response [29,119-121] through the 

activation of the dendritic cells and the consequent release of IL-23 [79,119-121], able 

to further activate a Th17 response [79,119-122]. It has been shown that mice only 

colonized by SFB show the same immunocompetence level as compared to mice 

colonized by a complex and complete gut microbiota [114-120] 
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Hence dendritic cells represent a crucial immune element connecting microbes with 

adaptive immunity, since they can process and present microbial antigens to adaptive 

immune promoting tolerance or elimination. 

The GI microbiota also stimulates human immune and epithelial colonic cells to 

produce specific antimicrobial compounds, such as cathelicidins, C-type lectins and 

pro-defensins by the host Paneth cells through a mechanism involving PRRs [5,123]. 

The interaction between PRRs and PAMPs triggers several signaling pathway finally 

leading to an enhancement of mucosal barrier function and to the release of mucins 

and secretory mucosal IgA [5,124]. Such events result in a protection against invading 

pathogens and limit the overgrowth of the commensals [5,124].   

Even if poorly studies in humans, a new class of three different subsets of 

lymphoid cells, called innate lymphoid cells ILC1s, ILC2s and ILC3s, exists and has 

been recently detected on the gut mucosal surface [125-127]. Human ILCs express 

PRRs[127] and promote responses to various harmful events through the release of 

soluble factors such as cytokines and other peptides [127]. Among these there are 

known effector cytokines, such as IFN-γ and TNF, for ILC1s; IL-5, IL-9 and IL-13, 

for ILC2s; and IL-17, IL-22, GM-CSF and IFN-γ, for ILC3s [127]. The release of these 

mediators in turn recruits and activates several adjunctive immune cells [127].  

In addition to the above mentioned recently identified cells, also intra epithelial 

lymphocytes such as γδ T cells and NK T cells represent a crucial defense against 

pathogens and can regulate gut microbiota [125]. In turn, gut microbiota composition 

modulates the function of innate immunity, as shown by the influence of microbes on 

the number and function of NK cells in the first phases of human life [125,128].  

Furthermore, a population of CD103+ dendritic cells and of CD11c+ macrophages are 

specifically involved in immune tolerance or immune response toward gut microbes 

[125]. It is noteworthy that the ability of dendritic cells or macrophages to affect 

immunity and inflammation depends on the presence of butyrate, produced by a 

specific gut microbial signature [125,129], or on the presence and amount of microbial 

microRNA [125,130]. 

As regards to the immunomodulatory activity of microbial metabolites, recent findings 

pointed out that some molecular compounds called quorum sensing (QS) [79,131], 

which are usually secreted by microbes to form a protective biofilm or to trigger the 

expression of virulence factors [131-133], are able to impair the function of 

macrophages and dendritic cells [79,134,135], hence escaping immune system (P. 
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Aeruginosa, Gram negative) [79,134,136], or to downregulate the expression of pro-

inflammatory mediators and to upregulate the expression of the immunosuppressive 

cytokines (B. Subtilis, Gram positive) [79,137] by human intestinal epithelial cells.   

Another interesting immunomodulatory agent is indole [79,133], which 

physiologically reaches elevated levels in human gut and seems to regulate the 

interaction between microbial commensals [133]. It can reduce the expression of pro-

inflammatory mediators such as TNF-α and IL-8 [79,138], or increase the expression 

of the immunosuppressive cytokine IL-10 [89,138]. 

As regards to the adaptive immunity, both T and B cells activities are 

modulated by gut microbiota and are crucially involved in tolerance or response 

toward microbes. 

T cells function and differentiation for instance are modulated by ATP produced by 

Segmented Filamentous Bacteria (SFBs) [125,129,130], which, as already mentioned, 

strongly activate Th17 cells through a mechanism involving IL-6, IL-23 and TGF beta 

release and dendritic cells recruitment [139,140]. SFBs colonization is also able to 

promote the production of mucosal secretory IgA and to regulate the differentiation 

both of Th1 and Th2 [79,141].  

Concerning T regs, such cells are abundant in the lamina propria, where they regulate 

microbial homeostasis and suppress inflammation [139]. Human Clostridia activate T 

regs proliferation through a process involving TGF beta [139,140]. Furthermore, in 

vitro studies performed on T reg cultures show that the addition to the medium of 

SCFAs elicits the activation of T regs and the release of the immunosuppressive 

cytokine [139,142]. SCFAs also inhibits histone deacetylase inhibitors in Tregs, thus 

inducing their hyperactivation [139,143]. Not only their metabolites, but also 

commensal microbes themselves are able to contribute to a homeostatic proliferation 

of FOXP3- CD4+ T cells and FOXP3+ T regs [79,144]. 

Among other metabolites able to modulate T cells activity,polysaccharide A, produced 

by B. Subtilis during fermentation of soybean [79,145], regulates Th1/Th2 

development, modulates Th17 activation [79,145] and lead to the differentiation and 

recruitment of Tregs [79,146]. 

The Th17 response is particularly stimulated in case of an interaction with fungi. First 

line defense toward fungi is the epithelium, which secretes anti-microbial peptides, 

and the activation of an innate immunity, in which monocytes, macrophages, 

neutrophils, endothelial and epithelial cells respond to fungal wall components or other 
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fungal products through specific PRRs, such as C-type lectin receptors, TLRS, or 

galectin family proteins [17,147,148]. Such a stimulation results in phagocytosis and 

direct cell killing. Activation of this immune response can recruit dendritic cells, which 

uptake fungi and trigger an antigen specific adaptive immune response, in which naïve 

T cells are driven toward a differentiation in effector Th1 cells releasing IFN-γ, and 

Th17 cellssecreting IL17A, IL22 and IL17F [17].  

As regards to B cells, microbes strongly activate their IgA release in response to 

possible other pathogens [125,149]. IgA exerts several important roles in gut 

homeostasis and immune response, such as mucus anchoring by bacteria [150], 

opsonization [125,149,150] and the expression of pro-inflammatory structures of 

bacteria [125,151]. Mouse models lacking the ability to produce IgA display an 

increased proliferation of pathogens, such as SFBs [152]. Furthermore, in the absence 

of a proper microbiota, B cell function is impaired and IgA production is switched 

toward an IgE release [125,153], with consequent risk of allergic diseases through an 

activation of basophils and mast cells in mouse models [153,154]. 
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2- Gut microbiota and cancer 

Several evidences point out a possible role of gut microbiota in modulating pro-

oncogenic or anti-cancer mechanisms. Such proofs derive from studies on mice 

selectively grown on germ free conditions and subsequently colonized by selected 

microorganisms, or human or mice treated with antibiotics. Recently, also clinical 

epidemiological or observational studies identified differences in gut microbiota 

composition in humans selected for the presence of a specific tumour as compared to 

healthy controls.  

It is widely recognised that certain microbes, both viruses and bacteria, have a clear 

role in the aetiology of specific cancers. At present, it has been estimated that 20% of 

tumour arises from a specific and unique colonising pathogen [155,156] and a list of 

microbes designated as class 1 agents, thus carcinogens, has been drawn up by the 

International agency for Research on Cancer [IARC] [155,156]. 

Among them it can be recognised Helicobacter Pylori, as the etiological factor of 

gastric cancer [155-158], which however has been reported to have a protective role 

toward oesophagus cancer, possibly because of its induction of changes in the pH and 

reflux [155,157]. 

Other recognised cases of cancer specifically triggered by selected pathogens are liver 

cancer [HBV, HCV, Opisthorchis viverrini, Clonorchis sinensis], bladder cancer 

[Schistosoma haematobium], adult T-cell lymphoma [Human T-cell lymphotropic 

virus type 1 (HTLV-1)], nasopharynx, non-Hodgkin and Hodgkin lymphoma [Epstein-

Barr Virus, (EBV)] and cervix, vagina, vulva, anus, penis and oropharynx carcinomas 

[human papilloma virus, (HPV)] [155,156]. 

Recent findings coming from the advent of metagenomics suggest some cancers might 

be due to an altered composition in the whole gut microbiota [155,157-159], rather 

than to a single pathogen, in a condition known as dysbiosis. Such a suggestion is clear 

and easily acceptable in consideration of the plethora of effects exerted by gut 

microbes and their metabolites on human biology, especially on immune regulation. 

The organs in which the above-mentioned relation is more evident are those in which 

the bacterial density is highest, such as gut, lung and urogenital tract. There are several 

evidences for a decreased microbial diversity in patients affected by colorectal cancer 

[155,157,160-162], in which members of the phyla Firmicutes and Bacteroidetes are 

reduced, and the phyla Proteobacteria, Actinobacteria, Fusobacterium, 
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Verrucomicrobia and Cyanobacteria are increased [160,163-165]. Even among the 

same affected individual, healthy colonic sites adjacent to colon cancer display 

increased Bacteroides and Firmicutes, and reduced Fusobacterium, as compared to 

carcinomatous sites [155,165-167]. 

Even if the results are contrasting and the studies are lacking, due to the difficulties of 

sampling, it has been proved that lung harbours a unique microbiota, dominated by 

Proteobacteria [160,168,169]. Patients affected by chronic obstructive pulmonary 

disease [COPD], one of the recently identified risk factor for lung cancer 

[160,169,170], have exacerbations of COPD episodes after Streptococcus 

pneumoniae, Haemophilus influenzae and Moraxella catarrhalis infections, hence 

suggesting a possible yet to elucidate pro-oncogenic role of lung microbiota in 

pulmonary cancer.  

As to urogenital tract, the healthy urinary tract was considered so far as sterile [171]. 

However, recent next generation sequencing evaluations identified a specific urinal 

microbiota characterized by the main presence of Gardnerella, Lactobacillus and 

Prevotella [171-173]. In addition, Salmonella enterica subsp. enterica serovar Typhi 

infection is also associated with gall bladder cancer [173,174], probably through 

mechanisms involving the release of of β-glucuronidase, the deconjugation of bile 

acids and toxins and subsequent toxic carcinogenic actions on the epithelium of gall 

bladder [173,174,175]. 

From a molecular and pathogenetic point of view, microbes can modulate cancer onset 

and progression, or can protect against tumorigenesis through a wide range of 

mechanisms. Some of them have been discovered only in recent times and are yet to 

be fully elucidated.  

Overall, microbiota composition can affect cancer course modulating immune system 

and inflammation, affecting cell signalling pathways, inducing genotoxic effects and 

releasing pro-tumorigenic or tumour-suppressing metabolites [155,157,159,160, 

174,176,177].  

One of the most important drivers of tumorigenesis is inflammation, and several 

cancers arise from causal chronic inflammatory processes [174]. Moreover, microbiota 

seems to be involved in pro-oncogenic inflammatory process due to a host response 

toward the pathogen [174,176].   

Studies focusing on knockout mice for NOD and Toll like receptors and evaluating the 

effects of pro-carcinogenic inflammatory stimuli in the tumorigenesis of colorectal 
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cancer suggested a possible causal role of a specific microbiota capable of affecting 

immune processes and thus contributing to colorectal cancer [174,178-185]. It is 

noteworthy that the inflammation-induced colorectal cancer driven by an intestinal 

dysbiosis could be transmitted between mice [174,186,187]. 

Another study showed that Enterobacteriaceae family were highly upregulated in the 

colons of IL-10 knockout mice with colitis, as compared to wild-type controls without 

colitis [188, 159]. In this study, the presence of E. coli belonging to Enterobacteriacee, 

correlated with the onset of colorectal cancer after stimulation with procarcinogen 

azoxymethane in the IL-10 knockout mice with colitis. At the basis of the 

pathogenicity of E.coli there was the production of a genotoxin that could induce tumor 

formation through a DNA damage. Interestingly, E. coli strains have been found to be 

highly represented in the gut microbiota of patients with inflammatory bowel disease 

and colorectal cancer versus controls [159,188,189]. 

Furthermore, other studies have shown the presence of high levels of Fusobacterium 

nucleatum in human colorectal carcinoma samples [174, 190]. Such pathogen releases 

a toxin known as FadA which can bind E-cadherin on epithelial cells, hence triggering 

the activation of β-catenin signalling, finally enhancing epithelial cell proliferation 

[174,191, 160, 192, 157]. Another bacterium, the Enterotoxigenic Bacteroides fragilis 

[ETBF], can stimulate the development of colon cancer, through a mechanism 

involving a toxin called Btf which increases the production of reactive oxygen species 

(ROS) [160,174,192-195]. The same toxin has been found to also cause Th17-

mediated colitis.  

Hence, microbiota drives tumorigenesis also through the release of genotoxins, namely 

toxins able to damage DNA through a wide range of mechanisms including increasing 

ROS levels, loss of cell polarity and dsDNA damage and rupture, finally leading to a 

genomic instability. Other pro-tumorigenic genotoxins are AvrA [160,192,196] 

produced by Salmonella Typhi, involved in hepatobiliary cancer, and Cdt Cytolethal 

Distending Toxin, produced by several microbes including Epsilonproteobacteria and 

Gammaproteobacteria, able to induce strong genomic instability [160,197,198]. 

As regards to the release of pro-tumorigenic metabolites, as partly already mentioned 

for inflammation, an important source of oncogenic molecules comes from the 

metabolism of proteins, namely deriving from red meat. Amino acids from proteins 

are fermented by Firmicutes and Bacteroides into N-nitroso compounds, which induce 

DNA alkylation and mutations in the colonic cells [155, 199,200]. In addition, the 

https://www.ncbi.nlm.nih.gov/pubmed/28642840
https://www.ncbi.nlm.nih.gov/pubmed/28642840
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carcinogenic heterocyclic amines of charred meat are metabolized by colonic bacteria 

and transformed in electrophilic metabolites, able to induce DNA damage [155,201]. 

During this process, an increased production of bile acids conjugated to taurine or 

glycine can be found in the liver, which are secreted into the GI tract. An amount of 

such bile acids can be reabsorbed by the colon, where microbes reconvert them into 

secondary bile acids, such as deoxycholic acid [DCA] by Clostridium Scindens. Both 

DCA and taurine are genotoxic and damage DNA, by generating ROS and the 

genotoxic metabolite hydrogen sulphide respectively [155,202]. 

Given the ability of metabolites and immune cells to be absorbed by blood and 

lymphatic circulation and to reach the liver through enterohepatic circulation, and of 

microbes to translocate, it is reasonable that gut microbiota alteration could exert pro-

tumorigenic effects also on distant organs.  

The intestinal microbiota indeed has been found to contributes to the development of 

hepatocellular carcinoma through the induction of TLR4 signalling, which promotes 

the carcinogenetic hepatomitogen epiregulin in the liver [174, 203]. It is noteworthy 

that antibiotics limit the anti-apoptotic effect of microbiota-triggered TLR4 signalling 

[174, 203]. 

Breast cancer could be affected by gut microbiota since some intestinal microbes are 

involved in oestrogens metabolism [155, 204,205] and because a specific GI bacteria, 

Helicobacter hepaticus, has been reported to be involved in mouse breast cancer 

through a TLR5 activation. It is noteworthy that mutation on TLR5 have been reported 

to be associated with long-term survival in patients with ovarian cancer [155, 206]. 

Equols, which are protective gut derived metabolites [207-210] produced by several 

bacteria including bacteria Enterococcus faecium strain EPI1, Lactobacillus mucosae 

strain EPI2, Finegoldia magna strain EPI3, and Veillonella sp. [207, 208], have been 

found in breast tissue, as well as in blood, urine and prostatic fluids [155, 207-210], 

hence suggesting a possible protection toward cancer in these organs. 
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3. Gut microbiota and autoimmune diseases 

Immune system is set to provide a prompt response toward pathogens and to 

contemporarily maintain a tolerance toward self-components. 

Auto-reactive T cells are usually destructed early in life during thymic education [211]. 

