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Abstract  

 

The growing demand of raw materials for the bio-refineries and the increase in 

bio-products demand could be considered important opportunities for agriculture 

worldwide. Among the innovations, it is expected the introduction of new food and 

non-food crops resulting in an increase in biodiversity as well as an environmental 

impact reduction achieved by replacing conventional refinery products. 

Nowadays, industrial bio-refineries were identified as one potential solution that 

may help mitigate the threat of climate change and the seemingly boundless 

demand for energy, fuels, chemicals and materials. Vegetal oils extracted from 

non-food crops are good source for bio-jet fuel that has drawn, in recent years, 

attention from commercial ventures and airlines. The concept of sustainability is 

becoming increasingly important, not only in energy industry, likewise in paper 

industry and trout harvesting industry around the world. In order to improve its 

environmental performance, these industries have made important investments, 

not only in the production process itself, but also in the flue gases and liquid 

effluents treatment systems. Besides this concern regarding pollution prevention, 

one of the issues of most relevance in the context of sustainability is replacing 

wood pulp mills with non-wood ones and replacing fish meal with locally produced 

oil meals. In this regard, the present work analyzes the life cycle (LCA) in a cradle 

to grave vision of products and by-products from processing of seeds, crop 

residues and oil extraction residues, of Camelina, Safflower, Crambe and Flax 

cultivate in Bologna and Pisa along three years. The aim is to evaluate the 

environmental impact due to the production chain of bio-products with different 

functionalities. 

 

In this dissertation, we evaluated the environmental impact of renewable jet fuel 

(Bio-jet fuel) derived from Camelina, Flax, Crambe and Safflower oils, whose 

were extracted by cold press process and then were processed into bio-jet fuel. 

The indicator chosen was the Global Warming Potential (GWP) referred to the 

functional unit (1 MJ of Bio-jet Fuel) and its associated by-products (meal for 

Camelina and Safflower and straw for Flax; additionally, there was no well-known 



 
 

Crambe`s by-products applications). Impacts of the farming and extraction 

phases were determined with agronomic and qualitative data obtained from three 

years surveys, as part of the SUSCACE project activities in Pisa and in Bologna. 

As source of secondary data, several publications were used regarding oil-to-jet 

process as well as by products processes. BioGrace and Ecoinvet data bases 

were consulted to obtain the emission factor used, while the impact assessment 

of mainstream from farming to oil extraction was performed according to IPCC 

recommendations and ISO guidelines to perform LCA, considering the 

transformation processes implemented for the exploitation of by-products 

obtained along the entire production chain including transportation.  

 

Results of LCA were compared with those of equivalent conventional products 

(fossil jet fuel, eucalyptus wood and fish meal). Regarding the cultivation phase 

of Camelina, the impact related to the functional unit or to a hectare in Bologna 

was found to be on average higher than that in Pisa, as consequence of a greater 

diesel requirement, and considerable lower yield in Pisa. On the other hand, GWP 

associated to Flax, Crambe and Safflower were lower in Bologna regarding 

farming phase. However, it is relevant to show that N-requirements of Bologna 

were considerably lower than Pisa in all crops. Consequently, N2O emissions are 

lower in Bologna with significant repercussions on the impact of the final product 

and on each step along. Furthermore, in extraction phase the variability of 

environmental performance has been influenced by oil content (%), leading flax 

oil to be less harm oil in terms of GWP. Considering GWP of bio-jet fuel, Flax 

derived bio-jet fuel has demonstrated being the best performed in both sites, 

considering the worst case was the environmental performances of Camelina 

derived jet fuel in Bologna and Cartamo derived bio-jet fuel in Pisa, the tendency 

was the same using allocation or system expansion method in order to reduce 

and reassigning impacts. 

 

To conclude, Flax crop in both sites has a great performance in terms of 

environment protection, and it was contrasted with conventional product and with 

similar bio-products. However, the best environmental results in Bologna were 



 
 

obtained in the system expansion of Cartamo bio-jet fuel followed by the Flax 

derived jet fuel, both have produced negative GWP representing a real reduction 

in emission due to use of biofuel in aircrafts. Contrastingly, the worst performance 

was obtained by Camelina derived jet fuel. The behavior in Pisa was different, in 

first place Flax derives jet fuel as the best performance followed by Camelina one 

and the worst performance was attributed to Cartamo bio-jet fuel. Regarding the 

end life scenario, the advantage of bio-products derives from their 

biodegradability that substantially reduces or eliminates the disposal processes 

and their lower toxicity when it is compared to fossil-based product. 
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CHAPTER 1 

 

1. Introduction  

 

1.1. Project and objective 

 

Considering the study in context of “PROGETTO SUSCACE, SCHEDA 

AGRICOLTURA PER BIOPRODOTTI (AXBB) VALUTAZIONE DI SOSTENIBILITÀ 

DELLE COLTURE SVILUPPATE” project and related subprojects, it’s been 

presented the objectives to achieved in this work. 

 

The project proposes, for three years (surveys) 2013-2015, to experimentally 

implement the inclusion of these crop systems (Falseflax (Camelina sativa), 

Safflower (Carthamus tinctorius), Crambe (Crambe abyssinica) and Flax (Linum 

usitatissimum)) in two areas: Bologna (Pianura Padana) and Pisa (Pianura 

Pisana) characteristic of the Italian pedoclimatic conditions. Sustainability 

assessment system will be developed, using the Life Cycle Assessment 

methodology, taking account of the savings (substitution values) emissions, the 

carbon sequestered by the residue digging, the reduction of impacts due to the 

reduction of transport and the possibility of using waste and by-products to 

produce other materials or bioenergy. The use of several naturally occurring 

materials produced locally to manufacture different products is a second or third-

generation biorefinery linked to the land that, due to the specific nature of 

agricultural production, cannot be relocated. 

 

1.2. Problem setting 

 

Vegetable-based products (Bio-based Bb) are increasingly demanded by 

consumers all around the world, and some of these, particularly produced with 

non-conventional crops and their residues, can now represent an opportunity for 
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agriculture to have new bio-based products and feedstocks, and to include them 

in cereal rotations. Many high-quality crops have been identified, from which raw 

materials can be obtained that could improve or replace some of imported raw 

materials or feedstocks, mainly for the areas of natural cosmetics, animal and fish 

feeds, nutraceutics, biomolecules production, lubricants, and bio-building. The 

benefits would be to increase agricultural biodiversity and the Eco-compatibility 

of end products and residues, enabling crops and waste to be available for 

bioenergy production as well. However, environmental burden associated to 

these crops is not well known, at present it is very important to assess it in order 

to establish their environmental impacts and sustainability in tested zones. 

 

1.3. Dissertation objective  

 

To assess the environmental performance of non-food crops Falseflax (Camelina 

sativa), Safflower (Carthamus tinctorius), Crambe (Crambe abyssinica) and Flax 

(Linum usitatissimum) into bioenergy production and alternative uses of by-

products considering the Global Warming Potential as indicator of their 

performance and considering system expansion where it is possible. 

 

1.4. Project overall and partners  

 

For years, in Europe, the policy adopted to address the social and economic 

development of Member States in a sustainable manner places environmental 

issues at the forefront. In this context, it was evident the willingness and 

commitment to define broad-ranging strategies that would favor the transition to 

new production paradigms and economic models characterized by more efficient 

use of resources, a significant reduction in gas emissions Climbers, an 

improvement in the quality of ecosystems and well-being. 

 

 

To do this, a system approach is needed that takes due account of the numerous 

and heterogeneous components that compete, as well as the complex 
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interactions that arise between them. Defining at a European and national level 

a clear and straightforward path to follow is therefore very difficult, but it becomes 

even more complicated when it comes to working in the concrete on the territory 

where technical, legal and even specific cultural crises of the different local 

ambitions arise. Finally, the products and by-products coming from the supply 

chains under the “PROGETTO SUSCACE, SCHEDA AGRICOLTURA PER 

BIOPRODOTTI (AXBB) VALUTAZIONE DI SOSTENIBILITÀ DELLE COLTURE 

SVILUPPATE”, the AxBB sub-project, will be considered and identified according 

to the current legislation. 

 

 

The data used in this work was taken from a three-year (2013–2015) survey 

carried out in the experimental farm fields of Pisa and Bologna within the 

subproject “MATERIE PRIME AGRICOLE ITALIANE PER BIOPRODOTTI E 

BIOENERGIE” (AxBB), project that involves a research team:  

 

 

• University of Bologna (UNIBO),  

• University of Florence (UNIFI),  

• University of Pisa (UNIPI) and  

• Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria 

(CREA). 

  



4 
 

CHAPTER 2 

 

2. Literature review 

 

2.1. Green Chemistry 

 

Green chemistry is a pro-active approach to pollution prevention and mitigation. 

It targets pollution mitigation at the design stage, before it even begins and until 

to the end of life of a product and good related to a chemo process. Whether 

chemists are taught to develop and innovate products, feedstocks, supplies and 

materials in a manner that do not use hazardous substances, then increasing 

waste, hazards, and cost should be avoided (P. Anastas & Eghbali, 2010; 

Warner, Cannon, & Dye, 2004). Green Chemistry is designing chemical products 

and processes that reduce or eliminate the use and/or the generation of 

hazardous substances. In other words, it is a more sophisticated way of doing 

chemistry, aiming at preventing pollution, ecotoxicological and human-health 

problems at the chemical design stage (Chan, 2011). Hence it is more of a 

‘chemistry FOR the environment’, (i.e. a more environmentally friendly chemistry) 

than a ‘chemistry OF the environment’, (i.e. chemistry that explains nature and 

the impact of man on the nature). 

 

The American Chemistry Society (ACS) in its webpage defines green chemistry 

as “Sustainable and green chemistry in very simple terms is just a different way 

of thinking about how chemistry and chemical engineering can be done. Over the 

years different principles have been proposed that can be used when thinking 

about the design, development and implementation of chemical products and 

processes. These principles enable scientists and engineers to protect and 

benefit the economy, people and the planet by finding creative and innovative 

ways to reduce waste, conserve energy, and discover replacements for 

hazardous substances”.  
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To precede with green chemistry properly, 12 principles were recommended by 

(P. Anastas & Eghbali, 2010; P. T. Anastas & Warner, 1998 and ACS): 

• Prevention. It is better to prevent waste than to treat or clean up waste 

after it has been created. 

• Atom Economy. Synthetic methods should be designed to maximize the 

incorporation of all materials used in the process into the final product. 

• Less Hazardous Chemical Syntheses. Wherever practicable, synthetic 

methods should be designed to use and generate substances that 

possess little or no toxicity to human health and the environment. 

• Designing Safer Chemicals. Chemical products should be designed to 

affect their desired function while minimizing their toxicity. 

• Safer Solvents and Auxiliaries. The use of auxiliary substances (e.g., 

solvents, separation agents, etc.) should be made unnecessary wherever 

possible and innocuous when used. 

• Design for Energy Efficiency. Energy requirements of chemical 

processes should be recognized for their environmental and economic 

impacts and should be minimized. If possible, synthetic methods should 

be conducted at ambient temperature and pressure. 

• Use of Renewable Feedstocks. A raw material or feedstock should be 

renewable rather than depleting whenever technically and economically 

practicable. 

• Reduce Derivatives. Unnecessary derivatization (use of blocking groups, 

protection/ deprotection, temporary modification of physical/chemical 

processes) should be minimized or avoided if possible, because such 

steps require additional reagents and can generate waste. 

• Catalysis. Catalytic reagents (as selective as possible) are superior to 

stoichiometric reagents. 

• Design for Degradation. Chemical products should be designed so that 

at the end of their function they break down into innocuous degradation 

products and do not persist in the environment. 

• Real-time analysis for Pollution Prevention. Analytical methodologies 

need to be further developed to allow for real-time, in-process monitoring 

and control prior to the formation of hazardous substances. 

https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc-principle-of-the-month-1.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc-principle-of-the-month-2.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle-3.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc-principle-of-the-month-4.html#articleContent_headingtext_2
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--5.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--6.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--7.html
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--8.html#articleContent_headingtext
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--9.html#articleContent_headingtext
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--10.html#articleContent_headingtext
https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--11.html
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• Inherently Safer Chemistry for Accident Prevention. Substances and 

the form of a substance used in a chemical process should be chosen to 

minimize the potential for chemical accidents, including releases, 

explosions, and fires. 

  

2.1.1. Green chemistry framework in Europe 

 

Directive 2008/98/EC of the European Parliament represent the most relevant 

Community legislation for Green chemistry in the European Union (EU). This 

Directive establishes a framework for the treatment of waste and residues within 

the Community members. The directive defines some basic concepts, such as 

waste, residue, recovery, and disposal, and sets out the essential requirements 

for waste management in green chemistry framework. 

 

The article number 5 of Directive 2008/98/EC, specifically refers to by-products. 

The inspirational principle of the legislator is that an object or substance should 

be considered by-products only when certain conditions occur in the process. 

 

Article 5 By-products  

1. A substance or object, resulting from a production process, the primary aim of 

which is not the production of that item, may be regarded as not being waste 

referred to in point (1) of Article 3 but as being a by-product only if the following 

conditions are met: (a) further use of the substance or object is certain; (b) the 

substance or object can be used directly without any further processing other 

than normal industrial practice; (c) the substance or object is produced as an 

integral part of a production process; and (d) further use is lawful, i.e. the 

substance or object fulfils all relevant product, environmental and health 

protection requirements for the specific use and will not lead to overall adverse 

environmental or human health impacts.  

2. Based on the conditions laid down in paragraph 1, measures may be adopted 

to determine the criteria to be met for specific substances or objects to be 

regarded as a by-product and not as waste referred to in point (1) of Article 3. 

https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/green-chemistry-principle--12.html
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Those measures, designed to amend non-essential elements of this Directive by 

supplementing it, shall be adopted in accordance with the regulatory procedure 

with scrutiny referred to in Article 39(2). 

 

On 2th December 2015, the European Commission adopted a new package of 

measures on the circular economy to promote the transition of Europe to a 

circular economy that, in intentions, will increase global competitiveness, will 

support economic growth, and generate new employment and reduces the 

human impact in the environment. The legislation was created by the previous 

Barroso Commission, but the current Junker commission withdrew it immediately, 

as soon as it was established, and then pledged to reappear it in response to 

criticisms received on that occasion. The comparison between the two proposals 

demonstrates that the current proposal is less determined than the former in 

achieving the objectives. 

