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Abstract

Many human activities are regularly carried out in marine environments, to

take advantage of the several benefits provided by these ecosystems. Con-

sequently the management of marine resources should be achieved within

a comprehensive governance. Seagrass meadows play an important ecolog-

ical role in marine environment and Posidonia oceanica is the dominant

seagrass in the Mediterranean Sea. This species forms large meadows pro-

viding ecosystem service with great value such us protection against coastal

erosion, contribution to fishery supporting food webs and high biodiversity,

absorption of pollutants by filtrating water, nursery for species of commercial

interest. In addition P. oceanica is characterised by its capacity to absorb

and store considerable amount of carbon in its carbon rich-sediments. De-

spite their protection, meadows of P. oceanica are regressing at fast rates,

which represents the loss of an important carbon sink. Modelling seagrasses

dynamics can help to formulate the necessary protocols to ensure the ac-

countability of mitigation actions involving the conservation and restoration

of P. oceanica meadows. The work presents a stochastic non-linear model,

spatially explicit with seasonal dynamics, consisting of a cellular automaton

describing the main processes involved in the growth of a Posidonia oceanica

meadow. In particular, the model simulates the seasonal dynamics of ex-

pansion, longevity and senescence of leaves and the joint effects of multiple

stressors acting on these dynamics. The purpose of the study is to develop

modelling approaches to be used as efficient tools to assess factors regulating

and affecting growth dynamics of P. oceanica to predict the approach of the

system to critical situations. Its goal is thus to provide a valuable support to

the definition of management actions on the coast. More in detail, the basic

model implemented is a spatially explicit cellular automaton with annual

dynamics (52 weeks). The base is an I × J matrix where each cell contains

an automaton that simulates a Posidonia oceanica bundle with a maximum

number of 7 leaves. The development and the seasonal dynamics of each

leaf is described, according to a law of growth determined by the following

drivers:

� light absorption, depending on the season and the depth at which the

meadow is located;

� shadowing neighbouring beams, the size of which depends on the (i,j)

position of each single bundle in the matrix;
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� availability of nutrients, increasing growth to a certain threshold;

� presence of epibionta, calculated as percentage of leaf surface, varying

according to the leaf length and age, as well as to the availability of

nutrients.

In the model the main factor reducing biomass is the death of leaves oc-

curring at an average age of 46 weeks. The model returns values of biomass

produced by meadow. Then it is possible to calculate the carbon value stored

by the meadow as proportional to its total biomass, based on the percentages

suitably estimated in the literature: the purpose is to assign an economic

value to the P. oceanica carbon storage. The model is running under simula-

tion scenarios in order to highlight how biotic and abiotic stressors can affect

the conservation state of the simulated meadow. For each scenario the model

gives different value of biomass production and different amounts of stored

carbon. The results of the simulations, compared with values from the liter-

ature, shows that the model can reproduce a realistic pattern of the seasonal

growth and production dynamics of a Posidonia oceanica meadow. The final

aim is using model results to estimate the loss or benefit in economic terms,

associated with anthropic interventions and specific management of coastal

systems. Once model uncertainties are defined and the model is validated,

it will provide an essential tool to explore the effects of management choices

on Posidonia oceanica ecosystem.
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Chapter 1

Introduction

This study investigates the use of dynamical system modelling in describing

and analysing the dynamical characteristics of Posidonia oceanica habitat,

the dominant seagrass habitat in the Mediterranean Sea and the most im-

portant coastal shallow water habitat in the region. The main aims of this

research study are:

- to integrate knowledge about P. oceanica habitat and synthesise cur-

rent data about seagrass community structure into a working model

for a generic P. oceanica meadow;

- to describe and test the preliminary model for the seagrass P. oceanica

and to consider the influence of changes in exogenous variables such as

light and nutrient availability in scenario analysis.

Posidonia oceanica (L.) Delile is an endemic seagrass in the Mediterranean

Sea, where it covers about 50.000 km2 from near the surface down to 40 m

depth [14], [198]. It assembles extended meadows giving rise to key ecosys-

tems for the coastal strip [112]. The ecological community supported by

Posidonia oceanica modulates important biogeochemical processes like oxy-

gen and carbon cycles [53] and plays an important role in the nutrient budget

of the coastal marine ecosystems [180]. Moreover this seagrass stabilizes the

processes of sedimentation and coastal erosion ensuring the conservation of

geomorphology balance in the coast. With its high rates of primary produc-

tion, Posidonia oceanica supports a diversity of trophic interactions [235]

providing a preferential habitat and nursery areas for many fish and inverte-

brate species [141]. The Posidonia oceanica habitat offers varied and highly

1



2 Introduction

valuable ecosystem services, so it is essential to preserve its resilience, the

ability to tolerate perturbations without suffering drastic changes in order to

protect the coastal environment. In the last years the Posidonia oceanica’s

meadows have experienced a rapid and worrying decline due to the run-

away increase of coastal infrastructures and the consequent intensification

of human impact. The most widely factor is the anthropogenic nutrient en-

richment [120], [55], [51]: nutrient loading stimulates an overgrowth of algae

and epiphytes covering Posidonia oceanica’s leaves, limiting the quantity of

light available to photosynthetic processes. In this work a dynamical system

approach is identified to help addressing and understanding the complex dy-

namics between anthropogenic stressors and natural systems in the coastal

zone. The information needed by resource managers to exercise adequate

environmental stewardship is not available through data monitoring alone.

The capacity to anticipate the behaviour of the ecosystem is greatly advan-

tageous to policy-makers dealing with such complex systems. At present it is

commonly recognized the importance of mathematical models in predicting

the behaviour of a natural ecosystem and in exploring future policy measures

for the management of this ecosystems. The aim of our research is to develop

a specific model for the ecosystem of interest and its population-level prop-

erties. This is here strongly justified by the management application of this

study. In order to develop tools useful to predict whole ecosystem dynamics

it is appropriate to use scales coarser than the individual scale of the plant,

which is more appropriate for evolutionary and eco-physiological studies. In

this research, we construct a mathematical model able to describe the main

growth processes of a Posidonia oceanica meadow; the model includes the

seasonal dynamics of the expansion, longevity and senescence phases of its

leaves. The basic model, turned into a numerical one via a Fortran 90 code, is

a spatially explicit cellular model with annual dynamics (52 weeks): the base

is a matrix, where each cell matches an automaton simulating a Posidonia

oceanica’s bundle. The model strength is the possibility to simulate different

natural scenarios of human-environment interaction, then making quantita-

tive evaluation of the results obtained so, in order to predict the behaviour of

a P. oceanica meadow undergoing different stressors such as pollution. The

purpose is develop and apply modelling approaches to be used as efficient

tools to achieve a better understanding of the functional state of Posidonia

oceanica’s meadows and consequently provide a valiant support to refining

management actions on the coastal band. The final goal will be evidencing
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bifurcations and regime shifts which may be observable at different temporal

and spatial scales. In particular, at a more advanced stage of the model, one

will aim at studying the stability portrait in general. That will mean inves-

tigating the stability or instability of possible equilibria, depending on the

stressors, hence improving our knowledge of the properties characterizing

critical conditions of the environment. Early warning of critical transitions

in the ecosystem will be possibly deduced from the simulated time series;

finally it should be possible mitigate the impacts of global changes. This

model, at the stage presented here, represents the first attempt to provide

a general theoretical analysis of the combined effects of light, nutrients and

other factors on the growth of Posidonia oceanica in a wide variety of habi-

tats. Thus, the general predictions of this model should apply to Posidonia

oceanica populations with widely differential morphologies in dramatically

different environments. Future objectives are to validate the model with real

biological parameters, to introduce new important biological functions and

to investigate the effects of other stressors on the health state of the Posi-

donia oceanica habitats. The present work provides a platform upon which

further model development will be made, and constitutes an important step

towards creating a useful management tool for valuable P. oceanica resources

in the Mediterranean.

In addition to its key role as highly productive ecosystem [79] supporting

high biodiversity [111], Posidonia oceanica is characterised by its capacity

to sequester and store considerable amounts of Carbon in its carbon-sink

sediments. Reducing carbon (C) emission is a necessary step in the fight

against climate change. Moreover, because greenhouse gases will linger in

our atmosphere for another hundred years, there is also a need to find ways

to remove C from the atmosphere. Biosequestration is one promising op-

tion that capitalises on natural CO2 capture and storage by photosynthetic

organisms and soil microbes. Although much of the attention on bioseques-

tration has centred on terrestrial forests, world’s greatest C storage potential

may be in our coastal ecosystems. Seagrasses meadows bury C at a rate that

is 35 times faster than tropical rainforests, and their sediments never become

saturated [160]. Furthermore, while terrestrial forests bind C for decades,

seagrasses meadows can bind C for millennia [142], [152]. Posidonia oceanica

is an exceptionally effective long-term carbon sink thanks to its significant

low input and loss rate [189]. The rate of carbon sequestration in the long-

term performed by P. oceanica is estimated between 6 and 175 g C m−2
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y−1, which represents 10-25% of the its net primary production [189]. This

is an important service for the Mediterranean Sea and the Mediterranean

Countries. The current decrease of P. oceanica’s meadows heralds the loss

of an important long-term C sink, and raises concern that degraded mead-

ows could leak vast amounts of ancient C back out into the atmosphere, thus

shifting theP. oceanica from C sink to C sources, and potentially accelerat-

ing climate change. Realisation of the important carbon sink capacity of the

seagrasses meadows has recently led to the proposal that seagrasses, along

with salt-marshes and mangrove forests, could be used to support strategies

to mitigate climate change. These strategies would be based on both the con-

servation and reforestation of seagrass meadows. However, the development

of management schemes based on the role of seagrasses as intense carbon

sinks has been precluded by limitations in current knowledge on the mech-

anism conducive to their high carbon sink capacity and the rates of carbon

burial they do support. It is therefore necessary to conduct a comprehensive

and rigorous assessment of seagrasses C budgets using the most up-to-date

technologies, and to use this information to model the sequestration capac-

ity for different conditions. The model presented here supplies the ability to

estimate the amount of carbon stored from a P. oceanica’s meadow and to

assign to it an economic value. The Carbon value associated with meadows

is obtained as a percentage of the total biomass based on the percentages

estimated in the literature relative to the dry weight per unit of surface.

The purpose is to use the different values of biomass production and carbon

uptake provided by the different simulation scenarios, in order to be able to

estimate the loss or gain in economic terms, associated with anthropic inter-

ventions and specific management of coastal systems, causing variations that

are easy to model. The model allows to predict the cumulative carbon sink

associated with meadows restoration projects and to evaluate their cost effi-

ciency. The final aim is to provide a practical list of research priorities that

will lead to policy changes, with the introduction of effective measures to

protect vulnerable meadows’s carbon stocks, as well as restore and improve

the C sequestration capacity of their ecosystems.

In order to set the scene for the present work, a background to seagrasses

and the seagrass species Posidonia oceanicais given in the next section. The

stressors relevant to the habitat and the current management initiatives to-

wards reducing and/or eliminating these stressors are also discussed. An-

other section provides a summary of the main production models about
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Posidonia oceanica. A review follows of key techniques and methodologies

that can be used in research towards developing C budgets, and an analysis

of methods to put a price on carbon. Then the model is described in detail

and the result of simulations discussed.
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Chapter 2

The seagrass Posidonia

oceanica

In this first chapter a description of the species Posidonia ocean-

ica, analysed by this study, is provided. Knowing the biological

features of a species improves the awareness of how it is poten-

tially adaptable, but it is also useful to realize how fragile it can be

and how a variation of one environmental variable can be harmful

and lead to a great loss. Only by recognizing the factors deter-

mining the photosynthetic processes of each plant, it’s possible

simulate the growth dynamics of a meadow. After the system-

atic classification of the species, a description of the ecological

factors affecting the distribution, the morphological structure and

the reproductive mechanisms, is supplied.

2.1 Scientific classification

Posidonia oceanica (L.) Delile is an endemic seagrass of the Mediterranean

Sea. Seagrasses are monocotyledonian angiosperms (flowering plants) with

terrestrial ancestors which, about 120 million years ago, have recolonized

the marine environment. Despite their terrestrial origin, seagrasses are well

adapted to life in the marine environment, in shallow water at water depths

less than 50 m [76], and grow close to the shore. Seagrasses have an anchor-

ing system that allows to withstand the energy of the wave motion; they are

rhizomatous, clonal plants that occupy space via the repeated production of

7



8 The seagrass Posidonia oceanica

shoots, leaves and roots as a result of their rhizome extension [147]. Asexual

propagation generally constitutes the main proliferation mechanism for sea-

grasses, although some species such as Zostera marina have a high rate of

sexual reproduction: seagrasses complete their life cycle in water and use an

hydrophilic pollination mechanism that allows them to colonize large areas

especially on sandy substrates [106], [129]. Many of them are considered as

engineering species, which are able to modify the substrate to make it suit-

able for the colonization of other species and they are therefore key species

of their ecosystems [30]. Seagrasses are some of the most important ecosys-

tems, both ecologically and economically [128], [66]: it has been estimated

that the average annual seagrass production is 1012 g DW m−2 per year [79].

Marine species are a very small number compared to land monocotyledons:

about 60 species are known with over 300,000 species of angiosperms. This

is by no means proportional to their abundance or their ecological and eco-

nomic importance. Seagrasses are present in temperate and tropical regions

Fig. (2.1): the temperate boreal regions are dominated by the Zostera genus,

the Australian by the genus Posidonia. They usually have long leaves and

live very close to each other forming meadows which look like grassland, this

is why they are called “seagrasses”. In tropical areas multi-species meadows

are common, while in temperate areas meadows are usually monospecific or

oligospecific.

Figure 2.1: Current global distribution of seagrasses in relation to mean ocean temperature

(from [106].

There are 60 described species of seagrasses worldwide, within 12 gen-

era, 4 families and 2 orders: four species are native to the Mediterranean,
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Zostera marina, Zostera noltii, Cymodocea nodosa and Posidonia oceanica.

The family Posidoniaceae has only one genus, Posidonia, which includes 9

species: 8 of them are widespread in the Australian coasts, while one of

them, Posidonia oceanica, is endemic to the Mediterranean Sea.

2.2 Distribution and ecology

The Posidonia oceanica has a distribution limited to the Mediterranean Sea

and it disappears in the extreme western area where the Mediterranean wa-

ters mix with the waters coming from the Atlantic Ocean Fig. (2.2). Its

presence is found on almost all the coasts of the basin: it is missing only in

confined regions (on the coasts of Egypt, Palestine, Israel and Lebanon) and

the Black Sea [30].

Figure 2.2: Distribution of Posidonia oceanica (red line) along the coast of the Mediter-

ranean Sea. From [222]

In the Mediterranean basin about 50.000 Km2 are covered by P. oceanica

from near the surface down to 40 m depth [14], [198], [208]. Irradiance, nu-

trient availability and temperature are the main factors regulating primary

production of marine vascular plants [240], [238], [107], [4]. Light availabil-

ity is one of the most important factors regulating the depth distribution,

abundance and productivity of Posidonia oceanica [238], [87]. The maximum

depth that can be reached by P. oceanica depends on the cleaness of the water

column; the maximum limit, of 45-48 m, was observed in Corsica [9], [31].
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Posidonia oceanica is particularly sensitive to low salinity values, while it

seems to be better resistant to high levels of salinity, although some studies

have shown that 41% is its maximum tolerance limit. It needs a constant

salinity level, so it is not common in estuaries or lagoons. Temperature can

significantly affect the rates of physiological processes such as photosynthesis

and respirations, and influences flowering and fruiting events. The temper-

ature range in which the plant lives and reproduces successfully is from 9◦

C to 29◦ C. High hydrodynamism tear portions of meadows: for this rea-

son, in areas exposed to wave movement, P. oceanica does not appear more

than 2 meters in depth; under favorable hydrodynamic conditions, in shel-

tered areas, the plant colonizes very shallow bottom. It grows healthier in

waters free from pollution, and for this reason its presence is an indicator

of water cleanness. The main habitats of the plant are generally incoher-

ent substrates with sandy granulometry on which it can form dense and

extensive monospecific meadows. On rocky substrates, P. oceanica usually

develops matte of moderate size and meadows are little extended [30]. While

5% of the Posidonia oceanica stands may occur in patches of various sizes

or in continuous meadows [23], [65], other growth patterns characteristic of

this species of seagrass include “collines” (hillock-like stands generally sur-

rounded by sand) and barrier reefs [30], [202]. Long persistence, slow vege-

tative growth, infrequent sexual reproduction and low genetic variability are

all typical characteristics of P. oceanica meadows [152].

2.3 Morphology and structure

The plant is organized in roots, rhizomes and leaves Fig. (2.3). Adventitious

roots usually develop from the lower side of the rhizome, generally at the

nodal zones; they are thin, soft and very often branched. Roots, in addition

to ensuring anchoring and absorption of nutrients, act as a reserve of oxygen,

produced by photosynthesis from the leaves. The rhizomes, which constitutes

a modified underground stem similar to a root but with leaves, have the

function of transporting water and mineral salts to the leaves, storing the

reserve material and, together with the roots, anchoring the plant to the

substrate. Rhizome may increase by stolonization horizontally (plagiotropic

rhizome) and perpendicular to the substrate (orthotropic rhizome), [159].

The first one allows the plant to colonize large areas of the substrate,

anchoring through the roots that are formed on the lower side. The latter,
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Figure 2.3: Components of Posidonia oceanica (from [103].

through vertical growth, allows the plant to escape from progressive calving

and competition for the light [33]. Depending on the available substrate

and environmental conditions, a rhizome may change its growth orientation

from orthotropic to plagiotropic, and conversely [98]. Rhizomes’ growth is

very slow: plagiotropic rhizomes stretch by about 5-12 cm per year, while

the orthotropic grows from 0.3 to 7 cm per year; speed varies according to

season, while it does not seem to be influenced by the depth where plants are

located, and the density of leaves. The factor that determines the elongation

of rhizomes on the substrate or perpendicular to it is mainly sedimentation

rate: if excess sediment accumulation occurs, rhizome reacts by increasing its

orthotropic growth. Beyond a certain treshold, however, its vegetative por-

tion remains too sunken and perishes [58]. The plagiotropic and orthotropic

growth of the Posidonia oceanica leads to the formation of terraced struc-

tures consisting of rhizomes, roots and sediment. The progressive burial of

roots, rhizomes and leaf sheaths leads to the accumulation of large quantities

of organic debris beneath P. oceanica meadows. The network of living and

dead rhizomes with sediment filled interstices is commonly termed “matte”

Fig. (2.4) and is a characteristic unique to P. oceanica meadows [188]. The

comparison of batimetric cards [166] [152] and dating techniques with the

C14 allowed estimate the matte growth rate around 1 m/century [29].