Some of them however can by pass such process of control and reach the circulation 

as mature T cells [211]. In case of failure of other regulating mechanism, such as 

release of immunosuppressive cytokines, involvement of suppressing T regs, induction 

of functional anergy and induction of apoptosis, and in the presence of concomitant 

genetic and environmental factors, the expansion of autoreactive T might arise and an 

autoimmune disorder might develop [ 211-213]. 

In the light of the known role of gut microbiota in regulating adaptive immunity, 

several studies investigated its possible causal role in the development of 

autoimmunity and recognized several gut microbes as possible triggering factors of 

autoimmune disorders [212-217].  

The most convincing and exhaustive evidences come from experimental models of 

mice genetically predisposed to the development of specific autoimmune disorders and 

from observational human sequencing studies comparing patients affected by 

autoimmune diseases with healthy controls. 

Type 1 Diabetes (T1D) is an autoimmune disorder characterized by the 

selective destruction of insulin producing β cells of the pancreas by selective 

autoreactive T CD4+ cells and Th17 cells [218-220]. Segmented Filamentous Bacteria 

have been reported to be protective toward the development of Type 1 Diabetes in 

non-obese mice [217,221).  Furthermore, the immune activation of antigen presenting 

cells triggered by the sensing of microbial peptides by TLRs seems to have a crucial 

role in the development of Type 1 Diabetes in non-obese mice [218,222-224]. 

Accordingly, the experimental model of mice lacking the protein MyD88, a crucial 

component of TLR2 which is involved in its activation [225], do not develop Type 1 

Diabetes [218,223]. 

Microbes seem to be involved also in Rheumatoid Arthritis (RA) onset and 

severity, as suggested by mouse models. 

RA is a chronic autoimmune disease characterized by the progressive destruction of 

cartilage and joints, because of the release of autoantibodies by activated T cells, of 



21 
 

proinflammatory cytokines by macrophages and an involvement of Th17 cells [218, 

226].  

IL-1 receptor antagonist deficient (IL1rn -/-) mice are a mouse model which 

spontaneously develop T cell mediated autoimmune arthritis and are susceptible to 

other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis 

[218,227,228]. In germ-free condition, such mice do not develop the disease, and 

interestingly the contemporary TLR2 deficiency in IL1rn -/- mice induces a Treg 

suppression and a more severe arthritis [218,227] due to a consequent Th17 activation 

and IL-17 release [218,227,229]. Other studies on humanized transgenic model of RA 

pointed out that arthritis-susceptible (DRB1*0401) and arthritis-resistant mice display 

different gut microbiota compositions [230,231]. Finally, other interesting 

experimental works showed that the autoimmune arthritis in K/BxN mice under GF 

conditions was less severe and was associated with less autoantibodies production and 

a reduction in splenic Th17 cells, which are usually responsible indeed of the 

pathogenesis of the disease [211, 218, 232-234]. In one of these models, the re-

colonization with SFB is able to induce the disease through the differentiation of Th17 

cells, which circulate toward the joints and trigger the disease [233]. 

Other recent studies on Il1rn -/- mice identified a crucial role of interleukin-1 receptor 

antagonist (IL-1Ra) in regulating gut microbiota, namely in maintaining the natural 

diversity and composition, and confirmed the role of TLR4 in mucosal Th17 cell 

induction in autoimmunity [228].  

 Also, multiple sclerosis (MS), an autoimmune disease in which autoreactive 

Th1 and Th17 cells infiltrate the central nervous system thus inducing axonal damage 

and demyelination [218,235], has been studied on experimental mice models. 

Experimental models show that gut microbes and their activation of innate system, 

seem to have a crucial role in the pathogenesis of the diseases. Indeed, it has been 

shown that gut microbiota restoring with Bacteroides fragilis in mice previously 

antibiotic-treated is able to protect against experimental autoimmune 

encephalomyelitis (EAE) [236], an experimental murine model of MS. Such event is 

due to the recruitment of IL-10-producing Treg cells [218, 236] triggered by the 

presence of Bacteroides fragilis PSA [218, 237]. On the contrary, the interaction 

between polysaccharides A with TLR4 stimulates in vitro differentiation of Th17 cells, 

with a consequent triggering action [218, 238]. Overall, the above-mentioned studies 

show that protective or causal role of gut peptides on MS pathogenesis depend on the 
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kind of TLRs involved in innate immune activation. Further, it has been reported that 

microbial metabolites of dietary tryptophan can modulate astrocyte activity and central 

nervous system inflammation in mice models of autoimmune encephalitis [239,240] 

 Systemic Lupus Erythematosus (SLE) is a heterogeneous autoimmune disease 

involving several organs with a variable clinical course. The diagnosis is based on 

serological parameters such as antinuclear antibodies (ANA), mainly to dsDNA, and 

on specific clinical findings of the skin, joints, kidneys, and the central nervous system 

[241]. 

Emerging evidences suggest a possible role of gut microbioma in SLE, even if its 

causal involvement is less known and in part controversial, as compared to other 

autoimmune disorders.  

Female MRL/ Mp-Faslpr (MRL/lpr) mice, which are lupus prone, have gut microbiota 

alterations, with increased Lachnospiraceae and decreased Lactobacillaceae 

[215,242], as compared to controls [215,242]. Other studies showed that germ free 

GMZ mice, which spontaneously develop lupus, have higher ANA levels but lower 

IgG levels, while on the contrary other studies showed that the same kind of mouse 

model develop a less severe associated nephritis in case of germ free conditions and 

antigens free diet [217,243]. Further, a recent interesting investigation identified a 

marked depletion of Lactobacillales in the gut microbiota of a mice model of lupus 

nephritis (MRL/lpr) [244]. Interestingly, an experimental increase in Lactobacillales 

in the gut through feeding improved renal function of these mice and prolonged their 

survival, due to a decrease of IL-6 and an increase of IL-10 production in the gut, an 

increase of IL-10 in circulation and a shift in Treg-Th17 balance towards a Treg 

phenotype which developed directly in the kidney [244]. 

 

As regards to humans, some comparative studies evaluating gut microbiota in 

autoimmune patients and controls identified differences in the microbial composition 

and in some cases correlations with clinical features of the disease. 

A study on a cohort of Finnish subjects genetically prone to Type I diabetes (high-risk 

HLA) [217,245] pointed out increased Bacteroidetes and decreased Firmicutes in 

children with autoantibodies, as compared to healthy controls, with an overall 

decreased bacterial diversity and reduced stability over time in Type I diabetes   prone 

subjects [245]. Such study was partially confirmed by another subsequent 

investigation, which revealed an increase in the abundances of Bacteroidetes and 
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Clostridium spp. associated with a reduction in the genera Lactobacillus and 

Bifidobacterium [246]. 

Other studies reported the absence of Bifidobacterium species and confirmed increased 

levels of the genus Bacteroides in children with two or more islet autoantibodies [247], 

while a recent investigation pointed out that subjects with autoantibodies and new-

onset patients had different levels of the Firmicutes genera Lactobacillus and 

Staphylococcus , as compared with healthy control subjects with no family history of 

autoimmunity [248].  

Finally, other evaluations also found a decrease in butyrate-producing bacteria in the 

Type I diabetes  seropositive group [249]. 

Concerning RA, bacteria pertaining to the Clostridiales, usually detected in 

healthy human gut, have been detected in the synovial fluid of RA patients, suggesting 

how gut microbes could possibly translocate towards peripheral tissues [230,250]. 

Intestinal microbiota of new-onset untreated rheumatoid arthritis has been found to be 

characterized by a strong presence of Prevotella copri, as compared to controls [251] 

Furthermore, RA patients have significantly less bifidobacteria and bacteria of the 

Bacteroides-Porphyromonas-Prevotella group, Bacteroides fragilis subgroup, and 

Eubacterium rectale--Clostridium coccoides group as compared to fibromyalgia group 

[232]. Finally, even if its anti-rheumatic effect has mainly been linked to the capacity 

to inhibit matrix metalloproteinases [215,252], it is noteworthy that minocycline, 

which is a tetracycline derived antibiotic, is able to reduce RA symptoms [215,253].  

Investigations on human gut microbiota have also been performed on MS patients, in 

which differences in archaea, clostridial and butyrate-producing bacteria where found, 

as compared to healthy controls [254]. Other investigations pointed out an increased 

abundance of Pseudomonas, Mycoplasma, Haemophilus, Blautia, and Dorea genera 

in MS patients, while on the contrary controls showed increased abundance of 

Parabacteroides, Adlercreutzia and Prevotella genera [255] Recently, MS patients 

with high disease activity and increased intestinal Th17 cell frequency have been found 

to display a higher Firmicutes/Bacteroidetes ratio, associated with an increased 

relative abundance of Streptococcus and decreased Prevotella strains, when compared 

to healthy controls and MS patients with remitting disease [256]. Interestingly, the 

intestinal Th17 cell frequency in active MS patients was inversely related to the 

relative abundance of Prevotella [256]. An association between immune markers and 

a specific microbial gut signature was also found in a recent investigation in children 
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affected by MS [257]. At the basis of an altered microbiota in MS patients, there could 

be an altered intestinal permeability, as demonstrated by a recent investigation [258]. 

A recent study on 21 systemic lupus erythematosus patients and controls 

pointed out that Firmicutes to Bacteroidetes ratio and the production of short chain 

fatty acids were altered in SLE patients, as compared to controls [259]. 

Another study in SLE patients from Spain also found a depletion of Firmicutes and an 

enrichment of Bacteroidetes, together with an overrepresentation of genes associated 

with glycan metabolism and oxidative phosphorylation [260]. These findings were 

recently confirmed also in Chinese patients, in whom adjunctive species such as 

Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium, Flavonifractor and 

Incertae sedis were significantly enriched, while genera Dialister and 

Pseudobutyrivibrio were significantly depleted [261].  Interestingly, a study performed 

on in vitro cultures showed that microbiota coming from SLE patient stool samples 

promoted lymphocyte activation and Th17 differentiation from naïve CD4(+) 

lymphocytes to a greater extent than healthy control-microbiota [262]. 

As regards to Behçet disease, which is an inflammatory disease characterized 

by muco-cutaneous and ocular manifestations, possibly involving central nervous 

system, vascular and/or gastro-intestinal districts, an alteration of gut microbiota was 

also found. Namely, a study performed on 22 patients with Behçet syndrome and that 

of 16 healthy co-habiting controls pointed out a depletion in the genera Roseburia and 

Subdoligranulum in Behçet's patients, as compared to controls Behçet's syndrome 

patients exhibit specific microbiome signature [263]. Of interest is the finding of this 

study of a significant decrease of butyrate production in Behçet subjects.  

Another recent investigation found a significant increase in the genera 

Bifidobacterium and Eggerthella and a decrease in the genera Megamonas and 

Prevotella in a group of 12 Behçet disease subjects, as compared with 12 normal 

individuals [264]. 

A common feature of all the so far mentioned autoimmune disorders is a gender bias 

affecting their incidence. 

Overall, studies on humans and mice indeed show that females are 2-10 times 

more susceptible to autoimmune disorders such as RA, MS, SLE, myasthenia gravis, 

Sjogren syndrome and Hashimoto’s thyroiditis [230]. 

Gut microbiota composition could also contribute to explain the gender bias in the 

incidence of organ and non-organ specific autoimmune disorders [216,230,265]. In 

https://www.ncbi.nlm.nih.gov/pubmed/25435420
https://www.ncbi.nlm.nih.gov/pubmed/25435420
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fact, both microbes and hormones indeed are able to interact and modulate each other 

[230,216], since some bacteria are able to produce and metabolize hormones, while in 

turn specific sexual hormones are able to influence immunity and hence to indirect 

modulate microbiota composition [216,230,265,266]. While investigations on human 

gut microbiota comparing male and female compositions in autoimmune disorders are 

still lacking and inconsistent, mice models clearly demonstrated differences in gut 

microbiota between males and females, which predispose to the development of 

autoimmunity. The most convincing evidences come from investigations of mice 

models of type I diabetes [230,265,266], RA [230,231], and SLE [215,242]. 
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4. Gut microbiota and dermatological diseases 

In the last decades, several experimental studies pointed out a possible role of gut 

microbiota in triggering dermatological diseases. Accordingly, it has been postulated 

and widely sustained the existence of a gut-skin-axis, meant as a continuous, massive 

and complex interplay between skin and intestinal microbes, able to maintain skin 

homeostasis and whose perturbation leads to the onset of dermatological diseases 

[267,268]. 

The first suggestion of a strict interplay between skin and microbes come from the 

empirical observations of D. Strachan, who pointed out that infants with a high number 

of siblings had a decreased risk of developing atopy, including eczema. Hence, he 

postulated that the increase of atopic disorders in the industrialized countries could 

originate from a deprivation of microbial exposure in infancy, which could finally lead 

to an immune dysregulation and to an aberrant response to innocuous antigens later in 

life (hygiene hypothesis) [268-272]. 

Interestingly, subsequent recent investigations on gut microbiota colonization really 

pointed out that infant in westernized countries are colonized later and display a 

reduced turnover of specific bacterial strains than children in developing countries 

[273-275]. 

As to the hygiene hypothesis, recent studies suggest that more than the development 

of an aberrant response to antigens, a rupture of the tolerance mechanisms happens. 

Namely, cells involved in immune tolerance, such as Tregs and regulatory Antigens 

Presenting Cells, could be subjected to an impaired maturation because of a reduced 

exposure to certain microbes, leading to the consequent triggering of Th1 or Th2 

responses [268,276]. 

Interesting evidences of a possible dysbiosis in skin disorders come from 

investigations on stool samples of patients affected by atopic dermatitis, through 

culture-dependent methods and culture independent approaches, the latter performed 

using PCR, FISH, IgG serology (on serum) and metagenomic (NGS) [273]. 

As to culture dependent methods, investigators identified different colonization 

patterns when comparing patients affected by atopic dermatitis and healthy controls. 

Overall, a low prevalence of Bifidobacteria [273,277-279] and Lactobacilli [273,277] 

together with a high prevalence of S. Aureus [273, 277-279] and Clostridia 

[273,277,280] were found in fecal samples of atopic patients, when compared with 



27 
 

healthy subjects. Consecutive culture-independent studies increased the knowledge 

about to gut microbiota in atopy. Cross-sectional studies assessing microbes using 

FISH techniques pointed out no differences in concentration of specific gut microbes 

among atopic dermatitis patients and controls, even if a higher bacterioides count and 

a lower bifidobacterial levels correlated with the severity of the diseases in the disease 

group [281]. On the contrary, an interesting prospective study using FISH methods on 

stool samples of infants at high risk for allergy, pointed out a lower 

bifidobacterial/clostridia ratio in subjects who subsequently developed atopy [282]. In 

addition, PCR-DDGE methods have been applied to identify differences in gut 

microbiota among atopic dermatitis patients and controls. Among them, of interest is 

the Dutch KOALA birth study, due to its prospective design. This study examined the 

gut microbiota composition in 957 faeces samples of infants aged 1 month and the 

subsequent development of atopic manifestations and sensitization at 12 months [268]. 

According to this evaluation, the presence of Escherichia coli was associated with a 

higher risk of developing eczema, while infants colonised with Clostridium difficile 

were at higher risk of developing both eczema, recurrent wheeze and allergic 

sensitization [268].  

Among Clostridia, the presence of C. difficile was associated with a higher risk of a 

diagnosis of atopic dermatitis [268].  