 

The new group of legal measures, including some legislative proposals on waste, 

landfills, residues and packaging, represents a global action plan that sets a 

concrete mandate for the duration of this Commission. Proposals on waste, 

despite the reduction compared to the previous proposal, have a clear and 

ambitious long-term vision to increase recycling and reduce landfill, while 

proposing concrete measures to overcome the obstacles to improved 

management of waste. 

 

The package conceives substantial changes to some directives in force for 

several years (Waste, Dumps, and Packaging), only communications concerning 

other (WEEE and end-of-life vehicles) and finally only a report on the Batteries 

and Accumulators Directive. 

 

i) Framework Directive 2008/98 / EC amended by the new proposed 

Directive on 2 December 2015 
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ii) Dumping Directive 31/1999 / EC amended by the new proposed 

Directive on December 2, 2015 

iii) WEEE Directive 2012/19 / EU amended by the new proposed 

Directive on 2 December 

iv) Vehicle Directive at end of life 2000/53 / EC as amended by the new 

Directive proposed on 2 December 2015 

v) Packaging Directive 94/62 / EC as amended by the new proposed 

Directive on 2 December 2015 

vi) Batteries and Accumulators Directive 2006/66 / EC as amended by 

the new proposed Directive on December 2, 2015. 

 

2.1.2. Biorefineries context  

 

The transition to third-generation biofuels and bioproducts is driven by the need 

to integrate biomass-derived fuels (Diesel, Gasoline and Jet Fuel) more 

seamlessly into the existing petroleum based infrastructure (Fatih Demirbas, 

2009; Miller & Kumar, 2013) and another petroleum based products such as: 

petroleum jelly, lubricants, plastics, hydraulic oil, and so on. On the other hand, 

ethanol, whether derived from corn or sugarcane in first-generation processes or 

biomass in second-generation facilities, has limited market access due its 

dissimilarity to conventional petroleum-derived fuels (Hughes, Gibbons, Moser, 

& Rich, 2013). However, alternatives like butanol can be more suitable in several 

regional contexts.  

 

Several limitations including restrictions on: ratios in which ethanol can be 

blended with gasoline (usually 5-10%), lack of compatibility with diesel, gasoline 

or jet engines, inability to transport ethanol through existing pipeline network, and 

propensity to hydration (Valdes, 2011). While it is clear that biomass can provide 

a sustainable and renewable source of carbon to replace a significant portion of 

petroleum or mineral carbon resources currently used to generate fuel, power, 
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electricity and chemicals (Stokes & R.D. Perlack, 2011), it is also obvious that 

technologies must be developed to convert biomass into direct replacements for 

petroleum products. This transition to third-generation biofuels will involve 

numerous sides, the ideal scenario likely being a multipurpose biorefinery that 

utilizes many inputs and produces an even greater number of products or 

feedstocks (D’Avino, Dainelli, Lazzeri, & Spugnoli, 2015; Pradhan, Shrestha, Van 

Gerpen, & Duffield, 2008).  

 

First-generation biorefineries are based on direct utilization of classical forms of 

agricultural biomass (Agricultural and forestry products; Agricultural and forestry 

residues) as shown in figure1. As production levels have increased, along with 

human populations, concerns about competition with food have growth 

exponentially (Fatih Demirbas, 2009). Nevertheless, over the past 30 years these 

first-generation feedstocks have paved the way for production of biofuels via a 

more sustainable system without negative impacts on the environment or food 

supplies (Fatih Demirbas, 2009). Second-generation biorefineries are based on 

biomass feedstocks that are more widely available and that are not directly used 

as food, although some are used as livestock feed. Technologies are under 

development to efficiently convert biomass into ethanol as well as valuable co-

products. These are leading the way to sustainably meeting energy needs while 

also supplying materials for chemical and manufacturing industries (Demirbas, 

2009).  

 

Biomass has the unique advantage among renewable energy sources that it can 

be easily stored until needed and provides a liquid transportation fuel alternative 

for the near term. However, cellulosic ethanol can displace only the 40% of a 

barrel of crude oil that is used to produce light-duty gasoline (A. Dávila, 

Rosenberg, & A. Cardona, 2016). Research, development, and demonstration on 

a range of technologies are needed to replace the remaining 60%, which is 

primarily converted to diesel and jet fuel. About 15% of our current crude oil 

consumption is used to produce solvents, plastics, cleaners, adhesives and so 

on. Thus, cost-efficient technologies are needed to produce biofuels that are 
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suitable for use in cars, trucks, electricity generators and jet planes. These 

advanced biofuels can be sustainably produced from cellulosic, oil seeds, and 

algal feedstocks (Stokes & R.D. Perlack, 2011). Biomass conversion 

technologies are also needed to produce chemical intermediates and high-value 

chemicals that can be used in many sectors as: chemical, pharmaceutics, 

nutraceutics, food and feed and so on. 

 

Figure 1. Organization of industrial production of first and second-generation 

biomass biorefineries (sugar cane example) taken from (Valdes, 2011). 

 

 

 

Biorefining has been defined as the sustainable processing of biomass into a 

spectrum of marketable products and energy. The biorefinery of the future will 

conduct many types of processes, including those producing advanced biofuels, 

commodity chemicals, biodiesel, biomaterials, power, and other value-added co-

products such as sweeteners and bio insecticides (Moncada, Tamayo, & 

Cardona, 2014; Snell, Singh, & Brumbley, 2015). Beside the tools provided by 

molecular biology, environmental analysis and chemical engineering, the types 
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of co-products, chemicals and biofuels that can be derived from biomass may be 

almost limitless.  

 

Figure 2.  Bio-refinery scheme. Biomasses, products, and resources those are 

admissible in. 

 

 

 

Biorefineries combine the necessary technologies for fractionating and 

hydrolyzing biological raw materials (oils, biomass, cakes with conversion steps 

to produce and then recover intermediates and final products. The focus is on the 

precursor carbohydrates, lignin, oils, and proteins, and the combination of 

biotechnological and chemical conversion processes of the substances (de Jong 

& Jungmeier, 2015; Taylor, 2008). Most of these processes are being developed 
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individually, but have the potential to be more efficient and economical when 

combined in multi-process crossover regimens using by-products or waste 

materials from one process to produce advanced animal feeds, human nutritional 

supplements, high-value peptides, enzymes, or mid-step chemical needed in 

other processes (Naik, Goud, Rout, & Dalai, 2010; Pelletier, 2009), these concept 

are illustrated in figure 2. Use of existing infrastructure would significantly 

decrease the time required for economical large-scale production of second and 

third generation biofuels. 

 

To achieve the requirement for safe and sustainable energy production, third-

generation biorefineries must be better integrated, more flexible, and operate with 

lower carbon and economic costs than second-generation facilities as 

recommended by ACS (R. A. Lee & Lavoie, 2013; Moncada et al., 2014). 

Technology is developing rapidly in these areas. One of the principal tasks is to 

identify the most promising bio-based products, in particular food, feed, value-

added materials, active compounds, and chemicals to be co-produced with 

energy to optimize overall process economics and minimize overall 

environmental impact (D’Avino et al., 2015; Nasopoulou & Zabetakis, 2012). 

According to (Hughes et al., 2013), challenges to achieve optimal production 

rates of advanced biofuels include: overcoming biomass recalcitrance, logistics 

of transportation of raw feedstock and finished products, providing fair prices for 

crops or agricultural residues, and tailoring crops and production to specific 

environments and cultures. 

 

Feedstock costs represent a large part of biorefinery operating costs, therefore 

availability of an affordable feedstock supply is crucial for the viability of every 

biomass processing facility (Stokes & R.D. Perlack, 2011). Economics of biomass 

production vary with location, feedstock type, political policies, current 

infrastructure, and environmental concerns, and it is seemed as great global 

market as shown in figure 3 (Demirbas, Balat, & Balat, 2009). Many biofuels may 

be derived from forestry (thinning and logging), agriculture (residues, non-food, 

or dedicated biomass crops), municipal organic wastes, algal-based resources, 
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and by-products or waste products from agro-industry, feed and food industry, 

and food services (Hughes et al., 2013; Moshkelani, Marinova, Perrier, & Paris, 

2013). A hot-spot factor is to identify biomass resources that are sustainable 

because they require minimal water, fertilizer, land use, and other inputs (D’Avino 

et al., 2015; Spugnoli, Dainelli, Avino, & Mazzoncini, 2012). Biorefineries 

feedstocks must be high in energy content, be easy to obtain in great quantities, 

and be tractable to the conversion processes. There are several researches in 

progress on technologies to deliver high-quality, stable, and infrastructure-

compatible feedstocks from diverse biomass resources. 

 

Figure 3. Impact of sustainable biomass in socio-economic context of the United 

States of America. 
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Although sufficient biomass supply is potentially available in various zones, 

continued improvements in biomass feedstocks worldwide are required to 

achieve viable third-generation biorefineries around the world. Feedstock 

production improvements should include: maximizing yield (mainstream and 

downstream), nutrient (Nitrogenous, Phosphorus, and Potassium), water 

efficiency, introduction of alternative crops, and sustainability (de Jong & 

Jungmeier, 2015; Lloveras, Santiveri, & Gorchs, 2006; Lokesh, Sethi, Nikolaidis, 

Goodger, & Nalianda, 2015). Screening of plant species and plant breeding is 

critically important to increase efficiency of biomass production while minimizing 

inputs, maintaining soil fertility, managing water balance, and controlling 

invasiveness (Guevara & Ramírez, 2015). Knowledge of how to estimate the 

biomass production potential and to evaluate the impacts and sustainability of 

production in each location are required.  

 

Improvements in organization include increasing efficiency of harvest, addressing 

the issue of seasonality to provide continuous supply, and ensuring that biomass 

cultivation helps drive regional or local development (Hughes et al., 2013). Costs 

in transporting biomass to the biorefinery can be reduced by using optimized 

harvesting equipment, appropriate preparation for shipment, and efficient 

collection, storage, and transfer networks, especially for multi-feedstock 

biorefineries (Gibbons & Hughes, 2011; Hughes et al., 2013). Processing 

improvements include optimizing the composition and properties of biomass for 

handling and transport to meet downstream quality requirements, along with 

imparting traits such as greater digestibility for ease of conversion or introducing 

new biomass that can be more feasible to use into biorefinery (Demirbas et al., 

2009).  

 

New technologies are reducing the cost of preparing biomass for conversion. 

Each step of the preparation is designed to develop next-generation feedstocks. 

Mechanical treatments reduce the size of the feedstock, providing fractionation 

and separation. Thermal and chemical processes control moisture content, 

remove contaminants, and improve digestibility and stability to reduce fouling in 
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process equipment (Böhme, Kampf, Lebzien, & Flachowsky, 2005; Krohn & 

Fripp, 2012; Mehta & Anand, 2009; Zhang, Hui, Lin, & Sung, 2016). Processed 

and non-processed biomass is typically blended in specific proportions, often with 

additives to improve conversion efficiency or process effectiveness.  

 

In context of biorefineries and effective use of biomass, third generation biofuel 

has only recently entered the mainstream it refers to biofuel derived from algae. 

Previously, algae were lumped in with second generation biofuels (Agusdinata, 

Zhao, Ileleji, & DeLaurentis, 2011). However, when it became apparent that algae 

are capable of much higher yields with lower resource inputs than other feedstock 

(using molecular tools), many suggested that they be moved to their own 

category (algae biorefineries or third specialized biorefinery). As we will 

demonstrate, algae provide several advantages, but at least one major 

shortcoming that has prevented them from becoming a runaway success 

(Hughes et al., 2013). When it comes to the potential to produce biofuel, no 

feedstock can compete algae in terms of quantity, manipulability, or diversity. 

Moreover, the diversity of fuel that algae can produce results from two remarkable 

characteristics of them.  First, algae produce an oil that can easily be refined into 

diesel or even certain components of gasoline or jet fuel (Demirbas et al., 2009). 

More importantly, however, is a second property in it can be genetically 

manipulated to produce everything from ethanol and butanol to even gasoline 

and diesel fuel directly and efficiently (Gibbons & Hughes, 2011; Hughes et al., 

2013). 

 

Butanol is an alcohol of great interest because this alcohol is exceptionally like 

gasoline. In fact, it has a nearly identical energy density to gasoline and an 

improved emissions profile (Visioli, Enzweiler, Kuhn, Schwaab, & Mazutti, 2014). 

Until the advent of GMO algae, scientists had a great deal of difficulty producing 

butanol. Now, several commercial-scale facilities have been developed and are 

on the brink of making butanol and more popular biofuel than ethanol because it 

is not only similar in many ways to gasoline, but also does not cause engine 
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damage or even require engine modification the way ethanol does (Hughes et 

al., 2013; Qiaozhen et al., 2009). 

 

Figure 4.  Algae biorefinery system (taken from www.algaebiofueltech.com) 

 

 

 

2.1.3. Transesterification of oils and fats 

 

Transesterification has been used for more than a decade to produce biodiesel 

from plant or animal-derived lipids. Any feedstock that contains free fatty acids 

and/or triglycerides such as vegetable oils, waste oils, animal fats, and waste 

greases can be converted to biodiesel. However, the product must meet stringent 

quality standards (Boateng, Mullen, & Goldberg, 2010; Ilkiliç, Aydin, Behcet, & 

Aydin, 2011). Therefore, standards such as ASTM D6751 in the United States 

and EN 14214 in Europe have been implemented to ensure that only high-quality 

biodiesel reaches consumers and industry in general. Acquisition of refined 

commodity oils such as soybean oil, rapeseed oil or  Camelina oil may account 

for more than 80% of the cost to produce biodiesel (Agusdinata et al., 2011; 

Mehta & Anand, 2009). Consequently, inexpensive, non-food feedstocks are 

critically important to improve process economics (i.e. Falseflax (Camelina 

http://www.algaebiofueltech.com/
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sativa), Safflower (Carthamus tinctorius), Crambe (Crambe abyssinica) AND Flax 

(Linum usitatissimum)).  