At the top of the rhizome there is the vegetative apex from which leaves

arise: the leaves are the carbon fixing center, and they are also important

for the absorption of nutrients. The leaves look like thin ribbons, with a
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Figure 2.4: Posidonia oceanica matte (from https :

//it.wikipedia.org/wiki/Posidoniaoceanica).

rounded apex; they have a width between 0.6 and 1.2 cm that can exceed

one meter in length [102]. They are composed of two parts: the base, present

only in those that have reached a certain development, and the flap, which

represents the photosynthetic part; the boundary between the base and the

flap is marked by a concave line called ligule. All leaves have a basal meristem

that increase the formation of new tissue at the base. This creates an aging

gradient into the leaf in the longitudinal direction so the apex, the oldest

part of the leaf, first meets degenerative events producing the appearance

of a brown tissue. The leaves are arranged in tufts of 4-8 elements [182],

typically fan-shaped, with the younger leaves in the tuft, while the older are

more external Fig. (2.5). Depending on the degree of maturity, there are 3

categories of leaves:

� juvenile leaves: less than 5 cm length;

� intermediate leaves: the length is greater than 5 cm still they don’ t

show the presence of the ligule;

� adult leaves: the typical structure with base and flap is shown;

� old leaves: brown and photosynthetically inactive.

P. oceanica, like other seagrasses species of the genera, tends to develop

very high above-ground (about 500 g DW m−2) biomass. On the other
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Figure 2.5: Classification of P. oceanica’s leaves (adapted from [182]).

hand, below-ground biomass developed by Posidonia exceeds by far (about

1000 g DW m−2) those developed by other seagrasses [80]. The P. oceanica

average ratio of below to above-ground biomass varies between 4.5 and 19.3.

The production of new leaves is continuous but their growth rate changes

with the season, minimum in summer and maximum in spring [181]. In the

summer the meadows are rich in very long leaves and densely covered by

epiphytes. Between September and December there is a renewal of the leaf

bundle with the appearance of juvenile and intermediate leaves and the fall

of the older leaves. Towards the end of August many leaves are dead and

autumn storms cause their detachment; epiphytic population is drastically

reduced by decrease in temperature. The first leaf of the annual growth

cycle appear between the end of August and the beginning of September

and successively they continue to appear until the end of May. The growth

rate of plants is increasing until it reaches its peak at the end of spring, then

it decreases again in the following period. Summarizing the growth of a new

leaf is observed at least once a month (for an annual average of 10 leaves)

and the fall of at least one adult leaf throughout the seasons, although it has

a peak in autumn. Seagrass production that is buried in the matte is rather

noteworthy (25-35%) and, due to high resistance to decay, may furthermore

persist for thousands of years [152]. Observation of the oldest materials by

Mateo et al. [152] indicates that plant parts that last the longest are the
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leaf sheaths (their external morphology is left intact after 3000 years) and

roots, which are usually found in a fragmented state. Rhizomes are less

resilient to decay, and no identifiable remains are found in the oldest (>1000

year) samples. Various studies identify this large reservoir of belowground

detritus as an important and substantial sink for various biogenic elements

[59] [192] [153]. The augmentation of the matte is a delicate process that

depends on the fastness of sediment accretion: intuitively, the quicker the

accretion is, the bigger the matte becomes. However, if sedimentation is too

fast, rhizomes risk to be stifled by the excess of sediments. On the other

side, if sedimentation is too slow, the meadow risks regression.

2.4 Reproduction

Posidonia oceanica reproduces both vegetatively and sexually. The main

propagation mechanism is the vegetative one, and it is achieved by the sep-

aration of last rhizomes from parental rhizome [166], and by division and

elongation of rhizomes. Another breeding strategy, observed for the first

time in 2004 along the coasts of the Balearic Islands [12], involves the for-

mation of seedlings directly from the inflorescences. The frequency and the

evolutionary meaning of these reproductive events are not known: probably

is a useful strategy for dispersion on short distances and for the mainte-

nance of a species that can persist for thousands of years and whose ability

to colonize new spaces is very slow [12]. In the Posidonia oceanica sex-

ual reproduction occurs through the fertilization of hermaphrodite flowers

Fig. (2.6), grouped in inflorescences and produced at the beginning of au-

tumn. Bearing fruit is finished in the spring, through the production of

a drupe called “sea olive” Fig. (2.7) which, after falling from the plant, is

scattered by the currents. The seeds fall to the ground and, with favorable

conditions, germinate in June, without getting into quiescence. The relation-

ship between flowering and water temperature is based on the observation

of this phenomenon occurs after a summer with high temperatures [101] and

the fact that flowers appear usually one month after reaching the maximum

annual temperature [44]. In particular, it has been noted that meadows in

shallow waters flower in September-October, while meadows in deep waters

bloom in November-December. The flowering and fruiting of P. oceanica are

uncommon events [166] and few informations are available on them.

The asexual mode of propagation is therefore predominant for P. ocean-



2.4 Reproduction 15

Figure 2.6: Flower of Posidonia oceanica (from http : //www.naturamediterraneo.com).

Figure 2.7: Fruit of Posidonia oceanica (from http :

//www.biologiamarina.org/posidonia− olive/).

ica. Clonal growth is the main mechanism by which P. oceanica occupies

space, during the colonisation of new habitat for example, or in recovering

from disturbance. Such means of vegetative propagation is common to all

clonal plants, and is a key trait in understanding and modelling the dynam-

ics of seagrass populations [81] [111]. The growth of P. oceanica rhizomes

regulates the rate at which shoots are formed within a meadow as well as

their spatial distribution [147]. Rhizome growth is a tightly regulated pro-
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cess with rules that govern the rate at which rhizome internodes are added,

the size of rhizome internodes, the frequency at which rhizomes branch, the

angle at which branching takes place, and the rhizome length in between

consecutive shoots [54]. Knowledge on the dynamics of P. oceanica rhizome

growth makes it possible to predict and understand the extent and density

of a population.



Chapter 3

Ecosystem of Posidonia

oceanica

The P. oceanica forms widespread meadows constituting one of

the most important habitats in the Mediterranean basin. The P.

oceanica ecosystem plays a major role in benthic primary pro-

duction [48], with a contribution ranging between 0.4 and 2.5 kg

DW/m2/y [28] [59]. The P. oceanica meadows provide services,

illustrated in the next sections, that are essential to the func-

tioning of coastal zone systems involving the high ecological and

economical values of this natural resource. As P. oceanica habi-

tat declines in the Mediterranean, fundamental consequences are

to be felt in the social, economic and biological activities in the

region. Given the importance of seagrasses to humans [66] [131],

the preservation of P. oceanica meadows and their ecosystem ser-

vices should be a worldwide priority, an effort that would provide

benefits to all aspects of coastal ecosystems. The considerable re-

sources required for restoration, where possible, and the long time

periods required for meadow recolonisation and recovery, in con-

trast to the rapid dynamics that bring about reduction, highlight

the need for proactive management of this valuable habitat.

17
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3.1 The Posidonia oceanica habitat and the

associated species

Posidonia oceanica develops highly productive meadows, sometimes in as-

sociation with other phanerogams. The extension and morphology of the

meadows depends on the biological characteristics of the plant and also on

the environmental characteristics, such as nature of the substrate, the ground

geomorphology, hydrodynamism, depth and brightness, sedimentation rate

and water turbidity [47]. The inferior limit of a meadow can be due to four

different factors Fig. (3.1):

� if the available sunlight is not enough, leaf density decreases and the

rhizomes do not go beyond a certain threshold. This is the climatic or

progressive limit;

� if the substrate under a certain level changes in another kind of sub-

strate that is not suited to these plants, there is a clean or edaphic

limit, with a high leaf density and no matte;

� if hydrodynamics is too strong, the meadow cannot expand. It is called

erosive limit, and in this case there are matte and a high leaf density;

� if water becomes too polluted there is no available sunlight in the deep,

in this case there are only dead mattes and the limit is called regressive.

The P. oceanica ecosystem is a complex and structured system with a

leaf biomass of about 1 kg m−2 in dry weight, like ground forestry. The

structure of Posidonia oceanica habitat makes available several resources

that are vital to the survival of other organisms: offers a substratum for

attachment and growth of various organisms [134]. Posidonia oceanica is

considered a structuring species, constituting life habitats for other species

because its meadows are characterized by a high biological variability of

plant and animal communities constituting an ecosystem very complex in

terms of specific wealth and biotic interactions [46]. Some authors prefer

to stress a separation between the community associated with leaves and

with rhizomes. Other authors [126] [40] [13] [156] consider the P. oceanica

system as an integrated “stratocenosis” with all the associated communities,

from the leaf to the rhizomes layer. Posidonia oceanica is the substrate for

many organisms that play an essential role in the productivity and growth
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Figure 3.1: The inferior limit of P. oceanica’s meadows: 1)progressive limit; 2)clean limit;

3)erosive limit; 4)regressive limit. From [190].

patterns of the host plant in terms of competition for available light, en-

ergy and nutrients [157] [156] [192] [5]. These organisms can be classified in

three categories: epiphytes, animals and detritivore organisms. Epiphytes

are bacteria, algae or bryozoa that live attached to the leaves. The epiphytic

vegetation community consists of photophilous species, predominantly colo-

nizing the leaves, and shallow species populations that settle in the rhizomes

where the brightness is reduced. Colonization of the leaves occurs with a def-

inite temporal succession Fig. (3.2). The first are bacteria that can colonize

very young tissues and are therefore found on leaves with 1 or 2 days of age.

Already after a week of leaf life, unicellular algae reach the plant, the most

common of which are Diatoms. Bacteria and Diatoms are a source of food for

many animals and their presence preserves the leaf tissue from the grazing.

In leaves with more advanced age, and therefore mainly on the apex level,

it is possible to observe the first pluricellular algae. The epiphytic macroal-

gal flora of the leaves is distinguished by an overlaying layer and an erect

layer. The first one is made by the incrusting macroalgae belonging to the

Rhodophyceae class and to the Phaeophyceae class. The macro-algae with

erect habitus are generally on the incrustant layer and, with their tubular
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and branched structure, can also rise above the leaf surface. They are mainly

brown algae belonging to the genera Dictyota and Giraudia, and red algae,

belonging to the Ceramium and Polysiphonia genera. The floristic richness

and the coverage depend on seasonal, reaching a maximum in summer, be-

tween June and September, and a minimum in winter, between December

and April.

Figure 3.2: Leaf’s colonization by epiphytes (from [206].

At the level of rhizomes, there is an epiphytic algal community consist-

ing of shadowy species, common in environments where the light intensity

and the movements of the water are reduced. We can observe, among the

algae on rhizomes, the Peyssonnelia and Ceramium genera for red seaweeds,

Halopteris and Dictyopteris for brown algae and Cladophora and Flabel-

lia for green algae. Essentially, the epiphytic community on P. oceanica

is itself dynamic, with numerous species growing over the first to settle.

Consequently, a multi-layered stratum is present on P. oceanica leaves and

rhizomes, where different species are mixed and whose composition varies

with depth and other conditions that influence epiphytic dynamics such as

the same abiotic factors which influence the seagrass host [158], the life cycle

of the epiphyte species [177] or grazing by fauna [118]. These epiphytes can

damage the plants: they contrast gas exchanges, reduce nutrient, are respon-

sible for direct shading reducing the surface available for sunlight absorption,

and their weight may become excessive and lead the leaves to a premature
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decay. As a result of their short generation times and rapid rates of growth,

the epiphytes attached to seagrass leaves are extraordinarily productive, de-

spite the small biomass they represent. While the average biomass of the

autotrophic community growing on P. oceanica leaves and rhizomes ranges

between 160 and 420 g DW/m2/y [35], its contribution towards primary

production lies between 500-900 g DW/m2/y and it typically accounts for

20-60% of total seagrass aboveground productivity [111]. It is the sum of

seagrass and epiphyte stocks, in shallow waters, that enable the P. oceanica

habitat to achieve the highest values of net primary production observed

not only in the marine but also the terrestrial realm [30]. The exchange

of fixed nitrogen between epiphytic bacteria and P. oceanica is thought to

partly explain the paradoxically high biomass and productivity of P. ocean-

ica systems; this is unexpected given the oligotrophic conditions that char-

acterise Mediterranean waters. Shading by excessive epiphyte growth is, on

the other hand, an effect that often proves detrimental to the host plant and

has been commonly listed among the causes of seagrass decline around the

world [89] [169] [225]. The animal population of the meadow include sessile,

sedentary and floating species, distributed in a lower population associated

to the rhizomes and a higher one related with the leaves. The most abundant

sessile population near rhizomes includes numerous species of Poriferan, An-

thozoos, Crustaceans, Bivalves and colonial Tunicates. The sedentary fauna

is represented by various species of decapod, gastropods and echinoderms,

such as the Astropecten spinolosus sea star and the sea urchin Sphaerechinus

granularis. These species take shelter during the day at the bottom of the

meadow between the rhizomes of P. oceanica while at night they go back

to the leaves chasing the oscillations of oxygen and carbon concentrations

in water during the daily cycle. Floating fauna includes numerous species

of scorpionfish and syngnathidae, among which seaneedles and seahorses

fish. Similar to the canopies of other seagrass species, those of P. oceanica

function to trap particulate matter and make for a favourable feeding envi-

ronment for filter feeders such as the endangered fan mussel, Pinna nobilis,

another protected species in EU Member States (EEC, 1992). This complex

biocenosis is also a nursery for numerous species of larval or juvenile fish.

P. oceanica and its epiphytes provide nutrition to organisms that consume

them. Three species directly linked to P. oceanica habitat through their con-

sumption of P. oceanica leaves are the fish Sarpa salpa [108], the sea urchin

Paracentrotus lividus [191] and crustacean isopods Idotea spp [28]. When



22 Ecosystem of Posidonia oceanica

consuming seagrass leaves, these species additionally consume the epiphytic

material growing on P. oceanica. Consumption by herbivores Fig. (3.3) is not

considered to be a major route for P. oceanica material on the other hand,

and less than 10% of the leaves are directly consumed [59]. The majority

of leaves are consumed after being shed, as detritus in the litter, through

the action of crustaceans, gastropods and microorganisms [192]. The low

consumption of many seagrasses is often attributed to the poor nutritional

quality of the plant material [219]. P. oceanica has a high C/N ratio [81]

and its high cellulose content often makes the digestion process difficult for

most invertebrate grazers [132]. The presence of chemical deterrents is said

to further contribute to the unpalatabiliy of P. oceanica [1].

Figure 3.3: Grazed leaf of P. oceanica (from [171])

Despite these observations, a number of studies have reported consider-

able impacts of grazers on seagrass biomass and production herbivores have

been known to defoliate vast areas of P. oceanica [127] [229] [219]. Trophic

interactions are gaining recognition as critical structuring forces in seagrass

systems [61] and hypothesised overfishing is often put forward to account for

seagrass decline, through a mechanism of epiphytic overgrowth, similar to

that of eutrophication [115]. Other than the loss of large herbivores, over-

fishing may also be responsible for a reduction in small invertebrate grazers

of epiphytes via trophic cascade. Studies indicate that top-down control of

plant biomass, as a result of indirect effects of predators on plants via shifts
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CLASS N shoot/m2 Kind Description

I >700 very dense beds meadows on matte and with

prevailing vertical rhizomes

II 400-700 dense beds meadows expression of degeneration

or increasing and with prevailing

vertical rhizomes

III 300-400 sparse beds meadow expression of degeneration

or dynamic equilibrium placed

on any kind of substrate

IV 150-300 very sparse beds meadows in regression or

settlement with many dead shoots

without leaves and horizontal rhizomes

V 50-150 semi or half-beds meadows in regression mainly

distinctive of the deep limit

Table 3.1: Meadows classification [101]

in herbivore abundance, is strongest in the marine environment [212]. Fur-

thermore marine benthic species exhibit the strongest trophic cascades of

any tested system, supporting assertions that grazers may be equally impor-

tant in controlling the accumulation of algal biomass in seagrass habitats via

top-down effects as are nutrient fluctuations via bottom-up effects [110].

3.2 Characterization and evaluation of the state

of meadows

Physical, structural (density and coverage) and functional descriptors (biomass,

growth and productivity) are used to describe, from a quantitative point of

view, the state of meadows of P. oceanica. One of the main structural de-

scriptors of the health status of seagrass is the density of vegetation, the

number of foliar beams per square meter. The temporal analysis of this

variable allows to evaluate the dynamics of the meadow over time and to

identify key elements driving ecosystem evolution. The most common meth-

ods to classify meadows, based on the absolute density values, are two. The

first [101] Table (3.1) classifies the meadows according to the number of

beams per square meter, dividing them into 5 density classes.

The most recently method [190] Table (3.2), classifies the meadows taking

into account not only the absolute density values of the beams, but also

considering the sampling depth because density values decrease with the
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Depth DA DL DN DE

1 <822 822-934 934-1158 >1158

5 <413 413-525 525-749 >749

10 <237 237-349 349-573 >573

15 <134 134-246 246-470 >470

20 <61 61-173 173-397 >397

25 <4 4-116 116-340 >340

30 0 0-70 70-294 >294

35 0 0-31 31-210 >210

40 0 0 0-165 >165

Table 3.2: Pergent classification

depth. The meadows are classified in 4 categories:

� “very disturbed meadows”, with abnormal density (DA): these are crit-

ical situations, where the vitality of the meadow is extremely low;

� “disturbed meadows”, with a low density (DL) corresponding to a

reduction in the vitality of the meadows: this state should be taken as

an alarm signal to begin rehabilitation actions;

� “balanced meadows” with normal density (DN), which corresponds

to satisfactory vitality values, observable when there are no signs of

anthropic pressure;

� “balanced meadows” with exceptional density (DE) that corresponds

to very high values of plant vitality or batimetric extension of the

meadow.