The recent advent of metagenomic definitely disclosed the features of gut microbiota 

in atopy. An evaluation on 90 subjects with atopic dermatitis identified a dysbiosis 

affecting the Faecalibacterium Prausnizii subspecies-level. This condition results in a 

reduced production of butyrate and propionate, which are short chain fatty acids with 

known anti-inflammatory properties, and causes a consequent intestinal epithelial 

damage, possibly allowing the passage of toxins and pathogenic microbes in 

circulation, which finally reaches skin and triggers atopy [283]. Another NGS study 

on a lower number of patients analyzed early microbial gut composition and its 

correlation with IgE-associated eczema and innate immune responses, the latter 

assessed as cytokine production in response to microbial TLR4 and TLR2 ligands 

[284]. Authors pointed out a dysbiosis and an immune activation in atopic patients, 

since they observed an increased relative abundance of Gram-positive 

Ruminococcaceae at 1 week in infants developing IgE-associated eczema, as 

compared to controls. Such increase was inversely associated with TLR2-induced 

releases of IL-6 and TNF- α [284]. In such a group, at 1 week, was also found an 



28 
 

inverse association between the abundance of Proteobacteria (comprising Gram-

negative taxa) and TLR4-induced TNF- α secretion [285]. This relationship persisted 

at 1 month, while at 1 year, a-diversity of Actinobacteria was lower in infants with 

IgE-associated eczema, as compared to controls [284]. 

Gut microbiota composition was evaluated also in psoriasis. Some researchers 

performed PCR analysis on fecal samples of patients affected by psoriasis, 

inflammatory bowel disease and hidradenitis suppurativa [285]. In this study, a 

significantly lower abundance of F. prausnitzii was found in psoriasis, as compared 

healthy controls [286]. Interestingly, authors found comparable results in the group 

affected by inflammatory bowel disease [285]. In addition, psoriatic patients had a 

significantly higher abundance of E. coli, while no significant difference in F. 

prausnitzii or E. coli abundance were found in hidradenitis suppurativa group [285]. 

Since patients affected by inflammatory bowel disease have an increased incidence of 

psoriasis [286], the finding of a common gut microbiota signature among these 

diseases strengthens the hypothesis of the existence of a gut-skin axis. Another PCR 

study also found a condition of dysbiosis, suggested by an altered 

Bacteroides/Firmicutes ratio, in psoriatic patients [287]. Interestingly, the presence of 

Actinobacteria, which are a group of microbes owning anti-inflammatory properties, 

inversely correlated with PASI (psoriasis activity severity index) [287]. 

More recently, studies on antibiotic treated and control mice found that antibiotic 

treatment led to a resistance to develop psoriasis-like skin inflammation, which was 

experimentally triggered by imiquimod cream application [288]. The evaluation of the 

stool samples of such antibiotic treated and controls mice through NGS techniques 

pointed out that antibiotic treatment induced an increase in Lactobacillales and a 

decrease in Coriobacteriales and Clostridiales. Since Lactobacillacee can suppress the 

IL23/Th17 axis [289], which has a crucial role in the development of psoriasis [290], 

their increase in antibiotic treated mice might be at the basis of their resistance to the 

growth of psoriasis-like skin inflammation [288]. 

As to humans, metagenomic evaluations of stool samples was conducted both in 

psoriatic and psoriatic arthritis patients. Accordingly, a recent evaluation identified a 

relative decrease in Coprococcus spp. in both groups, as compared to controls, while 

psoriatic arthritis samples were further characterized by a significant reduction in 

Akkermansia, Ruminococcus, and Pseudobutyrivibrio [291]. Interestingly, again the 
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results obtained from the psoriatic arthritis group resemble those so far reported in 

inflammatory bowel disease patients [292]. 

A metagenomic study aiming to assess gut microflora composition was performed on 

twelve Korean patients affected by rosacea [293]. Authors found a dysbiosis in the 

rosacea group, since they observed different compositions of enteral microbiota in 

roseacea patients as compared to rosacea-free controls [293]. Patients with rosacea had 

reduced abundance of Peptococcaceae and Methanobrevibacter and an increased 

abundance of Acidaminococcus and Megasphaera [293]. This study is the first 

assessing gut microbiota in rosacea and shows promising results, even if it should be 

validated by further studies in a larger group of patients.  

Finally, metagenomic approaches have been recently applied to firstly identify the gut 

microbiota composition in experimental mice models developing alopecia [294]. In a 

recent study authors focused on the metabolism of biotin, which is a vitamin involved 

in hair growth and homeostasis [295]. Humans and mice are not able to autonomously 

synthetize it; hence biotin levels decrease unless this vitamin is introduced by diet or 

synthetized by specific gut microbes in condition of eubiosis. Authors found that 

vancomycin treatment, associated with a biotin deficient diet, induced the overgrowth 

of intestinal L.Murinus, and led to the development of a kind of alopecia in which hair 

follicles were retained and congested in a proliferating anagen phase. As to L. Murinus, 

it is noteworthy that this microbial specie beyond its inability to produce biotin, has 

the capacity to consume biotin eventually supplied with the diet. Overall, this study 

indicates that a gut dysbiosis could induce alopecia through a biotin deficiency 

mechanism, induced by the over growth of microbes unable to synthetize biotin or by 

species even able to consume such vitamin. 

In addition, recently it has been reported the hair re-growth in two cases of alopecia 

areata universalis (an autoimmune non-scarring alopecia) treated with faecal 

transplantation for recurrent infection with C. Difficilis [296]. 
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5. Gut microbiota and melanoma 

Melanoma is a malignant tumour arising from melanocytes. It causes the greatest 

number of skin cancer-related deaths worldwide and despite the recent advances in 

therapeutic options, its prognosis in advanced stages remains unfair [297-299]. 

Hence, early detection of melanoma still represents the best means of reducing 

mortality. Before 2011, treatment options for patients with advanced melanoma were 

limited to chemotherapy, IL-2 and interferon-α 2b (IFN) [300]. Recently, new agents 

were demonstrated to improve the clinical course of patients with advanced melanoma: 

BRAF inhibitors (vemurafenib and dabrafenib), MEK inhibitors (trametinib), bcr-

abl/c-kit/PDGF-R inhibitors (imatinib), and angiogenesis inhibitors (bevacizumab and 

aflibercept), as well as immunotherapy with anti-CTLA-4 antibodies (ipilimumab), 

anti-PD-1 antibodies (nivolumab and lambrolizumab) [300].  

In the last years, some studies focused on the composition of gut microbiota in 

murine models of melanoma treated with targeted therapies or conventional 

chemotherapy. The most interesting aspect coming from such investigations regards a 

possible immune-modulating role of gut microbiota in the clinical response to 

anticancer drugs.  

A recent study indeed compared the immune responses of antibiotic-treated 

and untreated mice to transplanted lymphoma, colon carcinoma and melanoma cells 

[301]. Authors assessed gene expression in the tumour microenvironment and found 

that B16 melanomas inoculated in mice treated with antibiotics (ABX, vancomycin, 

imipenem, neomycin) displayed a decreased expression of genes involved in 

inflammation, phagocytosis and adaptive immunity, while genes related to tissue 

development, cancer and metabolism were increased [301]. Moreover, mice were 

subjected to combination of intra-tumoral CpG-oligodeoxynucleotides (ODN), a 

ligand of Toll-like receptor 9 (TLR9), and inhibitory IL-10 receptor antibodies (anti- 

IL-10R) [301, 302]. This immunotherapy is applied to retard tumor growth and 

prolong survival and acts by rapidly inducing haemorrhagic necrosis dependent on 

TNF production by tumor-associated myeloid cells, followed by a CD8+T cell 

response able to eradicate tumor [303]. Authors found that ABX tumor-bearing mice 

had an impairment of the immunotherapy efficacy, showing an increased tumor growth 

and reduced survival. Accordingly, in antibiotics-treated or germ-free mice, tumor-

infiltrating myeloid-derived cells responded poorly to therapy, with a lower production 
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of TNF alpha and IL12B after CpG-oligonucleotide treatment [301]. Authors were 

also able to identify specific bacterial species that could promote or impair the efficacy 

of immunotherapy. Namely, Gram-negative genera, such Alistipes, positively 

correlated with an increased TNF production, responsible of the abovementioned 

anticancer effects. In addition, Lactobacillus genus, including L. murinum, L. 

intestinalis, and L. fermentum, positively correlated with TNF expression, while on the 

contrary Ruminococcus showed a negative correlation [301].  In this group a deficient 

production of ROS and CD8 mediated cytotoxicity was discovered after chemotherapy 

[301]. 

Another interesting study was conducted on mice inoculated with B16F10 

melanoma or MCA205 sarcomas and exposed to cyclophosphamide (CTX), an 

anticancer treatment able to reduce cancer growth recruiting Th1 and Th17 cells 

[304,305]. This study showed that CTX disrupted intestinal barrier increasing its 

permeability, induced a condition of dysbiosis and led to translocation of commensal 

bacteria (namely Lactobacillus johnsonii, Lactobacillus murinus and Enterococcus 

hirae) into the mesenteric lymph nodes and the spleen [304]. In melanoma bearing 

mice grown in conventional conditions, cyclophosphamide treatment and the 

following translocation of bacteria led to an increased the number of interferon-γ and 

IL-17-producing T cells in the spleen. Interestingly, these positive anticancer effects 

were not observed in germ-free mice or in mice that had been treated with antibiotics 

[304]. In addition, Lactobacillus johnsonii and Enterococcus hirae could polarize 

CD4+ T cells coming from conventional mice into a Th1 or Th17 cell phenotype both 

in vitro, while these effects were abrogated in germ-free or antibiotic treated mice. 

Overall, such findings confirm the primary role of an intact microbiota in triggering 

and modulating the immunological anticancer responses elicited by chemotherapies 

[304]. 

Additional studies were also performed on mice exposed to targeted therapies 

for melanoma. A recent evaluation by Vetizou et al. [306] compared the therapeutic 

efficacy of the anti–CTLA-4 treatment (ipilimumab) in mice models of melanoma 

housed in specific pathogen-free (SPF) versus germ-free (GF) or antibiotic therapy 

conditions. Anti–CTLA-4 therapy could regulate melanoma progression in SPF but 

not in GF mice or antibiotic treated mice [306]. The reduced anticancer effect found 

in GF or antibiotic treated mice depended on the decreased anti–CTLA-4–induced 

activation of splenic effector CD4+ T cells and on the reduction of tumor infiltrating 
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lymphocytes (TILs) in melanoma [306]. As to gut microbiota composition, anti 

CTLA-4 treatment induced an increase of specific Bacteroides species in the small 

intestine mucosa, as assessed by qPCR; the recolonization of GF or antibiotic treated 

mice with such species restored anti-CTLA4 anticancer effect [306]. One of the most 

interesting feature of this investigation is the contemporary assessment of gut 

microbiota of humans treated with ipilimumab. Namely, stool samples of 25 

individuals with metastatic melanoma under ipilimumab therapy were recruited and 

analysed.  During ipilimumab therapy, melanoma patients’ gut was found to be mainly 

colonized by Bacteroides species. Fecal microbial transplantation of faeces harvested 

from metastatic melanoma bearing mice in whose intestine the Bacteroides species 

B.Fragilis and B.Thetaiotaomicron were predominant,  induced a marked response to 

CTLA-4 blockade [306]. Hence, this study demonstrates that the anticancer effects of 

anti-CTLA4 treatment in mice can be modulated by a specific composition of gut 

microbiota. 

Also, anti PD-L1 efficacy has been found to be modulated by specific gut microbes 

[307]. A recent investigation indeed compared melanoma growth in mice having 

distinct commensal microbiota (TAC and JAX mice] [307]. Authors identified 

differences in spontaneous antitumor immunity among JAX and TAC mice under anti-

PD-L1 treatment, being such treatment more effective in JAX mice [307]. 

Interestingly, such therapeutic differences disappeared after fecal transfer of feces 

from JAX to TAC mice, or after a co-housing of the two groups. NGS techniques 

applied on stool samples of JAX and TAC mice identified Bifidobacterium as the most 

represented species in JAX mice, and was hence suspected to be associated with the 

antitumor effects [307]. Such suggestion was confirmed by the evidence that oral 

administration of Bifidobacterium alone to TAC mice was able control tumor growth, 

while combination of Bifidobacterium and anti-PD-L1 nearly abolished tumor, 

through an increased dendritic cell activation and a subsequent CD8+ T cell 

involvement, which can invade tumor microenvironment to elicit an anticancer effect 

[307]. Finally, a recent study confirmed that antibiotic treatment in mice models of 

melanoma (inoculated with B16F10 melanoma cells) is able to induce a dysbiosis in 

gut microbiota with a consequent impaired anticancer immune response [308]. Such 

treatment reduced the presence of infiltrated mature antigen-presenting cells in the 

tumor, together with lower levels of co-stimulators proteins, such as CD80, CD86 and 
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MHCII. Antibiotics also induced a defective release of Th1 cytokines, including IFNγ, 

TNFα, IL12p40, and IL12p35 [308]. 

 In the last few years a couple of investigations addressed gut microbiota 

composition in humans affected by metastatic melanoma under targeted therapy.  

A prospective study on 34 melanoma subjects treated with ipilimumab found that a 

specific microbiota composition before starting ipilimumab correlated with the 

subsequent development of a checkpoint-blockade-induced colitis [309]. This clinical 

phenomenon is a complication of the ipilimumab therapy which affects at least 1/3 of 

patients and leads in some cases to the treatment discontinuation [309-311]. Authors 

found that an increased presence of Bacterioides in the faeces at baseline correlated 

with a reduced development of colitis, thus suggesting that this group of microbes 

could represent a biomarker able to predict the possible development of this 

complication [309].  

This finding was also confirmed in a recent independent study assessing gut microbiota 

composition [312], anticancer response and colitis development in melanoma patients 

treated with ipilimumab [312]. Authors found that gut microbiota of patients prone to 

develop colitis was enriched by Firmicutes, while the presence of Bacterioides was on 

the contrary associated to a decreased risk to display the colitis [312].  Authors also 

found that the clinical response to ipilimumab treatment depended on a specific 

microbial composition. They demonstrated indeed that patients whose baseline 

microbiota was mainly composed by with Faecalibacterium genus and other 

Firmicutes had longer progression-free survival and overall survival, as compared to 

patients whose intestinal microbiota before treatment was enriched by Bacteroides 

[312].   

Finally, another recent correlative study assessed gut microbiota composition 

of four groups of melanoma patients treated with ipilimumab alone (I group), with a 

combination of nivolumab and ipilimumab followed by nivolumab (IN group), with 

nivolumab alone (N group) or with pembrolizumab alone (P group), and searched for 

possible correlation of gut microbiota with the efficacy of the therapy [313]. Authors 

found that gut microbiota of responders to all types of therapy was enriched by 

B.caccae and S. Parasanguinis, as compared to non-responders showing cancer 

progression [313]. The gut microbiome of IN group responders also showed an 

increased abundance of Faecalibacterium prausnitzii, Bacteroides thetaiotamicron, 
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and Holdemania filiformis, while P group responders showed a gut enrichment of 

Dorea formicogenerans [313]. 

These studies performed on humans, are not able to provide a causal connection 

between gut microbes and anticancer response of targeted therapies. However, even if 

they should be validated by larger follow up clinical studies, they provide novel 

insights into the mechanisms regulating the anticancer responses and suggest possible 

integrative therapeutics options (probiotics or prebiotics). In addition, these clinical 

investigations propose new biomarkers useful to predict both the response to 

treatments and the occurrence of adverse effects. 
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6. Gut microbiota and vitiligo 

 

Vitiligo is an acquired dermatological disorder characterized by the appearance of 

circumscribed depigmented macules. Such lesions originate from the loss of functional 

melanocytes in the epidermis [314].  

Several theories have been proposed so far to elucidate vitiligo pathogenesis, 

such as the autoimmune theory [315,316], the auto-cytotoxic theory [317,318], the 

neural theory [319], the “impaired epidermal cytokine” theory [320-322], the 

melanocythorragic hypothesis [323] and the recent inflammatory theory [324]. All 

these theories are currently considered as synergistic in determining the disease and 

are sustained by several clinical and experimental evidences [317]. However, among 

them the auto-cytotoxic and the autoimmune theories are at present the most 

accredited.  While in the past autoimmunity and oxidative stress were considered to 

act in a mutually exclusive way in determining vitiligo, recent findings on the contrary 

suggest that these two mechanisms are contemporarily involved in the depigmentation 

process [325].  