 

Such low-value feedstocks often contain contaminants such as moisture and free 

fatty acids that render them incompatible with simple, homogeneous, alkaline-

catalyzed transesterification (Ilkiliç et al., 2011; Krohn & Fripp, 2012; Zhang et al., 

2016). In these cases and whether there is no choice, any of these alternative 

methods can be useful such as: heterogeneous acid catalysis are needed for 

efficient conversion to biodiesel (Polshettiwar & Varma, 2010), isothermal 

pyrolysis (Boateng et al., 2010), pre-hydrogenization of fatty acid  (Mihaela, Josef, 

Monica, & Rudolf, 2013; W.-C. Wang, 2016) and so on.  

 

Figure 5. Biodiesel scheme as a fatty acid methyl ester (FAME). Taken from 

(http://www.enerfish.eu/p-techno-techno_id-2/fish-oil-to-biodiesel.html, august 

2017) 

 

 

 

http://www.enerfish.eu/p-glossaires-a-detail-id-2/biodiesel.html
http://www.enerfish.eu/p-techno-techno_id-2/fish-oil-to-biodiesel.html
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An economic comparison between different conversion methods utilizing low-

value feedstocks revealed that the heterogeneous acid catalyst process had the 

lowest total capital investment and manufacturing (Pradhan et al., 2008). For 

biodiesel to expand and mature in the market many key issues must be 

addressed, such as improving production efficiency through development of cost-

effective catalysts capable of converting low-quality feedstocks into biodiesel, 

enhancing availability of low cost feedstocks, and managing agricultural land and 

water. In addition, biodiesel will require continuous improvement in producing 

cleaner emissions and reducing environmental impacts, although some of these 

issues are addressed by after-treatment technologies such as exhaust gas 

recirculation and selective catalytic reduction (Naik et al., 2010; Visioli et al., 

2014). 

 

2.1.4. Bio-jet fuel production  

 

The European Commission, in collaboration with leading European airlines (KLM, 

AirFrance, Iberia, Lufhtansa and others), launched the European Advanced 

Biofuels Flightpath (http://ec.europa.eu/energy/en). The EU Biofuels Flightpath 

set a target of two Million of metric tons per year of bio-jet fuels by 2020, which is 

approximately 4% of total jet fuel use in Europe (International Air Transport 

Association (IATA) 2013); see table 1 to more information. Twenty-Five European 

Union (EU) countries were expected to meet their 2013-2014 provisional 

renewable energy targets, and the projected share of renewable energy in the 

gross final energy consumption was 15.3% in 2014 (European Commission 

2015). 

 

Several reports addressed a variety of the jet fuel volumetric goals as well as the 

blending ratio of biofuels with conventional jet fuels, despising the type of jet fuel 

(Type A or Type B). Analysis suggests that a viable market for biofuels can be 

maintained when as little as 1% of world jet fuel supply is substituted by a biofuel 

(Air Transportation Action Group 2011), with aggregation of higher blending ratio 

for future years, such as 25% by 2020, 30% by 2030, and 50% by 2040 (Air 
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Transportation Action Group 2009). The substitution of fossil jet fuels effort 

targets at a 5% replacement in 2018 (USDA 2012). For instance, based on the 

upper estimate of jet fuel demand, it is generically estimated that between 35%–

100% of global jet fuel demand could be provided by biofuel by 2050 (Bauen, 

Howes, et al. 2009). EU is projecting low-carbon sustainable fuels in aviation to 

reach 40 % by 2050 (European Commission 2011). The volumetric targets in the 

most recent publications or reports are more conservative and are moved from 

volumetric targets to a GHG emission reduction target of a 50% reduction in 

carbon emissions by 2050 relative to a 2005 baseline (IATA 2015). 

 

Feedstock costs contribute the most to the overall biofuel production cost. Rising 

prices for food and feed, surface transportation, and power generation are 

sources of increasing demand on energy crops (a plant used to produce biofuels 

or to generate electricity, heat or any other form of energy) and one of the reasons 

for increasing feedstock prices (W. Wang et al., 2016). Appropriate plantation, 

cultivation, and harvesting are required before the feedstocks are processed into 

fuel, in this case non-food cops, multi-proposes crop, and residual biomass are 

the optimal candidates (Cardone et al., 2003; W.-C. Wang, 2016). Estimates 

show that 8% of U.S. energy crop and residue resources would be required to 

fully supply the biojet fuel demand in 2050 (Agusdinata et al., 2011; W. Wang et 

al., 2016). Potential feedstocks for producing biojet fuel are classified as:  

 

i) oil-based feedstocks, such as vegetable oils, waste oils, algal 

oils, and pyrolysis oils;  

ii) solid-based feedstocks, such as lignocellulosic biomass 

(including wood products, forestry waste, and agricultural 

residue) and municipal waste (the organic portion) (Agusdinata 

et al., 2011; Carlsson, 2009; W. C. Wang & Tao, 2016); or  

iii) gas-based feedstocks, such as biogas and syngas. The key to 

the successful implementation of bio-jet fuel is the availability of 

feedstock at a large and sustainable scale and low price. (R. A. 

Lee & Lavoie, 2013; Lokesh et al., 2015). 
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Table 1. Summary of the principal Jet Fuel Production Pathways modified from 

(W. Wang et al., 2016) 

Category Pathways Companies  International Airline Companies /Manufacturers 

   Agencies  

Alcohol-to-

Jet 

(ATJ) 

Ethanol-to-Jet 
Terrabon/MixAlco; 

Lanza 
Defense Advanced Boeing, Virgin Atlantic 

 
Tech/Swedish 

Biofuels; 
Research Projects  

 Coskata Agency, FAA  

Butanol-to-Jet Gevo; Byogy; U.S. Navy/NAWCWD, Continental Airlines; United Airlines 

 Albemarle/Cobalt; AFRL, DLA, USAF  

 Solazyme   

Oil-to-Jet 

(OTJ) 

Hydroprocessed 
UOP; SG Biofuels; 

AltAir 
U.S. Navy, USAF, Boeing, Lufthansa, Virgin Atlantic, Virgin 

Renewable Jet 

(HRJ) 
Fuels; Agrisoma Netherland Air Force, Blue, GE Aviation, Air New Zealand, Rolls- 

 
Biosciences; Neste 

Oil; 
NASA, Dutch Military, Royce, Continental, CFM, JAL, Airbus, KLM, 

 PetroChina; Sapphire EADs 
Pratt & Whitney, Air China, TAM Airlines, 

Jet 

 
Energy, 

Syntroleum/Tyson 
 Blue Airways, IAE, United Airlines, Air 

 Food; PEMEX ; ASA  France, Finnair, Air Mexico, Thomson 

   Airways, Porter Airlines, Alaska Airlines, 

   Horizon Air, Etihad Airways, Romanian Air, 

   Bombardier 

Catalytic 
Applied Research 

Assoc., 
FAA CLEEN, NRC Rolls-Royce, Pratt & Whitney 

Hydrothermolysis 
Aemetis/Chevron 

Lummus 
Canada, AFRL  

(CH) Global   

Gas to Jet 

(GTJ) 

FT Synthesis Syntroleum; SynFuels; U.S. DOE, U.S. DOD, Qatar Airways, United Airlines, Airbus, 

 Rentech; Shell; Solena USAF, Ontario British Airways 

  government  

Gas 

Fermentation 

Coskata; INEOS 

Bio/Lanza 
N/A Virgin Atlantic 

 
Tech; Swedish 

Biofuels 
  

Sugar to Jet 

(STJ) 

Catalytic 

Upgrading of 
Virent/Shell, Virdia AFRL, U.S. DOE N/A 

Sugar to Jet    

Direct Sugar 
Amyris/Total, 

Solazyme, 
U.S. Navy, FAA Boeing; Embraer; Azul Airlines; GE; Trip 

Biological to LS9  Airlines 

Hydrocarbons    
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2.1.5. Plant oil to Bio-jet fuel transformation 

process 

 

Oil-to-Jet (OTJ) Fuel has three processes classified into the OTJ conversion 

pathway:  

 

i) hydroprocessed renewable jet (HRJ, also known as hydroprocessed 

esters and fatty acids or HEFA);  

ii) catalytic hydrothermolysis (CH, also termed hydrothermal liquefaction); 

and 

iii) pyrolysis (also known as hydrotreated depolymerized cellulosic jet 

(HDCJ)).  

 

Actually, only biofuels from the HRJ pathway have been approved for blending 

and have a defined ASTM specification (International Air Transport Association 

2010). Oil-derived jet fuels must compete with biodiesel and hydroprocessed 

renewable diesel for feedstock availability. In this dissertation, the feedstocks 

considered for OTJ conversion pathways is plant oils produced by Camelina, 

Flax, Safflower and Crambe. 

 

Plant oils as part of various promising feedstocks are becoming a great 

alternative to  green diesel and bio-jet fuels production, plant oils such as: Canola, 

Soybean, Camelina, Cartamo, Rapeseed, Palm oils, Corn oil and so on (Li & 

Mupondwa, 2014; Miller & Kumar, 2013). Soybean oil has been used extensively 

in the United States for biodiesel production, using 27% (in 2013) and 23% (in 

2014) of total soybean oil production (U.S. Department of Agriculture 2015; U.S. 

Energy Information Administration 2015). Rapeseed oil is the main feedstock 

used for biodiesel production in Europe, with approximately 850,000 metric tons 

used in 2014 (Krautgartner et al., 2015). Palm oil consumed in Europe is 

imported, mainly from Indonesia, and its consumption for biodiesel production is 

estimated as 1,450 metric tons in 2014 (Boateng et al., 2010; Carlsson, 2009).  
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Biodiesel production has expanded based on the abundant palm oil resource in 

Southeast of Asia. However, the use of Soybean, Palm, Camelina, Cartamo, 

Sunflower and Rapeseed oils as bio-jet fuel feedstocks should lead to a large 

uncertainty in the amount of Green House Gases (GHG) emissions due to direct 

or indirect land use change, N-fertilizer production and application, and N2O 

emission to air (D’Avino et al., 2015; Pradhan et al., 2008; Spugnoli et al., 2012). 

Palm oil use for biodiesel production is expected to be cut in the European Union 

and United States, according to EPA definition, as it is not suitable for addition to 

the renewable fuel program due to high GHG emissions (Krautgartner et al., 

2015; W.-C. Wang, 2016). 

 

Nowadays, bio-jet fuels derived from plant oils such as camelina and jatropha, 

algae oils, and waste cooking oils have been tested in commercial (IATA 2010) 

and military (W. Wang et al., 2016) flights. Camelina is a short-season crop 

cultivated in the temperate climate zone. Interest in camelina has recently been 

raised mainly due to the need for easy-to-grow oilseed crops for potential non-

food agricultural systems. In a study performed by Shonnard et al., HRJ fuel 

derived from camelina through Honeywell Green Jet Fuel technology has been 

shown to not only meet stringent engine fuel and performance specifications but 

also reduce environmental emissions, that is in concordance with other studies 

(Krohn & Fripp, 2012; Li & Mupondwa, 2014; Lokesh et al., 2015).  

 

Jatropha has higher oil yield than many other oil-yielding crops. In humid regions 

or under irrigated conditions, the Jatropha plant can be grown year-round. 

Jatropha is a promising raw material for biofuels production because the seed oil 

content is potentially high, at 35%–55% of the seed dry weight (Kasim & Harvey, 

2012). Additionally, seed shells of Jatropha have a high energy value (18–19 

MJ/kg) (Lokesh et al., 2015; W.-C. Wang, 2016). The seed shells can be 

converted to value-added co-products compared to algae and palm after oil 

extraction. Jatropha oil has been a subject of interest, particularly in the biodiesel 

production area, although there is minimal evidence to show that it will become 
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an energy resource on a global scale (Kasim & Harvey, 2012; W. Wang et al., 

2016) 

 

Algal biofuel has attracted the interest of researchers and entrepreneurs for 

several reasons (Agusdinata et al., 2011; Herrero, Sánchez-Camargo, Cifuentes, 

& Ibáñez, 2015; W. C. Wang & Tao, 2016):  

 

i) algae have high productivity per acre and year-round production;  

ii) algal cultivation requires less freshwater than terrestrial crops and can 

use a variety of water sources including fresh, brackish, saline, and 

wastewater;  

iii) algae can be cultivated on non-arable land;  

iv) algae have rapid growth potential and high oil content (20%–50% dry 

cell weight); 

v) nutrients such as nitrogen and phosphorus for growth can be obtained 

from wastewater; 

vi) various valuable co-products, such as proteins and residual biomass 

left after oil extraction potentially can be used as feed or fertilizer;  

vii) hydrogen can be produced photobiologically from microalgae; and (8) 

the potential GHG reduction relative to other plant oils. 

 

Three algae production technologies—photoautotrophic, heterotrophic, and 

mixotrophic—have been developed (Brennan and Owende 2010). 

Photoautotrophic production can occur in either open ponds or closed 

photobioreactor systems. Open pond systems have the advantages of cheaper 

algae production cost ($10.6/gal in 2011 U.S. dollars) and low energy input, but 

they have poor productivity and require large areas of land (Davis, Aden, et al. 

2011). There are still inconsistencies in the production rates reported in literature, 

ranging from 10–69 g/m2/day for an open pond system (Brennan and Owende 

2010). Closed photobioreactor systems have a higher algae production cost of 

$22.4/gal in 2011 U.S. dollars, high energy input, and relatively higher productivity 
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of 1.25 kg/m 3/day on a volume basis (Davis, Aden, et al. 2011). The algal 

biomass is harvested through bulk harvesting and concentrating. The harvesting 

process includes flocculation, filtration, flotation, and centrifugal sedimentation 

steps, which are crucial to the economic production of micro-algal biomass. The 

dehydration or drying step is commonly used after the harvesting process for 

thickening. Various drying technologies used for this purpose are sun drying, low-

pressure shelf drying, spray drying, drum drying, fluidized bed drying, freeze 

drying, and Reactance Window technology drying (Brennan and Owende 2010). 

Freeze drying is expensive, but it makes oil extraction easier than other 

technologies (Grima, Medina, et al. 1994). 

 

Another technology available is pyrolysis, that is a process that heats biomass 

without oxygen either in a fast or slow process, produces pyrolysis gas (also 

called syngas), biochar, and pyrolysis oil (also called bio-oil) (Angin, 2013; R. A. 