The estimate of the absolute density of a meadow must be associated

with the estimate of the root percentage covered by the plant, to give a

more accurate assessment of the structure; however the percentage of sub-

strate occupied by the plant results from a subjective and seasonal valuation.

Functional synthetic descriptors are the variables that depend on the biolog-

ical characteristics of the species and are affected by environmental changes.

Phenological analyses consist of the study of the anatomical structures of

the plant, especially the morphometric parameters of the leaves, taking into

account the sampling period. Lepidocronological analyses are carried out on
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the rhizome to indirectly evaluate the production, in terms of biomass, of

the meadow and to determine the age of the sampled plant underlining any

changes caused by environmental stresses over years. The derivative descrip-

tors are obtained from the measurements and observations of the structural

and functional synthetic descriptors and are: number of leaves per bun-

dle, number and width of adult or intermediate leaves width, length of base,

L.A.I. (Leaf Area Index) corresponding to leaf surface per beam or per square

meter. These parameters contribute to describe the health of meadow and

its variations with time, and to determine any sources of disturbance.

3.3 Ecological role

P. oceanica’s meadows play an important role in coastal systems [84] Fig. (3.5).

The belowground structures of the plant (root system and rhizomes) are

essential for the stabilization of the seabed, holding the sediment and pre-

venting its dispersion. In particular the meadow damps the swell and forms

an obstacle to the movement of sediments on the bottom [42], and plays an

active role in the sedimentary balance of the beach both supplying biogenic

sand and trapping sediments in eventual offshore migrations. Moreover, the

loss of leaves, especially in the autumn, produces the formation of massive

accumulations of plant material along the coast, called banquettes Fig. (3.4),

reducing the erosive action of the wavy motion on the beach. The hydro-

dynamic forces are reduced from 10% to 75% under the leaves [100], and of

20% few centimetres above the meadow. Different studies showed that the

loss of one meter cube of meadow causes coast recession of about 20 m [34].

The presence of P. oceanica grasses contribute significantly to the nutri-

ent budget and cycling in the coastal marine ecosystems [180]. The high rate

of biomass production by seagrasses implies an equally high rate of oxygen

production (1 m2 of meadow produces 4-20 litres of oxygen per day, [15]), a

photosynthetic by-product which, when released, becomes available for other

marine life [25]. As the gross photosynthesis of seagrass leaves exceeds the

respiratory demands of the plants by almost an order of magnitude [221],

oxygen is often released to the water column and sediment. The largest

release of oxygen from seagrasses is from the leaves to the water column,

during periods of high light intensity and photosynthesis. Oxygen is, on the

other hand, continuously released from roots and rhizomes to the anoxic sed-

iment, during both light and dark phases [26]. The enhanced mineralization



26 Ecosystem of Posidonia oceanica

Figure 3.4: Posidonia oceanica’s banquettes (from

https://www.ilgiornaledeimarinai.it/posidonia-oceanica/).

of organic matter within sediments below a seagrass meadow, as a result

of oxygen loss by seagrass roots and rhizomes, has been confirmed through

research studies [205]. Other important implications of seagrass oxygen re-

lease to the sediments include enhanced redox processes such as sulphide

reoxidation [133], and nitrification and denitrification [53]. Seagrasses there-

fore do more than oxygenate surrounding waters; they constantly modify

the sediments they inhabit, enhancing their own production and that of

sediment dwelling organisms, which are also linked to nutrient cycling. Ni-

trogen is another nutrient that enters significantly into marine sediments via

seagrasses. In contrast to terrestrial plants, seagrasses have the ability to

take up inorganic nitrogen through both leaf and root tissues which means

they are able to exploit the water column as well as the sediments for ni-

trogen [133] [184] [218]. Besides taking up dissolved inorganic ammonium

and nitrate, seagrasses also support microbial nitrogen fixation, a process

that occurs on the leaves and in the sediment of seagrasses [19]. Nitrogen-

fixing bacteria in the leaf canopy and sediments of seagrass beds form a

diverse community, including photoautotrophic heterocystous cyanobacte-

ria and heterotrophic nitrogen-fixing bacteria [185]. P. oceanica meadows

are one of the most productive marine ecosystems, occupying 0.15% of the

world’s marine surface and contributing to 1% of world marine primary pro-
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duction. The ecosystem formed by P. oceanica is highly autotrophic over

the year, with the annual P:R ranging from 1.5 at deep areas to 3.6 at

shallow meadow limits, with the average probably around 3 (for the leaf

compartment [155]). Net primary production amounts to an average of 420

g DW/m2/year; the average biomass of Posidonia oceanica is about 2112 g

DW/m2 aboveground and 1611 g DW/m2 belowground [30]. About 10% of

the primary production is used by herbivores, especially Sarpa salpa, Para-

centrotus lividus and the isopod crustacean Idothe hectica [233] [192] [41].

Most biomass produced (24-85%) is exported like dead leaves [192] [163]. The

rest represents the support of the trophic network of detritives and decom-

posers to transmit energy to higher trophic levels: 24-44% is remineralized,

the remaining 11-47% of the production is assumed to correspond to the

indirect estimate of the potential flux to the short and long-term P. ocean-

ica carbon sinks. Posidonia oceanica meadows provide shelter and food,

reproduction and nursery sites for many species [177], also of great economic

value: various fish communities, resident species and juveniles live on or

are protected by P. oceanica leaves, or in the sediment where it stands. The

meadows of P. oceanica support many plant and animal epiphytes, which can

reach up 20-30% of the biomasses of the leaves [104]. Moreover the mead-

ows host more than 400 different plant species and several thousand animal

species, so they can be considered an hotspot of biodiversity [16] [17] [95] [38].

3.4 Decrease and conservation

Decrease is a phenomenon that involves all seagrasses in the world and

an alarming decline of the P. oceanica meadows has been reported in the

Mediterranean Sea and mainly in the north-western side of the basin [8] [37]

[168], where many meadows have already been lost during last decades [20]

[135] [167]. An examination of 39 studies in 135 sites in the Mediterranean

indicates that 46% of the P. oceanica meadows investigated have experienced

some form of decline, while 20% have severely regressed since the 1970s [74].

In order to appreciate the magnitude of the risks associated with the decline

of P. oceanica, one may consider a common method of rating the severity of

any impact on biodiversity. Using this measure involves evaluating the time

that is needed for a decline to be reversed. While most pollution events,

including oil spills, lie in the range of one to thirty years, and the near elimi-
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Figure 3.5: Some important links between Posidonia oceanica and the surrounding ecosys-

tem (from [206])

nation of most long living species is in the range of ten years to one century,

the destruction of Posidonia oceanica meadows in the Mediterranean sea

would require one century to one millennium to be reversed [32]. While

variability as a result of natural environmental factors does exist in such

systems, multiple human stressors, including dredging, fishing and anchor-

ing on seagrass beds, eutrophication, coastal development, hypersalinisation,

siltation and poor water clarity, habitat conversion, and climate change are

becoming a major source of change to seagrass habitats worldwide [84]. For

Posidonia oceanica, the main cause of the regression and degradation is rep-

resented by the intense anthropic activities [135] [168] that inevitably af-

fect its distribution, either directly by physical damages [162], or indirectly

through the impact on the quality of waters and sediments. Coastal regions

have been frequently identified as areas in which human activity is highly

concentrated. This implies that coastal areas support a disproportionate
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amount of infrastructure supporting industry, transportation and trade, en-

ergy generation, tourism and more. Manufactures on coastal areas, modify

the behaviour of waves and currents, and interact with sedimentation pro-

cesses. Local increases in sedimentation may lead to seagrass burial, or

erosion of the sediment under seagrass beds [193]. Seagrass burial may also

derive from land-based erosion, a consequence of changes in land use leading

to increased erosion rates and silt export from water sheds. Burial affects

seagrasses negatively by reducing light availability to photosynthetic tissue,

reducing oxygen diffusion to the roots and rhizomes, and preventing deeply

buried meristems from producing new leaves [230]. Sedimentation may in-

deed serve as a positive stimulus if it brings with it new nutrients [151], and

its magnitude does not exceed the survival capacity of the seagrass species.

Large inputs of silt and sediment material to coastal waters typically result

in increased light attenuation and a deterioration of the underwater light

climate for seagrasses [111]. Since seagrasses are photosynthetic organisms,

one of the main requirements for their growth is adequate light, usually an

underwater irradiance of around 11% of that present at the water surface.

Sedimentation events therefore, compromise seagrass ability to photosynthe-

sise via reductions in light availability and water transparency [230]. Sus-

pended material derived from disturbed soft sediment bottoms has also been

shown to have harmful effects on seagrasses via this mechanism of light re-

duction. Light reduction features, once again, as the single most important

mechanism leading to seagrass decline in waters subject to eutrophication.

Most eutrophication in coastal environments is caused by increased nitrogen

and phosphorus input. The problem stems mainly from the intense use of

fertilisers in agriculture, and sewage contamination, which lead to height-

ened nutrient loads in runoff to the coast [172]. The most common means by

which light is reduced, as a result of nutrient over-enrichment, is the stim-

ulation of high biomass algal growth, specifically phytoplankton and more

commonly epiphytes and macroalgae, that are considered superior competi-

tors for light relative to seagrasses [24] [51] [73]. Light reduction due to

attenuation in the water column and shadowing on seagrass blades limits

seagrass ability to photosynthesize and in extreme cases may even lead to

death of the plants that constitute the meadows altogether [210]. Urban

discharges also introduce into the sea a high amount of chemical elements

that cause alteration of the biosynthesis mechanisms of photosynthetic pig-

ments [9]. Detergents can cause death of plant’s tissues and alter growth



30 Ecosystem of Posidonia oceanica

processes, due to their toxicological properties. Moreover, the presence of

hydrocarbons in water for naval traffic hinders the penetration of light and,

when deposited on plant leaves, reduces gaseous exchanges. Another source

of disturbance for Posidonia oceanica are the fish farms: they increase the

organic loading in water and sediments, inducing degradation of meadows

due to the increase in the epiphytic community present on the leaves, the

attenuation of light radiation and the lack of oxygen [56] [113] [186]. The

effect of such impacts can be reduced by the use of water treatment tech-

niques [28]. Mechanical stress is also important: trawling activities and the

indiscriminate anchorage of boats [62], lead to the removal of large portions

of matte, making plants more susceptible to the mechanical action of waves.

In places where small boats are numerous, the cumulative effect of boat

moorings and propeller scars may result in a considerable loss of vegetation

as shoots and rhizomes are damaged, or even completely removed from the

substratum [231]. Fishing practices that disturb the bottom, such as trawl-

ing and dredging, similarly have direct, harmful effects. Dredging to deepen

and maintain navigation routes and harbour entrances, as well as dredg-

ing for marine aggregates, have similar recognised effects. The introduction

into the Mediterranean of aloft species, like Caulerpa spp., broke balance in

coastal marine ecosystems. In fact, these species are competitive with the

phanerogams for colonization of the substrate [70]. While healthy Posido-

nia oceanica meadows have been shown to act as barriers against Caulerpa

spp. (namely C. racemosa and C. taxifolia), dead or dying P. oceanica beds

leave vacant niches open for colonisation, enabling Caulerpa species to invade

successfully [64]. This may essentially mean that, once lost, an area of P.

oceanica meadow may not be naturally recovered [173]. The increase of wa-

ter temperature in the Mediterranean Sea [165], causes a variation in normal

reproductive plants cycles. The slow growth rate of the plant, low genetic

diversity and sometimes small population sizes, can further compromise P.

oceanica’s capacity for expansion and survival. MarbÃ et al. [148] made a

research about Posidonia oceanica diffusion from 1842 to 2009, linking each

human activity to the number of impacted meadows Fig. (3.6). The main

causes pointed out by MarbÃ et al. are:

� the increase in the number of residents and tourists. This leads to a

raise in urban wastewater discharge

� industrial activities, that need to discharge their wastewater too
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Figure 3.6: Loss and damage drivers and the number of meadows impacted in the sample

considered by [148].

� progressive building over the coastline (about 40% built over by 2000)

� enhancement of aquaculture

� human activities over the sea: anchoring, boating and bottom trawling

These human facts have caused a few phenomena which in turn have en-

dangered and damaged the meadows, as it was pointed out by MarbÃ et

al.:

� water turbidity: the light is filtered, and this does not let the seagrasses

live in deep water

� water eutrophication, that helps antagonist species and increases water

turbidity
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� erosion and siltation: they augment hydrodynamism and make the

shallow limit decrease

� invasion of alien species and excessive proliferation of antagonist species

� perturbations and mechanical stresses, especially in the shallow layers.

In conclusion, seagrass systems are being stretched thin, and predictions

for the future of seagrass-dominated coastal systems are not hopeful as yet

( [84] [178]. Ecosystem services, such as those provided by P. oceanica habi-

tat in the Mediterranean, are often not given adequate weight in policy

decisions. This is because it is particularly difficult to do so when such ser-

vices are not marketable goods and their value is not quantified as economic

services and manufactured capital are [66]. Furthermore, the impact of habi-

tats such as P. oceanica meadows on human well-being is often “invisible”

to policymakers partly because its effects are not immediate. Neverthe-

less the ecological and economic importance of Posidonia oceanica meadows

and the considerable sensitivity of the plant to natural and/or artificial per-

turbations, has prompted national, European and international authorities

protect them. In 1979, Posidonia oceanica was included in the list of pro-

tected species (Annex I) after Bern Convention. In 1990 it is included in

the Red List of marine species of the Mediterranean at risk of extinction.

In 1995 it was cited in Annex II (threatened species) of the Protocol of the

Specially Protected Areas of the Barcelona Convention. The P. oceanica

meadows are also considered priority habitats in Annex I to the EC Direc-

tive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and

Wild Fauna and Flora. The Directive defines these priority habitats as Sites

of Community Interest (SCI), whose conservation requires the designation

of Special Conservation Areas (SCA). SCAs are identified by EU member

states and collectively form the ecological network titled Natura 2000: SCAs

must be maintained, or restored when necessary, at a status of favourable

conservation. The monitoring of P. oceanica meadows has been given much

emphasis as an important management tool [236]. Monitoring is useful in

inventorying and detecting new seagrass habitat losses or gains, as well as

evaluating the effects of policies and interventions. P. oceanica habitat may

be monitored at a variety of scales, three in particular: the system scale, in

which areal cover is estimated; the meadow scale, where limits of the meadow

and shoot density may be estimated; and finally the shoot scale, where sed-

iment properties, leaf epiphyte biomass, and other fine scale details such
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as genetic structure may be obtained [28]. P. oceanica monitoring in the

Mediterranean was initiated in 1984 with the establishment of the “Resau

de Surveillance Posidonies” in the French Riviera [36]. Monitoring of this

habitat has subsequently expanded to other regions in the Mediterranean

including France, Italy, Spain, Algeria, Tunisia and Malta [236]. Increas-

ing P. oceanica habitat monitoring was much encouraged by the EU Water

Framework Directive (WFD), adopted in 2000. Linking the status of coastal

waters to economic benefits such as coastal fish populations, the WFD made

legally binding the duty to monitor water quality and biological quality el-

ements, including aquatic macrophytes such as P. oceanica (EC, The EU

Water Framework Directive, 2000). Recent adoption of an ecosystem-based

approach towards the management of marine waters has further emphasised

the importance of seagrass monitoring (EC, 2008). The increasing loss of

P. oceanica habitat and the species’ slow rate of regeneration has prompted

the development of methodologies for habitat restoration, rehabilitation and

meadow creation. Restoration of P. oceanica meadows has focused on re-

cruitment from seeds [18], laboratory seed germination and seedling devel-

opment [11], and the transplantation of entire plants from donor beds to

restoration sites [199]. The use of seeds and seedlings is advantageous as

genetic diversity is sustained; a transplant would serve to simply propagate

a clone. Furthermore, seagrass seed collection involves minimal damage to

the donor bed, particularly if seeds are obtained from drifting fruit. Seagrass

seed collection and plantlet management therefore constitute an additional

and important route towards the conservation, propagation and restoration

of P. oceanica habitat [179]. Other active areas in managing P. oceanica

habitat include the installation of anti-trawling reefs [105], the installation

of seagrass friendly moorings [96], and good practices in the management

of beach cast P. oceanica material. The heavy impact of bottom trawling

on sensitive habitats like P. oceanica has led to restrictions on trawling over

seagrass meadows in places like Spain, Italy and France. In many cases,

the deployment of protective artificial reefs has further reinforced such re-

strictions. Protective artificial reefs are heavy concrete constructions that

are often armoured with protruding steel bars and cause any trawling gear

passing over the structure to entangle and break. The low maintenance and

high endurance of these structures has made them a popular solution to the

discouragement of trawling in protected areas. Artificial reef initiatives have

reported general success in curbing illegal trawling. Leaves that are shed
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from the P. oceanica leaf canopy are transported to the shore by currents and

waves and are deposited along the coast. Material that is beach-cast in this

way accumulates to form banks, termed “banquettes”, that range from a few

centimetres to several metres in height [69]. Removal of such banquettes may

prove detrimental to beach stability as well as to nearby P. oceanica mead-

ows [82]. For this reason, best management practises in this case involve the

adoption of a no-removal policy. This may however prove difficult in beaches

that are heavily used by bathers and tourists. In the latter case, a variety of

policies are recommended, including the establishment of no-removal periods

during off-peak seasons. While marine protected areas are both necessary

and important in the mitigation of local threats to P. oceanica habitat, they

do not provide sufficient protection alone as they are not isolated from all

critical impacts [7]. Bearing in mind the spatial and temporal scales over

which coastal development and other anthropogenic impacts occur, broad

scale evaluation is necessary for the management of P. oceanica meadows

in the Mediterranean, in line with the ecosystem-based approach [176]. A

basin-wide monitoring initiative would see an integration of the different

data sets in existence and establish a Mediterranean-wide inventory of the

habitat, allowing for a comprehensive detection of changes. Developing a

capacity for prediction as part of a comprehensive integrated management

programme is then mandatory. An important advance in addressing a fun-

damental monitoring need to improve documentation of changes in seagrass

meadows worldwide was recently achieved with the advent of Seagrass Net

in 2001. Seagrass Net, the first program developed to monitor seagrasses

on a global basis, uses a consistent protocol for both seagrass parameters

and environmental parameters to assess change in seagrass habitat over rel-

atively short periods (1- to 2-yr intervals), through quarterly monitoring of

permanent transects and plots. At present, Seagrass Net has been estab-

lished at 48 sites in 18 countries, with data collection by a team of trained

local people, and maintenance of a central database. As it continues to de-

velop and strengthen, this program should provide a powerful tool for coastal

resource managers through improved tracking of seagrass populations over

time. Such exemplary programs should be coupled with improved models to

enable reliable, quantitative forecasts of the cumulative effects of eutrophi-

cation from adjacent watersheds and other stressors on seagrass growth and

survival [176].