In autoimmune disorders such as vitiligo indeed the immune system induces a 

chronic inflammatory milieu, in which ROS accumulate and exert a toxic effect on 

surrounding cells [325]. 

Structural or functional melanocytic proteins therefore could be modified by acute and 

chronic oxidative stress, possibly becoming neoantigens able to trigger auto-reactive 

reactions [326]. Hence, according to this hypothesis, autoimmunity and oxidative 

stress interact in initiating and/or amplifying the loss of melanocytes in vitiligo.  

 As to a potential microbial role in vitiligo pathogenesis, this issue has been 

poorly evaluated so far.   

One recent prospective study on 79 patients with vitiligo and 72 patients with 

telogen effluvium tested the prevalence of H. pylori infection in such groups [327]. 

Authors found significantly higher rates of H. pylori positivity and dyspepsia in the 

vitiligo group than in the telogen effluvium group [327]. In addition, the number of 

patients with dyspepsia was significantly higher in the vitiligo group [327]. No 

correlation was found with clinical features of the disease such as the Vitiligo Disease 

Activity score [327].  
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In the last decades, also some viruses including cytomegalovirus [328-331], 

herpes virus [332-333], hepatitis virus [334-338] and the human immunodeficiency 

virus [338-341] have been suggested as possibly responsible for vitiligo [342]. Such 

observations came from PCR studies on vitiligo skin [329,330], from specific 

antibodies detection in the serum of vitiligo subjects [332,334,335], or from anecdotal 

studies subjects developing vitiligo after triggering viral infections [337-341]. 

As regards to gut microbiota, at present no study has been performed 

concerning its composition in vitiligo, neither on mice models nor on humans affected 

by this pigmentary disorder.  

The only metagenomic study performed so far on vitiligo assessed skin 

bacterial microbiota of lesional and non-lesional skin of vitiligo patients [343]. Such 

investigations pointed out a dysbiosis of microbial community in lesional skin of 

vitiligo subjects, which was sustained by a decrease in taxonomic richness and 

evenness in lesional skin, with a predominance of Firmicutes [343]. 
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7.  Aim of the study 

Melanoma it has been widely demonstrated to be highly immunogenic, since it 

stimulates the immune system to generate a humoral (antibody-mediated) and cellular 

(cytotoxic lymphocyte-mediated) response to cytoplasmic or membrane antigens of 

melanoma cells [344-345]. 

Such event is clinically demonstrated by the occurrence of the vitiligo-like 

depigmentation in melanoma patients, a prognostically favorable event resulting from 

a strong anti-melanoma immunity that also targets healthy melanocytes, because of a 

shared expression of melanocyte differentiation antigens [345-346]. Melanoma 

patients affected by the vitiligo-like depigmentation display high circulating levels of 

antibodies against melanocytic differentiation antigens (tyrosinase, TYRP1, TYRP2, 

and Pmel17) and reactive CD8+ T cells (mainly against MART-1or against gp100) 

[345-349] and have a longer metastasis-free survival and overall survival [350-351].  

Recently, the term immune-surveillance has been coined and is intended as the 

capacity of lymphocytes to recognize tumor-associated antigens expressed by cancer 

cells and to elicit a response finally leading to their elimination [352]. The activation 

of this immune response is crucial for controlling melanoma growth and metastasizing 

and has been so far intensively evaluated through clinical and experimental 

investigations which led to the development of toxins, immune stimulants (such as IL-

2), adoptive cell transfer therapies (expanded autologous CD4+T cell clones against 

specific melanoma-associated antigens) and the recently discovered and approved 

immune targeted therapies for melanoma treatment [352,353,300].  

Several investigations have disclosed the association of gut dysbiosis with cancer 

development [155, 157, 159] and pointed out the active role of a specific gut microbial 

signature in regulating anticancer immune surveillance [354].  Such beneficial immune 

event can be elicited by the presence of specific microbes able to hyperactivate the 

immune system through mechanisms involving microbial pattern recognition 

receptors, or through cross reactivity phenomena between microbial epitopes ant 

tumour antigens possibly able to shape T cell repertories [354,355]. Interestingly, 

specific microbiota-derived peptides/antigens have been reported to cross react with 

specific melanoma antigens such as Melan /MART-1 or MAGE-A6 [356-357]. 

Further, a specific gut microbiota composition has been found to be associated with an 

improved response to targeted immuno-therapies for advanced melanoma in humans 
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and has been reported to be predictive of the occurrence of immune-related 

complications such as colitis [312,313].  

As regards to vitiligo, several evidences pointed out the involvement of both innate ad 

adaptive response in its pathogenesis [314, 358,359]. 

As to innate immunity, a marked immune signature was recently identified by a recent 

skin trascriptome analysis performed on vitiligo, which revealed a strong natural killer 

cells and inflammatory dendritic cells gene expression in lesional skin, as compared 

to non lesional skin [359-360]. Such inflammatory dendritic cells might be activated 

by the interaction of their PRRs with stimulating factors [359]. Among the triggering 

factors, epidermal or melanocyte-derived nucleic acids deriving from damaged 

melanocytes or keratinocytes have been recognised as able to activate PRRs [359,360]. 

Finally, the innate immune activation leads to an imbalance toward the release of pro-

inflammatory cytokines, such as TNFα, IFNγ, CXLX10 and IL17 at both skin and 

systemic level [357-360]. All the above-mentioned cytokines have been found to be 

increased in vitiligo epidermis [320,321,322,361-367] or in the circulating blood 

[359,364,368-370] of affected patients and have been proposed to have a pathogenetic 

role in the disease. 

As to adaptive immunity, both CD4+ and CD8+ T cells have been identified as 

involved in vitiligo pathogenesis, since they are increased in lesional and perilesional 

skin, as compared to healthy skin [358,359,364, 371-373]. Recently, also the 

involvement of Th17 cells have been disclosed, since they have been found to be 

increased both in the affected epidermis and in the blood of vitiligo subjects [365-367]. 

Furthermore, an altered proportion and impaired function of T-regs have been found 

in vitiligo, possibly involved in the loss of tolerance to self-melanocytic antigens [345, 

371,373].  

Finally, an increased oxidative stress, characterized by high epidermal levels of 

reactive oxygen species (ROS) [374,375] and an abnormal function of the metabolic 

system of biopterins [376-380], finally leading to the disease through lipid 

peroxidation, DNA damage, an increased production of pro-inflammatory and anti-

melanogenic cytokines, and the loss of functionality of enzymes playing a key role in 

melanogenesis, have been demonstrated in vitiligo patients [381-382]. 

A plethora of evidences reveal a gut dysbiosis in patients affected by organ-specific 

and non-organ specific autoimmune disorders [211, 214, 215], some of which can be 

found in association with vitiligo [383], and suggest that microbes inhabiting the 



39 
 

human gastrointestinal tract can modulate both innate and adaptive systemic immune 

responses [78, 111, 124,125]. Recently, it has also been demonstrated that the contact 

between the gut epithelial cells and some groups of enteric commensal bacteria leads 

to the rapid generation of reactive oxygen species (ROS) within host cells [384-386], 

which might affect inflammatory responses both locally and systemically. 

Overall, given the current knowledge on vitiligo pathogenesis and the ability of gut 

microbial species to modulate immunity and oxidative stress balance, it is conceivable 

that a specific gut microbiota composition might be involved in vitiligo pathogenesis. 

At present, nothing is known about gut microbiota composition in vitiligo patients, 

neither at bacterial nor at fungal level.  As regards to melanoma, only a few studies at 

present assessed bacterial gut microbiota in advanced stage melanoma, subjected to 

immunological targeted therapies [309,310,312,313]. 

It is conceivable that the knowledge of gut microbial composition in melanoma 

patients not subjected to therapies might led to the identification of a specific bacterial 

and fungal gut signature, which could be associated to cancer development. The 

evaluation of possible correlations with clinical and prognostic features of the diseases 

might help to lead to new insights in the identification of possible yet unknown roles 

of microbes in controlling melanoma in early phases of growth. 

In addition, the knowledge of gut microbiota composition in vitiligo patients might be 

useful to identify a specific gut microbiota signature possibly responsible of activating 

autoimmune pathways involved in the development of an autoimmune response 

toward melanocytic antigens, which could be shared by melanoma cells too and could 

be implicated also in the development of the beneficial vitiligo-like depigmentation in 

melanoma patients. In addition, the presence of beneficial and “anti-cancer” bacteria 

or fungi in the gut of vitiligo patients might also justify the reported decreased risk of 

developing melanoma in patients affected by vitiligo [387-390]. 

With this background, we aimed to evaluate bacterial and fungal gut microbiota 

composition through next generation sequencing targeting bacterial 16S rRNA and 

fungal ITS in a group of patients affected by melanoma and patients affected by 

vitiligo.  

Further aim of this thesis is to correlate a specific gut or bacterial microbiota 

composition of melanoma and vitiligo patients with clinical and histopathological 

features of melanoma, and with clinical, historical and serological features of vitiligo. 
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Finally, given the rediscovered importance of the classical cultivation methods 

suggested by recent investigations [391], a cultivation approach has been followed 

simultaneously with the metagenomic evaluation. We decided to focus on fungi 

(yeasts) due to their unique ability to shape innate and adaptive immunity [17]. Hence, 

further aim of this investigation is to isolate and identify cultivable fungal species from 

the melanoma faecal samples subjected to metagenomic evaluation.  
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8. Materials and Methods 

8.1 Study participants 

 

The study was designed as a observational study involving the analysis of biological 

samples. Ten patients with a histopathological diagnosis of melanoma (M1-M10), 10 

patients with clinical diagnosis of vitiligo (V1-V10). Eighteen faecal samples (C1-

C18) from healthy subjects were used as controls. 

Patients were recruited among subjects referring to the university-based outpatient 

service for melanoma prevention and follow-up of the Dermatology Clinic II, Florence 

(DCTM, Section of Dermatology) and among those referring to the university-based 

outpatient for vitiligo diagnosis and treatment of the same Dermatology Clinic. 

The study was carried out in compliance with the Declaration of Helsinki principles 

for medical research involving human subjects. The study was approved by the local 

Institutional Review Board and written informed was signed by all the subjects before 

enrollment in the study.  

Inclusion criteria for the melanoma group were:  

• Age > 18 years 

• A histological diagnosis of melanoma  

• Excision of melanoma in the previous year 

Inclusion criteria for the vitiligo group were:  

• Age > 18 years 

• The presence of vitiligo, possibly confirmed by histopathological examination 

in case of an uncertain clinical diagnosis. 

Exclusion criteria 

• Age < 18 years 

• Presence of clinically evident inflammatory disorders, such as upper 

respiratory tract or urinary infection, pneumonia, stomatitis, periodontal 

inflammation. 

• Gastro-enteric symptoms such as fever, diarrhoea or vomitus in the month 

preceding the collection of faecal samples  



42 
 

• Presence of irritable bowel syndrome, coeliac disease or autoimmune disorders 

such as inflammatory bowel diseases, rheumatoid arthritis, Behcet disease, 

multiple sclerosis, type I diabetes, systemic lupus erythematosus. 

• History of colorectal cancer or colectomy in the previous three years 

• Use of systemic antibiotics in the three months preceding the collection of 

faecal samples  

• Refuse to sign informed written consent 

• Systemic treatment with corticosteroids (vitiligo patients only) 

• Diagnosis of segmental vitiligo (vitiligo patients only) 

 

As to the control group, healthy adult subjects not affected by melanoma or vitiligo 

had been selected according to the same exclusion criteria used for the enrollment of 

melanoma and vitiligo patients.  

 

8.2 Samples’ handling and collection 

 

All enrolled patients were given a photographic booklet to instruct them to collect 

samples autonomously.  

After the consignment of samples by the patients, collected stool samples were 

included in 8 ml of RNA solution (RNAlater™ Stabilization Solution, ThermoFisher 

Scientific) and stored at -20°C until analysis.  

At the moment of samples’ consignment patients underwent a questionnaire aiming to 

collect data as regards to dietary assumption in the three days preceding the sample 

collection and as regards to delivery mode, weaning, breastfeeding and food allergy 

(Appendix 1).  

 

8.3 Personal data collection, past medical history, medication assumption 

 

Age, gender, height, weight and body mass index (BMI) and smoking were recorded 

for all enrolled patient. 

Personal medical history of autoimmune disorders such as autoimmune thyroid 

disease, diabetes mellitus type 1, Addison’s disease, systemic lupus erythematosus, 

autoimmune atrophic gastritis, celiac disease, alopecia areata, rheumatoid arthritis, 

https://www.thermofisher.com/order/catalog/product/AM7020
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Sjögren’s syndrome, primary biliary cirrhosis, cardiovascular diseases (coronary heart 

disease, cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, 

congenital heart disease, deep vein thrombosis and pulmonary embolism) [392], not 

autoimmune thyroid diseases, skin cancer (melanoma and non-melanoma skin cancer 

for vitiligo patients, and non-melanoma skin cancer for melanoma patients), visceral 

cancers (intended as each kind of tumor affecting the lungs, the heart, and the organs 

of the digestive, excretory, reproductive, and circulatory systems) [393], or other 

diseases was also recorded.  

Medication assumption at the moment of enrolment was also investigated. 

As to melanoma patients, information as regards to previous sunburns and to sun-

exposure habits (occupational exposure, recreational exposure or indoor tanning) were 

recorded. 

 

8.4 Evaluation of clinical and histopathological parameters of melanoma patients 

 

The following clinical data and histological parameters about melanoma were assessed 

and recorded [394, 395]: body site, histopathological subtype, Breslow thickness 

(recorded in millimetres and measured from the granular layer or, when present, the 

ulcer base, to the deepest extent of invasion by tumour cells), ulceration, mitotic index 

(number of mitoses per mm2), lymphovascular invasion, microsatellite/in transit 

metastasis, perineural invasion/neurotrophism, growth phase, tumour infiltrating 

lymphocytes (TILs) and type (brisk or not brisk), regression, Clark level [394, 395]. 

Melanoma staging was defined according to AJCC 7th edition pathological staging of 

cutaneous malignant melanoma, regional lymph nodes and metastasis [396] 

 

8.5 Evaluation of clinical, historical and serological parameters of vitiligo patients 

 

Vitiligo diagnosis was clinically made in case of achromic depigmented macules that 

vary in size from a few to several centimetres in diameter, often involving both sides 

of the body with tendency toward symmetrical distribution [397]. 

The diagnosis was confirmed using Wood’s lamp, a device emitting UV light which 

can be directed at patient’s skin. UV radiation penetrates the epidermis and enters the 

dermis, where it stimulates fluorescence emission directed towards the surface of the 

skin by collagen fibres [398]. In case of absence or reduced melanin, as it occurs in 
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vitiligo, part of the emitted fluorescence cannot be attenuated by the epidermal melanin 

[398]. Hence, vitiligo skin under Wood’s lamp appears as fluorescent and intensely 

white. This procedure enhances the epidermal pigmentation differences usually not 

detectable under visible light and improves the assessment of the extent of vitiligo 

[398].  

Biopsy of the achromic lesions with histopathological examination was performed to 

confirm the diagnosis for doubtful cases. 

Assessment and scoring of vitiligo was performed using a modified Vitiligo European 

Task Force (VETF) form [399, 400].  According to the above-mentioned assessment, 

head and neck, trunk, upper extremities and lower extremities were independently 

assessed for the extent of depigmentation, stage of disease and spreading. As regards 

to staging and spreading, the largest vitiligo patch in each body site was chosen as a 

reference for assessment. 