Lee & Lavoie, 2013). Pyrolysis oil is a mixture of oxygenated organic species 

containing carbons ranging C1-C21. Some examples of the carbon chain length 

of pyrolysis oil are shown in literature (Harris, Lawburgh, Lawburgh, Michna, & 

Gent, 2014; Hasan Khan Tushar et al., 2012; W.-C. Wang, 2016; Wright, 

Daugaard, Satrio, & Brown, 2010). Although pyrolysis oil is very different from 

either vegetable oil or algal oil, it can be refined similarly into renewable gasoline, 

diesel, or jet. In a literature review, the production cost of bio-oil was shown to 

range from $0.5/gal to $2.0/gal in 2011 dollars in United States (Badger, Badger, 

Puettmann, Steele, & Cooper, 2011; Wright et al., 2010). The sale of co-product 

biochar potentially reduces the production cost of bio-oil by up to 18% depending 

on the biochar market, with an assumed feedstock (wood chips) cost of $25/wet 

ton (or $50/dry ton) (Badger, Badger, et al. 2011). 

 

When processing oils, the fatty acid profile is an important issue. For instance, a 

greater hydrogen supply is needed if more unsaturated fatty acids are present in 

the oil (Bondioli, Folegatti, Lazzeri, & Palmieri, 1998). Vegetable oils, waste 

cooking oil, and algal oil are in the diesel fuel range C16–C22. Oleic acid is a 

predominant proportion of vegetable oils. Oils from algae, especially, contain a 
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significant amount of eicosapentaenoic acid. High-chain-length oils can be 

broken down to small molecules to produce jet fuels, but the overall yield will be 

reduced with increasing production of co-products (Man, Wong, & Yung, 2012; 

W. C. Wang & Tao, 2016). If starting from small molecules, the target jet fuel 

product yield will be high with fewer co-products produced. There is a tradeoff 

between main product (jet fuel) and value-added co-product production ratios.  

 

2.1.6. Hydro-processed renewable jet fuel (HRJF) 

 

Both HRJF and catalytic hydrothermolysis (CH) processes employ triglyceride-

based feedstocks (fatty acids), but the free fatty acids (FFAs) are produced 

through different pathways. FFAs in the HRJ process are made by propane 

cleavage of glycerides, whereas in the CH process, FFAs are produced by 

thermal hydrolysis (W.-C. Wang, 2016). In the pyrolysis process, the bio-oil is 

produced via biomass feedstock pyrolysis Hydrotreating for HRJF, CH, and  

several kinds of pyrolysis are very similar.  

 

HRJF conversion technology is at a relatively high maturity level and is 

commercially available. It was recently used to produce jet fuel for commercial 

and military flights (Lokesh et al., 2015). HRJF fuel is equivalent to conventional 

petroleum in properties, but has the advantages of higher cetane number, lower 

aromatic content, lower sulfur content, and potentially lower GHG emissions 

(Lokesh et al., 2015; Zhang et al., 2016). Over the past 60 years, a large variety 

of catalytic hydrogenation, deoxygenation, hydroisomerization, and 

hydrocracking processes have been successfully developed and 

commercialized. A representative process flow diagram is shown in Figure 2. 

Renewable fats and oils that have different degrees of unsaturation require a 

hydrogenation process to saturate the double bonds completely (Kalnes, McCall, 

& Shonnard, 2010). 
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First, catalytic hydrogenation could be used to convert liquid-phase unsaturated 

fatty acids or glycerides into saturated ones with the addition of hydrogen (Kalnes 

et al., 2010). The next step is to cleave the propane and produce three moles of 

FFAs (Pearlson 2007). The glycerol portion of the triglyceride molecule is 

converted into propane by adding hydrogen (H2). An alternative route to convert 

the glycerides to FFAs is thermal hydrolysis (Wang, Turner, et al. 2012). Oils and 

fats that contain mostly triglycerides are converted into three moles of FFAs and 

one mole of glycerol by processing the feedstocks with three moles of water. The 

hydrogen ion from the water is attached on the glycerol backbone and forms one 

mole of glycerol, where the hydroxyl ion from the water is added to the ester group 

and produces three moles of FFAs. High temperature (250°C–260°C) is required 

for water to dissolve in the oil phase. High pressure is also necessary to maintain 

the reactants in liquid phase. The co-product glycerol has many pharmaceutical, 

technical, and personal care product applications. The glycerol purification 

process is energy intensive, adding cost to overall process, but might be offset 

by glycerol selling value (Yang, Hanna, et al. 2012). 

 

Figure 6. Hydroprocessed renewable jet (HRJ) process taken from (W.-C. Wang, 

2016) 
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To meet the jet fuel specification, the produced bio-jet fuel must have not only a 

high flash point, but also good cold flow properties. Therefore, it is required to 

hydrocrack and hydroisomerize the normal paraffins produced from 

deoxygenation to a SPK product with carbon chains ranging from C9 to C15 

(Kalnes et al., 2010). The cracking and isomerization reactions are either 

concurrent or sequential (de Jong & Jungmeier, 2015; Fatih Demirbas, 2009; 

Kalnes et al., 2010). Studies have shown that isomerization of straight-chain 

alkanes occurs first, and cracking is a sequential reaction. The isomerization 

process takes the straight-chain hydrocarbons and turns them into the branched 

structures to reduce the freeze point to meet the jet fuel standard (Gary, 

Handwerk, et al. 2007). It is accompanied by a hydrocracking reaction, which 

results in yield from the isomerized species. 

 

The hydrocracking reactions are exothermic and result in the production of lighter 

liquids and gas products. They are relatively slow reactions; thus, most of the 

hydrocracking takes place in the last section of the reactor. The hydrocracking 

reactions primarily involve cracking and saturation of paraffins. Overcracking will 

result in low yields of bio-jet fuel range alkanes and high yields of light species 

ranging from C1 to C4, and naphtha ranging from C5 to C8(Boateng, Mullen, & 

Goldberg, 2010; Zhang, Hui, Lin, & Sung, 2016) . Both are out of jet fuel range 

and have lower economic value than diesel or jet fuel. 

 

Bifunctional catalysts containing metallic sites for process of hydrogenation or 

dehydrogenation and acid sites for selective isomerization via carbynium ions 

could be used in isomerization (Giannetto, Perot, et al. 1986). In a typical 

isomerization reaction, normal paraffins are dehydrogenated on the metal sites 

of the catalyst and reacting on the acid sites to produce olefins protonate with 

formation of the alkyl-carbynium ion. The alkyl-carbynium ion is rearranged to 

mono-branched, di-branched, and tri-branched alkyl-carbynium ions on the acid 

site. The branched alkyl-carbynium ions are deprotonated and hydrogenated to 

produce the corresponding paraffins (Park and Ihm 2000). The choice of catalyst 

will result in variation of cracking at the end of the paraffin molecule and, 
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therefore, adjust the yield of jet—fuel-range product (Kalnes, McCall, et al. 2010). 

The hydro isomerization and hydrocracking processes are followed by a 

fractionation process to separate the mixtures to paraffinic kerosene (HRJ SPK), 

paraffinic diesel, naphtha, and light gases. 

 

2.2. Non-conventional oleaginousness description  

 

2.2.1. Falseflax (Camelina sativa) 

 

Falseflax, Gold of pleasure or Camelina are the common names of Camelina 

sativa (C. sativa), in table 2 is listed its taxonomy. Camelina has been traditionally 

cultivated as an oilseed crop to produce vegetable oil and animal feed (Li & 

Mupondwa, 2014; Szumacher-Strabel et al., 2011). Several archeological 

evidences show it has been grown in Europe for at least 3,000 years. Until the 

1940s, camelina was an important oil crop in eastern and central Europe, and 

currently has continued to be cultivated in a few parts of Europe for its seed oil 

(Fleenor, 2011). Camelina oil was used in oil lamps (until the modern harnessing 

of natural gas, propane, and electricity) and as an edible false flax oil.  

 

Camelina is a short-season crop (85–100 days) and grows well in the temperate 

climate zone in light or medium soils. Camelina is generally seeded in spring from 

March to May, but can also be seeded in fall in mild climates. A seeding rate of 

3–4 kg/ha is recommended, with a row interval of 12 to 20 cm.  With high seeding 

rates, these independently non-competitive seedlings become competitive 

against weeds because of their density. The seedlings are early emerging and 

can withstand mild frosts in the spring (Fleenor, 2011; Krohn & Fripp, 2012). 

Minimal seedbed preparation is needed to establish camelina. 

 

 

Table 2. Taxonomy of Camelina sativa. Taken from USDA web page. 

https://en.wikipedia.org/wiki/Vegetable_oil
https://en.wikipedia.org/wiki/Oil_lamps
https://en.wikipedia.org/wiki/Natural_gas
https://en.wikipedia.org/wiki/Propane
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Temperate_climate
https://en.wikipedia.org/wiki/Temperate_climate
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Rank Scientific Name and Common Name 

Kingdom Plantae – Plants 

Subkingdom Tracheobionta – Vascular plants 

Superdivision Spermatophyta – Seed plants 

Division Magnoliophyta – Flowering plants 

Class Magnoliopsida – Dicotyledons 

Subclass Dilleniidae 

Order Capparales 

Family Brassicaceae ⁄ Cruciferae – Mustard family 

Genus Camelina Crantz – false flax 

Species Camelina sativa (L.) Crantz – false flax 

 

Commonly, camelina does not need any field interventions. However, perennial 

weeds may be difficult to control. Some specialized oilseed herbicides can be 

used on it. No insect has been found to cause economic damage to 

camelina. Camelina needs little water or nitrogen to flourish; it can be grown on 

marginal agricultural lands. Fertilization requirements depend on soils, but are 

generally low. It may be used as a rotation crop for wheat and other cereals, to 

increase the health of the soil.  Camelina can also show some allelopathic traits, 

and it can be grown in mixed crop with cereals or legumes. Camelina is harvested 

and seeded with conventional farming equipment, which makes adding it to a 

crop rotation relatively easy for farmers who do not already grow it (Fleenor, 2011; 

Tuziak, Rise, & Volkoff, 2014).  Seed yields vary depending on conditions ranging 

500-2700 kg/ha. 

 

The state of Montana, in The United States, has recently been growing more 

camelina for its oil potential as a biofuel, bioplastic feedstock and bio-lubricant . 

Plant scientists at the University of Idaho, Washington State University, and other 

institutions also are studying this emerging biodiesel produced from camelina oil. 

https://en.wikipedia.org/wiki/Montana
https://en.wikipedia.org/wiki/Biofuel
https://en.wikipedia.org/wiki/University_of_Idaho
https://en.wikipedia.org/wiki/Washington_State_University
https://en.wikipedia.org/wiki/Biodiesel
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Studies have shown camelina-based jet fuel reduces net carbon emissions by 

about 80% (Agusdinata et al., 2011; Krohn & Fripp, 2012; Lokesh et al., 2015; 

Righini, Zanetti, & Monti, 2016).  

 

Continental Airlines, was the first commercial airline to test a 50:50 blend of bio-

derived “green jet” fuel and traditional jet fuel in the first demonstration of the use 

of sustainable biofuel to power a commercial aircraft in North America 

(IATA2015). The demonstration flight, conducted in partnership with Boeing, GE 

Aviation/CFM International, and Honeywell’s UOP, marked the first sustainable 

biofuel demonstration flight by a commercial carrier using a two-engine aircraft: 

a Boeing 737-800 equipped with CFM International CFM56-7B engines. 

Continental ran the blend in Engine No. 2. During the two-hour test flight, 

Continental pilots engaged the aircraft in several normal and non-normal flight 

maneuvers, such as mid-flight engine shutdown and restart, and power 

accelerations and decelerations.  

 

Camelina has been approved as a cattle feed supplement by Food and Drugs 

Administration (FDA)   as well as an ingredient (up to 10% of the ration) in broiler 

chicken feed and laying hen feed (Cherian, 2012; Frame, Palmer, & Peterson, 

2007; Pekel, Kim, Chapple, & Adeola, 2015) and trout and salmonids feed 

(Nasopoulou & Zabetakis, 2012; Tuziak et al., 2014). Camelina meal, the 

byproduct of camelina when the oil has been extracted, has a significant crude 

protein content. Feeding camelina meal has significantly increased omega-3 fatty 

acid concentration in breast and thigh meat of turkeys compared to control group 

(Cherian, 2012; Frame et al., 2007). Camelina oil  and meal have also been 

investigated as a sustainable lipid source to fully replace fish oil and to replace 

fish meal in diets for farmed Atlantic salmon, Rainbow Trout, and Atlantic cod 

(Boissy et al., 2011; Fraser et al., 2016; Hixson, Parrish, & Anderson, 2014) 

. However, various antinutritional factors are present in camelina meal and can 

affect its use as livestock feed. Considering this, FDA has recommended to use 

cold pressed camelina meal in animal feed until 10% w/w, on the other hand, The 

https://en.wikipedia.org/wiki/Jet_fuel
https://en.wikipedia.org/wiki/Broiler_chicken
https://en.wikipedia.org/wiki/Broiler_chicken
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Canadian Food Inspection Agency has approved feeding cold-pressed non-

solvent extracted Camelina meal to broiler chickens at up to 12% inclusion. 

  

2.2.2. Safflower (Carthamus tinctorius) 

 

Safflower is one of humanity's oldest crops and its taxonomy is presented in table 

3. According to several published papers (Flemmer, Franchini, & Lindstr??m, 

2015; Y. C. Lee, Oh, Chang, & Kim, 2004; Pearl & Burke, 2014), chemical 

analysis of ancient Egyptian textiles dated to the Twelfth Dynasty identified dyes 

made from safflower, and garlands made from safflowers were found in the tomb 

of the pharaoh Tutankhamun. Traditionally, the crop was grown for its seeds, and 

used for coloring and flavoring foods, in medicines, and making red (carthamin) 

and yellow dyes, especially before cheaper aniline dyes became available 

(Clementi, Basconi, Pellegrino, & Romani, 2014; Pearl & Burke, 2014).  

 

Table 3. Taxonomy of Carthamus tinctorius. Taken from USDA web page. 