Chapter 4

Posidonia oceanica ’s ecosystem

services

The importance of P. oceanica meadows, in addition to their bio-

logical value for biodiversity conservation, is linked to the ecosys-

tem services they provide. Such services are important to the

coastal ecosystem and to all the economic activities it supports.

In this Chapter, the main ecosystem services are described, trying

to give them an economic value in order to understand how Posi-

donia conservation is primary. Peculiar attention is given to the

fact that Posidonia meadows play a main role in the carbon cycle

because they accumulate and trap carbon in the sediment, hence

representing a powerful tool in the control of climate change.

4.1 Seagrass carbon sequestration

Seagrass meadows rank amongst the most productive ecosystem on Earth

[79] and play a key role as habitats supporting high biodiversity [111]. “On

average, net primary production per unit of area of seagrass populations,

when considering that of leaves, rhizomes and roots, is about 1012 g DW

m−2 year−1, with a ratio above-ground: below-ground production of 16.4 ±
8.5” [79]. The biomass is largely consumed through respiration, especially

by the photosynthetic epiphytes living on P. oceanica leaves; only a small

part is consumed by herbivores. This means that a large portion of biomass

is accumulated in the sediment and here remains for a long time due to lack

35
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of oxygen reducing decomposition rates of microbial metabolism. Sediment

under P. oceanica meadows are very stable thanks to the strong anchoring

system of rhizomes and roots, and also because P. oceanica is able to reduce

the strength of currents and the wave motion, increasing sediment deposition

and retention [99] and decreasing resuspension [138] [217]. The combination

of all these factors allows the carbon sequestration in seagrass sediments,

resulting in a tendency for seagrass ecosystems to be generally autotrophic

communities acting as carbon sink [78]. A carbon sink is any natural or ar-

tificial stock where carbon can accumulate and reside for a time depending

on the carbon inputs. Natural carbon sink can be terrestrial or marine: the

carbon stored into these sinks is called green carbon in the former case, blue

carbon in the latter. Typical green carbon sinks are rainforests and pastures,

where carbon is sequestrated by photosynthesis and held in biomass and in

the soil below. Mangrove forests, salt marshes and seagrass beds are the

most relevant blue carbon sinks. Especially, seagrasses have a capacity to

sequester carbon 35 times faster than tropical forests [143] and the carbon

residence times in their sediments are very long: this makes seagrasses one

of the most important carbon storage ecosystems. Terrestrial and marine

carbon sinks have a different behaviour and a comparison is necessary, if we

want to understand the mechanisms, make correct estimates and previsions

and take the right decisions in managing them. First: the residence time.

Thanks to the formation of sediments and to the longevity of some plants,

marine ecosystems bury carbon for longer periods than the terrestrial ones:

a rainforest can store carbon for decades or centuries, while a blue carbon

sink can keep it for millennia; the residence time ranges from decades for

the biomass to millennia for the sediments [152] [161] [93]. Second: car-

bon saturation. Unlike the terrestrial burying ecosystems, the marine ones

do not become saturated with carbon, because sediments accumulate verti-

cally, so there is a continuous creation of new storage space for the incoming

carbon. Third, the marine plant biomass is much less than the terrestrial

one, but it is more efficient: total marine biomass equals only 0.05% of the

terrestrial one, but it stores the same amount of carbon per year. Fourth,

marine ecosystems are more endangered than the terrestrial ones: they are

disappearing four times faster than terrestrial habitats, and their rate of loss

is even accelerating, from 0.9% per year until the ’70s, to 7% per year in the

last decades. Fifth, our consideration and valuation of the two categories

of sinks is undeservedly different: in our society there is a relatively deep
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knowledge of green carbon sinks, the benefits they provide and the threats

they are facing, while there is a lack of information about blue carbon sinks,

maybe owing to their submerged location or their humble, unsightly appear-

ance. Finally, another fact to be taken into account is that being underwater,

seagrass sediments are free of fires, which are responsible for the emission as

CO2 of much of the organic carbon accumulated in forest soils on land. Sea-

grass meadows are responsible for 50-70% of the global carbon sequestration

in marine sediments despite occupying 0.5% of the ocean surface [82]. The

actual estimates of the CO2 stored by seagrasses are about 586-681 g CO2

m−2 year−1. The behaviour of seagrass and the carbon fate Fig. (4.1) are

closely related to the balance between gross primary production (GPP) and

respiration (R). When GPP is greater than R (GPP>R), seagrasses bind

carbon in their sediments and the carbon stock increases. When GPP and

R are equal (GPP=R), the stock does not grow and the stable meadow is

only a carbon store. Finally, if the carbon produced by respiration is more

than one consumed by photosynthesis (GPP<R), seagrasses become a car-

bon source. Of course the health conditions of a meadow are important in

determining whether it acts as a carbon sink or carbon source: a damaged

or degraded meadow will give a bit of the stored carbon back to the atmo-

sphere. “Seagrass meadows tend to be net autotrophic ecosystem when GPP

exceeds 186 mmol O2 m−2 day−1, and seagrass meadow tend to act as CO2

sink when average aboveground biomass exceeds 41 g DW m−2”. C stored

in seagrass meadows consists of C stored in the:

� above ground (minor component) and below ground biomasses (roots

and rhizomes);

� sediment within organic (bacteria, microalgae, and detritus) and inor-

ganic (carbonates) forms.

It is important underline that normally only the carbon stored as carbohy-

drate is considered, while carbonates are not included. Moreover we must

take into account there are two types of carbon stock: a short-term stock

and a long-term one, more important for C cycle and balance. The first type

consists of the carbon into leaves tissues not buried in the sediments due to

the leaves fall and are decomposed by bacteria; it is need to consider also

the carbon produced by the epiphytes species living attached to the leaf sur-

face: this is lost when the leaves are eaten by grazers [224]. The long-term

stock is the carbon stored by roots and rhizomes into the matte, whose long
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residence time is linked to the low microbial activity and consequently slow

decomposition rate [94]. It consists of the carbon produced by the seagrass,

but also of the one produced by the benthic algae living in the meadows

and, finally, from allochtonous one whose sedimentation is promised by the

seagrass reducing water flow.

Figure 4.1: Conceptual diagram of the C stocks and fluxes in a seagrass meadow (from

[144].

Unfortunately anthropic activities release large amounts of carbon into

the atmosphere with drastic consequences as global warming and ocean acid-

ification. The basic mechanisms of action for these impacts are the alteration

of the amount and distribution patterns of energy and water, and the alter-

ation of the functioning of the food webs of the ocean. These mechanism

are intensified by human-mediated acceleration of the output fluxes from the

massive natural carbon sinks turning them into sources to the atmosphere by

means of an extremely efficient mineralization process: burning. The stocks

of carbon slowly accumulated over millions to hundreds of millions years are

being returned to the atmosphere and, concomitantly, to the oceans, in less

than two centuries. Therefore, on the one hand we are releasing more green-

house gases (GHGs) in the atmosphere, and on the other we are weakening

the mechanisms by which these GHGs used to be naturally sequestered from

the cycle. Reducing carbon emission is a necessary step in the fight against
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climate change. In addition, because GHGs will linger in our atmosphere for

another hundred years, there is also a need to find ways to remove C from it.

Bio-sequestration is one promising option that capitalises on natural CO2

capture and storage by photosynthetic organisms: the oceans represent a

unique resource for achieving this goal. A first input to the awareness of

the significance of carbon sinks was in the Kyoto Protocol where seagrasses

was not considered yet; since then many studies have been carried out in

order to demonstrate the importance of the oceans in the carbon sequestra-

tion [82] [130]. It was estimated that coastal areas could contribute with

about 10% to the needed carbon emission reduction: the seagrasses con-

tribute for approximately 40% of this percentage. Unfortunately, seagrasses

are suffering a rapid global decline, at a rate of about 5% per year [84] [161].

This is a risk to the environment conditions because it involves the release

of large amounts of carbon in waters. From here carbon then returns to

the atmosphere even it is unknown in which percentage. Is it possible that

meadow C that is oxidised via disturbance, exposure, or diagenesis is re-

tained, buried, or merely redistributed within the aquatic environment and

not lost to the atmosphere. For example, if sedimentary organic C were to be

mineralised into CO2 and fluxed into the water column, it may then undergo

two fates:

� it could exit the water column and pass into the overlying air, thereby

contributing to atmospheric CO2;

� it could be remain within the water column and undergo speciation to

form carbonic acid (H2CO3), hydrogen carbonate (HCO−3 ), or carbon-

ate (CO2−
3 ).

In the latter case, there would be a carbon recycling, with a carbon se-

questration by seagrass for one more time. In any case, there is a clear

need to carry out further and more thorough studies on this issue. The sea-

grasses recovery can occur through planting programs but above all through

the preservation of their habitat. It is therefore necessary to improve our

knowledge on the seagrasses, filling the existing gaps in order to make right

choices for their conservation and recovery. The actions require to address

current uncertainties include improving estimates of global seagrass cover,

reaching a more comprehensive knowledge of carbon stocks and burial rates

over different time scales, and elucidation of the fate of the carbon exported

from seagrass meadows because it can be buried in sediments at least tens
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of meters away. Seagrass meadows range greatly in their capacity to act as

carbon sinks. Whereas this variability is partially associated with changes in

the biomass and species composition of the meadows, it will be fundamen-

tal improve models (still lacking) able to predict the carbon sink capacity

of seagrass meadows and identify the factors responsible for variability in

seagrass carbon sink capacity. The models could be crucial to identify suit-

able areas to support seagrass growth, including light requirements, sediment

characteristics and dynamics, wave and energy environment an even biotic

requirements.

4.2 Carbon stocks estimation

In the last decades, several methods have been developed to calculate the

amount of carbon stored by Posidonia oceanica meadows Fig. (4.2). Most

of them are based on metabolic calculations: the difference between how

much C is produced and how much C is consumed can be assumed as the

stock potentially accumulated in the sediment. With this metod Duarte

and CebriÃ n [78] estimated, “that, on average, 16% of seagrass primary

production accumulates in sediment”. However, these are indirect evaluation

that do not take into account the differences between seagrasses species and

provide information on short-term accumulation. A more direct method

is based on sediment traps able to record the amount of sinking particles.

Finally radioactive isotopes (lead, 210Pb and carbon, 14C) are used: being

their decay time known, the age of a sediment layer can be derived from the

amount of isotope that the layer contains; this method provides information

of the long-term stock.

In Duarte (2013) [85] a model was developed to estimate long-term carbon

stock, taking into account both the autochthonous carbon produced by the

meadow and the allochthonous one derived from outside inputs. This model,

used in restoration programmes, has been applied to five different seagrass

species, but P. oceanica is not included. In the model, patches of 1 m2 were

used, with an internal shoot density equal to their steady-state value: shoots

can extend radially at the same rate of rhizome growth. Duarte et al. have

estimated an average carbon sequestration rate of 610 g CO2 m−2 year−1;

interesting is the identification of the threshold 42 g DW m−2, below which

carbon is not stored [86]. Mateo and Serrano (2009) [139] calculated an

indirect estimate of the carbon stored by the plant itself. According to their
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Figure 4.2: Summary of estimates of sediment accumulation and carbon burial rate in

seagrass meadows (from [85]

study, the leaf net production ranges between 45 and 542 g C/m2 per year,

while the production made by rhizomes and roots corresponds to about 30%

of this amount, so the resulting overall production ranges between 60 and 705

g C/m2 per year. Their indirect estimation of the stored carbon is calculated

subtracting to this amount the quantities which are spent in some ways,

and considering what remains as the probable quantity of stored carbon.

Considering that 24-44% of the carbon is remineralized, 6-50% is exported

and 6-20% is grazed, the remaining 11-47% is assumed to be sequestrated

for short-term and long-term collectively. This percentage corresponds to a

range between 7 and 331 g C/m2 per year. They also estimate the amount

of organic carbon flux which has a long residence time, that is about 6-

175 g C/m2 per year. Another way to analyse the storage process is to

distinguish the contribution of the different parts of the plant. Let us start

with a distinction between plant and epiphythes. Carbon sequestration is

proportional to primary production, so we can use a quantification of this

process to get an overview: the plant has a primary production ranging

between 400 and 2500 g DW/m2 per year, while the production made by

the epiphytes ranges between 500 and 900 g DW/m2 per year, for an overall

estimated production ranging between 2000 and 3000 g DW/m2 per year [28].

We should note that these global estimations only concern seagrasses living

in shallow layers and that productivity decreases with depth because of the

decreasing sunlight availability. Now, a more accurate distinction can be

drawn among the parts of the plant. In their research Romero et al. (1995) [4]
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noted down carbon concentration in different parts of the plant at different

depths: the highest carbon percentage belongs to the roots. The research

made by Romero et al. leads us to the third way to analyse the carbon storage

process, that is variability: some exogenous variables have an influence and

some studies about these effects are available. Romero et al. focused on

the depth variable and pointed out that the plant, globally, has a higher C

content when it lives in the shallow layer. Alcoverro et al. (2001) [3] instead

studied the seasonality of carbon storage. In fact, this process is affected by

seasonal changes in variables such as sunlight availability, water turbidity,

photosynthetic parameters, respiratory rates, plant growth and distribution

of its parts at different ages. Their results show that the overall C balance

is negative from September to June and positive from July to August (at

least in their sample), and that the annual C balance can be alternatively

positive and negative in consecutive years. The purpose of this paper is to

give a first input to a greater understanding of these mechanisms.

4.3 The Posidonia oceanica ’s carbon sink

Because of its areal overwhelming dominance in the Mediterranean and be-

cause it is the only species for which some detailed and direct estimates of

the sink are available, we will deal with the carbon sink associated to P.

oceanica. The organic carbon buried in the sediments Fig. (4.3) is the main

sink associated to P. oceanica. The source is the excess of organic carbon

production of the highly productive ecosystem this species supports which,

ultimately, is derived from the atmosphere.

Figure 4.3: Posidonia oceanica sediments (from [140])



4.3 The Posidonia oceanica’s carbon sink 43

Our interest in the Posidonia oceanica seagrass is due to its ability to

sequester carbon for a useful residence time. This process can be seen as a

composition of three steps: taking it, storing it and not losing it. The whole

mechanism can be analysed in different ways. First, basically, the input and

output fluxes Fig. (4.4). Boudouresque et al. (2006) [28] pointed out two

main organic carbon inputs and three carbon outputs in Posidonia oceanica

ecosystems. The inputs are:

� heterotrophic plankton and particulate organic matter coming from

the pelagic ecosystem;

� fishes that during the day eat zooplankton in a pelagic ecosystem and

then are harboured by seagrass meadows at night.

These inputs represent a potential first step: the carbon they bring may be

sequestrated. The outputs are:

� the so-called outwelling, that is the exportation of dead leaves, which

causes the loss of a large part of the leaf production. This is an example

of the failure: the carbon previously stored in these leaves is lost;

� fishes that, after growing up in the so-called seagrass nurseries, go away.

This reduces the potential carbon input listed above;

� the organic carbon sequestrated in the matte for millennia. Actually,

this is not a real output because it is not causing any carbon leakage:

on the contrary, it is the successful realization of the photosynthesis

processes.

The refractory nature of the P. oceanica rhizomes and roots tissues, fixing

matter and sediment particulates, makes this seagrass an excellent long-term

carbon sink. The carbon stored by Posidonia oceanica meadows it is estimate

with the relationship between GPP and R, and thus with the balance between

the carbon produced and the consumed one. The estimation corresponds to a

range between 7 and 331 g C/m2 per year ( [14] [194] [152] [60] [155] [125] [?]):

several researches come to an average value of around 83 g C m−2 y−1. Other

studies have investigated Posidonia’s health conditions along the coasts of

the Mediterranean, in Spain, Italy and Malta ( [204] [152] [69] [140]). These

estimates show that, approximately, 10-25% of the net carbon fixed by the

plant enters into the long-term stock with a rate of 47-138 g of C m−2 or 6-175

g C m−2 per year (average 90.5 g C m−2 per year). This amount, which can
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Figure 4.4: Fate of P. oceanica primary production. From [206]

represent 33-62% of the C stock [124], must be considered with the allocthon

C giving a large contribution to the stocks, especially in the more superficial

bathimetric levels: “at levels greater than 1 m in sediment, carbon stocks

reach 5000 g C m−2 [153].”. Considering the entire Mediterranean, Posi-

donia’s contribution to C-related seagrass in worldwide is between 0.5 and

20%. The research made by Romero et al. (1995) [4] leads to another way

to analyse the carbon storage process, that is variability: some exogenous

variables have an influence and some studies about these effects are avail-

able. Romero et al. (1995) [4] focused on the depth variable and pointed

out that productivity decreases with depth because of the decreasing sun-

light availability. Therefore the plant, globally, has a higher C content when

stays in the shallow layer. In [3] instead studied the seasonality of carbon

storage. In fact, this process is affected by seasonal changes in variables such

as sunlight availability, water turbidity, photosynthetic parameters, respira-

tory rates, plant growth and distribution of its parts at different ages. Their

results show that the overall C balance is negative from September to June

and positive from July to August (at least in their sample), and that the

annual C balance can be alternatively positive and negative in consecutive

years. P. oceanica have been shown to be a C source (GPP<R) over winter
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and a C sink (GPP>R) for the remainder of the year [97]. This model tries

to explore, measure and predict how this delicate system changes and alters

its mechanisms while dealing with human activities.