The extent of the disease was calculated evaluating the amount of vitiligo patches 

involving the body and was expressed as a percentage, considering that the patient’s 

palm including digits averages 1% of body surface area (BSA) [399]. 

The stage of the disease was assessed using Wood lamp with magnifying lens. A stage 

0 was defined as a normal pigmentation, stage 1 as an incomplete pigmentation (e.g. 

spotty depigmentation), stage 2 as a complete depigmentation, stage 3 as a partial hair 

whitening (< 30%) and stage 4 as a complete hair whitening [399].  

The spreading was evaluated assessing the patch limits both under natural light and 

using Wood’s lamp. A score 0 was given in case of similar limits, a score +1 in case 

of progressive vitiligo and a score -1 in case of a regressive vitiligo [399].  

A total score for the abovementioned parameters was then performed (0–100% for 

vitiligo area, 0-16 for staging and -4 to +4 for spreading).  

Age at onset, duration of the disease, phototype, vitiligo subtype according to the 

revised classification and nomenclature of vitiligo proposed by the Vitiligo Global 

Issues Consensus Conference [397], Koebner phenomenon, modality of onset, growth, 

leukotrichia, emotional stress at onset or that worsened the disease, early hair greying 

(>50% white hair before the age of 40), signs of inflammation/pruritus, presence and 

number of. Sutton nevi, activity of the disease (active = appearance of vitiligo 

lesions/enlargement of the existing macules during 6 months before our clinical 

evaluation, borderline = 6-18 months and stable = >18 months) and previous 

repigmentations were also investigated.  
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Thyroid stimulating hormone (TSH), anti-thyroglobulin autoantibodies (Tg-Ab), anti-

thyroid peroxidase antibodies (TPO-Ab), anti-thyroid stimulating hormone receptor 

antibodies (TSH-R Ab), anti-nuclear antibodies (ANA), anti-parietal cell 

autoantibodies (APCA) and 25 (OH) D level were dosed. These parameters were 

evaluated in different analysis laboratory which individually provided their reference 

ranges. 

 

8.6 Storage of faecal samples  

 

Stool samples were collected and divided into two rates. On portion was stored at -

20°C in RNA later solution, and was designated to the metagenomic analysis. The 

other was immediately used for cultural examination.   

 

8.7 DNA extraction and amplification of the V3-V4 region of bacterial 16S rDNA and 

ITS1 region of fungal rDNA 

 

Total DNA extraction was performed from each faecal sample (250 mg, wet weight) 

using the DNeasy PowerSoil Kit (Quiagen N.V, Venlo, The Netherlands.). The 

extraction kit, originally designed for the extraction of total DNA from soil samples, 

was chosen on the basis of literature review [401] demonstrating its effectiveness for 

extraction of faecal microbiome. 

DNA integrity and quality were checked on 1% agarose gel and quantified with 

QUBIT instrument (Thermo Fisher). 

For each DNA sample were amplified the bacterial 16S rRNA genes using a primer 

set specific for V3–V4 hypervariable regions (341F: 5′-CCTACGGGNGGCWGCAG-

3′and 805r: 5′-GACTACNVGGGTWTCTAATCC-3′) (reference for primers 

http://www.int-res.com/articles/ame_oa/a075p129.pdf also used for the Earth 

Microbiome Project) and the internal transcribed spacer (ITS) using a primer set 

specific for fungal ITS1 rDNA region (ITS1f: 5′- 

CTTGGTCATTTAGAGGAAGTAA- 3′ and ITS2r: 5′-

GCTGCGTTCTTCATCGATGC-3′) (used by the Earth Microbiome Project 

http://www.earthmicrobiome.org/protocols-and-standards/its/) containing adaptors, 

key sequence, and barcode sequences as described by the Illumina MiSeq (Illumina, 

San Diego, CA, USA) instruction for amplicons experimental design.  

https://en.wikipedia.org/wiki/Netherlands
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Sequencing were performed at the Fondazione Edmund Mach, Trento, Italy, following 

their internal protocol. 

 

8.8 Sequencing and data analysis 

 

 Demultiplexed forward and reverse reads were downloaded an analysed. Initial 

quality check was performed by inspecting resulting libraries with FastQC program 

[402]. Low-quality end of forward and reverse reads were trimmed using Sickle 

software (command sickle pe)[403] with a quality cut-off of 20 and a length threshold 

after trimming of 200 (parameter –q and –l respectively). After trimming, paired-ends 

reads were joined using PEAR [404]) (setting parameter -p to 0.001, parameter -q to 

30 and parameter -u to 0). Chimeric sequences were identified using Vsearch (v2.5) 

[405] against the GreenGenes (v13.8) [406] and the UNITE (v uchime reference 

dataset 28.06.2017) database, for 16S and ITS libraries respectively. After chimera 

removal, sequences where analysed with the QIIME (v 1.9.1) [407] software. Briefly, 

operational taxonomyc units (OTUs) picking was performed with the open reference 

protocol (command pick_open_reference_otus) against the GreenGenes (v13.8) [406] 

and the UNITE (sh refs qiime ver7 dynamic 10.10.2017 file) [408] for 16S and ITS 

respectively. OUT picking was performed in both cases using the UCLUST algorithm 

[409] while taxonomy assignment was performed with UCLUST for 16S and with 

BLAST for ITS. Low abundant OTUs (i.e. OTUs represented by low number of 

sequences) were removed as indicated in Bokulich et al. [410-411] (parameter c = 

0.005%). 

 

8.9 Statistical analysis 

 

All downstream analysis was performed in R (v3.4.2). Microbiome data (i.e. biom file 

produced by QIIME pipeline) were imported using phyloseq package [412]. The same 

package was also used to perform alpha diversity analysis, measuring observed OTUs 

and Shannon index, and beta diversity analysis, performing Principal Coordinates 

Analysis (PCoA) and costrained based Canonical Correspondence Analysis (CCA) 

using the Bray-Curtis distance metric.  

The bacterial and fungine taxonomic differences between melanoma and vitiligo were 

evaluated using the negative binomial Wald test with Benjamini–Hochberg correction 
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for multiple comparisons (performed with package edgeR) [413] and reported through 

Volcano Plots [414-415].  

Multivariate analysis of variance using Bray-Curtis distance measurements 

(PERMANOVA analysis) was performed to correlate the identified microbial profiles 

with selected clinical, histological and serological features of vitiligo and melanoma 

patients. 

As regards to melanoma, invasion, growth phase, Breslow thickness, mitotic index, 

presence of tumour infiltrating lymphocytes, and presence of regression were chosen 

as relevant parameters to use to perform the above-mentioned analysis, while 

autoimmune thyroid diseases, associated autoimmune disorders, ANA, 25(OH)D, Ab 

anti TPO, activity, onset, growth, inflammation/pruritus, leukotrichia, total extension 

and stress at onset were chosen for the vitiligo group.  

 

8.10 Isolation and identification of cultivable fungal species from faeces 

  

Stool samples were diluted in sterile water and plated on solid YPD medium (1% yeast 

extract, 2% bacto-peptone, 2% D-glucose and 2% agar) added with 25 U/ml of 

penicillin and 25 µg/ml of streptomycin to inhibit bacterial growth and incubated 

aerobically at 30°C for 3-5 days.  

All fungal isolated grown on such selective media were then isolated, to obtain single 

cell pure colonies. Genomic DNA was extracted from such colonies by thermal lysis, 

and the ITS1-4 region was amplified using primers for ITS1 and ITS4. Fungal isolates 

were identified using the BLAST algorithm in the NCBI database (nr database) taking 

species level identification if sequence identity was above 97% and coverage was 

above 95%. 
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9. Results  

 

9.1 General characteristics of the populations 

 

Eleven patients affected with melanoma and 10 patients diagnosed with vitiligo were 

enrolled. As to the melanoma group, 10 patients (4 females, 6 males) finally gave the 

faecal samples and were involved in the metagenomic and cultural evaluation. As to 

the vitiligo group, all patients (7 females and 3 males) consigned the faecal samples, 

which were thus all analysed. As to the dietary questionnaire, all patients mainly 

followed a Mediterranean diet. No vegetarianism or veganism were detected. Most 

patients were breastfed (7/10 melanoma group, 8/10 vitiligo group) and all patients 

were born by vaginal delivery. Furthermore, no cases of food allergy or 

prebiotics/probiotics assumption were found in both groups. The complete results of 

the dietary questionnaire are reported in Table 1 and 2.   

As to the main personal data, median age was 63.20 ± 3.51 and 55.20 ± 5.65, 

respectively in the melanoma group and in the vitiligo group, while median BMI was 

25.34 ± 1.21 (melanoma group) and 25.41 ± 0.9 (vitiligo group). No significant 

difference in gender, age and BMI was found comparing melanoma and vitiligo 

patients (respectively p:0.178, p:0.245 and p:0.946, Table 3). About associated 

disorders, vitiligo patients mainly suffered from autoimmune diseases (6/10) and 

among them, autoimmune thyroid diseases were the most often found (5/6). No cases 

of cancer were detected in the vitiligo group. On the contrary, no associated 

autoimmune diseases were found in the melanoma group, while one patient previously 

had a colorectal cancer some years ago. Nine patients with melanoma reported a 

personal history of sunburns in childhood and adolescence and all patients reported a 

recreational exposure. 

Other results pertaining to personal and historical data of patients are reported in Table 

4 and 5.   

With regards to histological parameters of melanoma, 5 patients were affected by 

melanoma in situ and 5 subjects by invasive melanoma, with a staging ranging from 0 

to III. Breslow thickness ranged from 0.3 to 3.6 mm, while the mitotic index ranged 

from 0 to 7. In addition, 3 patients had TILs in the excised melanoma and 3 patients 

had histological signs of regression. Other histological features of the melanoma of 

enrolled patients can be found in Table 6. 
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Finally, as regards to vitiligo, all patients suffered from a non-segmental generalized 

vitiligo, with the exception of a case of universal vitiligo; the median total extension 

of achromic macules was 25.95 ± 9.01 (range 0.7 to 83 % of total body surface area). 

Five patients had an active vitiligo at the moment of the sample collection, while 4 

patients were stable, and 1 patient had a borderline vitiligo. The complete data of the 

clinical features of vitiligo patients can be found in Table 7. As to serological features, 

in 3/10 patients the presence of Ab anti TG was found, while in 4 patients Ab anti TPO 

were detected. As to 25(OH) levels, 7/10 patients had impaired values of this vitamin, 

with a median value of 26.58 ± 1.92 ng/ml (range 18.9-37.4 ng/ml). All the results of 

serological evaluation of vitiligo patients are reported in Table 8. 

 

9.2 Gut microbiota characterization by metagenomic sequencing 

 

9.2.1 Fungal gut microbiota characterization by ITS1 sequencing 

 

We sequenced the internal transcriber spacer 1 (ITS1) region of the fungal r DNA for 

the meta-taxonomic evaluation of gut mycobiota in a total of 10 faecal samples of 

melanoma patients and 10 faecal samples of vitiligo patients.  

Two different estimators of alpha diversity, which is a measurement of the fungal 

richness within each sample, were used. Namely, the observed number of OTUs and 

the Shannon index were calculated. Using the estimator of the observed number of 

OTUs (which is a measurement of the total species present in a microbial community), 

the fungal gut microbiota of melanoma was found to be significantly less rich than 

healthy controls (Fig. 1; p= 0.00962). As well, also the fungal gut microbiota of vitiligo 

was found to be significantly less rich than healthy controls (Fig. 1; p= 0.000523). 

Fungal microbiota of vitiligo subjects was less rich than melanoma, although this 

difference was not significant. 

However, we did not find significant differences among the three groups using 

measures of biodiversity that take the evenness of the species distribution into account, 

such as the Shannon entropy (Shannon index) (Fig.1).  
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Figure 1 – α-diversity (observed number of OTUs and Shannon index); fungal microbiota 

 

The comparison of the rarefaction curves confirmed the results of the alpha diversity 

index evaluation, since a reduced richness of the gut mycobiota community in vitiligo 

subjects was observed, as compared to melanoma subjects (Fig. 2). Overall, the shape 

of the rarefaction curves tends to reach the plateau, suggesting that the depth of 

coverage we accomplished was sufficient to capture nearly the entire biological 

richness within samples. 

 

 

Figure 2- Rarefaction curves- fungal microbiota 

 

The estimate of the variability of fungal communities between samples, defined as the 

beta diversity, was assessed by Principal Coordinates Analysis (PCoA) using Bray 

Curtis dissimilarities (Fig. 3 and 4). We found that the fungal microbiota of melanoma 

and vitiligo subjects clusters apart from that of healthy controls. More in details, the 
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fungal community of melanoma group clusters in two major groups along axis 2, while 

the vitiligo community does not cluster and is more homogeneously distributed (Fig. 

3). As to axis 1 and 3, only healthy controls fungal community cluster in these axes, 

both in a major group (axis 1) and more homogeneously (axis 3) (Fig.4). 

 

 

 

Figure 3- beta diversity PCoA; Bray-Curtis (axis 1 and 2); fungal microbiota 

 

 

Figure 4- beta diversity PCoA; Bray-Curtis (axis 2 and 3); fungal microbiota 

 

 

 

 

 

 



52 
 

 

The analysis of the relative abundance of fungal taxonomic groups at the genus level 

(Fig. 5) revealed that about a half of fungi were unidentified in the control group. As 

for the melanoma group and vitiligo, such percentage drops to lower values. The 

remaining identified fungal community in controls was constituted by Candida and 

Pichia. 

 As regards to the patients’ groups, the comparison among them pointed out a higher 

abundance of Saccharomyces and Malassezia in the vitiligo group, while on the 

contrary a higher abundance of Debaromyces, Candida and Dipodascus was found in 

melanoma group.  

 

Figure 5- Bar plot relative abundance; fungal, genus 

 

The same analysis conducted at Species level (Fig 6) confirmed the prevalence of 

Candida (%) species in the control group (mostly C. parapsilosis and less C. albicans 

and C. sake) and recognised as Pichia kluyveri the remaining identified fungi. Both C. 

parapsilosis, Pichia kluyveri were completely absent both in vitiligo and in melanoma. 

As to the diseases, a higher abundance of Saccaromyces Cerevisiae, Malassezia 

restricta and Penicillium coccotrypicola were observed in vitiligo, as compared to 

melanoma. A higher abundance of Metschnikowia pulcherrima was found in 

melanoma as compared to vitiligo, while Penicillium roqueforti and Candida sake 

were only identified in the melanoma group, being absent in vitiligo (Fig.6). 
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Figure 6- Bar plot relative abundance; fungal, species 

Barplots showing the results of the analysis of the relative abundance of fungal 

taxonomic groups at Phylum, Class, Order, Family, Genus, and Species level in each 

faecal sample of melanoma, vitiligo and controls were also generated and are reported 

in Figures 7-12. 

 

 

 

 

Figure 7- Bar plot, relative abundance for sample- fungal, phylum 

 

 

 



54 
 

 

Figure 8- Bar plot, relative abundance for sample- fungal, class 

 

 

Figure 9- Bar plot, relative abundance for sample- fungal, order 

 

 

Figure 10- Bar plot, relative abundance for sample- fungal, family 
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Figure 11- Bar plot, relative abundance for sample- fungal, genus 

 

 

Figure 12-- Bar plot, relative abundance for sample- fungal, species 

 

As to the statistical significance of the abovementioned fungal taxonomic differences 

between melanoma and vitiligo, the analysis was conducted at species and genus level 

and evaluated the differences of individual microbial OTUs between vitiligo and 

melanoma subject using the negative binomial Wald test with Benjamini–Hochberg 

correction for multiple comparisons. The abovementioned analysis and the relative 

Volcano Plot graph (Fig 13) conducted at Species level graphically showed that 

Penicillium Roqueforti (p<0.01), Fusarium sp. (p<0.01) and Candida sake (p<0.05) 

had a significantly higher relative abundance in the melanoma group as compared to 

vitiligo group, while Malasseziales (p<0.01), Sporobolomyces roseus (p<0.01) and 

Epicoccum nigrum (p<0.01) had a significantly higher relative abundance in the 

vitiligo group, as compared to the melanoma group. The remaining differences in the 
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relative abundance of fungal species among vitiligo and melanoma samples were not 

statistically significant. 