 

Rank Scientific Name and Common Name 

Kingdom Plantae – Plants 

Subkingdom Tracheobionta – Vascular plants 

Superdivision Spermatophyta – Seed plants 

Division Magnoliophyta – Flowering plants 

Class Magnoliopsida – Dicotyledons 

Subclass Asteridae 

Order Asterales 

Family Asteraceae ⁄ Compositae – Aster family 

Genus Carthamus L. – distaff thistle 

Species Carthamus tinctorius L. – safflower 
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For the last fifty years or so, the plant has been cultivated mainly for the vegetable 

oil extracted from its seeds. Safflower seed oil is flavorless and colorless, and 

nutritionally like sunflower oil. It is used mainly in cosmetics and as a cooking oil, 

in salad dressing, and to produce margarine (Clementi et al., 2014; Y. C. Lee et 

al., 2004). 

 

There are two types of safflower that produce different kinds of oil: one high in 

monounsaturated fatty acid (oleic acid) and the other high in polyunsaturated fatty 

acid (linoleic acid). Currently the predominant edible oil market is for the former, 

which is lower in saturated fats than olive oil. The latter is used in painting in the 

place of linseed oil, particularly with white paints, as it does not have the yellow 

tint which linseed oil possesses. Oils rich in polyunsaturated fatty acids, notably 

linoleic acid, are considered to have some health benefits (Clementi et al., 2014; 

Mihaela et al., 2013). One human study compared high-linoleic safflower oil with 

conjugated linoleic acid, showing that body fat decreased, and adiponectin levels 

increased in obese women consuming safflower oil. 

 

2.2.3. Crambe (Crambe abyssinica) 

 

Crambe, which is closely related to rapeseed and mustard, is an erect annual 

herb with numerous branches that grows to a height of 50 to 105 cm, its taxonomy 

is shown in table 4. Under stress conditions plants may develop long tap roots, 

which later become conical. The leaves are oval shaped, but asymmetric 

(Bondioli et al., 1998; Righini et al., 2016). Crambe initially produces numerous 

small, white flowers in a compact group. The spherical fruits bear one seed each. 

The seed remains in the pod or hull at harvest. Mature fruits are dry, persistent, 

and indehiscent. They vary in color from light green to light brown (Zhu, 2016). 

 

The oil extracted from Crambe seed is used as an industrial lubricant, a corrosion 

inhibitor, and as an ingredient in the manufacture of synthetic rubber (Bondioli et 

al., 1998; Carlsson, 2009; Lazzeri, Mattei, Bucelli, & Palmieri, 1997). The oil 
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contains from 50% to 60% erucic acid (C22), a long chain fatty acid, which is 

used in the manufacture of plastic films, plasticizers, nylon, adhesives, and 

dielectric oils (Kammann & Phillips, 1985; Vargas-Lopez, Wiesenborn, 

Tostenson, & Cihacek, 1999). Crambe is being promoted as a new domestic 

source of erucic acid, which has primarily come from imported rapeseed oil. 

Supplies of industrial rapeseed are less-plentiful since the development of 

varieties (Canola) that have no erucic acid content.  

 

Defatted Crambe seed meal can be used as a protein supplement in livestock 

feeds. The meal contains 25% to 35% protein when the pod is included and 46% 

to 58% protein when the pod is removed. It has a well-balanced amino acid 

content and has been approved by the FDA for use in beef cattle rations for up 

to 5% of the daily intake (Böhme et al., 2005; Carlson, Baker, & Mustakas, 1985; 

Mendonça, Lana, Detmann, Goes, & Castro, 2015). 

 

Table 4. Taxonomy of Crambe abyssinica. Taken from USDA web page. 

 

Rank Scientific Name and Common Name 

Kingdom Plantae – Plants 

Subkingdom Tracheobionta – Vascular plants 

Superdivision Spermatophyta – Seed plants 

Division Magnoliophyta – Flowering plants 

Class Magnoliopsida – Dicotyledons 

Subclass Dilleniidae 

Order Capparales 

Family Brassicaceae ⁄ Cruciferae – Mustard family 

Genus Crambe L. – crambe 

Species Crambe abyssinica Hochst. ex R.E. Fries – crambe 
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The meal has not been approved for non-ruminant feed because it may contain 

glucosynolates, which may be broken down in digestive systems to form harmful 

products that can cause liver and kidney damage, and appetite depression 

(Daubos et al., 1998). Untreated, oil-free Crambe meal may contain up to 10% 

thioglucosides, which are toxic to non-ruminant animals, such as hogs and 

chickens. However, subjecting whole seed to moist heat before processing can 

deactivate the enzyme, and the glucosynolates remain intact through the oil 

extraction process (Daubos et al., 1998; Mendonça et al., 2015). 

 

2.2.4. Flax (Linum usitatissimum) 

 

L. usitatissimum L. is a species of the family Linaceae (see table 5). It is an erect, 

herbaceous annual which branches cymosely above the main stem (Morris, 

2007). Two types of L. usitatissimum are cultivated (Lloveras et al., 2006; Morris, 

2007):  

 

i) the linseed type, grown for oil extracted from the seed, is a relatively 

short plant which produces many secondary branches compared to;  

ii) the flax type, grown for the fiber extracted from the stem, which is taller 

and is less branched.  

 

L. usitatissimum has a short tap root with fibrous branches which may extend 90 

- 120 cm in light soils. Leaves are simple, sessile, linear-lanceolate with entire 

margins, and are borne on stems and branches. The inflorescence is a loose 

terminal raceme or cyme. Flowers are borne on long erect pedicels, are 

hermaphrodite, hypogenous and are composed of five sepals, five petals (blue), 

five stamens, and a compound pistil of five carpels each separated by a false 

septum. The fruit is a capsule, composed of 5 carpels and may contain up to 10 

seeds (Hall, Booker, Siloto, Jhala, & Weselake, 2016; Morris, 2007). The seed is 

oval, lenticular, 4-6 mm long with a smooth, shiny surface, brown to light-brown 
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in color. Seeds contain 35-45% oil and 20-25% protein (Lloveras et al., 2006; 

Matthäus & Zubr, 2000; Morris, 2007). 

 

Canada is a major producing country along with Argentina, India, the USA, and 

Russia; most Canadian flaxseed is exported as linseed. Traditionally, the oil 

pressed from the seed (linseed oil) has been used for a variety of industrial 

purposes and the oil-free meal could be fed to livestock (boiling with water is 

advised to counteract the effect of the cyanogenetic glycoside linamarin). 

Recently, plant breeders have been successful in developing a low linolenic-acid 

edible oil flax for human consumption. In addition to usage of seed for industrial 

purposes, whole flaxseed is used extensively in baked goods in Europe (Jhala & 

Hall, 2010; Lloveras et al., 2006; Morris, 2007). 

 

Table 5. Taxonomy of Linum usitatissimum L. Taken from USDA web page. 

 

Rank Scientific Name and Common Name 

Kingdom Plantae – Plants 

Subkingdom Tracheobionta – Vascular plants 

Superdivision Spermatophyta – Seed plants 

Division Magnoliophyta – Flowering plants 

Class Magnoliopsida – Dicotyledons 

Subclass Rosidae 

Order Linales 

Family Linaceae – Flax family 

Genus Linum L. – flax 

Species Linum usitatissimum L. – common flax 

 

Flax is grown primarily in the three prairie provinces of western Canada, 

specifically in southern Manitoba, Saskatchewan, and Alberta (Hall et al., 2016; 

Kissinger, Fix, & Rees, 2007). It grows best on heavy loam soils that retain 
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moisture well. Because of its limited root system, flax does not grow well on 

sandy, moisture-limited soils. Flax is moderately tolerant to salinity whether soil 

nutrients are present at adequate levels and that moisture is not limiting at 

germination (Hall et al., 2016; Jhala & Hall, 2010; Morris, 2007).   

 

Flax may be grown in rotation with cereals or corn but not following potatoes or 

sugar beets (because of problems with root diseases) or following a previous flax 

crop. A three-year period is recommended between flax crops to avoid fusarium 

wilt. Flax may grow poorly after canola or mustard; control of volunteers may 

minimize the detrimental effects. Seeding is usually done when soil temperatures 

are warm (mid-May on the prairies), at a rate of 30 to 40 kg/ha and no deeper 

than 2.5 to 4 cm. If the seed coat has been damaged at harvest, soil-borne fungi 

may infect the seed; therefore, seed treatment with a fungicide will increase 

seedling emergence and vigor. Flax does not require as much fertilizer as cereals 

but will benefit if nitrogen or phosphorus is limiting (Hall et al., 2016; Yan, Chouw, 

& Jayaraman, 2014). 

 

For centuries, flax fiber has occupied a prominent place in textile industry. The 

prehistoric habitants of Lake Dwellers of Switzerland used flax fiber to produce 

linen. The art of weaving flax fiber to linen may have originated in Egypt because 

winding-clothes for the bodies of the Pharaohs of Egypt were composed of flax 

fiber. It was then introduced in India, where, before the use of cotton, linen was 

worn by many tribes (Jhala & Hall, 2010; Kong, Park, & Lee, 2014). One of the 

limitations of flax is the separation of best fiber from other stem fibers. Retting 

traditionally did this; two traditional methods were used commercially to ret flax 

for industrial grade fibers, water- and dew-retting (Jhala & Hall, 2010). 

 

i) Water retting method was discontinued because of the high cost of 

drying and the pollution from the anaerobic decomposition of flax stem 

in lakes and rivers.  
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ii) Dew-retting has also limitations including poor quality fiber and is 

restricted to regions which have appropriate moisture and temperature 

ranges suitable for retting (Evans, Akin, & Foulk, 2002).  

 

In the 1980s, several efforts were made to overcome these limitations and to 

develop a new method known as enzyme-retting, replacing the anaerobic 

bacteria with enzymes (Jhala & Hall, 2010). Attempts were also being made by 

United States Department of Agriculture (USDA) to develop an enzyme-retting 

pilot plant method to replace traditional methods of retting, thus producing flax 

fibers with specific properties for industrial uses (Evans et al., 2002). Advantages 

of this method may include: reduced retting time, increased yield and 

consistency, and stability of production and supply. 

 

Fiber obtained from flax is known for its length, strength, flexibility, and fineness; 

however chemical composition and diameter are also important (Hall et al., 2016). 

In comparison to industrial wood particles, flax particles were characterized by 

higher length to thickness and length to width ratios and lower bulk (Jhala & Hall, 

2010). The best grades are used for linen fabrics such as damasks, lace, and 

sheeting. Coarser grades are used for the manufacturing of twine and rope. Flax 

is a source of industrial fibers and, as currently processed, results in long-line and 

short fibers. Long line fiber is used in manufacturing high value linen products, 

while short staple fiber has historically been the waste from long line fiber and 

used for lower value products like blankets, mats, mattresses, and carpets 

(Lloveras et al., 2006). 

 

Flax fiber threads are strong enough for preparation of sewing threads, button 

threads and shoe threads. Linen is also used in making the highest quality 

handkerchiefs, bedding, curtains, drapery, cushion covers, wall coverings, 

towels, other decorative materials and materials for suits and traditional dresses 

in Asia. It can also be used for manufacturing composites such as particleboard 
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(Jhala & Hall, 2010). Flax fibers are also becoming an integral part of new 

composite materials utilized in automobile and constructive industry.  

 

Bio composites made up from the flax fiber based on polyhydroxybutyrate (PHB) 

polymer could be an eco-friendly and biodegradable alternative to conventional 

plastics (Morris, 2007; Pil, Bensadoun, Pariset, & Verpoest, 2016). After 

extraction of bast fiber from flax stem, 80% of the remains fiber can be separated 

mechanically. This material can be converted into pulp and can be used for 

manufacturing papers (Camarero et al., 2004; Lloveras et al., 2006). Flax fiber is 

also a raw material for the paper industry for the use of printed banknotes and 

paper for cigarettes. There are several advantages of using flax fibers for 

industrial applications (Hammett et al., 2001; Lloveras et al., 2006; Peng, Zeng, 

Wang, & Hong, 2015). It is a biodegradable, renewable raw material, 

nonabrasive. However, for technical uses, the mechanical properties like tensile 

strength, elastic modules it may not be suitable (Deng et al., 2016; Kong et al., 

2014; Lloveras et al., 2006; van der Werf & Turunen, 2008).  

 

2.3. Life Cycle Assessment  

 

Life cycle assessments (LCA), until now, have generally been used to analyze 

the effects that a product, process, or services will have on the environment. 

Results of an LCA study will let companies and people in general know which 

aspects of their production are efficient, and where they can improve efficiency 

to reduce environmental and social impacts. All stages in the life cycle of the 

product are considered in a LCA, from the mining and extraction of its raw 

materials, to the shipping, right on to the landfill. Data are not only considered for 

the initial product, but also for the full life cycles of other materials that are used 

in the making of the product. Social (S-LCA) and socio-economic life cycle 

assessments add extra dimensions of impact analysis, valuable information for 

those who seek to produce or purchase responsibly. (Dreyer, Hauschild, & 

Schierbeck, 2010; Unep Setac Life Cycle Initiative, 2009). 
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Figure 7. Cradle to grave LCA (a) and LCA framework according to ISO 1404X 

family (b) (Anctil & Vasilis, 2012). 

 

 

 

One of the complexities of  LCA is that it has been applied to different types of 

decisions, ranging from single products to large scale policy decisions such as 

whether or not to build  a particular power plant instead a biorefinery (Gasol, 

2009; Menichetti & Otto, 2009).  Although LCA was developed for single 

products, in recent years there has been a distinct shift in applying it to such larger 

scale decision contexts (Menichetti & Otto, 2009; Ramachandran, Singh, 

Larroche, Soccol, & Pandey, 2007).  Part of the reason for this shift has been the 

argument that since LCA is useful for determining the environmental impacts of 

a product, surely it is useful for determining the environmental impacts of a 

“product” like a power plant. 

  

This shift in perspective from “conventional” to “unconventional” products has 

been described as two separate types of LCA:   

 

i) Attributional life cycle assessment (focuses on describing the 

environmentally relevant physical flows to and from a product or 

process emit). 
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ii)  Consequential life cycle assessment (describes how relevant 

environmental flows will change in response to possible decisions).  

 

Ultimately, the differences between attributional and consequential LCA are the 

result of the choices made in the aim and scope definition of steps of the LCA 

process (Brander, Tipper, Hutchison, & Davis, 2008; European Commission -- 

Joint Research Centre -- Institute for Environment and Sustainability, 2010; 

Thomassen, Dalgaard, Heijungs, & de Boer, 2008). In consequential LCA, the 

system boundaries are defined to include the activities contributing to the 

environmental consequence of the change – regardless of whether or not these 

changes are within or outside of the cradle-to-grave system being investigated 

(D’Avino et al., 2015; J. H. Schmidt, 2008).   