4.4 Economic evaluation of Carbon sink

Our model required a conversion of photosynthesis production values to car-

bon sequestration values so it is important to know the available possibilities

to estimate the C storage and its economic value. In this section we describe

the existing evaluation model, in order to find out which methods and prices

are most popular. A similar review has been made in Jerath et al., [117]

aimed at evaluating the environmental service provided by a mangrove for-

est in Florida. The main methods are:

� damage cost assessment, called SCC;

� damage avoidance method, very close to the Marginal Abatement Cost

(MAC) curve evaluation method;

� market price analysis, that is the price of emission allowances and

similar market products;

� stated preference approach, which reflects people’s willingness to pay

for emission reduction;

� shadow price of carbon, that is the carbon price adopted by govern-

ments.

Being Posidonia oceanica an endemic species of the Mediterranean Sea, it is

better to consider the European Union Emission Trading Scheme (EU ETS).

In this market the currency of exchange is the EUA (European Union Al-

lowance): 1 EUA equals 1 Assigned Amount Units (AAU) and 1 AAU means

1 ton of CO2 emitted. If the verified emission amount caused by a facility is

lower than the allowed amount, this facility can sell some of its allowances

to a facility whose emissions are exceeding the established threshold. In the

end, each facility has to owe enough AAUs (or equivalent credits) to justify

its emission amount, or it will have to pay a penalty.The determinants of

price trends in the EU ETS market have been the object of extensive econo-

metric enquiry. Alberola et al. [2] studied four main price drivers: policy
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issues, energy prices, temperature events and economic activity. As the al-

lowance price is too variable [63] and too dependent on external factors to be

a reliable approximation of the real value of 1 ton of CO2, other evaluation

methods should be considered. The answer may be found in the Marginal

Abatement Cost (MAC) curves, that show for each sector how much the

reduction of an additional ton of carbon costs; there are few studies, and

each one models its own MAC curve(s). Now we focus on the social side of

the issue and study the Social Cost of Carbon (SCC). MAC and SCC are

just both sides of the same medal: the former quantifies the cost of abating

1 more ton of carbon, the latter the cost we will bear if we do not abate

it. The Social Cost of Carbon represents the cost of not reducing the GHG

amount in the atmosphere, and it is calculated as the net present value of

the long-term impacts of 1 ton of carbon emitted today. It can be practi-

cally used to value the benefits of a policy or aimed at GHG reduction, for

example protection activities on Posidonia oceanica meadows. Most of the

existing studies calculate the SCC through an Integrated Assessment Model

(IAM), that combines environmental and economic data and processes in

order to predict the future Gross Domestic Product (GDP) along with the

damages brought by climate change. The forecasted GDP is then discounted

and compared to the present one (Sustainable Property, 2011). Since 1982

over 200 SCCs have been estimated, whose variability is due to the choice of

four key parameters involved. First, the discount rate; the second parameter

is the different areas; third, the chosen time horizon (it must be analysed in

a long-term frame) and fourth, the choice to use either the median or the

mean value. The variability in the estimates also depends on what matters

according to the researchers. Some models only consider economic costs and

benefits, while some others include also non-material factors such as welfare,

biodiversity and sustainability. Resuming we can see that a ton of carbon

dioxide in Europe is paid at around e 15 in the carbon market ( [213] Point

Carbon, 2011). This means that the organic carbon retained in P. oceanica

sediments in the Mediterranean is woth e 6-23 m−2. This is 9-35 times

more than one square metre of tropical forest soil (e 0.66 m−2 [130] or 5-17

times when considering both the above and the belowground compartments

in tropical forests. So good and benefit (GB) provided by long-term seques-

tration of carbon achieved by P. oceanica in 2014 are thus estimated between

7.7 and 230 e/ha/year.
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4.5 Economic evaluation of other ecosystem

services

Seagrass meadow perform important functions for marine environment and

for its use by humans Fig. (4.5), as protection against coastal erosion, sup-

porting fish species with high commercial value, maintaining the sediment,

absorption of pollutants and filtrating water [209]. In the Mediterranean

basin Posidonia oceanica is the most common seagrass providing those ser-

vices, but still today, its importance and the primary need of its conservation

are poorly known [137] [67]). This is mainly because citizens, stakehold-

ers but also policy makers, don’t evaluate properly what, as ecosystem ser-

vices, lacking of a specific economic value. So it Is important, for guide-lines

policies, the identification and economic assessment of the ES provided by

P.oceanica meadows in order to calculate the economic losses associated with

environmental changes affecting dynamics of these ecosystems [66] [119]. The

traditional ES and GB assessment pays specific attention to human and his

interests and assigns a value to ecosystem services based on their actual use

by populations. Recently, a new approach has been developed: it evaluates

ES independently from the benefits that users could derive from them and

from the public consideration of these ES [201]. Vassallo et al. [227] identi-

fied 25 ecosystem services through a review of available literature in order to

evaluate the economic value of the species P. oceanica; their method was ap-

plied to a specific context, in the Marine Protected Area “Isola di Bergeggi”

(Ligurian Sea, NW Mediterranean). They have taken into account the GB

derived from the linked ES according to the Common International Classi-

fication of Ecosystem Services (CICES), which is the latest classification of

ES approved by the European Commission (2013). This economic evaluation

uses the GB market prices or the damage costs avoided, the costs that the

authorities will not have to support thanks to the services provided by P.

oceanica.

Posidonia oceanica leaves have been used since prehistory throughout

the Mediterranean, especially as building insulation, but also to reduce the

pollution of the waters. The dead leaves, dragged by wave motion, accu-

mulate on the beaches, forming banquettes that often spoil the landscape

of some seaside resorts. The use of these banquettes is regulated in a dif-

ferent way in each country: in general, they must not be kept in protected

areas while they may be removed in other areas, subject to appropriate dero-
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Figure 4.5: System diagram of Posidonia oceanica services (from [227]

gation. In this last case, it is possible obtain capitals or refunds for costs

associated with banquettes removal. So the cost linked with the use of Posi-

donia oceanica as a material can be considered null. Other important role

of P. oceanica is the protection from coastal erosion due to its ability to

modify and control the hydrodynamics of waves and currents, the ability to

stabilize sediments with its root and rhizomes [100] [68] and due to the ban-

quettes developed by dead material accumulated on the beaches [154] [214]).

Mangos et al. [146] estimated that such protection would cost around 150

e/ha/year, a cost that P. oceanica allows to break down. P. oceanica, be-

ing representative of the Mediterranean Sea, participates in the resilience

of marine waters and wastewater treatment, decreasing water pollution and

turbidity: Costanza et al. (1997) [66] calculated that this service is worth

4.8×106 e/year. Moreover Posidonia oceanica contributes to the maintain-

ing water quality, with the oxygen production (more than 14 litres of oxygen

per day per m2 for [15]), making the Mediterranean Sea a hospitable en-

vironment for many fish species. The P. oceanica meadows constitute a

very high biodiversity habitat, so their contribution to fishery improvement

is essential: considering only adult fishes, Mangos et al. [146] have calcu-

lated that the economic value of this resourecs ranges between 27 and 35

e/ha/year. All estimated ecosystem services contribute to the maintenance

of seaside tourism activities [39]. Finally, due to its important features,

its sensitivity to environmental changes and its ability to accumulate heavy

metals, Posidonia oceanica is considered an efficient bioindicator: study-
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ing it improves our knowledge of the dynamics and health conditions of

coastal systems. Pugh and Skinner [200] calculated the value of this service

through the cost of research projects: considering only LIFE and national

projects the value is about 0.33 e/ha/year. The total economic value of

the most important ecosystem services provided by P. oceanica ranges be-

tween 284 and 514 e/ha/year, it is about 22500 e/ha/year for Costanza et

al. (1997), and about 172 e/m2/year for [227]: the different values, often

under-estimated, are due to the considered services and the use of economical

evaluation method. Taking into account the current regression of P. oceanica

and the difficult reversibility of the destruction of its meadows [167], those

values allows to quantify the annual loss of this specie about e 1.11-2.00×
106 for Mediterranean countries [227] .
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Chapter 5

Review of relevant modelling

efforts

This Chapter provides a brief overview of the previous models

simulating the growth and production patterns of the seagrass

Posidonia oceanica. Several biological studies have provided a

big amount of qualitative and quantitative information and data

on the characteristics of the Posidonia ecosystem and on the abi-

otic and biotic factors regulating and affecting it. Other studies

have formulate mathematical models with descriptive and predic-

tive purposes. An overview of the models known, with the bio-

logical information provided in the previous Chapters, can help

to better understand the underlying premises of our model, and

also provide suggestions for improvements in the next steps of

this work.

5.1 Models of growth dynamics in seagrasses

Natural phenomena are characterized by extreme complexity in which oper-

ate numerous variables all intrinsically connected in a non-linear way. Math-

ematical models are important tools to create an idealized representation of

reality that is expressed through a quantitative relationships between the

system’s characteristic variables. Modelling of seagrasses can be an effective

tool to assess factors regulating their growth, to understand and predict the

evolution of the system itself, and to understand the consequences of dif-

51
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ferent actions, before employ them directly in nature. In the last decades

an increasing interest in using computer models for developing such predic-

tive capacity and exploring future options for natural resource management

is evident [49]; there is plenty of literature about mathematical modelling

of trophic networks in marine ecosystems using different approaches [203].

Over the last 30 years, part of the literature on seagrasses, not only in the

Mediterranean Sea, had the aim to develop model simulations of the sea-

sonal dynamics of the growth patterns of plant biomass, the time evolution

of growth rates, and the flows of nutrients ( [211] [239] [10] [145] [21] [88]).

Most of these models are made for phanerogams [22] [237] also diffused in

lagoon environments (Zostera marina, Zostera noltii, Cymodocea nodosa)

that know worrying regressive processes in recent years. The models cur-

rently developed have been concentrated mainly on temperate species and

especially on Zostera marina [106]; [228]; [169]; [10]; [21]. There are also

studies on the biomass processes responsible of other species such as Zostera

noltii [197], Potamogeton pectinuatus [114], Potamogeton perfoliatus [145],

Ruppia marittima and Halodule wrightii [90]; [50]. Many models describing

seagrasses are based on carbon, few are based on nitrogen, they do not make

the distinction between nitrate and ammonium, and in general the models

do not take into account the biomass of the rhizomes. Some of these models

have been implemented to understand the effects of the macrophytic plants

on the environment and vice-versa [57]; sometimes they have been imple-

mented to describe seagrasses like an only one species without taking into

account the specific differences, but in other cases, have been focused on

individual species. The studies mentioned above employ a variety of meth-

ods to model and simulate seagrass communities. Since seagrasses, like P.

oceanica, are connected to and influenced by other systems in the coastal

zone, linking individual component models together enables the evaluation

of a larger interacting set of dynamics, improving guidance for coastal man-

agement. An important point in seagrass research is their response to the

presence or absence of a certain amount of nutrients; the models trying to

investigate these mechanisms have remained at the level of physiological or

quantitative models. These models often use the classic Michaelis-Menten

and Monod equations to simulate, respectively, the nutrients uptake and the

growth rate of marine plants in relation to the nutrient concentration in the

substrate and in the water column . In other models the Droop equation

or Cell-Quota Model is used, developed by Michael Droop, in 1968, to de-
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scribe the growth and utilization of nutrients (especially organic nutrients)

by algal cells. Zimmerman et al. [?, 240] developed a mathematical model

on Zostera marina to simulate its response to nitrogen and radiation avail-

ability. The model was applied to make steady-state predictions about the

relative effects of light and Ni availability on Ni absorption and partitioning

between above and belowground tissues. It was also applied to estimate the

Ni concentrations in the sediment and water column that would be required

to saturate growth. A more complex model was developed to simulate pho-

tosynthesis and growth of Z. marina in lower Chesapeake Bay [232]. The

model was based upon theoretical non-linear functions to simulate biologi-

cally controlled processes, and empirical or statistical relationships to include

physical/chemical interactions and environmental forcing functions. Models

that reliably predict population response to cultural eutrophication are lack-

ing for most seagrass species, or limited to localized areas [220]; [92]; [109].

Seagrass response to nutrient loadings has proven difficult to quantify be-

yond localized areas because long-term data consistent in quality are gener-

ally lacking, an seagrass abundance and productivity in natural habitats are

often highly variable from year to year because of stochastic meteorologi-

cal and hydrographic conditions [225]; [220]; [52]. Early empirical models by

Nielsen et al. [170] and Duarte [83] enabled simple predictions of areal loss of

seagrass meadows following reduced water transparency from eutrophication.

In consideration of future efforts to improve protection of remaining seagrass

meadows and reduce nutrient loading, Duarte [83] noted that reversing the

eutrophication process suggests replacement of rapidly growing algal species

by more slowly growing seagrasses, with the expectation of increased lag pe-

riods between nutrient reductions and seagrass recovery. Duarte developed

a simulation model for seagrass recovery from eutrophication as a non-linear

process best represented by a logistic growth curve. This model projects

that seagrass recovery will be more rapid with increasing rate of patch elon-

gation than with increasing rate of patch formation. It predicts that the

time scale needed for meadow re-formation (95% cover) would range from

less than 1 years (small, rapidly growing species, e.g. Cymodocea nodosa)

to about four centuries (large, slowly growing species, e.g. P. oceanica).

Thus, although seagrass loss can be rapid, the ecosystem consequences may

last for decades or centuries after nutrient reductions are imposed [83]. The

analysis of literature available on the seagrasses shows a common approach

to the system, about choice of model components (status variables, forcing
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functions, parameters) and mathematical formalization (predominantly dif-

ferential equation systems). The structure of these mathematical models

is mainly based on two state variables: the biomass of the above-ground

system, and the biomass of below-ground system (rhizomes and roots), and

sometimes the epiphites of each compartment. The seasonal evolution of

these biomasses is considered predominantly due to two forcing functions:

the water temperature and the light irradiance, both considered to be key

factors in regulating the growth of the seagrasses [187]. Modellers may also

want to account for socio-economic factors or behavioural patterns at the

coast given that humans are an integral component of coastal ecosystems.

5.2 Posidonia oceanica ’s growth patterns: mod-

elling approaches

In the previous paragraph we have summarized the models about seagrasses

as a big group of marine plants, and about seagrasses species different from

Posidonia oceanica. There are many studies on the simulation of seagrasses

growth dynamics, instead the available literature for P. oceanica is reduced.

In addition to this lack of modelling on the Posidonia oceanica, it is nec-

essary to note that this plant is different from the other seagrasses as far

as its growth and physiology is concerned. This difference makes difficult

the application to it of models made on other species and other areas. The

existing models about P. oceanica are different from each other: much of

the studies carried out since 1960 focused on the analysis of the growth dy-

namics of the P. oceanica meadows [75]; [182]; [45] at two different levels

of investigation: the leaf (growth of single leaf ) and/or the beam (cyclic

renewal of leaves in the tuft). Moreover the models are often concentrate on

different aspect of the habitat’s dynamics and on different drivers and stres-

sors [122]; [88]; [149]; [241]. In the next pages a review of the bibliography

will be carried out, only about the species of our interest. In the first section,

the main models simulating spatial growth of Posidonia oceanica meadows

and the complex structures of their matte are briefly explained. The aim of

these models is to describe how P. oceanica increase its underground roots

and rhizomes in order to occupy the surrounding space. Also factors af-

fecting growth patterns and the speed with which the meadows can extend

themselves colonizing the environment are investigated. Next, we examine

those models, closest to our model, that simulate the biomass production
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of P. oceanica meadows, thus focusing on plant growth due to balancing

between photosynthesis and respiration processes. To our knowledge for P.

oceanica there are two important production models: one concerning growth

of only above-ground biomass based only on the temperature, and the last

one considering the physiology of the whole plant and the influence of change

in forcing functions such as light.

5.2.1 Spatial model: Molenaar et al., (2000)

In the study of Molenaar et al. [164] in order to predict the growth pattern

of transplanted cuttings, a mathematical model is developed, based on the

analysis of the growth process, the branching process, the rate of transforma-

tion from plagiotropic to otrhotropic branches, and the mortality of plants.

“The mathematical model is constructed in order to quantify the distribu-

tion of internodes within growth units from different morphological types of

axes and branching orders” Fig. (5.1). Eighty samples are collected, at 6 m

depth, from a P. oceanica meadow near Cannes, France. Finally the observed

frequency distribution are compared to model ones; the result are compiled

from 12 years. The order-1 axis is the principal plagiotropic rhizome of each

sample, the order-2 axes are the lateral branches borne by an orde-1 axis,

the order-3 axes are the branches borne by order-2 axes. The internode is

the part of the rhizome produced between two successive leaves. The growth

unit is the part of the rhizome produced during one lepidochronological year

corresponding to about 12 months.

Figure 5.1: Axes differentiation in Posidonia oceanica (from [164])
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In this model the growth process is described by frequency of the number

of internodes produced per annual growth unit; the branching process is de-

scribed by the frequency distributions of the internodes bearing a lateral axis

in relation to their rank on the growth unit. To estimate the natural mor-

tality rate as a function of age, the viability of the meristems is considered.

The transformation process in the meristem is expressed by the probability

of modification of the orientation of the axis during the following growth

stage. Assuming that the transformation rate is constant from one growth

unit to the next one, having chosen axes with a N growth units, the prob-

ability for a growth unit to become orthotropic after N plagiotropic growth

units is Eq. 5.1:

1− F (N) = CN (5.1)

where F (N) is the percentage of plagiotropic growth units not trans-

formed into orthotropic ones and CN the probability of the rhizome to re-

main plagiotropic Eq. 5.1. The results reveal that the frequency distribution

of internode formation per growth unit on plagiotropic axes changed accord-

ing to branching order Fig. (5.2). It is governed by a Poisson distribution

on order-1 axes, by a binomial distribution on order-3 axes and by any com-

bination of the two laws on order-2 axes. The production of internodes per

growth unit on orthotropic axes follows a binomial frequency distribution.