 

 

Figure 13- Volcano Plot, Vitiligo vs Melanoma, Fungal 

 

We further sought to overcome the problem related to the elevated undetermined 

species and Candida prevalence in the control group, with the aim to elucidate possible 

adjunctive differences in the relative abundance of fungal taxonomic groups between 

controls and disease groups. Hence, we performed a meta-analysis at species level with 

our results and those pertaining to a published metagenomic evaluation of fungal gut 

microbiota of healthy subjects. The study of Hellen-Adams at al. [416] was chosen for 

its completeness and similarity with our study design and methods. We found 

comparable results to ours as regards to the relative abundance of species between 

diseases and the heathy controls which were evaluated by the above-mentioned study 

[416]. Figure 14 reports the relative bar-plot graph.  
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Figure 14- Bar plot, meta-analisis with literature- fungal microbiota 

 

Correlations between fungal gut microbiota and clinical features of the diseases 

 

Multivariate analysis of variance using Bray-Curtis distance measurements 

(PERMANOVA analysis) was conducted to evaluate possible influences of 

invasiveness, growth phase, Breslow thickness, mitotic index, presence of tumour 

infiltrating lymphocytes, and presence of regression on the diversity of fungal species 

of the melanoma group.  

As to the vitiligo group, possible effects of associated autoimmune thyroid diseases, 

associated autoimmune disorders, ANA positivity, 25(OH)D values, Ab anti TPO 

positivity, activity of the disease, onset, growth, signs of inflammation/pruritus, 

presence of leukotrichia, total extension and reported stress at onset on the diversity of 

species of the vitiligo group were evaluated. 

In melanoma group no correlation was found; in vitiligo group a significant association 

was found for total extension of vitiligo patches (p= 0.023; R2=0.198) (Table 9). 

Hence, with the aim of further analysing dependence of community diversity and the 

total extension variable in vitiligo group, constrained ordination with Canonical 

Correspondence Analysis (CCA) was performed. This analysis showed that the 

community diversity in the vitiligo group is influenced by the total extension of the 

disease, event tough this correlation was only marginal significant (p= 0.05).  

Ordination graph (Fig15) shows that samples with higher total extension of the disease 

tend to separate over the first ordination axis (CCA1 explaining 18.5% of total 

variance). In particular, sample V1, and to a lesser extent V7, having the highest 
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extension among vitiligo patients (83 and 73 respectively), tend to separate from the 

rest of the samples. All the samples with lower extension values, separated along the 

second ordination axis (CA1, explaining 20.3% of total variance) not correlated to the 

variable value. We can thus hypothesise that the diversity of fungal community is 

indeed influenced by the total extension of the disease, but only at very high values. 

 

 

Figure 15- Ordination graph, vitiligo and extension, fungal 

 

Furthermore, when colouring the taxa points based on the genus (Fig16.) some 

genera appear to be mostly associated to sample V1 (with the highest total extension 

of the disease), namely Candida, Penicillum, and some unidentified genera. 

 

 

Figure 16 Ordination graph with taxa, vitiligo and extension, fungal; V1 sample is marked with a circle. 
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.9.2.2 Bacterial gut microbiota characterization by 16S r DNA sequencing. 

 

We sequenced the V3-V5 regions of the prokaryotic 16S r DNA for the meta-

taxonomic evaluation of bacterial gut microbiota in a total of 10 faecal samples of 

melanoma patients and 10 faecal samples of vitiligo patients.  

As to the alpha diversity, the richness estimators observed number of OTUs and the 

Shannon index did not reveal any significant difference between the bacterial 

community of melanoma and vitiligo groups versus healthy controls, and between that 

pertaining to melanoma versus vitiligo. 

 

 

Figure 17 α-diversity (observed number of OTUs and Shannon index); bacterial microbiota 

 

Also about beta diversity, we found that the bacterial microbiota of melanoma and 

vitiligo did not cluster apart from that of healthy controls. More in details, the bacterial 

community of melanoma group clusters in a well-defined and coincident major group 

along axis 1, 2 and 3 (Fig. 18 and Fig. 19).  
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Figure 18- beta diversity PCoA; Bray-Curtis (axis 1 and 2); bacterial microbiota 

 

 

Figure 19- beta diversity PCoA; Bray-Curtis (axis 2 and 3); bacterial microbiota 

 

 

The analysis of the relative abundance of bacterial taxonomic groups at the family 

level revealed that a very small proportion of bacteria remained undetermined in each 

group and that the relative abundance of the remaining determined species was 

similarly distributed in all groups, with only minimal differences (Fig. 20). Namely, 

the bacterial community of controls was mainly constituted by Bacteroidaceae, 

Lachnospiraceae and Ruminococcaceae. The relative abundance of Lachnospiraceae 

was higher in controls as compared to vitiligo and melanoma group, the abundance of 

Bacteroidaceae was lower than vitiligo but similar to that of melanoma, and the 

relative abundance of Ruminococcaceae was lower than that of vitiligo and melanoma.  
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As regards to the diseases groups, the comparison among them at family level 

principally pointed out similar relative abundance of all bacteria, with the exception of 

a higher abundance of Lachnospiraceae, Enterobacteriaceae and Bifidobacteriaceae 

in melanoma as compared to vitiligo, and a lower abundance of Bacteroidaceae in 

melanoma versus vitiligo groups (Fig. 20). 

 

 

 

 

Figure 20- Bar plot relative abundance; bacterial, family. 

 

 

The same analysis conducted at genus level pointed out a higher relative abundance of 

Coprococcus, Dialister and Bifidobacterium in controls, as compared to diseases; a 

lower relative abundance of Prevotella, as compared to the diseases, and a lower 

relative abundance of Bacteroides, as compared to vitiligo. A noticeable relative 

abundance of unidentified bacteria was observed at genus level in all three groups. 

As to the diseases, a higher abundance of Ruminococcus and Bifidobacterium was 

found in the melanoma group, as compared to vitiligo group. On the contrary, a lower 

relative abundance of Bacteroides was observed in the melanoma samples, as 

compared to vitiligo samples.  
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Figure 21- Bar plot relative abundance; bacterial, genus 

 

 

Barplots showing the results of the analysis of the relative abundance of bacterial 

taxonomic groups at Phylum, Class, Order, Family, Genus, and Species level in each 

faecal sample of melanoma, vitiligo and controls were also generated and are reported 

in Figures 22-27. 

 

 

                                           Figure 22- Bar plot, relative abundance for sample- bacterial, phylum 
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Figure 23- Bar plot, relative abundance for sample- bacterial, class 

 

 

Figure 24- Bar plot, relative abundance for sample- fungal, order 

 

 

Figure 25- Bar plot, relative abundance for sample- bacterial, family 
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Figure 26- Bar plot, relative abundance for sample- bacterial, genus 

 

 

Figure 27- Bar plot, relative abundance for sample- bacterial, species 

 

As to the statistical significance of the abovementioned bacterial taxonomic 

differences between melanoma and vitiligo, the analysis was conducted at phylum and 

genus level and evaluated the differences of individual microbial OTUs between 

vitiligo and melanoma subject using the negative binomial Wald test with Benjamini–

Hochberg correction for multiple comparisons. The abovementioned analysis and the 

relative Volcano Plot graph conducted at Species and Genus level graphically showed 

that Firmicutes Ruminococcus (p<0.05), Firmicutes Lactobacillus (P<0.05), 

Firmicutes Coprococcus (p<0.01), Firmicutes Catenibacterium (p<0.01), 

Bacteroidetes Prevotella (p<0.01), were significantly associated with the melanoma 

group, while Bacteroidetes (p<0.01), Firmicutes Acidaminococcus (p<0.01) were 

associated with the vitiligo group (Fig 28). The remaining differences in the relative 
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abundance of bacterial species among vitiligo and melanoma samples were not 

statistically significant. 

 

 

Figure 28- Volcano Plot, Vitiligo vs Melanoma, Bacterial 

 

 

Correlations between bacterial gut microbiota and clinical features of the diseases 

 

Multivariate analysis of variance using distance measurements (PERMANOVA 

analysis) was conducted to evaluate possible influences of invasiveness, growth phase, 

Breslow thickness, mitotic index, presence of tumour infiltrating lymphocytes, and 

presence of regression on the diversity of bacterial species of the melanoma group.  

As to the vitiligo group, possible effects of associated autoimmune thyroid diseases, 

associated autoimmune disorders, ANA positivity, 25(OH)D values, Ab anti TPO 

positivity, activity of the disease, onset, growth, signs of inflammation/pruritus, 

presence of leukotrichia, total extension and reported stress at onset on the diversity of 

species of the vitiligo group were evaluated. 

The above-mentioned evaluations were statistically significant (Table 9) for mitotic 

index in the melanoma group (p=0.016; R2=0.181), and for 25(OH)D values (p=0.017; 

R2=0.192) and association with autoimmune disorders (p=0.008; R2=0.170) for 

vitiligo group (Table 9).  

Hence, with the aim of further analysing dependence of community diversity and the 

mitotic index in melanoma group and 25(OH)D values in vitiligo group, the relative 

constrained ordination with CCA were performed. These analyses showed that the 
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bacterial community diversity in melanoma was influenced by the mitotic index, while 

the bacterial community diversity in vitiligo was influenced by 25(OH)D values. 

 

Ordination graph for mitotic index showed that the samples with the highest mitotic 

index tend to separate over the first ordination axis (CCA1 explaining 16.8% of total 

variance). In particular, samples having the highest mitotic index among melanoma 

patients (7 mitoses/mm2), tend to separate from the rest of the samples. Still, all the 

samples with lower mitotic index values, separated along the second ordination axis 

(CA1, explaining 20.1% of total variance), not correlated to the variable value (Fig. 

29). 

 

 

Figure 29- Ordination graph, melanoma and mitotic index, bacterial. 

 

Furthermore, when colouring the taxa points based on the genus (Fig. 30) some 

genera appear to be mostly associated to sample with the highest mitotic index, 

namely Firmicutes and Bacteroidetes. 
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Figure 30- Ordination graph with taxa, melanoma and mitotic index, bacterial 

 

 

Ordination graph for 25(OH)D values showed that the samples with the highest 

25(OH)D values tend to separate over the first ordination axis (CCA1 explaining 

15.8% of total variance). In particular, samples having the highest 25(OH)D values 

among vitiligo patients (respectively 37.4 and 34 ng/ml), tended to separate from the 

rest of the samples. All the samples with lower 25(OH)D values, separated along the 

second ordination axis (CA1, explaining 16.5% of total variance), not correlated to the 

variable value. 

Furthermore, when colouring the taxa points based on the genus (Fig. 31) some genera 

appear to be mostly associated to sample with the highest 25(OH)D values, namely 

Firmicutes and Bacteroidetes.  
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Figure 31- Ordination graph, vitiligo and vitamin D, bacterial 

 

 

Figure 32- Ordination graph with taxa, vitiligo and vitamin D, bacterial 

 

As to the statistical significance of the association with concomitant autoimmune 

disorders in the vitiligo groups, the statistical analysis and the negative binomial Wald 

test with Benjamini-Hochberg correction for multiple comparison was applied. Such 

analysis and the relative Volcano Plot graph conducted at Species level graphically 

showed that Bifidobacterium (p<0.05), Bacteroides Plebeius (p<0.05), and Prevotella 

(p<0.05) had a statistically significant increased abundance in the subgroup of vitiligo 

patients without associated autoimmune disorders, while Bacteroides Barnesiae had a 
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statistically significant increased abundance in vitiligo patients with associated 

autoimmune comorbidities (p<0.05) (Fig.33).  

 

 

Figure 33- Volcano Plot, Vitiligo with autoimmune diseases vs Vitiligo without autoimmune diseases, Bacterial 

The box plot conducted at genus level showed how the relative abundance of bacteria 

were distributed among the two subgroups (vitiligo with or without associated 

autoimmune disorders), and clearly elucidates the above mentioned statistically 

significant finding (Fig.34) 

 

 

Figure 34- Box plot relative abundance: 

Vitiligo with autoimmune diseases (yes) vs Vitiligo without autoimmune diseases (no), 

Bacterial 
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9.3 Isolation and identification of cultivable fungal species from faeces  

The cultivable gut mycobiota of melanoma and vitiligo patients was investigated 

through isolation in selective media. Fungi were detected in three melanoma faecal 

samples (M6, M8, M9). Among the identified fungal species there were Candida 

albicans, Saccharomyces cerevisiae and Saccharomyces paradoxus. Results are 

reported in Table 10. 
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10. Discussion 

 

The gut microbiota is crucial for regulating immune system [214] and modulating 

cancer mechanisms [192].   

Microbial species have been found to be able to modulate pro-oncogenic or 

anti-cancer mechanisms [192]. Indeed, patients affected by cancer, namely 

gastrointestinal tumours, have been found to harbour a specific microbiota 

composition [162], which is different from that pertaining to healthy subjects. Several 

investigations reported a condition of dysbiosis also in patients affected by 

autoimmune disorders [215] and identified selective microbial species possibly 

involved in modulating the clinical features of such diseases.  

Most of studies performed so far, both on mice models or on humans, mainly 

focused on the metagenomic evaluations of bacterial gut microbiota and extensively 

assessed its features in autoimmune disorders and cancer. 

At present there is a paucity of evaluations of fungal gut microbiota in patients affected 

by systemic autoimmune diseases or visceral cancers.  

As to dermatological diseases, the most relevant evaluations of gut microbiota are 

restricted to a few immune-mediated diseases (psoriasis and atopic dermatitis) [271-

273] and to advanced metastatic melanoma [309,310,312,313] . However, such 

investigations only assessed bacterial microbiota, while gut mycobiota has never been 

assessed so far in autoimmune/immune mediated and tumoral dermatological diseases. 

Therefore, in this thesis we decided to investigate bacterial and fungal gut 

microbiota in a group of early stages melanoma and vitiligo subjects. The knowledge 

of the features of bacteria and fungi inhabiting the intestinal tract of patients affected 

by such melanocytic disorder indeed is completely obscure, but the current knowledge 

of how bacteria and fungi regulate immune system and cancer mechanisms, together 

with the increased data on vitiligo and melanoma pathogenetic mechanisms, suggests 

a possible and reasonable involvement of gut microbiota compositions in these 

disorders too. 

Our study reports a reduction of fungal richness (alpha diversity) and 

variability (beta-diversity) in melanoma and vitiligo patients, as compared to healthy 

controls (Fig.1,3,4). In addition, vitiligo and melanoma fungal richness were different, 

although not significantly. These findings suggest that a specific distinctive fungal 

mycobiota can be observed in melanoma and vitiligo subjects. As previously indicated, 
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no other comparable studies so far assessed fungal microbiota in melanoma or vitiligo. 

Gut mycobiota has been found to be altered in colorectal cancer patients and in patients 

affected by polyp adenomas [417,418], and some species involved in colonic 

inflammation have been found to be significantly increased in colorectal carcinoma 

patients. Inflammation is considered as a crucial step toward cancer [174], and recent 

findings suggest a possible role of gut bacteria in such a pathogenetic process 

[161,174]. As regards to melanocytic disorders, such as melanoma, we cannot 

hypothesize a direct action of gut fungi on melanocytes, since such pigmentary cells 

are located directly in the skin. It has been demonstrated however that fungi, besides 

their known role in maintaining the homeostasis of bacterial gut community, might 

play a key role in immune regulation, since they elicit and direct strong immune and 

adaptive responses [419,420]. We might hence assume that an altered fungal 

environment might lead to a systemic immune impairment of the patho-physiological 

responses involved in immune surveillance, which destroys tumoral cells or limit their 

growth or metastatic potential. Several investigations indeed suggest an increased risk 

of melanoma in immune suppressed patients [421-423]. Furthermore, a dysbiotic gut 

mycobiota could lead to a systemic pro-inflammatory status, characterized by an 

increased activation of immune cells and by the release of pro-inflammatory cytokines, 

possibly able to reach the skin and modulate the function of immune cells at skin level. 