 

As a result, the process of system expansion (to avoid or deal with the allocation 

problem in multi-product systems) is an inherent part of consequential LCA 

studies. In consequence, consequential LCA includes additional economic 

concepts like marginal production costs, elasticity of supply and demand, 

dynamic models (instead of the linear and static models of traditional LCA), 

etc.(European Environment Agency, 2012; Gasol, 2009) It is typically more 

conceptually complex and the results obtained are highly sensitive to 

assumptions made.   
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Figure 8.  Dynamic of Life Cycle Assessment in attributional and consequential 

points of view. Source taken from http://www.bioenergyconnection.org/article/life-

cycle-analysis-bioenergy-policy. 

 

 

 

The failure to identify inadequate implicit assumptions will led to a poor analysis. 

While attributional LCA uses average data (i.e., data representing the average 

environmental burden for producing a unit of the good or service in the system), 

consequential LCA uses marginal data representing the effects of a small change 

in the output of goods and/or services.  Focusing on marginal data narrows the 

set of data required, since indicators that do not change because of the 

intervention do not have to be known – which is not the case in attributional LCA 

(Brander et al., 2008; J. H. Schmidt, 2008; Thomassen et al., 2008).  Instead, the 

challenge in consequential LCA is thoroughly justifying that indicators will not be 

impacted and thus can be ignored in the analysis. 

 

http://www.bioenergyconnection.org/article/life-cycle-analysis-bioenergy-policy
http://www.bioenergyconnection.org/article/life-cycle-analysis-bioenergy-policy
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Taking an example to explain properly LCA. Let us imagine that “XY Inc”—a 

hypothetical retailer—has requested a LCA of their latest product: a package of 

colorless shirts. XY Inc. wants to know how this new item will affect its 

environmental footprint (E-LCA) as a corporation as well as what sort of 

improvements they can make to the production of the shirts that will reduce 

emissions and other harmful environmental outputs. Furthermore, “XY Inc” wants 

to know what sort of social and socio-economic effects these shirts will have on 

their workers and on the communities where they have shirt factories. As an 

already established company, XY is legally held to minimum benchmarks for 

things like workers’ rights but they want to take their social responsibility further 

and need guidance on how to proceed.  

 

The label “Fair Trade” is limited in scope and ignores huge sections of the life 

cycle reducing its feasibility (Jørgensen, 2013; Weidema, 2005). While the 

making of shirts may be ethical, the company wants to know if this can be true 

for “Cradle to Grave” or further “Cradle to Cradle” analysis of production 

(Braungart, McDonough, & Bollinger, 2007), including phases like shipping, 

disposal and so on. These specifications and questions will help the analysts 

focus on finding data relevant to the goals of “XY Inc”. They will work in 

cooperation with the analysts to determine what sort of data will be required to do 

the study. What kind of emissions to the air, water, or land will the study consider? 

The list of chemicals released into nature during the production of the shirts, some 

more potent and detrimental than others. Special attention will probably be paid 

to outputs like carbon dioxide, nitrogen dioxides and other greenhouse gases. 

Furthermore, the analysts will inform the stakeholders on which phases of the life 

cycle of the product might have the greatest share of worker hours and moreover, 

for which phases of the life cycle the social impacts may be the most important, 

using additional data (Dreyer et al., 2010; Grießhammer, Benoît, Dreyer, & Flysjö, 

2006). 
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Figure 9. Evolution of categories in time, giving by Bioenergy connection (NGO).  

Source taken from (http://www.bioenergyconnection.org/article/life-cycle-analysis-

bioenergy-policy.) 

 

 

 

The analyst will consider all the data found on the shirts, considering every piece 

and process involved in the making of the product, as much as can be acquired. 

The impacts of the gathering and shipment of raw cotton to a textile company, of 

refining that cotton into a fabric that can be seen into shirts, the dyeing of the 

fabric, the stitching, the printing, and addition of those uncomfortable tags that go 

on the necks of the shirts that say “XY Inc” in little letters—each part is factored 

in. However, this is just the first step. Analysts then need to consider the impacts 

of the life cycles of the dyes, threads, and nylon label tags up until the point at 

which they enter the life cycle of the shirt itself. By the end of the study, analysts 

will have data that can tell them exactly how much carbon dioxide is produced for 

each shirt they make. As much as they can, the analysts will also try to find the 

information on the location where each of the inputs were made and how they 

were transported. But that is just the easy part.  

http://www.bioenergyconnection.org/article/life-cycle-analysis-bioenergy-policy
http://www.bioenergyconnection.org/article/life-cycle-analysis-bioenergy-policy
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Environmental impacts are much more easily standardized and quantified tan 

social and socio-economic ones, for obvious reasons (Hauschild, Dreyer, & 

Jørgensen, 2008; Jørgensen, 2013; Unep Setac Life Cycle Initiative, 2009). 

Emissions, for example, can be readily measured and given numerical data that 

can be used over and over. However, Social Life Cycle Assessments (S-LCA) 

are surely as important as environmental ones (Menichetti & Otto, 2009; Unep 

Setac Life Cycle Initiative, 2009; Weidema, 2005). How can we proceed to 

conduct an S-LCA? How do we collect the data? How can we begin to assess 

and measure the social effects of a T-shirt? How do we define a socially 

responsible company or practice? How do we bring the results for every phase 

of the life cycle together? These questions must be answered. 

 

One of the most important issues with S-LCA is keeping consistency among the 

standards between studies. Even, if its standards can eventually become similar 

in criteria, differences among studies will always occur. Generally, practitioners 

of S-LCA will need to incorporate a large share of qualitative data, since numeric 

information will be less capable of addressing the issues at hand. When numeric 

data is useful additional data will still be needed to address its meaning: 

compliance with minimum wage laws does not always mean the wages are 

livable. Often, data may have to be collected on the spot, since databases for 

specific social and socio-economic impacts are at a minimum. As one might 

guess, the current limitations of S-LCA are many. For these reasons, there is no 

agreement in practitioners of S-LCA. On the other hand, E-LCA is known as a 

suitable methodology to assess sustainability of great number of items 

(products).  

 

It is important to estimate environmental and social impacts of these activities in 

order to make it more affordable throughout technology changes and 

improvements. However, to make it possible some consideration should be 

taken. In this particular case, environmental assessment was performed.  
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2.3.1. Green House Gases emissions 

 

An estimated 18% of global Green House Gases (GHG) emissions arise from 

land use change and forestry. These estimates are uncertain and emission 

estimates range from 2,899 Mt of carbon dioxide to 8,601 Mt (20% of carbon 

dioxide emissions) (Gallejones, Pardo, Aizpurua, & Del Prado, 2015; Rebitzer et 

al., 2004; J. H. Schmidt, 2008). Deforestation is by far the largest component of 

land use changes emissions and, in the land use of tropical forest has changed. 

Drawing on FAO statistics 19,58% of the deforestation has been influenced by 

commercial agriculture. The agriculture as a driver can be complex with 

interaction with other drivers such as road building, logging, primary extraction, 

manufacturing and population growth.  

 

Most public debate about food and deforestation is focused in direct links 

between land use change and the food system and today an emerging 

bioproducts system. Considering the dominance of the tropics in land use change 

(Lambin et al., 2001), this focuses attention on produce from these regions, 

particularly soy and beef from South America and palm oil from South-east Asia. 

This approach to the problem regards deforestation as attributable to USA and 

EU food consumption when world`s consumed food is grown on recently 

converted land. (Ramankutty, 2007). Considering the Global Warming Potential 

and other impact categories is necessary to estimate N2O production due to N-

Fertilizers and residuals during de process. 

 

Estimation of Global Warming Potential (GWP) was developed to allow 

comparisons of the global warming impacts of different GHG. Specifically, it is a 

measure of how much energy the emissions of 1 ton of a gas will absorb over a 

given period, relative to the emissions of 1 ton of carbon dioxide (CO2). The larger 

GWP, the more that a given gas warms the Earth compared to CO2 over that 

period. The time usually used for GWPs is 100 years (IPCC). GWPs provide a 

common unit of measure, which allows analysts to add up emissions estimates 

of different gases (e.g., to compile a national GHG inventory), and allows 
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policymakers to compare emissions reduction opportunities across sectors and 

gases (IPCC, 2006a, 2006c). 

 

Considering the most harmful GHGs, CO2 has a GWP of 1 regardless of the 

period used, because it is the gas being used as the reference. CO2 remains in 

the climate system for a very long time: CO2 emissions cause increases in 

atmospheric concentrations of CO2 that will last thousands of years. Methane 

(CH4) is estimated to have a GWP of 28–36 over 100 years (EPA's U.S. Inventory 

of Greenhouse Gas Emissions and Sinks uses a different value). CH4 emitted 

today lasts about a decade on average, which is much less time than CO2. 

However, CH4 also absorbs much more energy than CO2. The net effect of the 

shorter lifetime and higher energy absorption is reflected in the GWP. The CH4 

GWP also accounts for some indirect effects, such as the fact that CH4 is a 

precursor to ozone, and ozone is itself a GHG. Nitrous Oxide (N2O) has a GWP 

265–298 times that of CO2 for a 100-year timescale. N2O emitted today remains 

in the atmosphere for more than 100 years, on average. Chlorofluorocarbons 

(CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), 

perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) are sometimes called 

high-GWP gases because, for a given amount of mass, they trap substantially 

more heat than CO2. (The GWPs for these gases can be in the thousands or tens 

of thousands) (IPCC, 2006b, 2006c, 2006d). 
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CHAPTER 3 

 

3. Methodology 

 

3.1. Life cycle assessment framework (ISO 14040) 

 

The International Organization for Standardization  identifies four phases for 

conducting a LCA, those are showed in figure 7(b) (International Organization for 

Standardization, 2007; Weidema, 2005): 

 

i) Goal and Scope (functional unit), where the reasons for carrying out 

the study and its intended use are described and where details are 

given on the approach taken to conduct the study.  

ii) Life Cycle Inventory (LCI), where the product system and its constituent 

unit processes are described, and exchanges between the product 

system and the environment are compiled and evaluated. These are 

called elementary flows; include inputs from nature (e.g. extracted raw 

materials, land used, raw materials and so on) and outputs to nature 

(e.g. emissions to air, water, and soil). The amounts of elementary 

flows exchanged by the product system and the environment are about 

one functional unit, as defined in the Goal and Scope phase. 

iii) Life Cycle Impact Assessment (LCIA), where the magnitude and 

significance of environmental impacts associated with the elementary 

flows compiled. This is done by associating the life cycle inventory 

results with environmental impact categories and category indicators. 

LCI results, other than elementary flows, are identified and their 

relationship to corresponding category indicators is determined. LCIA 

has several mandatory elements: selection of impact categories, 

category indicators, and characterization models as well as 

assignment of the LCI results to the various impact categories 

(classification) and calculation of category indicator results 

(characterization).  
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iv) Life Cycle Interpretation, where the findings of the previous two phases 

are combined with the defined goal and scope in order to reach 

conclusions or recommendations. It is important to note that 

Environmental-LCA provides an assessment of potential impacts 

based on a chosen functional unit 

. 

3.2. Goal and scope  

 

The goal of this study was to evaluate the impact of Camelina, Safflower, Crambe 

and Flax derived HR-Jet Fuel on Green House Gases (GHG) emissions 

considering Global Warming Potential as comparative indicator, considering oil-

to-fuel system; following the RED (DIRECTIVE 2009/28/CE) recommendations, 

in that the requirements are:  

 

i) Carbon Dioxide (CO2); The effects were expressed as CO2 equivalent 

using the following coefficients: CO2=1 

ii) methane (CH4); The effects were expressed as CO2 equivalent using 

the following coefficients: CO2=23; and 

iii) nitrous oxide (N2O). The effects were expressed as CO2 equivalent 

using the following coefficients: CO2=296.  

 

The scope of this study holds the entire life cycle from cultivation until transport 

and distribution (to gate). The functional unit to witch the system impacts referred 

was the energy unit contained in HR Biojet fuel (one GJ of Biojet Fuel). The values 

of conversion factors were taken from and JEC E3 database as suggested by 

European harmonized calculation biofuel (BioGrace, 2016). N2O emissions were 

calculated following IPCC tier 1 (IPCC, 2006) as described below. For cultivation 

and oil extraction phases the impacts were evaluated by measured experimental 

data. On the other hand, to evaluate impacts due to oil to HR Biojet Fuel 

transformation phase a model for jet fuel production described by Li, X., & 

Mupondwa, E. (2014) were assumed. Standard data from RED was assumed in 
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order to evaluate transport and distribution. In the system expiation alternative 

uses of byproducts were considered when it was possible.  

 

3.3. Life cycle inventory (LCI) modelling for agriproducts 

 

For operations, we must take in count: 

 

Production and maintenance of farm machinery, It is commonly suggested in 

agricultural LCA that the production of machinery and other capital equipment 

should be included in the inventory because they can have a relevant share of 

the overall impacts.(Acero, Rodríguez, & Ciroth, 2014)  According to the project, 

scoping, site-specific data have been collected from farms in the selected place, 

while more generic data have been used for upstream production of farm inputs 

and downstream activities. Site-specific data on machinery use (use per year, 

expected lifetime, weight, etc.) have been collected from the studied farms in 

order to allocate the impacts of machinery production to the studied crops 

(Cardone et al., 2003; Gallejones et al., 2015; Lapola et al., 2010).  The method 

selected is generally followed in the ecoinvent1 database using software tools as 

openLCA or SimaPro to process information, where it has been implemented with 

a more sophisticated model (specific study of machinery production related 

emissions; detailed materials composition and so on).  The assumptions and data 

conversions for the different life cycle stages of machinery considered in this 

study are explained in the following sections;   

 

Manufacture Energy consumption and materials composition are representative 

of different agricultural machines, and have therefore been used as they appear 

in ecoinvent (Emissions from manufacture are included in ecoinvent). However, 

the reference flow for machinery datasets is a kg of machine, and this has been 

changed to hours or hectares to reflect the data collected in the inventory. When 

                                                           
1 For further information, please visit: http://www.ecoinvent.org/database/database.html. 
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doing so, site-specific data on machinery weight, lifespan and yearly usage have 

been used to parameterize the ecoinvent data in the following way where the first 

element represents the flows recorded in the ecoinvent datasets (Canals, Muñoz, 

McLaren, & Miguel, 2007; Dreyer et al., 2010). The allocation to the total units 

(hours or hectares) used in the machine’s lifetime is done in the ecoinvent 

datasets for field work processes, and thus needs to be removed from there once 

it has been done in the machine’s manufacture. 