The model shows that each year two series of branches occur in P. oceanica

statistically, with different probabilities according to branching order.

5.2.2 Spatial model: Kendrik et al., (2005)

The study of Kendrick, MarbÃ and Duarte [123] investigates the role of slow

horizontal and vertical growth of rhizomes in the formation of topographic

complexity in P. oceanica matte using agent-based modelling. The simu-

lated infilling of landscapes by P. oceanica is run over 600 iterations (years)

for 10 random starts of 150 agents each. This modelling study focuses on

seagrass clonal growth rules, while maintaining all other demographic and

environmental variables fixed, to study the rates of spreading and expansion

of P. oceanica meadows in three dimensions. The pattern of spread of agents

was initially random in direction but, as the simulation time passes, larger

patches were formed, and the canopy spreaded radially from these patches

Fig. (5.3). The matte developed from growth of patches and its greatest
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Figure 5.2: Frequency distribution of the number of internodes per growth unit. Bars:field

data. Line:model. (a) in plagiotropic order-1 axes. (b) in plagiotropic order-2 axes: 1 is

the model of the mixture of all data, 2 is a binomial model corresponding to short growth

units and 3 is a Poisson model corresponding to long growth units. (c) in plagiotropic

order-3 axes (from [164])

height occurred in more continuously occupied cells of the grid. The to-

pography of the reef that occupied two-thirds of the landscape after six

centuries of growth could be described as a pattern of channels between reef

plateaus elevated 1 e 2 m above channels. These results demonstrate that

development in P. oceanica meadows of three-dimensional structure, in the

formation of biogenic reefs, can be explained by, and is an emergent property

of, slow horizontal and vertical rhizome growth rates combined with the time

it takes for the accumulation of rhizomes in any region of the landscape.
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Figure 5.3: The simulated increase in mean % cover by seagrass agents with time (from

[123]

The complexity of the simulated reefs developed by P. oceanica result

from the slow horizontal spread of rhizomes of this species relative to the

rate of vertical reef formation. It is precluded the ability to externally val-

idate the outcomes through direct observations or experimental manipula-

tions, as the time scales involved are of several centuries. Yet, the timespan

for colonisation for the development of meadows derived from this modelling

effort (more than 600 years) is in agreement with results derived from previ-

ous, independent models (600 years from [83]) and extrapolations from field.

Previous models of patch extension and spatial occupation by seagrasses

represent constant horizontal spreading rates [83] [147] [121], whereas the

SWARM model simulates growth of individual agents and allows for local

interactions between agents, consistent with such dynamics implicit in recent

evidence of density dependence in seagrasses [150] [123] [215].

Forecasting capabilities about the future of species or habitats and their

health conditions, are critical in defining the guidelines for environmental

protection and conservation [226]. Making management decisions for sea-

grasses is always difficult because they are very complex systems, regulated

by synergic interaction of different drivers and stressors. The same is true

for Posidonia oceanica, a very long-lived species whose position in space is

influenced, for example, by wave motion, but also by extreme events such as

big storms [116]. Vacchi et al. [223] have developed an innovative predictive

model that can accurately identify the seafloor portion where the meadow

upper limit should lie in natural conditions Fig. (5.4) (conditions governed
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Figure 5.4: Three-dimensional representation of matte height after 300 years of growth.

The light grey surface is 0-1 m in height and the dark grey is >1 m in height. This is a

randomly chosen example from a single simulation (from [223])

only by hydrodynamics, in absence of significant anthropogenic impact), and

that could provide the proper tool to define reference for healthy meadows.

5.2.3 Production model: Zupo et al., (1997)

The work of Zupo et al. [241] developed a mathematical model based on

the dynamics of monthly production of new leaves of P. oceanica, on the

growth of each leaf in a shoot and on the relative effects of temperature on

these descriptors. The main aim of this research was to assess the influence

of temperature on the spatial and temporal growth pattern of P. oceanica

and also identify efficient descriptors of leaf primary production to achieve

a simple method by which evaluate seasonal plant growth. It takes into

account short-term (seasonal) and long-term (annual) production patterns,

rate of leaf elongation and several phenological parameters like number and

length of young, intermediate and adult leaves, shoot and epiphyte density

and biomass. A continuous P. oceanica bed in Lacco Ameno (Island of

Ischia, Gulf of Naples), were studied over 1 year: a shallow site at 5 m and

a deep site at 22 m were chosen. Each month, 20 shoots were collected

from both sites for phenological studies, and other 20 shoots were marked

according to the Zieman method (1974) and used to obtain leaf production

and length measurements, as described in Buia et al. (1992). Each leaf in
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the shoot was followed from the date of appearance to abscission. Irradiance

and water temperature were monitored monthly, during the study period,

at both sampling stations: for light each value represents the mean of three

daily measurements obtained during the same day; for temperature data were

collected on 1 day in each month. The relationships between biological and

environmental factors were described using linear and non-linear equations.

The significance of the correlation coefficients and regression analyses was

tested by means of Analysis of variance (ANOVA), the analysis tool used in

statistics to compare more than two groups at the same time, to determine

whether a relationship exists between them. The best correlation obtained

were applied to the production model.

Figure 5.5: Main leaf features and environmental variables considered in the Zupo model

(from [241])

The model, running by MS Excel software, consists mainly of differential

equations whose general formulation is: dX(t) = f(X(t)), assuming that

dX(t) = X(t + dt) −X(t). The X(t + dt) computed becomes the X(t) for

the next X(t+dt) at each time step, as starting values are given for variables,

and parameters are fixed. Posidonia production was computed over a 1-year

period using a 1-day time step, while a check for the number of new leaves

(NNL) that had appeared was simulated using a time step of 30 days. The

model takes into account the date of appearance of each leaf and the water
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temperature to calculate the age and the daily elongation rates of leaves.

The function Agei Eq. 5.2 defines the age of each leaf in a shoot, according

to its rank (from 1 to 7):

Agei(t) = Agei(t−dt) + (dt+ Shifti−1 − Shifti) (5.2)

where i is the leaf rank and t is the time. The function Shift rearranges

the age of each leaf, taking into account the shift to higher ranks due to the

appearance of a new leaf. The values assumed by these function, therefore,

depend on the number of new leaves appearing (a maximum of two leaves

per month is considered). To validate the model, simulations of production

for several Mediterranean meadows were performed using the production

and temperature data reported in the literature. The model, applied to

a historical series (four years) of monthly temperature values measured in

the prairie of Ischia (Tyrrhenian Sea - southern Italy), provides a long-term

simulation of Posidonia leaf growth in the studied area.

5.2.4 Production models: Elkalay et al., 2003

A more complex approach is the one developed in Elkalay’s study [88] based

on a production model of P. oceanica occurring in the Bay of Calvi (Cor-

sica, Ligurian Sea, NW Mediterranean). The model presented by Elkalay

fills a gap in existing models in that it is a whole-plant approach: in par-

ticular changes in below-ground biomass are explicitly included. The model

describes the development processes and variations in biomass and growth

of P. oceanica, in relation to some forcing functions: irradiance, water tem-

perature, availability of nutrients and space. The state variables are the

belowground (roots, rhizomes) and aboveground (leaves, epiphytes) com-

parts, the epiphyte biomass and the internal nitrogen concentration of the

whole plant. The state variables and the forcing variables considered in this

model are schematically shown in the figure Fig. (5.6).

The growth is the result of the balance between productive and degener-

ative (consuming biomass) processes occurring in each of the different com-

partments considered (roots and rhizomes, leaves, epiphytes) and their inter-

actions, under the influence of various physical factors (temperature, irradi-

ance), chemical factors (nitrogen concentrations in water column, epiphytes,

plant) and mechanic factors (grazing, hydrodynamism). A simple system

of differential equations Eq. 5.3 describes, for each of the state variables
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Figure 5.6: Diagrammatic representation of interactions between main ecological state

variables. (T) temperature, (I) irradiance, (Qn) nitrogen concentration in seagrass,

(NH4w) ammonium water column, (NO3w) nitrate water column, (NH4s) ammonium

in sediment pore water (from [88])

considered (Vs), the variation of biomass and growth:

dVs
dt

= (GroVs − transVs −ResVs)× Vs (5.3)

whereResVs, the respiration rate coefficient for each state variable (day−1),

and transVs, the translocation rate between different compartments (from

leaves to epiphytes and from roots and rhizomes to leaves), are subtracted

from the daily growth rate coefficient, GroVs Eq. 5.3. The influence of limit-

ing factors is considered in a multiplicative formulation with the assumption

that light, temperature, nutrient and space act independently on the growth.

The shading effect is not introduced in this model, because this factor is re-

lated to space limitation mechanism (S) to control the carrying capacity of

the system; the self-shading increases as a consequent of the increase in space

limitation for leaves Eq. 5.4:

f(S) = 1− exp

[
−
(
Vs − sVs
ksVs

)2
]

(5.4)

where sVs is the maximum Vs biomass, and ksVs is the Vs growth de-

pendence on the space availability Eq. 5.4. The same equations are used
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for leaves, below-ground biomass and epiphytes, changing the specific coef-

ficients. In the model the transport from below to above-ground material is

also considered. The formulation used assumes that transport is proportional

to below-ground biomass up-take rate by means of translocation coefficient

ktrans estimated by model calibration. For the translocation from leaves

to epiphytes they consider that part of the nutrients released by leaves are

immediately consumed by epiphytes. In this model respiration is the only

permanent mechanism of loss of leaf biomass, which is modelled as temper-

ature dependent Eq. 5.5:

ResVs = resVs × f(T ) (5.5)

where resVs is the maximum Vs respiration rate Eq. 5.5. The sensitivity

of the model to altered light regimes is evaluated by varying the water depth

(10, 20 and 30 m) and the average annual water column light attenuation.

Finally the model predictions are compared with in situ measurements show-

ing a good accordance, except for 30 m probably because the accuracy of

the measured parameters would decrease with depth Fig. (5.7).

Figure 5.7: Simulated (lines) and measured (points) values for leaves (a) and epiphytes

(b) biomass (g DW m−2), at 10, 20, 30 m (from [88])

To evaluate the influence of light intensity changes, they create an arti-

ficial disturbance by increasing the attenuation coefficient by 10% and 20%.

The same increase is applied at different periods in the year, and with differ-
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ent frequency and duration. Then they evaluate at each depth the percentage

of mean annual biomass, losses for above and below-ground biomass. This

percentage increases with time and depth and it is higher for leaf biomass.

The biomass loss is higher at the beginning of the year, it increases with in-

creased duration and it is positively correlate with frequency. Fig. (5.8)For

the below-ground biomasses there are less measurements, limited at 10 m:

the simulation indicate that the root biomass shows very small seasonal

changes, in contrast to the leaves biomass.

Figure 5.8: Biomass production of leaves and Epiphytes (from [88])



Chapter 6

Model development

A section explaining the premises of our model is fundamental.

Posidonia oceanica’s habitat is a very complex ecosystem where

several internal and external components interact, hence deter-

mining the characteristics of each meadow. Environmental fac-

tors such as depth, light, nutrient abundance, and epiphyte pres-

sure play a large role in altering meadow primary production and

the resulting flux of matter and nutrients [191]. Understanding

the relationship between photosynthetic capacity and the factors

that regulate is important for estimating the productivity of P.

oceanica habitat [3]. The purpose of this chapter is to describe

the main drivers regulating the seasonal dynamics of leaf produc-

tion of a P. oceanica’s meadow and the way it is mathematically

translated into the model. Therefore, in the next pages, a detailed

description of our theoretical model is given, based on a thorough

bibliographic research about the main biological mechanisms in-

volved in the turnover of the aboveground biomass of Posidonia

oceanica.

6.1 Conceptual model

The seagrasses systems behaviour is complex and difficult to predict. Orth

et al. [176] and other authors [27] acknowledge the complex ways in which

multiple stressors affecting seagrasses operate simultaneously, at different

temporal and spatial scales, with interacting effects. A system dynamic is a

65
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powerful tool for a better understanding of the complexity inherent within a

seagrass ecosystem, in order to guide resource management. Its advantage is

that it allows a modelling method integrating “contrasting disciplines that

are pertinent to the system being modelled, and avoids the need to cou-

ple multiple models” [216]. System dynamics was developed in the 1950s,

by Jay Forrester at the Massachusetts Institute of Technology (MIT) to

improve the understanding of strategic management problems in complex,

dynamical systems [91]. A network of cause and effect relations between the

elements within a given system is first con-structed. These causal links con-

stitute the feedback processes that generate a system’s dynamics. Therefore

we developed a conceptual model describing the hypothetical representation

of critical state variables and processes occurring in a Posidonia oceanica

meadow. First of all it was necessary a thorough bibliographic survey and a

preliminary analysis of available data to evidence key elements (KE) driving

ecosystem evolution. The definition of KEs characterise the ecosystem is of

primary relevance: in order to write the equations representing the model,

it is necessary to evaluate the strength of the interactions and dependen-

cies among the various KEs, and towards the stressors, separating spurious

correlations from actual causal relationships. System dynamics uses stocks

and flows to capture the fundamental dynamics of a complex system [216].

Stocks represent sinks or reservoirs in a system and accumulate the differ-

ence between an inflow and an outflow to a process. Biomass produced by a

Posidonia oceanica meadow can be considered a stock Fig. (6.1): then it is

important identify inflow that “grow” this stock (e.g. photosynthesis) and

outflow that “deplete” the stock (i.g. senescence and leaf shedding).

Figure 6.1: Example stocks and flows for P. oceanica

The current version of the model does not simulate belowground biomass

stocks, and focuses on the material produced aboveground: this is a pro-

duction model and, according to [87], we can suppose that 84% of the P.

oceanica total production may be contributed by the above-ground biomass.

The biomass stock of P. oceanica is estimated by the balance between the
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process increasing biomass, and processes that remove biomass. We suppose

that our simulated meadow was a 1 m2 patch of a P. oceanica meadow.

This extention is not random: it has been chosen to manage the density and

health conditions of our meadow, and it is performed setting the meadow

shoot density, according to Pergent [190]. The area occupied by the canopy

is fixed in our model, the dynamics by which the habitat patch may prolifer-

ate and increase their areal extension is not considered here. The number of

active cells, containing a stolon able to develop leaves and produce biomass,

is randomly selected at the beginning of the simulation and remains fixed

throughout the simulation time. However, this number is generated by com-

parison with a fixed threshold read by the model from an external file. By

varying the value of this threshold, it is possible to manage the number of

beams active in the meadow and thus the potential density that it can reach.

Seasonal conditions are simulated by different values of temperature (T) and

surface irradiance (L). These values are derived from the web and referenced

to the geographical area of the province of Livorno (Italy), where most of the

studies on Posidonia oceanica in Tuscany are concentrated. Fifty-two values,

one for each week of the year, have been selected (both for temperature and

light) in order to simulate the observed seasonal changes and how it affects

the dynamics of the meadow production: for light the maximum occurs in

June and the minimum in December, for temperature the maximum in Au-

gust and minimum in February. A conceptual diagram illustrates the core

processes that control plant growth and abundance in the model. Forcing

functions, indicated by rectangles, represent inputs of energy and materials

from outside the system, such as temperature and light. The rhombus rep-

resents the main state variable, the leaf biomass, and arrows indicate flows

of materials and energy between the state variable and the forcing variables

within the system. A polarity is assegned to each link, positive (+) or neg-

ative (-) to indicate the way in which the dependant variables change in

function of the independent variables [216]. Positive links imply that an

increase (or decrease) in the cause will result in the affected variable being

higher or lower than it would have been if that cause was held constant. Neg-

ative causal links, on the other hand, imply that an increase (or decrease)

in the cause results in the affected variable being lower (or higher) than it

would have otherwise been. The model, as shown in the conceptual diagram

Fig. (6.2), focuses on a single state variable represented by the biomass of

single leaf, while all the factors that we consider to control the growth pro-
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cesses are forcing functions: the light absorption and the contribution of

nutrients increase the leaf biomass, while the epiphytes’ attachment and the

shadowing of nearby plants decreases the growth.

Figure 6.2: Conceptual diagram: the rectangles are the forcing functions; the rhombus

represents the main state variable and arrows indicate flows of materials and energy.

6.2 Model structure and function

Posidonia oceanica habitat is a system showing a great diversity of complex

patterns. This complexity, generated by the interactions of different com-
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ponents, can be investigated through “cellular automata” models. These

models consist of main simple identical components that, interacting each

other, generate complex systems. Therefore, in order to simulate the most

important biological processes occurring in the growth dynamics of a Posido-

nia oceanica’s meadow, we chose to develop a non-linear, stochastic model,

spatially explicit, that consists of a cellular automaton system. The model

code is written in FORTRAN 90 and consists of a main program, reading

input files with parameters values editable by the user through common ed-

itors, and of two subroutines developing some components of the model, the

result of which is giving back to the main program with a suitable function

calling the specific subroutine. The automaton system developed is a matrix

of a specified shape that evolves, over time, according to a set of laws based

on the state of the nearby cells. These laws are then applied iteratively for

a number of discrete time steps. Cellular automata were studied, for the

first time, around the 1950s, and their use in the implementation of biolog-

ical models, was perfected in 1980 thanks to the work of S. Wolfram, who

published his results in the book “A New Kind of Science” [234]. There are

main types of cellular automata; a characterize feature is the grid shape that

can be one or two-dimensional line. In our model the grid is square with the

same number of rows and columns: it is exactly a grid 30 × 30. Each cell

within the grid can assume a determinate number of states, 2 in the simplest

case. In this model two states are possible for each cell: inactive cell without

tuft, and active cell with a tuft on which a maximum of 7 leaves can grow,

according to an initial random setting and to the dynamics of the model.