Skin inflammation is a crucial factor for neoplastic differentiation of melanocytes 

[424,425], as demonstrated by the effects of the pro-tumorigenic role of UV light, 

which is a strong inflammatory stimulus, activating pro-carcinogenetic biological 

pathways [426]. Furthermore, an increased expression of proteins involved in 

inflammasome activation, such as ATP-regulated plasma membrane channels that 

trigger inflammasome activation, together with the consequent constitutive activation 

of inflammasomes such as NALP3 and the increased levels of COX2, have been 

reported in melanoma [424], thus demonstrating a skin inflammatory status in this 

neoplasia.   

 Hence, a skin inflammatory status, possibly induced or modulated by a systemic 

inflammation related to a gut fungal dysbiosis, can occur in the epidermal melanocytic 

microenvironment, leading to the final accumulation of immune cells capable of 

releasing pro-inflammatory cytokines, or tumour growth factors possibly promoting a 

pro-tumorigenic milieu able to contribute to the melanocytic neoplastic shift. The 

crucial role of melanoma microenvironment in modulating the progression and 
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metastatic potential of this skin cancer has been widely demonstrated and assessed so 

far [427,428]. 

 

As regards to vitiligo, the finding of an altered gut fungal richness and diversity is 

noteworthy and needs future investigations. In case of fungal infections innate immune 

cells, mainly Th1 and Th17 cells, use a wide variety of membrane-bound and soluble 

receptors (lectin receptors, Toll-like receptors and scavenger receptor family member, 

mannose-binding lectin) to recognize fungi [420, 17]. These receptors trigger 

phagocytosis, respiratory burst (via the NADPH oxidase) and trigger intracellular 

signalling pathways finally leading to the activation of pro-inflammatory transcription 

factors and the destruction of fungi [420]. Consequently, the release of pro-

inflammatory cytokines and chemokines such as IL-22 , IFN-γ, IL-17A and IL-17F 

can occurr [420], and might eventually reach circulation.  Th17 cells and their related 

cytokines, together with an increased oxidative stress, are pathogenetic hallmark of 

vitiligo and have been reported to be increased both systemically and at epidermal 

level [421]. It might be possible thus that a gut fungal dysbiosis might contribute, in 

genetically predisposed subjects, to the development of a targeted damage toward 

melanocytes, through several mechanisms connected with Th17 activation and IL-17 

release [429], leading to the development of vitiligo. An increase of systemic IL-17 

might contribute to the melanocytic damage through the release of the chemokine 

CCL20, a homing molecule that can attract cytotoxic CD8+ T cells from systemic 

circulation into peripheral tissues such as the skin, where they could be able to directly 

kill melanocytes [429]. In addition, systemic IL-17 might reach epidermis and 

stimulates keratinocytes to release several chemokines resulting in further immune cell 

recruitment or indirect loss of melanocytes [429], clinically resulting in vitiligo 

lesions. 

Interestingly, a gut fungal impairment in vitiligo patients could explain the 

reduced risk of melanoma in such patients and could explain the prognostic role of 

melanoma associated leukoderma. In fact, Th17 cells play a key role in anti-

melanocyte immune response during melanoma, as reported by the evidence that 

melanocyte-specific T cells were able to clear melanoma in a more efficient way if 

they were cultured in Th17-polarizing conditions [429,430]. Such effect might be due 

to the ability of IL-17 to decrease expression of MITF (a survival factor for 
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melanocytes) and also promote melanocyte death by down-regulating BCL2, thus 

leading to the apoptosis of melanoma cells [429,430].   

Even if not significant, our finding of a difference in fungal richness and diversity 

(alpha and beta diversity) between melanoma and vitiligo, together with the 

differences in the relative abundance of species in melanoma and vitiligo that we 

observed, suggests that different fungal gut composition could exert a possible pro-

tumorigenic role in melanoma, and a possible anti-melanocytic and antitumorigenic 

role in vitiligo or in melanoma associated leukoderma. 

As to the relative abundance of fungal species in controls, we found a high abundance 

of Candida species, associated with the remining group constituted by undetermined 

species. The elevated presence of undetermined species, as indicated by the bar plot 

relative to species level (Figures 5, 6), might be due to different sequencing methods, 

since controls were evaluated in a different and preceding sequencing run than 

melanoma and vitiligo samples. However, the increased richness at OTUs level, as 

compared to melanoma and vitiligo, indicated by alpha diversity index, suggests that 

the controls’ mycobiota was richer in species than in the diseases’ groups, and that a 

problem eventually possibly occurred in the taxonomic attribution of OTUs. Only a 

few investigations [416, 431] assessed healthy gut mycobiota, and identified Candida, 

subdivided into its major species (Candida albicans, Candida glabrata, Candida 

dubliniensis and Candida parapsilosis), as one of the most frequently found genera in 

human gut. Such data was also confirmed by a recent investigation on human faecal 

samples, which used materials and methods comparable to ours [416]. The meta-

analysis we made between the data reported by this investigation and our results also 

confirms such an abundance and distribution of fungal species [416] (Figure 14).  

With regards to the comparison of the relative abundances of fungi between melanoma 

and vitiligo, the analysis conducted at species level showed that Penicillium Roqueforti 

(P<0.01), Fusarium sp. (P<0.01) and Candida sake (P<0.05) had a statistically 

significant higher abundance in melanoma, as compared to vitiligo (Fig.13). Several 

Candida species were also detected by the isolation and identification process of 

cultivable fungal species from faeces (Table 10). 

It has been reported that mice models chronically supplied with Penicillium Roqueforti 

mycotoxin (PR toxin) developed cancer, and interestingly one animal developed a skin 

cancer on the neck (squamous cell carcinoma) [432].  
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On the contrary, other studies reported that Andrastins, which are mycotoxins 

produced by P. Roqueforti, have been proposed as novel and interesting anticancer 

drug candidates, due to their ability to inhibit farnesyltransferase of the Ras proteins 

implicated in cell division control, and due to their capacity to enhance the 

accumulation of anticancer drugs in vincristine-resistant cancer cells [433]. Other 

experimental investigations also report that another P. Roqueforti mycotoxin, called 

botryodiplodiatoxin, is able to affect DNA, RNA and protein synthesis in growing 

cultures of mammalian cells and to induce DNA-protein cross-links [434,435].  

On the contrast, Fusarium, a large genus of filamentous fungi, part of a group often 

referred to as hyphomycetes, is widely distributed in soil and associated with plants 

and has been demonstrated to produce different mycotoxins, able to interact with in 

vitro melanoma cells cultures. In particular, Sansalvamide A, isolated from a marine 

fungus of  the Fusarium genus was  found to inhibit  proliferation and to induce 

differentiation and apoptosis of murine B16 melanoma cells [436]; Neosansalvamide, 

produced by Fusarium solani KCCM90040 (isolated from Fusarium -contaminated 

potato in Korea) [437], and enniatins H, I, and MK1688, isolated from Fusarium 

oxysporum KFCC 11363P, were found to be cytotoxic for SK-MEL-2 melanoma cells 

[438]; Fusarochromanone, a toxic metabolite produced by Fusarium equiseti, was 

found to be cytotoxic for many melanoma cell lines [439]; and Fumonisin B1, a 

mycotoxin produced by the corn fungus Fusarium moniliforme, inhibits integrin-

mediated cell-matrix adhesion [440], pivotal process in neoplastic dissemination. 

The finding of an increased abundance of Fusarium in melanoma group is in contrast 

with the above-mentioned evidences, but, even if the best way to improve melanoma 

prognosis remains an early diagnosis and a prompt excision, we could theoretically 

hypothesize that Fusarium species might have limited the development of an 

aggressive phenotype in our melanoma patients. 

Of course, given the limitations in translating mouse or in vitro models on human 

pathophysiology, the fact that some mycotoxins are rarely isolated and only 

experimentally produced, and the possibility that different strains of P. Roqueforti 

might produce different pro-tumorigenic or anti-tumorigenic mycotoxins, we 

absolutely cannot correlate the increased abundance of such fungus in our melanoma 

patients with melanoma development. As well, for the same reasons, we cannot ascribe 

a certain protective role of Fusarium sp. in melanoma. However, we think that this 

interesting finding is noteworthy of further evaluation.   

https://en.wikipedia.org/wiki/Genus
https://en.wikipedia.org/wiki/Hypha
https://en.wikipedia.org/wiki/Fungi
https://en.wikipedia.org/wiki/Hyphomycetes
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As to the higher abundance of Candida Sake, given the extensive presence of such 

fungi also in healthy patients and the absence of known interactions of this yeast with 

melanocytes or cancer, we cannot speculate a possible role of this presence in 

melanoma.  

The comparison of the relative abundances of fungi between melanoma and 

vitiligo at species level showed that Sporobolomyces roseus (P<0.01) and Epicoccum 

nigrum had a statistically significant higher abundance in vitiligo, as compared to 

melanoma (Fig.13). As to Sporobolomyces roseus, an experimental biochemical study 

showed that cell-free extracts of this fungus can degrade tyrosine [441], a key enzyme 

in melanogenesis. 

As to Epicoccum nigrum, its derived bioactive compound Di-(2-ethylhexyl) 

phthalate (DEHP) has been demonstrated to exert a moderate toxicity against SK-

MEL-28and A375P human melanoma cell lines [442].  

It is not known if such fungal metabolites are produced in vivo. However, assuming 

that somehow this species or its metabolites might reach the epidermis, hypothetically 

an accumulation of Sporobolomyces roseus might interfere with the synthetic 

pathways involved in melanogenesis, since tyrosine is the substrate for melanin 

synthesis, while an increase in Epiccoccum nigrum could account for the reduced 

proneness to melanoma in vitiligo. 

S. cerevisiae was found to have an increased higher relative abundance in vitiligo, as 

compared to melanoma. Although this difference did not reach a statistically 

significant level, we found this evidence of interest. It has been demonstrated indeed 

that extract from rice bran fermented with S. cerevisiae is able to downregulate in B16 

melanoma cell lines the expression of MITF, a transcription factor regulating gene 

expression essential for melanin synthesis in melanocytes, thus inhibiting 

melanogenesis [443]. Furthermore, EP2, natural yeast extract isolated by ethanol 

precipitation from Saccharomyces cerevisiae, was found to inhibit melanogenesis and 

melanosome transfer when added to melanocytes/keratinocytes co-cultures [444]. 

Interestingly, EP2 has been demonstrated to interact with protease-activated receptor 

2 (PAR-2), a key protein associated with melanosome transfer from melanocytes to 

keratinocytes, down-regulating this receptor [444]. It is noteworthy that PAR-2 m 

RNA and protein expression have been reported to be reduced in the skin tissue 

specimens of vitiligo patients and in cultured keratinocytes obtained from the lesional 

or non-lesional skin of vitiligo patients [445]. Hence, hypothesising that S. cerevisiae 

https://en.wikipedia.org/wiki/Melanin
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or a possible derivative of this yeast might reach the epidermis, a possible interaction 

with PAR-2 receptor could justify its reported down regulation observed in vitiligo 

and could be responsible for the appearance of vitiligo macules. Another interesting 

study showed that in experimental lung metastasis of B16-BL6 melanoma cells, the 

prophylactic administration of β-glucan purified from mutated S. cerevisiae 

significantly inhibited lung metastasis in a dose-dependent manner [446]. The same 

study showed that beta glucan inhibits metastasis through the activation of an immune-

surveillance mechanism involving innate immune cells such as macrophages and NK 

cells [446]. This study suggests a theoretical possible protective role of this yeast 

toward melanoma in vitiligo and could possibly justify the prognostic role of the 

occurrence of leukoderma in melanoma patients. Saccharomyces cerevisiae was also 

detected by the isolation and identification process of cultivable fungal species from 

faeces (Table10). 

Such observations definitely suggest the future need for a fungal microbiota evaluation 

of vitiligo and melanoma skin.  

Our investigation also showed that the community diversity in the vitiligo 

group is influenced by the total extension of the disease. This data is interesting since 

it proposes that fungal gut community in vitiligo not only has a distinct richness and 

diversity from controls and melanoma, but also could be involved in affecting the 

clinical features of the diseases, such as the total extension, and in other words the 

severity of vitiligo. We observed that some genus, namely Candida and Penicillum, 

and some unidentified genera appeared to be mostly associated to the sample V1 (with 

the highest total extension of the disease) (Fig. 16) . This data at present raises poor 

interest, since Candida has also been identified in controls and melanoma (Fig.11), 

and the Penicillium specie found in this patient might belong to Penicillium 

Coccotrypicola (Fig.12), whose interaction with immunity or melanocytes have not 

been studied at present, or to other unidentified Penicillium genera. A possible role of 

fungi in influencing the extension of the disease in this patient might possibly be 

carried out from other fungi fallen into the group of undetermined species. 

 Our study also aimed to characterize the bacterial microbiota of melanoma and 

vitiligo patients. Contrarily to what was observed for gut mycobiota, we did not find 

significant differences in richness and diversity of bacterial composition between 

melanoma, vitiligo and healthy samples (Fig. 17-19). Furthermore, the examination of 
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the relative abundance of different bacteria confirmed this evidence, showing an 

overall similar abundance of species between the three groups (Fig.20,21). 

Gut microbiota of healthy subjects, melanoma and vitiligo patients overall appeared to 

be mainly composed at phylum level by Bacteroides and Firmicutes, and to a less 

extent by Proteobacteria and Actinobacteria (Fig. 21). This evidence is in accordance 

with similar evaluations published so far which identified similar gut microbiota 

compositions in humans [1,447,448].  

With regards to the comparison of the relative abundances of bacteria between 

melanoma and vitiligo, the analysis conducted at species level pointed out a 

statistically significant higher abundance Firmicutes of different genera 

[Ruminococcus (P<0.05), Lactobacillus (P<0.05), Coprococcus (P<0.01) and 

Catenibacterium (P<0.01)] and Bacteroidetes Prevotella (P<0.01) in the melanoma 

group, as compared to vitiligo (Fig 28). 

Contrarily to what we found in our melanoma population, bacteria relative to the 

Firmicutes phylum had been reported to be reduced in the gut of patients affected by 

colorectal cancer [449]. Accordingly, Ruminococcus, a genus related to Firmicutes, 

has been reported to be less abundant in the gut of colorectal cancer or colitis 

associated colorectal cancer patients [450]. Nothing is known at present as regards to 

a possible influence of Firmicutes genera Ruminococcus, Lactobacillus, Coprococcus 

or Catenibacterium in melanoma. However, it has been demonstrated that butyrate, 

which is produced by some Firmicutes and in particular by Coprococcus and 

Ruminococcus genera from fermentation of dietary fibers, induces the expression of 

annexin A1 in human melanoma cells, thus promoting invasion through the activation 

of the epithelial to mesenchymal transition (EMT) signalling pathway, a critical step 

in cancer cells metastasis [451]. Since short chain fatty acids such as butyrate can reach 

circulation and tissues, it might be theoretically possible that an imbalance in butyrate-

producing bacteria might influence melanoma growth through an increased systemic 

butyrate level. It might be also conceivable however that the higher abundance of 

Firmicutes might be simply linked to a high dietary intake of fibres [452] or salt [453], 

that our enrolled patients with melanoma disclosed in the dietary questionnaire 

(Appendix 1, Table 1, 2).  