 

Maintenance and repairs the considerations done in ecoinvent for maintenance 

(change of tires, mineral oil, filters, batteries, etc.) are considered valid for this 

project. In the case of repairs, an increase of the manufacture materials is 

considered depending on the machine type (Nemecek, Frick, Dubois, & Gaillard, 

2001; Spugnoli & Dainelli, 2013) . For tillage machines this is considered to be 

45% extra material (steel); as specific data on this materials is easily collected in 

the farms (representing the frequency of change of tillage components such as 

harrow tines), this will be used instead(Enrique, Rodríguez, Ii, Raúl, & Serrano, 

2014; Van Der Werf, 2004). Therefore, the steel input in the ecoinvent datasets 

for tillage machines is reduced by 45% and then increased by the calculated site-

specific amount. The data collected from farmers actually shows quite dramatic 

increases in steel consumption when calculated like this, with e.g. increases of 

200-264% (instead of the suggested 45%) for repairs in ploughs and power 

harrows. 

 

Land use associated to farm buildings Nemecek et al. (2004) offer data on space 

requirements for different machines. It has been assumed that a shed is available 

in all farms to shelter all machines, and that a space equivalent to the requirement 

of each machine is provided all year-long. Therefore, the data in m2 offered by 

ecoinvent are directly converted to m2/year for each machine. The m2/year are 

then allocated to the functional output of the machine for one year. Area occupied 

by farm sheds is classified as ‘Occupation, urban, discontinuously built’ in 

ecoinvent. A similar approach has been used for the other buildings in the farm 

used for the studied vegetables. The area used by these buildings has been 
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obtained from the farmers and classified as ‘Occupation, urban, discontinuously 

built’. Specific data for land use by farm buildings are provided in LCA reports for 

the different farms studied. 

 

Use of agricultural machinery (field works) Fuel consumption for the different 

operations has been assessed specifically for the studied farms. This figure has 

then substituted the figures reported in ecoinvent, plus all subsequent emissions 

related to fuel consumption. The same sources used in ecoinvent for fuel 

emissions in agricultural machinery have been used, specifically for CO, HC 

(expressed as NMVOC) and NOx (Nemecek et al. 2004, Table A10), which differ 

substantially respect road vehicles. The emissions of CO, HC, NOx are 

expressed in g/h (Nemecek et al. 2004, Table A10), depending on each different 

operation; these emissions are re-calculated with the duration of the operations 

obtained from the farmers using the parameter rate_h (dividing the duration in 

hours/ha obtained from the farmers by the duration expressed in ecoinvent 

(Nemecek et al. 2004, Table A9). To update fuel-related emissions (CO2, SO2, 

Pb, methane… Nemecek et al. 2004, table 7.1) the parameter rate_fuel (fuel 

consumption per ha in RELU divided by fuel consumption per hectare in 

ecoinvent) is created and used for multiplying inputs (fuel consumption) and 

outputs related to fuel (most air emissions). 

 

Completely representative: duration of operation lies within ±20% of that reported 

in ecoinvent. Partly representative: duration of operation lies within ±21-50% of 

that reported in ecoinvent. Not representative: duration of operation over 50% 

Consideration of manual labor with very few exceptions (e.g. Piringer and 

Steinberg 2006; Nguyen and Gheewala in press) the environmental impacts 

associated with human labor have systematically been excluded from LCA 

studies. The reason most often argued for this is that labor-force maintenance-

related environmental impacts (e.g. food consumption by workers; energy use for 

shelter; etc.) would occur regardless of the studied system (Piringer and 

Steinberg 2006). I.e. that person would still eat (and possibly work elsewhere) if 

the studied system was not in place. Piringer and Steinberg (2006) assess the 
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energy costs of labor in wheat production in the USA, concluding that this is of 

minor importance. According to their findings, labor-related energy would 

represent maximum 7.1% of energy use for wheat if the highest estimate for labor 

energy use is compared to the best estimates (i.e. not highest values) for the 

other items of the energy bill. It should be noted that there is a huge uncertainty 

in this value. In any case, it could be argued that ‘in terms of energy efficiency at 

least, it would be a little unfair to compare the energy balance of non-mechanized 

or partly mechanized systems with fully mechanized ones without accounting for 

human labor input’s (Shabbir Gheewala, 19.06.2007 e-mail communication in 

LCA forum). In this study, we have considered that impacts of maintaining 

humans are not affected by the studied system (i.e. food consumption, housing, 

etc. are excluded from the study), but that work-related transportation is 

increased by the studied system. Hence, an estimation of labor related transport 

has been done for labor-intensive operations. The nature of labor force in 

agricultural sector varies widely between the assessed countries, and so the way 

in which these impacts have been assessed also varies. In any case, the attempts 

done in this study have to be seen only as a first try to assess the relevance of 

labor transport-related impacts, and not as an exhaustive absolute statement of 

environmental impacts related to agricultural human labor in different countries. 

 

Labor-intensive operations First, a focus has been placed on those operations 

that the farmers consider as ‘labor intensive’. These are generally all operations 

that cannot be mechanized, such as harvesting of lettuces, brassica or green 

beans; hand weeding within rows; installation/removal of irrigation infrastructure; 

etc. In the UK and Spain most of these operations coincide (with a trend in Spain 

to perform more operations manually), whereas in Uganda the assessed farms 

show a much lower degree of mechanization, with use of tractors and machinery 

being the exception rather than the rule. However, in Uganda most farm workers 

travel to the field by bike or on foot, and so their transportation impacts have been 

neglected. The labor-intensive operations recorded for the LCA studies do not 

match the labor costs that could be found in the farm accounting books. As a rule 

of thumb, all permanent workers would be omitted from the LCA study, because 

they generally perform operations with high energy use (e.g. mechanized farm 
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operations, where the tractor fuel use will override the fuel use of their private 

cars) or with low labor input per unit of product (e.g. in a packing plant). On the 

other hand, it is usually the temporary workers who perform the labor-intensive 

operations. This study has tried to provide a first estimate of the importance of 

transportation of temporary workers for some of the studied crops. 

 

Moreover, it is fundamental to determine an allocation factor formula in order to 

reassign impact to the mainstream (functional unit) and downstream (byproducts) 

present in agricultural processes (D’Avino et al., 2015; Spugnoli et al., 2012) it 

was used when system expansion was no possible.  

 

Energy approach is one of the best for this dissertation, considering the type of 

product (bio fuel): 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝐻𝑉

(𝑂𝑢𝑡𝑝𝑢𝑡 𝑥 𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝐻𝑉) + (𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠  𝑥 byproducts 𝐿𝐻𝑉)
 (1) 

 

This allocation formula explains how the energy content or lower heating value 

(LHV) is used for the redistribution of the impacts in; yield of the crop and its straw 

or epigeous residues or in further process along the productive chain allocation 

along the productive chain was performed according to (D’Avino et al., 2015).  

 

Figure 10. System boundaries for a cradle-to-farm-gate Life Cycle Assessment 

(LCA) agricultural productions. The figure represents a simplified scheme of all 

the variables considered in the LCA calculations of agricultural productions.(J. H. 

Schmidt, 2008) 
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3.4. Emissions to air in farming phase 

 

Regarding methane, it is not considering following recommendation of FAO and 

other institutions, in agriculture only selected crops has to estimate methane 

emission to air.   

 

N2O emissions estimation, emissions of N2O from the agricultural phase were 

estimated according to the methodology developed by the Intergovernmental 

Panel on Climate Change (IPCC, 2006c) guidelines, chapter 11.  Were consider 

direct and indirect annual N2O emissions from agricultural residuals and fertilizers 

that are calculated using:  

 

i) direct N2O emitted from fertilizer applied, using equation (2);  

ii) indirect N2O emitted from fertilizer applied, using equation (3);  

iii) direct N2O emitted from agricultural residues, using equation (4);  

iv) indirect N2O emitted from agricultural residues, using equation (5). 

http://www.mdpi.com/sustainability/sustainability-07-02915/article_deploy/html/images/sustainability-07-02915-g001.png
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𝐷𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂(𝐹𝑒𝑟𝑡) = (𝐹𝑠𝑛 + 𝐹𝑜𝑛) ∗ 𝐸𝐹1 ∗ 1.5714       (2) 

Were, the direct emission is a function of N inputs (Fsn and Fon that means 

Applied synthetic fertilizer Applied organic fertilizer respectively), emission factor 

for direct emission (EF1) and the N2O / N molar relation (1.5714). There is no 

irrigation and tillage consider. this study ignores animal excretion and consider 

that methane was no produced. 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂(𝐹𝑒𝑟𝑡) = ([(𝐹𝑠𝑛 + 𝐹𝑜𝑛) ∗ 𝐸𝐹5 ∗ 𝐹𝑟𝐿𝑒𝑎𝑐] + [𝐹𝑠𝑛 ∗ 𝐸𝐹4 ∗ 𝐹𝑟𝐺𝑎𝑠]) ∗ 1.5714  (3) 

Were, the indirect emission is a function of N inputs (Fsn and Fon that means 

Applied synthetic fertilizer and Applied organic fertilizer respectively); emission 

factor for N2O emissions from atmospheric deposition of N on soils and water 

surface (EF4); emission factor for N2O emissions from N leaching and runoff 

(EF5); fraction of synthetic fertilizer N that volatilizes as NH3 and NOx, kg N 

volatilized (FrGas); fraction of all N added to/mineralized that is lost through 

leaching and runoff (FrLeac); in   and the N2O / N molar relation (1.5714).  

𝐷𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) = (𝐵𝑔𝑟 ∗ 𝑁𝑏𝑔) ∗ 𝐸𝐹1 ∗ 1.5714      (4) 

Were, the direct and indirect emission is a function of below ground residues 

(Bgr) and its N content (Nbg) 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂(𝐹𝑒𝑟𝑡) = (𝐵𝑔𝑟 ∗ 𝑁𝑏𝑔) ∗ 𝐸𝐹5 ∗ 𝐹𝑟𝐿𝑒𝑎𝑐 ∗ 1.5714     (5) 

 

3.5. Bio-based product systems description and analysis 

 

Considering all possibilities in figure 12, a few were considered in the systems 

under study as show below:  
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Figure 11.  Generalized system scheme 

 

 

 

3.5.1. Camelina crop 

 

Camelina can be grown in a variety of land types, at low fertilizer application and 

lower maintenance costs, and has been grown with virtually no herbicides or 

pesticides (Li & Mupondwa, 2014) and extra irrigation was no required. The 

seeding rates, yield, and fertilizer application rate used in this study are average 

data from experimental units located in Bologna and Pisa- Italy, along three years 

(2013-2015) shown in Table 6. Emission to air were assumed that only N2O and 

CO2 were produced along farming phase. In the case of emissions to water, 

Nitrogenous, Phosphorous and its consequent chemical oxygen demand were 

no considered. Emissions of N2O from the agricultural phase were estimated 

according to the methodology developed by the Intergovernmental Panel on 

Climate Change (IPCC) guidelines, chapter 11, using formulas 2,3,4,5.  
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Considering Camelina by products, two of them were considered:  

 

i) Camelina derived cake, according to several studies it's useful to be 

blended into animal and fish feed (Frame et al., 2007; Gibbons & 

Hughes, 2011; Peiretti & Meineri, 2007), indeed, FDA has approved 

the use of camelina meal in animal and fish until of 10% w/w. in this 

particular case, camelina meal has been used to evaluate its impact 

replacing fish meal into trout feed (10%);  

ii) Camelina straw, it can be used potentially for animal bedding or making 

fiber products (Li & Mupondwa, 2014), similar to flax straw. However, 

an industrial application is not known in Italy, consequently this study 

ignores alternative products from camelina straw, that can be 

considered zero emission waste.  

 

3.5.2. Flax crop 

 

Flax can be grown in a variety of land types, at low fertilizer application and lower 

maintenance costs, and has been grown with virtually no herbicides or pesticides 

and extra irrigation was no required. The seeding rates, yield, and fertilizer 

application rate used in this study are average data from three years (2013-2015) 

surveys carried out in Bologna and Pisa- Italy, shown in Table 7. Emission to air 

were assumed that only N2O and CO2 were produced along farming phase 

following FAO recommendations. In the case of emissions to water, Nitrogenous, 

Phosphorous and its consequent chemical oxygen demand were considered. 

 

Emissions of N2O from the agricultural phase were estimated according to the 

methodology developed by the Intergovernmental Panel on Climate Change 

(IPCC) guidelines, chapter 11, described in point 3.4.  Flax straw can be used 

potentially for animal bedding or making fiber products, for paper, bio-building 

and so on (Kissinger et al., 2007; Yan et al., 2014). Actually, an industrial 

application in Italy was to use flax straw into paper pulp mill. On the other hand, 
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flax cake was no considered as by products instead it was considered as zero 

residues waste. 

 

3.5.3. Crambe crop 

 

Crambe can be grown in a variety of land types, at low fertilizer application and 

lower maintenance costs, and has been grown with virtually no herbicides or 

pesticides and extra irrigation was no required. The seeding rates, yield, and 

fertilizer application rate used in this study are average data from experimental 

units located in Bologna and Pisa- Italy, along three years (2013-2015) shown in 

Table 8. Emission to air were assumed that only N2O and CO2 were produced 

along farming phase. In the case of emissions to water, Nitrogenous, 

Phosphorous and its consequent chemical oxygen demand were no considered. 

Emissions of N2O from the agricultural phase were estimated according to the 

methodology developed by the Intergovernmental Panel on Climate Change 

(IPCC) guidelines, chapter 11, using formulas 2,3,4,5. Considering Crambe by 

products, there was no considered any of them, them were no usable at this 

moment in industrial applications.  