In addition to the type of grid and the states the single cells may assume,

it is also necessary to specify the dynamics with which cells interact each

other. The simplest choice, the one we apply, is that each cell interacts only

with its nearest neighbours, directly adjacent. In the full cells we imagine

a tuft of seven leaves and for each leaf we follow its birth and development

in a seasonal dynamic of 52 weeks, with a simulation time of 100 years and

a time step of a week. A timer keeps track of the time in weeks, from the

beginning of the simulation; the model uses weeks and years as time units

since the intended purpose is to capture habitat dynamics that operate on

time scales running across several years. Therefore the model is set to recal-

culate and update all system states 52 times per year in order to simulate

growth patterns for a number of years. The mathematical construct consists

of a growth equation Eq. ?? that predicts the expected increment in biomass
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over time of the f -th leave at the site [i,j]: at each site of indices [i,j], the

increase undergone by the dynamical variable B({i, j, f}, t), the f -th leave’s

biomass, from time t to time t+ 1, is some ∆B({i, j, f}, t) depending on the

leaf configuration and on the forcing agents at time t Eq. ?? :

B({i, j, f}, t+ 1) = B({i, j, f}, t) + ∆B({i, j, f}, t) (6.1)

A relative growth rate r({i, j, f}, t) is defined for the biomassB({i, j, f}, t),
such Eq. 6.2

∆B({i, j, f}, t) = B({i, j, f}, t) · r({i, j, f}, t) (6.2)

All leaf dynamics is encoded in the relative growth rate r({i, j, f}, t)
Eq. 6.2. The factor r({i, j, f}, t) is the growth rate given by the positive

contribution of photosynthesis affected by the presence of stressors and other

driving forces, conditioning the leaf growth as we assumed to treat here. Four

factors are considered, that are “factors” also in a mathematical sense, as r

turns out to be their product. The agents composing r are:

� the sun light promoting photosynthesis, via a factor r0, that is the

same all over the meadow;

� the shadow of the nearby beams, via a reducing factor exp(−α·O({i, j}, t))
depending on the position of the beam, being O({i, j}, t) a proxy of

the shadowing relative to the [i,j] cell, while α is a suitable positive

constant;

� the bio-chemical effect of nutrients, that is the same all over the meadow,

and is represented by a factor F (N), being N a proxy of nutrient abun-

dance;

� the shadowing effect of epiphytes, covering the single {i, j, f}-th leave,

through a limiting factor (1−Ψ({i, j, f}, t)), being Ψ({i, j, f}, t) a

proxy of the epiphythe covering.

The most important factors in controlling the Posidonia oceanica growth

are light, temperature [44] [241] and availability of nutrients [175] and space;

in particular the light would affect the annual productivity [196] and tem-

perature would condition the seasonality of growth patterns [241].
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6.2.1 Light and photosynthesis

Light is the primary environmental factor affecting the P. oceanica photosyn-

thesis. However, the photosynthetic radiation (PAR) is attenuated due to,

penetrating underwater, it is partially absorbed and dispersed (the light pen-

etrates water with three orders of magnitude less than it does in air), but also

due to the presence of sediment particles present in the water column [77]. In

addition to photosynthesis, light influences seasonality, vertical distribution,

and spatial structure of Posidonia oceanica meadows [4] [71]). The relation-

ship between the intensity of light and the rate of photosynthesis depends

on the species and it is often described using photosynthesis-irradiance, or

P-I curves, which indicate how efficiently light energy is used in the accumu-

lation of plant biomass. Seagrass P-I curves Fig. (6.3) are similar to those of

terrestrial plants and show an initial linear increase in photosynthetic rate

with increasing light until the irradiance has become saturating, and the

maximum rate of photosynthesis is achieved.

Figure 6.3: Photosynthesis-irradiance curve (from [6].

In this model light has been considered as positive contribution to growth:

the increase of available light allow P. oceanica to photosynthesise more

efficiently and be even more productive. It is important to remember that

irradiance decreases exponentially with increasing depth Fig. (6.4).

This relationship is captured in the model and is determined as follows.

The light factor r0(t; z) is the rate of growth of the leaf due to sun light.

It will depend on the depth z of the canopy according to the relationship
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Figure 6.4: Irradiance extinction down the water column due to attenuation by particles

((from [206]).

Eq. 6.3a:

r0(t; z) =
v · l(t; z)
κel + l(t; z)

(6.3a)

l(t; z) = l0(t) · e−κz (6.3b)

here v and κel are suitable constants, while l0(t) is the season-dependent

amount of light arriving at the sea surface. The resulting available light,

responsible for regulating the bathymetric distribution and productivity of

Posidonia oceanica, is formalized by the empirical relationship given by Beer-

Lambert’s law Eq. ??:

Iz = I0 · e−κz·z (6.4)

where:

� κz is the attenuation coefficient and is a typical constant of the medium

crossed for a given depth: it is a function of water clearness and ex-

pressed as inverse relationship of the Secchi disk’s depth;

� I0 is the season-dependent amount of light arriving at the sea surface;
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� Iz is the irradiance at the depth zeta into the water column.

As expressed prevoiusly, the plant’s response to the light intensity is as

Monod functions Eq. 6.5 according to experimental observations. ( [22] [87]

[72] [174]

RL = V ·
(

Lz
κel + Lz

)
(6.5)

where:

� V is the theoretical maximum absorption rate

� κel is a semisaturation constant.

Finally the light available is a function of the light measured at the sea

surface (the L0 depending on the season) decreased by a factor due to the

water itself and to the depth at which the meadow is located.

6.2.2 Shadowing

The effect of the light, however, not only depends on photosynthetic capac-

ities but also on the seagrass bed morphology (self-shading effect) and on

the shading due to epiphytes. To simulate the shadowing, in the model the

amount of light is reduced by a fading factor Eq. 6.6 due to the presence and

extension of the nearby plants depending on the position (i, j) in the grid:

e−α·O({i,j},t)) (6.6)

The quantity O({i, j}) is taken simply as the biomass of the bundle sur-

rounding the {i, j}-th bundle (as one expects the more massive leaves causing

more shadowing): then a suitable α is assigned in order to turn this biomass

into the shadowing factor. In a subroutine of the main model, the shadowing

on each single tuft is calculated, considering the biomass present in all the

cells surrounding the [i,j] tuft. Calculation is done at each time step (i.e.,

once per week) because, during the simulation, leaves can grow and die and

therefore increase or decrease the shadowing on the surrounding beams.

6.2.3 Temperature

The surface water warms up in contact with the atmosphere and under the

rays of the sun, but deeply accumulate the cold waters which, being thicker,
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are heavier. The surface temperature varies essentially with latitude and at

medium latitudes even with seasons. At poles the temperature can drop to

almost -2◦C corresponding to the freezing point of salt water. At medium

latitudes, as in the Mediterranean, the surface water temperature is linked

to the seasons even though the high thermal water capacity causes the tem-

perature to change very slowly: at sea there are no thermal excitations as in

the atmosphere. In spring, especially along the coasts, the water tempera-

ture begins to rise from the surface thanks to the sun’s rays. A layer of hot

and thicker surface layer is then formed, while in the deep the temperature

remains almost constant. There are thus two masses of water separated by

a summer thermocline that prevents the exchange of nutrients and the pas-

sage of smaller organisms from one area to another. In the autumn, the first

strokes mix the two layers and the temperature quickly uniforms over the

entire water column. At this point, the surface water cools and the course

is reversed. The surface temperature in the Mediterranean varies depending

on the areas from a summer peak of 20-23◦C to a minimum winter of 10-

13◦C; but in the northern Adriatic, where water does not exceed 50 m deep,

surface temperatures can reach extreme values between 30◦C and 6◦C ( [?]).

At the present state of the model the temperature affects the growth rate by

modulating the seasonal variability of the amount of nutrients in the water

column Eq. 6.7:

N(t) = N · e−β·T (t) (6.7)

Where N is the initial input of nutrients, T the temperature in the t-week

(derived from web information on Tuscany region, Italy) and β a constant:

this relationship should simulate the trend that in winter the concentration

of dissolved nutrients around is greater than in summer, as the water volume

shrinks.

6.2.4 Nutrients

Nutrients availability may also play an important role in limiting production:

Duarte (1995) describes the “cascade of direct and indirect effects interact-

ing in a self-accelerating manner” that leads towards seagrass decline under

increased nutrient loading. Posidonia oceanica leaves and epiphytes are able

to utilize only water-column nutrients, while roots and rhizome can also take

up nutrients in the sediment pore water. In this system we choose not to
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evaluate the nitrogen concentrations in the sediments because these amounts

of nitrogen are assimilated by roots; we just want to follow leave growth and

how leaves take up dissolved inorganic nutrients from the water column. The

increase of he leaf’s biomass is affected by a non-monotonic factor depending

on the nutrients. The F (Nt) Eq. 6.8c factor intends to simulate the condition

for which the nutrients are the basic food for the growth of the leaves up to a

maximum value above which they turn into poison making the environment

a strongly anoxic one. We assume:

N(t) = N0 · e−τ ·T (t) (6.8a)

F (N) = −AN2 +BN, ifN ∈
[
0,
A

B

]
(6.8b)

F (N) = 0, ifN 6∈
[
0,
A

B

]
(6.8c)

This mean that the factor F is a convex parabola between N = 0 and

N = A/B nutrients, while it is zero outside this interval. Moreover, F is a

growing function of N between zero and N = A/2B, while it is decreasing

in the second half of the [0;A/B] interval Eq. 6.8c. In turn, the amount of

nutrients is a season-dependent quantity N(t), which decreases with seasonal

temperature T (t) Eq. 6.8a: the factor N0 is an overall amount of nutrients,

while τ is a suitable parameter defined in order to dilute nutrients from N0

to N(t) as T (t) increases.

6.2.5 Epiphytes

Another factor to take in account is that the leaves of P. oceanica support

many plant and animal species, which can reach up 20-30% of the biomass of

the leaves ( [104]. The epiphytic community plays an important role in the

productivity and growth patterns of the host plant in terms of competition

for available light, energy and nutrients [157], [136], [192], [5]). It is assumed

that organisms in the system living on leaves are the same species and they

are considered in the only stock called epiphytes. Although this is not the

same in the real system, the implications of such assumptions do not modify

the interactions of our interest. The purpose of this model is replicate and

simulate these interactions so the level of aggregation within it is enough.

Epiphytes decrease the reinforcing contribution of light to growth dynamics

such as illustrated in the figure Fig. (6.5):
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Figure 6.5: Figure Light attenuation by epiphytes brings about balancing feedback in P.

oceanica habitat (from [206].

As P. oceanica grows, the associated epiphytes increase, thanks to the

more availability of nutrients and substrate. Then when epiphytes become

abundant, the attenuation of light due to their presence, increases. The pres-

ence of epiphytes is calculated as the percent coverage of Posidonia oceanica’s

leaves, depending on their age and length. The quantity (i−Ψ), which is

smaller than 1 for Ψ between 0 and 1, reduces the factor r({i, j, f}, t) encod-

ing the effect of epiphytes on the leave, shading it and reducing its growth

capacity. The amount of epiphytes must be in the interval (Ψmin,Ψmax) ⊂
[0, 1]. Ruiz et al. (2011) noted that the increased nutrient concentration

stimulates the proliferation of epiphytes, which in turn diminish the avail-

able sunlight. So the amount of epiphytes depends on the age and length of

the leaf AL({i, j, f}) (establishing the surface available for epiphytic growth)

and on the availability of nutrients through the appropriate parameter g. All

in all, we adopt the function Eq. 6.9:

Ψ({i, j, f}) = Ψmin ·Ψmax
egAL({i,j,f})

Ψmax −Ψmin + ΨminegAL({i,j,f})
(6.9)

Epiphytes are lost when the leaf on which they are attached falls from

the beam due to leaf senescence.
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6.2.6 Senescence

At this state of the model, the main factor reducing the biomass is the normal

process of tissues senescence; removal of biomass by tidal currents, hydro-

dynamic transport and by grazing are not taken into account. The leaves

are discerned in adult, intermediate and young according to their length and

the presence of a lignified base ( [101]); at the top of senescence (depending

of the group the leaf belongs in) leaves break off mainly in autumn: so we

have defined a standard age of Amax=46 weeks for a leaf’s death, derived

from the average value of the death of the three main classes of leaf age,

based on the values provided by field ecologists. The rate at which matter

from the P. oceanica biomass stock is lost with leaf shedding was assumed

to be constant in the model and is set at an average of the age of adult

leaves as identified from published studies. A function of the model updates

and stores the age of each leaf, from the time of its emergence. When the

{i, j, f}-th leaf reaches the age established, we simulate its death by setting

its biomass to zero. At successive times, a new leaf may rise with a certain

probability, with initial age equal to zero. Last but not least, a mechanism

is introduced Eq. 6.10 giving rise to some “big death toll” of leaves in some

interval of weeks (t1, t2), corresponding to the maximum of leaf extinction

documented in literature over the year: in our case, this interval coincides

with the month of August. Each leave is “processed” at each step t ∈ (t1, t2):

a random number between 0 and 1 is sorted, and compared to the threshold

θ({i, j, f}) = eκ·[AL({i,j,f})−Amax] (6.10)

if the sorted number is smaller than θ({i, j, f}), then the age of the leaf

is set equal to a maximum age Amax after which the leaf dies. Due to

the dependence of θ({i, j, f}) on A, the older is the leaf the closer to 1 is

θ({i, j, f}), the higher is its probability to decease due to this mechanism.
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Chapter 7

Results and model scenarios

A model is considered as valid when it is fit to execute the pur-

pose for which it has been designed. Model testing is often used to

build confidence in a model’s ability to perform its desired func-

tion. The intention behind this research work was to develop a

working simulation model that would be able to simulate impor-

tant dynamics in P. oceanica’s growth pattern and their interac-

tions with forcing factors such as light, nutrients and epiphytes.

In order to validate the model, we must test the extent to which

it is able to account for these relationships. In this chapter the

results of the model are analysed, and an assessment on how far

it may be considered satisfactory is done. The model validation

occurs through tests whose results must be compared with data ob-

tained from literature or field experiments. Then we observe how

much the outputs of the model differ from the data used for com-

parison: this provides us with confidence level of our model. We

have developed a set of training tests allowing the user to simulate

specific environment scenarios (which may be a strong water pol-

lution due to excessive inputs of nutrients, mechanical damage to

the meadow or other different stressors): the simulations are ex-

ecuted by varying the values of some parameters(which makes the

model very flexible). The outputs of the model are analysed to un-

derstand what information the model can provide about meadow

responses at large time scale and in different environmental con-

ditions. Finally a comparison with data from the literature is

79
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carried out in order to check how our model can be considered

close to reality, although it is a simplified reality.

7.1 The landscape

The first step to contextualize our model was to define a spatial size of

the simulated meadow. We chose to determine the extension of the whole

meadow, considering the Pergent classification (1995) to connect the size

of the meadow to its density, namely the number of beams per unit of sur-

face. First, we performed simulations with different values of an initialization

threshold a between 0 and 1 that, compared with a number produced by a

random generator, determines the number of cells active within the matrix.

At the beginning of the simulation the dice is “thrown” for each cell: a ran-

dom number is generated between 0 and 1, and if this number is smaller

than the value of a, the cell will be defined as inactive and remain an empty

cell. Consequently, by placing the initialization threshold value very low,

the probability that the random number is smaller decreases, and therefore

more active stolons are expected to appear and the meadow is expected to

be denser. Only in the active cells P. oceanica’s bundles can arise, and later

produce leaves up to a maximum number of seven. All the other inactive

cells will not participate to biomass production. In the present version of the

model, the number of active cells is defined only once and forever at the be-

ginning of the simulation; there are not functions simulating the possibilities

that:

� some cells gets activated in order to produce new stolons;

� bundles into the active cells could colonize nearby cells.

The simulations carried out by changing the above-mentioned threshold

value a, give as output the number of active cells and therefore the num-

ber of stolons present in our meadow Fig. (7.1).

For small value of the treshold, the number of active cells and, hence,

stolons is big. In particular, the maximum value of active cells (897) was

obtained in a test for a very low threshold value a=0.001. Such simulations

are carried out at a depth of 5 m (putting z=5 m): the Pergent classification

shows that, at 5 m, a widespread meadow has more than 749 bundles per

square meter. So we can consider our 30×30 matrix as a simulated patch of

a Posidonia oceanica meadow about 1 m2 extended. Moreover Pergent [190]
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Figure 7.1: Number of bundles per square metre, for different initializing threshold a

values.

asserts that a meadow with such density can be considered a meadow in

excellent health condition, with high value of vitality; also Giraud [101],

with his classification, confirms that a meadow with more than 700 tufts per

m2 constitutes well-developed matte and has an efficient rhizomatic growth.

Pergent and Giraud classifications link decreasing numbers of tuft/m2 to

meadows with decreasing level of extension and development. This allows

us, in the different runs, to define the health condition of the meadow we are

simulating, simply by setting a convenient value of the initialization treshold

a at the beginning.

7.2 Basic scenario

The model allows to simulate the evolution of the amount of the total leaf

biomass over time and returns a numerical output: for each week of every

year, the total leaf biomass value of the meadow is reported. It is possible

to obtain other information like growth rates, number of born or dead leaves

and other aggregated indexes. The predictive capabilities of the model are

tested through a series of simulations performed under different conditions.

By considering a variety of possible futures that include important uncer-

tainties in a system, scenario projection may serve to improve the level of

understanding of a complex system and reveal how the system reacts to
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stresses and influencing factors. Ultimately, scenarios may be used to better

inform decisions and provide greater resilience to unexpected and untended

consequences [195]. Posidonia oceanica habitat is one such complex system

and this section is an effort to demonstrate the use of scenario analysis in

revealing unexpected system characteristics and responses. Therefore, differ-

ent simulation scenarios have been defined by modifying some of the initial

configuration parameters. The first test was run in order to simulate the

conditions considered in Elkalay model [87], used as reference, and to assign

a realistic value to our arbitrary biomass unit. For this reason we initially

set the depth to 10 m and consequently the value of Kz, the attenuation

constant, was set at 0.17, which is its value, according to the Secchi disk

at 10 m [22]. At the threshold a was assigned the value of 0.3 (A.U.) to

have a number of beams between 550 and 650 per square meter and to sim-

ulate, according to Pergent, a meadow in good health conditions. Finally,

the initial contribution of the nutrients was equal to 60 (A.U.) to simulate

an amount of non-limiting nutrients (approximate conditions in Calvi Bay,

where the Elkalay model was performed) Fig. (7.2). All other drivers consid-

ered have been modified to achieve the same result, obtaining data from the

bibliography, when possible, or by using a suitable calibration of the model.