As to the increased relative abundance of Bacteroides Prevotella in melanoma, it is 

unknown at present if this bacterium might interact with melanocytes to promote 

tumorigenesis, but this data is in accordance with an evaluation of gut microbiota in 
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colorectal cancer, where a higher abundance of this bacteria was found [454,455]. 

Prevotella has been demonstrated to be involved in the expression of 

immunoinflammatory response genes in colorectal cancer, particularly genes encoding 

for inflammatory cytokines and chemokines [455]. Among them, CXCL1 expression 

has been shown to increase the survival of cancer cells and to promote angiogenesis in 

colorectal cancer [456], and interestingly it has been demonstrated to be involved in 

melanoma growth, survival, angiogenesis and metastasis [457]. Thus, the increased 

abundance of Prevotella might lead to the development of a systemic pro-

inflammatory status possibly involving the release of CXCL1 and hence theoretically 

modulating melanoma growth.  

With regards to the comparison of the relative abundances of bacteria between 

melanoma and vitiligo, the analysis conducted at species level pointed out a 

statistically significant higher abundance of Firmicutes Acidaminococcus (P<0.01) in 

the vitiligo group, as compared to melanoma (Fig.28). This bacterium has been 

demonstrated to be have an unfavourable influence on intestinal energy metabolism, 

since it consumes the glutamate, an essential compound for barrier function, amino 

acid metabolism and nitrogen balance [458,459]. Hence, the increased abundance of 

this bacteria might have induced a gut dysbiosis. Accordingly, community-level 

changes in the gut microbiota and a linear growth faltering have been found in 

association with increased abundance of F.acidaminococcus in two cohorts of children 

from Malawi and Bangladesh [460]. Even if dysbiosis has been found to be associated 

with several autoimmune disorders, F. acidaminococcus has been found to be reduced 

in faecal samples of Type I diabetes children, as compared to controls [461]. However, 

although this result is partially in contrasts with our finding, it might be possible that 

the increased relative abundance of this bacteria in vitiligo might induce dysbiosis and 

hence limit the growth of beneficial and tolerogenic microbes, thus triggering 

autoimmunity.  

Our study also found that the bacterial community diversity in the melanoma 

group is influenced by the mitotic index (Fig. 29,30). More in detail, samples 

belonging to melanoma patients with the highest mitotic index tended to separate from 

the rest of the samples. Some phylum appeared to be mostly associated to highest 

mitotic index samples, namely both Bacteroides and Firmicutes. This analysis failed 

to identify an association of such samples at lower taxonomic level. Hence, being 

Firmicutes and Bacteroides constituted by several diverse bacteria with different and 
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sometimes opposite effects on cancer, it is not possible at present to speculate about 

possible pathogenetic mechanisms which could explain this association. However, the 

evidence of a possible influence of mitoses on bacterial diversity shed light to an 

eventual role of bacteria in modulate and affect the histological features of melanoma, 

and hence its prognosis. 

The bacterial community diversity was also found to be related to vitamin D level in 

vitiligo patients (Fig.31,32).  More in details, samples belonging to vitiligo patients 

with the highest vitamin D level tended to separate from the rest of the samples. Also 

in this case, some phylum appeared to be mostly associated to such samples, namely 

both Bacteroides and Firmicutes and again we did not identify a clear association of 

such samples at lower taxonomic level. Hence, possible hypothesis explaining a 

pathogenetic link between vitamin D levels and specific bacteria cannot be provided 

in our study. However, vitamin D deficiency and polymorphisms in vitamin D receptor 

(VDRs) have been widely demonstrated in vitiligo patients [462, 463], similarly to 

other autoimmune diseases [464], and recently also a strict interconnection between 

vitamin D level and microbiota has been disclosed in autoimmunity.  

In particular, vitamin D modulates the microbiome of the upper gastrointestinal tract, 

maintains the integrity of the gut mucosal barrier through an enrichment of 

intercellular junctions involved in the control of mucosal permeability, thus preventing 

the translocation of endotoxins into the circulation, and reduces the release of pro-

inflammatory cytokines such as IL-8 [465,466].  

Also, VDRs play a crucial role in gut homeostasis, since their activation modulates 

autophagy and elicits the production of antimicrobial peptides (mainly cathelicidin and 

β-defensin), which can modify gut intestinal microbiota toward a healthier 

composition [467]. It is noteworthy that besides vitamin D, also by-products of the 

microbiota such as secondary bile acids might also trigger VDR activation [467]. 

In the light of the abovementioned considerations, the evidence we found of a direct 

influence of vitamin D level in microbial diversity of vitiligo patients strengthens the 

importance of maintaining adequate vitamin D serum levels in vitiligo. Sufficient 

vitamin D levels might reduce the autoimmune and inflammatory processes associated 

with vitiligo not only through a direct interaction of this vitamin with immune system, 

but also through the maintenance of a healthy gut microbiota. 

Finally, a statistically increased relative abundance of Bifidobacterium (P<0.05), 

Bacteroides Plebeius (P<0.05), and Prevotella (P<0.05) was significantly associated 
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with the subgroup of vitiligo patients without associated autoimmune disorders, while 

Bacteroides Barnesiae was associated with vitiligo with autoimmune comorbidities 

(P<0.05) (Fig.33,34). 

Bifidobacterium is a ubiquitous bacterium of the gastrointestinal tract exerting potent 

probiotic activities. Distinct species of this bacteria have been reported to be decreased 

in the gut microbiota of patients affected by type 1 diabetes [468] but increased in 

ankylosing spondylitis [469] and enthesitis-related arthritis [470]. The 

supplementation of some strains of Bifidobacterium can exert beneficial effects on 

mouse models of multiple sclerosis [471] and systemic lupus erythematosus [472], due 

to their ability to prevent CD4(+) lymphocyte over-activation [472] in the latter 

disease. On the contrary, Bifidobacterium bifidum 791 cell-surface biopolymers 

interact selectively with human serum thyroid peroxidase and thyroglobulin 

autoantibodies [473], suggesting a possible role of Bifidobacteria in the pathogenesis 

of autoimmune thyroid diseases through molecular mimicry mechanisms. 

We are not able to identify from our analysis what kind of species or specific strain of 

Bifidobacterium could account for the diversity in vitiligo patients or vitiligo patients 

without autoimmune disease. Hence, we reasonably hypothesize a protective role of 

Bifidobacterium in vitiligo patients toward the development of associated autoimmune 

disorders, but we cannot exclude the presence of associated undetermined different 

Bifidobacterium strains in the group pf patients contemporarily developing 

autoimmune diseases. 

As regards to Prevotella, some species of this bacteria, namely P. Copri, have been 

found increased in patients affected by autoimmune disorders, such as rheumatoid 

arthritis [474]. This is in contrast with our finding of a major abundance of this bacteria 

in vitiligo patients without autoimmune disorders. However, no enrolled vitiligo 

patients however suffered from rheumatoid arthritis, being autoimmune thyroiditis the 

most frequently found comorbidity, and a decreased abundance of Prevotella has been 

recently demonstrated in patients affected by Hashimoto thyroiditis [475]. This 

evidence sustains our finding of a lower presence of Prevotella in patients with 

concomitant autoimmune disorders, most of them affecting thyroid, as compared to 

patients affected by vitiligo only, in which Prevotella had a significant higher 

abundance. 

As to the significant increase of B.Barnesiae in vitiligo patients with autoimmune 

diseases, we cannot provide a reasonable explanation for this evidence. Indeed, this is 
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the only study performed on humans aimed to isolate this Gram-negative, anaerobic, 

rod-shaped bacterium from human faeces [476]. No other study reported so far 

differences in the abundance of this bacterium in health and disease. 
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11. Conclusions 

 

This study has characterized, for the first time, the fungal and bacterial gut microbiota 

in patients affected by melanocytic disorders, such as non-metastatic melanoma and 

vitiligo. The most promising findings were obtained at fungal levels, suggesting how 

the characterization of this still obscure component of human gut microbiota deserves 

more attention and more in-depth investigations. Despite the limited number of 

enrolled subjects, we also found that the diversity of microbial community, both at 

fungal or bacterial level, was influenced by histological indicators of prognosis in 

melanoma, such as the mitotic index, and by clinical indicators of severity of vitiligo, 

such as disease extension. Furthermore, the isolation and identification of fungi 

through classical cultural techniques and advanced sequencing approaches allowed us 

to confirm the results of the metagenomic evaluation and to plan further physiological 

investigations aiming to identify pathogenicity and virulence features of the isolated 

fungi. 

Major limitation of this study, due to its design, is the impossibility to prove a 

causal role of the increased/reduced relative abundance or absence of the micro-

organisms in the pathogenetic process of melanoma or vitiligo. Furthermore, even if a 

growing body of evidences sustains the presence of a gut-skin axis, we do not know 

exactly at present how gut fungi or bacteria might exert biological effects at skin level. 

Other limitations are the restricted number of assessed patients and the possibility that 

unidentified species might have a possible undetectable role on the diseases.  

Nonetheless, our study prompts further investigations on a larger cohort of melanoma 

and vitiligo patients, and suggests evaluating also the gut microbiota of subjects 

developing melanoma associated leukoderma. 

The improved knowledge of fungal and bacterial microbiota in melanoma 

patients might help to define possible lifestyle habits such as a specific diet, weigh 

reduction or lower antibiotics assumption, which might help to recover a healthy 

microbiota. The restoring of eubiosis might reduce a possible genotoxicity, anti-

apoptosis, anti-inflammation and anti-proliferative ability connected with gut 

microbes.  This favourable microbial community might also stimulate an immune 

response toward melanoma cells, limit its progression and positively affect prognosis. 
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The knowledge of the fungal and bacterial gut microbiota signature in vitiligo might 

help to identify a specific anti-melanoma microbiota signature, possibly able, if 

reconstituted through lifestyle habits, diet, probiotics/prebiotics or maybe faecal 

transplantation, to favour the development of beneficial immune-surveillance 

responses in melanoma patients. 
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Table 1. Results of the dietary diary of melanoma patients 
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Table 2. Results of the dietary diary of vitiligo patients  
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Table 3. Main personal and historical data of melanoma and vitiligo patients 
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Table 4- Complete personal and historical data of Melanoma patients 
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Table 5- Complete personal and historical data of Vitiligo patients 
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Table 6- Histopathological features of Melanoma 
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Table 7- Clinical features of Vitiligo 
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Table 8- Serological features of Vitiligo patients 
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Table 9. Results of the PERMANOVA analysis related to fungal and bacterial 

microbiota diversity and clinical features of the diseases 

PARAMETER P value R2 

FUNGAL 

Melanoma 

Invasiveness  0.110 0.164 

Growth phase 0.114 0.273 

Breslow thickness 0.203 0.142 

Mitotic index 0.314 0.116 

Tumour infiltrating lymphocytes 0.510 0.184 

Regression 0.439 0.100 

Vitiligo 

Autoimmune thyroid diseases  0.650 0.066 

Associated autoimmune disorders 0.935 0.104 

ANA positivity 0.228 0.155 

25(OH)D values 0.871 0.072 

Ab anti TPO positivity 0.803 0.082 

Activity of the disease 0.494 0.202 

Onset 0.174 0.151 

Growth 0.600 0.088 

Signs of inflammation/pruritus 0.159 0.153 

Leukotrichia 0.900 0.055 

Total extension 0.023 (*) 0.198 

Stress at onset 0.162 0.150 

BACTERIAL 

PARAMETER P value R2 

Melanoma 

Invasiveness  0.161 0.125 

Growth phase 0.513 0.188 

Breslow thickness 0.454 0.101 

Mitotic index 0.016 (*) 0.181 

Tumour infiltrating lymphocytes 0.187 0.259 

Regression 0.234 0.132 

Vitiligo 

Autoimmune thyroid diseases  0.713 0.078 

Associated autoimmune disorders 0.008 (**) 0.170 

ANA positivity 0.346 0.110 

25(OH)D values 0.017 (*) 0.192 

Ab anti TPO positivity 0.159 0.129 

Activity of the disease 0.235 0.239 

Onset 0.221 0.124 

Growth 0.286 0.119 

Signs of inflammation/pruritus 0.243 0.122 

Leukotrichia 0.248 0.116 

Total extension 0.530 0.107 

Stress at onset 0.624 0.084 
(*) P<0.05 ; (**) P<0.01  
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Table 10. Results of isolation and identification of fungi from melanoma faecal 

samples 

 

NUMBER ISOLATES SPECIES 

1 
M6F_2Y Candida albicans 

M6F_2Y Candida albicans 

2 M6F_4Y Candida albicans 

3 M6F_6Y Candida albicans 

4 M6F_8Y Candida albicans 

5 M6F_12Y Candida albicans 

6 M6F_13Y Candida albicans 

7 M6F_15Y Candida albicans 

8 
M6F_16Y Candida albicans 

M6F_16Y Candida sp. 

9 M8F_1Y Candida albicans 

10 
M8F_2Y Saccharomyces cerevisiae 

M8F_2Y Saccharomyces sp. 

11 

M8F_3BY Saccharomyces paradoxus 

M8F_3BY Saccharomyces cerevisiae 

M8F_3BY Saccharomyces cf. 

M8F_3BY Saccharomyces sp. 

12 M9F_1Y Candida albicans 
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Appendix 1 

Appendix 

1 

FOOD DIARY 

PATIENT ID: 

DATE OF BIRTH: 

HEIGH (mt):                                           WEIGHT (kg):                                          BMI: 

DATE OF SAMPLE COLLECTION: 

 

1. Drinks (milk, coffee): indicate amount (1 glass= 150 ml) and how many 

times a day.  

…………………………………………………………………………………

……………… 

2. Biscuits, Rusks, Cereals or other: indicate amount for day (or number of 

pieces). 

…………………………………………………………………………………

……………… 

3. Pasta, Rice and Potatoes: (handful of rice or pasta; number of potatoes).  

…………………………………………………………………………………

……………… 

4. Animal Proteins (meat, fish): indicate amount as raw food and kind (e.g. 

red or white meat, fish or shellfish) (1 slice of meat or fish = 120-150 gr 

approximately)  

…………………………………………………………………………………

……………… 

5. Eggs, Cheese: indicate amount; for the cheese, indicate the derivation of 

milk (cow, sheep, goat) 

…………………………………………………………………………………

……………… 

6. Condiment (dressing): indicate the amount expressed in spoons; for oil, 

specify the kind  

…………………………………………………………………………………

……………… 

7. Spices: indicate the most commonly used spices  

…………………………………………………………………………………

……………… 

8. Bread: indicate the kind (brown or refined, and the kind of cereal of origin) 

and the amount, expressed as number of slices (1 slice=40-60 gr) 
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…………………………………………………………………………………

……………… 

9. Vegetables: indicate the kind, the daily amount (number of portions: 150-200 

gr=1 portion) and accompanying condiment   

…………………………………………………………………………………

………….. 

10. Fruit: indicate the kind and the daily amount (excluding scraps) 

…………………………………………………………………………………

……………… 

11. Beverages (e.g. water): indicate amount in ml  

…………………………………………………………………………………

……………… 

12. Sweets (sugar, marmalade, chocolate, honey): indicate the daily amount 

expressed in spoons/teaspoons  

…………………………………………………………………………………

……………… 

Appendix 

1 

 

OTHER INFORMATIONS 

1.  Assumption of probiotics/prebiotics in the last 6 months 

            YES □                                        NO □ 

 

2. Assumption of antibiotics in the last 6 months 

            YES □        NO □ 

            kind………………                     

 

3. Assumption of yoghurt 

YES.  □        NO □ 

            type………………               

 

4. Feeding in the first 4-6 months 
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            □ Breastfeeding      

            □      Formula milk  

 

5. Weaning  

months……………………. 

 

6. Delivery 

    □      Vaginal       

         □      Caesarean  

 

7. Food allergy 

type: ……………………. 
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