Figure 7.2: Setting of comparison simulation

In the table:

� z, the depth, is set to 10 m;

� N, the initial amount of nutrients in the water column, has the arbitrary

unit of 60 (in the model this value can range from 0 to 100);

� a, as described in the previous section, provides the number of active

cells into the matrix.

The parameters g, andthreshold-1 are set to the average value of 0.5(in the

model they can range from 0 to 1):
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� g is a proxy of how fast epiphytes grow with respect to the leaf age;

� threshold-1 defines the appearance probability of new leaves, for each

bundle, and for each time step.

In the second test the conditions of a meadow at 20 m depth was simulated,

with Kz estimated 0.089 m−1, according to [22], and the treschold a is

set equal to 0.5 to have a number of tufts more than 400 m−2 but less

than 550 m−2 (according to [190]). Then the results of our simulations

(obtained from 5 years “at regime”, i.e. after achieving a stable condition)

were compared to results obtained by Elkalay under similar conditions to

connect our unit (A.U.) to the units gDWm−2. We show the results acquired

from the comparison Fig. (7.3). From these and other simulations, performed

Figure 7.3: comparison between Elkalay model and our model in order torecognize the

value of A.U.

between the two models, we observe that our arbitrary unit may correspond

to a value between 0.15 and 0.18 gDWm−2 (e.g. 770
3873 = 0.18 and 550

3739 =

0.147) and, choosing an average value, we can assume that:

A.U. = 0.16gDWm−2 (7.1)

Now we have valid elements in order to run a check of the model potential and

its ability to describe the growth dynamics of a Posidonia oceanica meadow.

In one test the model is run under conditions descriptive of a Mediterranean

environment, without stressors occurring: baseline conditions were set to

reproduce conditions of an healthy meadow. In this first step we simulate

the meadow’s development at the bathymetric rate of 5 m, related to the

corrisponding Kz=0.34m−1 (according to [22]) and with average values of

the other coefficients; the treshold a is set equal to 0.1 A.U. to simulate a well

extended meadow at 5 m according to [190]. The following table Fig. (7.4)

describes the conditions of the basic scenario:

In the following Fig. (7.5) plot we report ten years of the total leaf biomass

as a function of time, i.e. the basic model output.
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Figure 7.4: Setting of first simulation(basic scenario).

Figure 7.5: Biomass production: basic scenario (first ten years). 1 A.U.=0.16 gDWm−2

For a very preliminary model validation we have considered estimates

published by Pergent-Martini in 1994 [194] on the primary production of

Posidonia oceanica in the Mediterranean basin. In this work leaf production

alone varies, at 5 m, between 544 and 960 gDWm−2. We calculated the av-

erage and the maximum of the 52 biomass values (1 for each week) produced

during the 51st year of the simulation (assuming that meadow was then in

stable state): the average is 3682.499 A.U., i.e. approximately 590 gDWm−2,

while the mawimum is equal to 4938.916 A.U., which is approximately 790

gDWm−2, in agreement with the range estimated by Pergent-Martini. Later

the same calculations and comparisons were performed at 10 m and 20 m,

after calibrating parameters to simulate scenarios at different depths; we

summarize the results (only for average biomass of the year 51) in a table

Fig. (7.6).

In the plot showed previously Fig. (7.5) it is possible see that the leaf

biomass increases realistically via the process of photosynthesis, from a set
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Figure 7.6: Comparison between the results in Pergent-Martini [194] and the results of

our model

initial value, until the equilibrium state (the system carrying capacity).

There is a clear increase in biomass during the first two years in a run,

showing a rapid early growth of the meadow. A period of stronger stability

follows this transitory stage. The oscillations of the biomass,with grossly one

year period, are due only to the effects of seasonality and to the mechanism

simulating the intensification of mortality during summer. In nature, the

bundle is renewing from inside to outside with greater development in the

spring. The growth rate decreases during the summer when the leaves are

longer, covered by epiphytes and begin to manifest a more advanced rate

of senescence, characterized by the presence of brown tissue, photosyntheti-

cally inactive [48]. This fluctuation is even more evident if we focus only on

a one-year pattern Fig. (7.7).

Figure 7.7: The within-the-year-variation of the leaf biomass according to the model. The

year represented is the 50th one, well in the equilibrium phase of biomass evolution.

The plot Fig. (7.7) shows also the effect of the model function accelerating

leaf senescence in the August month. It was chosen to show only the first
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10 years because the single years’ pattern, when it is achieved the stable

state, is almost identical for all 100 years of simulation, due to the drivers

determining the growth rate do not change and, at the present state model,

there are no external forcing functions could modify production dynamics

during the time. It was chosen to show only the first 10 years because the

single years’ pattern, when it is achieved the stable state, is almost identical

for all 100 years of simulation, due to the drivers determining the growth

rate do not change and, at the present state model, there are no external

forcing functions could modify production dynamics during the time.

7.3 Several development scenarios

A way of testing and validating a dynamic model is to see if it is able to

generate the various system responses that are observed in nature system.

We have tested the model’s behaviour under different conditions: if the

model is sound, then it should continue to behave realistically. This section

describes three conditions tests (i.e. parameter assortments) to test the

model. These are:

1. Several depths

2. Several epiphytes developments

3. Several nutrient enrichments

7.3.1 Nutrient enrichment

The nutrient load is considered the most interesting proxy for directions in

environmental management. Therefore different simulations are carried out

by changing the availability of nutrients to investigate the meadow behaviour

in function of nutrients and the effect of industrial or urban pollution, fish

farms and other activities discharging nutrients into the water column. The

initial amount of nutrients N is set from a minimum (0) to a maximum value

(100): then these values are modulated by temperature during the year, to

simulate seasonality (e.g. the nutrient load in the water column is higher

in summer). Each simulation had a 52-week timeline and develops for 100

years, with a total time series of 5200 biomass values: for each simulation,

an average of these 5200 biomass values is calculated.
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Figure 7.8: Average biomass (of 100 years) as function of nutrient availability.

The graph Fig. (7.8) shows the average biomass values as function of

nutrient load in the water column. It is clear that nutrients are crucial to the

growth of the meadow because they represent a source of the energy invested

by the plant to grow. If a certain threshold is exceeded, however, nutrients

turn into a poison by first slowing down, then by completely inhibiting the

growth of new leaves and the accumulation of biomass. This allows us to

estimate approximately the loss in terms of biomass: under conditions of low

nutrient availability (N =30) one has an average biomass of 4483 A.U., i.e.

about 720 gDWm−2; in simulated conditions of high pollution (N =80) an

average biomass of 2836 A.U., i.e. about 450 gDWm−2 is obtained which

is about half of the low nutrient value. Finally, these estimates could be

associated with the Carbon stock, by assumning that approximately 16% of

the biomass produced by a P. oceanica meadowis converted to fixed C [152]

[207] [78]. In the low nutrient (N =30) simulation, the 16% of 720 gDWm−2

is about 115 g which would be the C stored amount, in agreement with the

estimates obtained from bibliografy, which are about 47-138 gCm−2 or 6-

175 gCm−2 (average 90.5 gCm−2). Indeed in the scenario with turbid and

polluted water (N =80), the estimated C stock decrease drastically to about

72 gCm−2 (16% of 450 gDWm−2). Taking into account the average C value

of e 15 m−2 (from the range e 6-23 m−2 according to [213] [130]) we suppose

a profit of e 1725 for the scenario with N =30 (115 gCm−2×e15m−2), and



88 Results and model scenarios

a profit of e 1080 in the N =80 (72 gCm−2×e15m−2) with a resultant loss

of e 640 m−2

7.3.2 Depth and irradiation

At 0 m light has not yet passed through any medium and light availabil-

ity in the water column is therefore expected to be equal to the irradiance

present at the surface. At greater depths, light is attenuated as it passes

through the water medium. Suspended particles and turbidity in the wa-

ter column, additionally contribute to the effect of depth in decreasing the

amount of light available for photosynthesis, by scattering or absorbing ir-

radiance. The second test of the model simulate the condition in which the

meadow is located at different depths and therefore it is in different condi-

tions of available light. As expected the model Fig. (7.9) shows a decrease of

Figure 7.9: Average biomass (of 100 years) as function of depth.

the leaf biomass as function of the depth, according to [194]. If we link this

decrease with an increasing water turbidity, we can suppose that it could

produce a C loss estimated as about e 800 m−2

7.3.3 Epiphytes presence

As a third test, the model performance is assessed in the absence or high

presence of epiphytes. The term epiphytes is a generic term to indicate all

those organisms that grow by adhering to the surface of P. oceanica leaves.

They are, as discussed in a previous section, both vegetable (epiphytes) and

animal (epibionta) organisms. In both cases, it is assumed that their pres-
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ence on the leaves reduces the light reaching the meadow by shadowing. In

total absence of epiphytes, the light available is all the light reaching the

surface. Then, at an early stage, the absorption of light and the consequent

photosynthesis carried out by the epiphytes increase the total amount of

biomass produced by the whole meadow. The light absorption by epiphytes

has a rapid initial increase until to a saturation point after which the epi-

phytes cannot further attenuate the light; this pattern is consistent with the

general parabolic law that governs light capture by photosynthetic organisms

( [43] [60]). Finally the biomass decreasse drastically due to the total light

shadowing by epiphytes. In our model the absence of epiphytes is simulated

by setting g (the growth rate of epiphyte stock) to 0 week−1. In the absence

of epiphytes the expectation is that P. oceanica photosynthesises and grows

at higher rates due to the increased availability of irradiance Fig. (7.10).

Indeed the biomass present in the P. oceanica stock and the growth rate are

higher when epiphytes are absent from the system Fig. (7.10).

Figure 7.10: Average biomass (of 100 years) as function of epiphytes growth rate.

At the present state of the model, we can consider the increasing epi-

phytes coverage as corresponding to an eutrophication and, performing the

calculations described previously, when the epiphytic coverage rate is high,

we obtain a loss associated with the decreased C storage, equal to about e
260 m−2. The lowest value obtain in this case maybe depends on the fact

that the rate g is not a powerful driver like that nutrients and the depth, so

we can propose, for the future, to modify the model in order to make the

effect of this forcing function stronger.
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Chapter 8

Conclusion

8.1 Ecological model

The present work represents a first attempt to model the seasonal dynam-

ics of a P. oceanica meadow linking it with an economic value in order to

stimulate the interest of the various stakeholders. Every equation within our

model has been derived from published literature thus ensuring consistence

between model structure and the descriptive knowledge of the system. For

all scenarios analyzed, the model has shown to simulate effectively growth

variations of a P. oceanica’s leaf over time. The “performances” achieved for

the various simulations reveal how the model is a capable tool adequately

reproducing the shape of the natural bands of Posidonia oceanica in differ-

ent season. Therefore it is possible confirm that the model has the ability to

generate responses that characterise the natural Posidonia oceanica system,

it is stable over several years and it is structurally sound for its purpose.

The functioning model described here restricts its boundaries to the eco-

logical functioning of a hypothetical patch of P. oceanica habitat and does

not address dynamics that span broad spatial scales beyond that meadow.

This could be a model strength because the model structure could easily

be adapted to a specific meadow by adjusting the starting values of several

model parameters. It must be said that a comparison based only on data

from the literature (although these derive from field experiments), may not

be enough. For a more concrete validation of the model it would be advisable

to apply it in a specific context and to insert in the model real data to obtain

the model answer in real units of measure. This would allow a more direct
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comparison between the data obtained from the model and the actual data

and therefore a more in-depth proofreading about parameters and variables

into the model, and finally a validation of the model. On the other hand, it is

recommended that future adaptations to present model should incorporate

other limiting factors present in the real system, such as:

� salinity;

� burial and consumption of produced material;

� grazing (by mainly Salpa Salpa and Paracentrotus lividus);

� epiphyte growth dynamics;

� hydrodynamics of the water.

Converting model to a whole plant system, in which both above ground and

below ground compartments are modelled, is central to capturing the way

in which resources are translocated for improved survival during periods of

stress as well as the value of P. oceanica habitat as a carbon and nutrient

sink [79] [88]. Below-ground material is supported by photosynthetically

produced carbon that is stored in rhizomes and used to maintain the plant

during periods of low photosynthetic production [50]. Situations in which

light is limited tends to result in increased biomass allocation to leaves while

nutrient limitation tends to shift biomass allocation to roots [111]. This

adaptation to our model is central to capturing the resilience of P. oceanica

habitat to stressful changes in light and nutrient levels. The dynamics of

roots and rhizome are decisive in determining the long-term storage potential

of a P. oceanica meadow and the amount of carbon that can be extracted

from the atmosphere and imprisoned in the matte. Furthermore a future

model may also want to account for socio-economic factors or behavioural

patterns at the coast given that humans are an integral component of coastal

ecosystems. Future research work should adapt this model to encompass

broad-scale, human-related dynamics in order to confirm its use in coastal

management and decision making. An interesting development would be

to consider the impact (including economic) of various stressors on other

ecosystem services provided by the Posidonia oceanica ecosystem such as

coastal erosion, nursery for commercial fisheries, conservation of biodiversity.
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8.2 Assessment of carbon storage

The most effective approach for coastal management policy to promote C

sequestration is to aim to maintain water quality conditions that encourage

seagrass health [130]. Furthermore, it should be noted that there is equal

or greater value in retaining the biodiversity, a range of ecosystem services,

and healthy coastal wetland as a GHG sink rather than a source. The first

priority is to develop global seagrass C budgets, which must include:

� quantification of C stock;

� verification of C stock over time;

� determination of how long does the C remain within the financial unit;

� estimates of the risk of losing C stock.

Our model provides a carbon storage value associated with the biomass pro-

duction of a P. oceanica meadow. Moreover this research has shown that

the accelerated decline of seagrass meadows represents a loss of carbon sink

capacity. However, seagrass meadows also protect, by dissipating wave en-

ergy and reducing resuspension the massive sedimentary stocks of organic

carbon accumulated over time. Current understanding of the functioning of

seagrass meadows suggest that the loss of seagrass cover may, therefore, ren-

der the associated sedimentary carbon deposits vulnerable to be lost through

erosive and resuspension processes. If seagrass decline rendered sedimentary

carbon stocks vulnerable conservation strategies would be even more needed,

since the consequences for carbon cycling will not be limited to the loss of

carbon sink capacity but may include the remobilisation and eventual emis-

sion as CO2 of carbon stocks accumulated over millennia. For this reason

further work is probably needed in the future to calculate more accurately

the amount of stored carbon, taking into account other carbon storage and

dispersion factors that have not yet been considered. However, the fate of

sedimentary carbon stocks following seagrass loss is as yet unknown, and

resolving this unknown is, therefore, a matter of urgency. The task of identi-

fying and understanding the many factors that can affect seagrass C capture

and storage is colossal, which is why efforts towards achieving this task must

be strategically prioritised. In terms of environmental factors affecting C

capture and storage by seagrasses, we recommend the following as research

priorities:
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� impacts of common, large-scale environmental (floods, hurricanes, cy-

clones) and direct human disturbances (anchoring, trawling, dredging)

on seagrass C stocks, particularly to test whether such disturbances

can cause extreme CO2 efflux from seagrass meadows;

� effects of altered physical-chemical sediment states (temperature [183])

on C remineralisation rates;

� effects of nutrient addition on C sequestration;

� role of fauna in facilitating mechanical flux of buried C out of sediment,

as well as their indirect role in C mineralisation through mediating

microbial communities;

� responses of seagrasses to CO2 enrichment.
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panyola, v,” Coll. Bot, vol. 15, pp. 59–68, 1984.

[14] D. Bay, “A field study of the growth dynamics and productivity of posidonia

oceanica (l.) delile in calvi bay corsica,” Aquat Bot., vol. 20, pp. 43–64, 1984.

[15] ——, “Etude” in situ” de la production primaire d’un herbier de posidonies

(posidonia oceanica (l.) delile) de la baie de calvi-corse,” Ph.D. dissertation,

1978.

[16] J. Bell and M. Harmelin-Vivien, “Fish fauna of french mediterranean posi-

donia oceanica seagrass meadows. 1. community structure.” Tethys., vol. 10,

no. 4, pp. 337–347, 1982.

[17] D. Bellan-Santini, J.-C. Lacaze, C. Poizat, and J.-M. Pérès, “Les biocénoses

marines et littorales de méditerranée, synthèse, menaces et perspectives,”
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and L. Serrano, “Palaeoecological potential of the marine organic deposits of

posidonia oceanica: A case study in the ne iberian peninsula,” Palaeogeog-

raphy, Palaeoclimatology, Palaeoecology, vol. 271, no. 3, pp. 215–224, 2009.

[140] ——, “Palaeoecological potential of the marine organic deposits of posido-

nia oceanica: A case study in the ne iberian peninsula,” Palaeogeography,

Palaeoclimatology, Palaeoecology, vol. 271, no. 3, pp. 215–224, 2009.

[141] L. Lubbers, W. Boynton, and W. Kemp, “Variations in structure of estuarine

fish communities in relation to abundance of submersed vascular plants,”

Marine Ecology Progress Series, pp. 1–14, 1990.

[142] P. I. Macreadie, K. Allen, B. P. Kelaher, P. J. Ralph, and C. G. Skilbeck,

“Paleoreconstruction of estuarine sediments reveal humanâinduced weaken-
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[149] N. Marbà and C. M. Duarte, “Rhizome elongation and seagrass clonal

growth,” Marine Ecology Progress Series, pp. 269–280, 1998.

[150] ——, “Scaling of ramet size and spacing in seagrasses: implications for stand

development,” Aquatic botany, vol. 77, no. 2, pp. 87–98, 2003.
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