 

3.5.4. Cartamo crop 

 

Cartamo can be grown in a variety of land types, at low fertilizer application and 

lower maintenance costs, and has been grown with virtually no herbicides or 

pesticides and extra irrigation was no required. The seeding rates, yield, and 

fertilizer application rate used in this study are average data from experimental 

units located in Bologna and Pisa- Italy, along three years (2013-2015) shown in 

Table 9. Emission to air were assumed that only N2O and CO2 were produced 

along farming phase. In the case of emissions to water, Nitrogenous, 

Phosphorous and its consequent chemical oxygen demand were no considered. 

Emissions of N2O from the agricultural phase were estimated according to the 

methodology developed by the Intergovernmental Panel on Climate Change 

(IPCC) guidelines, chapter 11, using formulas 2,3,4,5 in point 3.4.  



59 
 

 

Considering Cartamo by products, two of them were considered:  

 

i) Cartamo derived cake, according to several studies it's useful to be 

blended into animal and fish feed (Frame et al., 2007; Gibbons & 

Hughes, 2011; Peiretti & Meineri, 2007), this cake is very like 

camelina´s one. Indeed, considering that FDA has approved the use of 

camelina meal in animal and fish until of 10% w/w. in this particular 

case, camelina meal has been used to evaluated its impact replacing 

fish meal into trout feed (10%) and several studies Cartamo cake can 

be used until 10% w/w (Clementi et al., 2014; Ragni et al., 2015);  

ii) Cartamo straw, it can be used potentially for animal bedding or making 

fiber products (Li & Mupondwa, 2014), similar to flax straw. However, 

an industrial application is not known in Italy, consequently this study 

ignores alternative products from camelina straw, that can be 

considered zero emission waste.  

 

 

3.5.5. Oil extraction 

  

Oil extraction was performed by a pressing plant (double extraction), with a 

nominal power of 18 kW, a working time of 900 h year -1 and a capacity of 160 kg 

of seeds h-1. The residual oil content in the press cake was around 10%, 

confirming that around of 90% of the total oil content had been extracted. 

Electricity consumption for seed crushing and defatting was 0.324 MJ kg-1 of seed 

and considering a CO2 release of 129.19 g CO2eq MJ-1for electricity production 

at low voltage (JEC E3 database). The choice of applying the mechanical 

pressing extraction process (instead of solvent-defatting process) achieved a 

defatted seed meal with a higher nutritional value due to the residual oil content 

that is used to replace fish meal, allowing a system expiation in order to perform 

a more accurate evaluation (D’Avino et al., 2015).  
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3.5.6. Transformation of oils (Jet Fuel) 

 

There are two common alternative fuel technologies for producing two types of 

jet fuels: Fischer–Tropsch (FT) fuels to replace conventional kerosene fuels and 

hydro-processed renewable jet (HRJ) fuels made from hydro-processed oils. 

Camelina, Cartamo Flax and Crambe are good sources for alterative jet fuels that 

has drawn attention from commercial ventures and airlines (Moser, 2010). The 

first step in the oil-to-HRJ conversion is the removal of oxygen via 

decarboxylation and hydrodeoxygenation mechanisms (Kalnes et al., 2010). 

Hydrogen is a required reagent in the decarboxylation pathway. Subsequently, 

selective cracking and isomerization are required to reduce the carbon number 

into the jet range and achieve key jet fuel properties such as freeze and flash 

points (IATA, 2010). 

There are also many catalytic options to control the isomerization and 

hydrocracking steps. The primary inputs into the HRJ production process are 

similar to a typical refining system, and include steam, natural gas, cooling water, 

and electrical power. To determine the range of mass and energy input of 

camelina derived HRJ, two scenarios were commonly used from literature (EPA, 

2013; Stratton, 2010) which were both modified based on soybean oil processing. 

Water and natural gas assumptions were adapted from an industrial scale-up by 

Miller and Kumar (2013). In this case, scenario I was assumed in order to assess 

non-food crops oils sustainability. 
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Figure 12. Data input for camelina derived HR Jet fuel, sources: (Li & Mupondwa, 

2014; Miller & Kumar, 2013) 

 

 

 

3.6. Data Analysis 

 

 

To evaluate the similarities within results, two types of test were performed: 

 

i) Student´s t test for compared means between tested sites and reported 

comparison data. This test (as described below) assumes: A normal 

(gaussian) distribution for the populations of the random errors, and 

there is no significant difference between the standard deviations of 

both population samples. 

  

i) Metric Multidimensional Scaling (MDS), this clustering test makes 

similarities measurements based on the distance within the given 

variables, to make clear the crops and sites similarities in terms of their 

yield, NER, land use, oil content and GWP.  
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CHAPTER 4 

 

4. Results. 

 

4.1. LCA on Camelina 

 

Global Warming Potential along the productive chain of Camelina was mostly 

influenced by farming phase. In figure 13 it is observable mean values of GWP 

and energy requirement of Camelina until oil extraction in the system frontiers, 

using energy based allocation (considering mass and energy flows). 

 

Table 6. Characterization of the agricultural phase input and outputs related to a 

hectare of Camelina. Reporting mean and relative standard deviation of three 

years data. (DM dry matter; N nitrogenous content). 

Inputs and outputs Unit Bologna Pisa 

Farming inputs  Mean RSD (%) Mean RSD (%) 

Seeds kg/ha 12,50 0,00 12,50 0,00 

Organic N (Urea) kg/ha 16,00 43,31 0,00 0,00 

Inorganic N (Anhydrous ammonia) kg/ha 22,33 41,16 66,00 34,00 

P
2
O

5
 kg/ha 0,00 0,00 76,33 8,00 

K
2
O kg/ha 0,00 0,00 53,33 87,00 

Pesticide kg/ha 0,00 0,00 0,07 0,00 

Diesel kg/ha 167,00 0,00 118,67 13,00 

Farming outputs 
 

Mean RSD (%) Mean RSD (%) 

Seed yield kg/ha 533,33 31,20 833,33 8,00 

Above ground residues kg/ha 2727,40 34,51 1667,67 9,00 

Below ground residues kg/ha 513,76 39,20 394,84 26,00 

DM seed oil % 39,37 2,41 35,09 16,00 

Seed LHV MJ/kg 23,93 1,22 21,70 5,00 

DM Below ground residues N % 1,12 18,75 0,55 18,00 
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In Table 6, it is shown the comparative requirements of the tested sites along 

three years (2013-2015). The most important things to point out, regarding 

farming phase inputs and outputs were: 

 

i) the lower yield in Bologna, it was around 36% compared with Pisa one;  

ii) the diesel consumption in Bologna that was 29% higher than Pisa; and  

iii) Fertilizer used in Bologna that were lower than Pisa in every trial. 

 

Furthermore, Pisa has required phosphates and potassium fertilizer that do not 

contribute to N2O production, however, they contribute to GWP and energy 

requirement as well as nitrogenized ones.   

 

At the agricultural stage, it is noticeable that GWP per hectare, considering only 

inputs, present no difference in mean values. On the other hand, the variability 

among data is greater in Bologna due to organic and inorganic N-fertilizers used, 

and the variability observed in Pisa is mainly influenced by potassium fertilized 

applied, diesel consumption and inorganic N-fertilizers used. (As shown in tables 

7 and 8). 
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Table 7. Camelina GHG (kg of CO2eq) for input in farming phase (Bologna) 
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Table 8. Camelina GHG (kg of CO2eq) for input in farming phase (Pisa) 
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Considering total GWP associated to a hectare (inputs and emissions to air), the 

most influencing input was Diesel in Bologna and Pisa, however in Bologna its 

influence is 1,6 folds higher than Pisa; the second factor to take in count is GWP 

due to N2O emission to air that is higher in Pisa (100 kgCO2eq/ha more than 

Bologna). Concluding that Pisa has produced 11% more GHG emission per 

hectare than Bologna in farming phase. 

 

Figure 13. Camelina system considering oil as mainstream product and meal and 

straw as byproducts. 
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In this analysis, N2O emission to air were calculated in base of N-fertilizers and 

below ground residues (N-content) in farming stage (according to formulas 2-5). 

These results have shown that Camelina grown in Pisa produces almost 36% 

more emission of N2O to air (1,68 kg/ha) than Bologna (figure 14). The variability 

or increasing of N2O emission is principally due to the difference on N-fertilizers 

applied (66 kg/ha in Pisa and 38,2 kg/ha in Bologna, no differencing whether it 

was organic or inorganic ones) despising whether it was direct or indirect emitted 

as presented in figure 14. On the other hand, below ground residues has 

demonstrated no greater influence on results. Thus, variability is directly 

influenced by the same factors pointed out before. 

 

Figure 14. N2O emission from fertilizers use and below ground residues of 

Camelina. 

 

 

 

Considering that LCA results are discussed based on GWP. It was computed in 

term of grams of CO2 as the equivalent substance released into atmosphere (only 

N2O and CO2 in this case, for emission to air produced by farming phase). It is 
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noticeably that the diesel contribution is particularly high in Bologna (Figure.15), 

influencing negatively its GHG emissions. However, referring GHG to a hectare 

the results are similar between tested sites, counting the different factor 

influencing results. On the contrary, referring to the yield (grains), there were 

great differences, and Bologna had the lower yield between the compared sites 

(see table 6) influencing negatively GWP results along the chain. It has been 

observed that N-fertilizers use is one of the most important factor influencing 

agricultural LCA results. Regarding that, N-fertilizer use in Bologna (closer to 38 

kg/ha), is noticeably lower than in Pisa. However, diesel influence over GHG is 

greater than N-fertilizer in Bologna as showed in Figure 16. 

 

Figure 15. Relative Global Warming Potential referred to a kilogram of grain 

produced (Camelina). 

 

 

 

In the extraction phase, the oil and meal production were mainly influenced by oil 

content and extraction efficiency that increase the variability saw in farming 

phase, considering that oil content in Bologna (39,4%) was high that Pisa 

(35,09%) as shown in table 6. Contrastingly, oil produced in bologna was lower 
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due to it low yield. As consequence, electricity needed to extract oil in Pisa was 

higher (14%) due to a lower oil content raising its GWP as shown in table 9. 

Figure 16. Emission for a kilogram of grain (Camelina) 

 

 

 

Considering the GWP of oil and meal production, before allocation, in mean 

Bologna impact was lower that Pisa (15%). Moreover, GWP is directly influenced 

by farming phase that represent over 95% of impact of oil and meal in both sites, 

as shown in table 10. On the other hand, referring GWP to functional unit it is 

noticeable that Pisa reduces its impact due to a greater production compared to 

Bologna as shown in table 11. 
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Table 9. Extraction production of oil and meal and electricity consumption of 

Camelina. 

 

Extraction 

phase 

G
ra

in
 (
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) 
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il 
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/S
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(k
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B
O

LO
G

N
A

 

2013 590,00 40,30% 214,70 8373,30 375,30 8980,93 0,89 0,36 

2014 500,00 39,40% 181,63 7083,73 318,37 7618,50 0,89 0,36 

2015 538,89 38,43% 193,46 7544,78 345,43 8266,21 0,90 0,36 

P
IS

A
 

2013 760,00 39,80% 277,05 10805,01 482,95 11556,96 0,89 0,36 

2014 810,00 36,49% 279,45 10898,55 530,55 12696,06 0,94 0,35 

2015 870,00 28,98% 229,20 8938,98 640,80 15334,23 1,23 0,26 

 

Table 10. Total GWP of Camelina Oil until extraction phase. 

 

GWP GWP grain GWP heat GWP Electricity Total (kg CO2eq) 

BOLOGNA 

2013 1041,55 3,42 24,70 1069,67 

2014 773,15 2,89 20,93 796,97 

2015 1228,82 3,08 22,56 1254,46 

PISA 

2013 829,71 4,41 31,81 865,93 

2014 1349,79 4,45 33,91 1388,15 

2015 1336,76 3,65 36,42 1376,83 

 

After performing an energy based allocation (see equation 1), GHG emission 

from Camelina derived bio-jet fuel were 95,76 gCO2eq/MJ in Pisa and 130,02 

gCO2eq/MJ in Bologna. Taking as reference value of 83,8 gCO2eq/MJ of biofuel 



71 
 

recommend by RED, there was no reduction. On the other hand, comparing 

results with conventional Jet Fuel reported by Lokesh et. Al., there was a 

reduction of around 9% was observed in Pisa and an increase of 22% was 

observed in Bologna.  

 

Moreover, considering system expansion (camelina meal replacing fish meal in 

fish feed production (1:1) until 10% w/w), GHG emission from Camelina jet fuel 

were 76.29 gCO2eq/MJ in Pisa and 110,01 gCO2eq/MJ in Bologna, regarding that 

fish meal has an impact 1,16 times high that Camelina meal regarding GWP. 

Taking as reference value of 83,8 gCO2eq/MJ of biofuel recommend by RED, 

there was a considerable reduction only at Pisa (around 20%). While comparing 

results with conventional Jet Fuel reported by Lokesh, there was a reduction of 

38% was observed in Pisa and a minimal increase was observed in Bologna 

compared with fossil origin jet fuel. System expansion is described in figures 17-

18. 

 

Table 11. Allocated GWP of Camelina derived HR Jet Fuel 

 

Energy based Allocation 

Bologna Pisa 

Not allocated Allocated Not allocated Allocated 

Farming 214,62 102,41 180,34 68,53 

Oil extraction 5,44 2,61 5,88 2,23 

Jet Fuel production 24,00 24,00 33,00 24,00 

Transport 1,00 1,00 1,00 1,00 

Total (gCO2/MJ) 245,06 130,02 217,22 95,76 
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Figure 17. System expansion of Camelina derived jet fuel in Bologna based on 

the functional unit. 

 

 

 

Figure 18. System expansion of Camelina derived jet fuel in Pisa based on the 
functional unit. 
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Expanding system, using Camelina meal as replace for fishmeal, it has reduced 

impact in both sites. However, reduction in Bologna is not enough to arrive to 

fossil Jet Fuel. In Pisa, a greater reduction has been performed replacing 

Camelina meal, reducing emission until 76,29 gCO2/MJ that is lower than fossil 

Jet Fuel and Biofuel reference value 83gCO2/MJ (RED). It is important to point 

out that system expansion has increase the environmental performance in both 

cases, furthermore, Pisa Jet Fuel has potential to reduce GWP in aircrafts (almost 

30 gCO2eq/MJ) as shown in figure 19. 

 

Figure 19. System expansion results and comparison with several references 

(Lokesh et al., 2015; Peng et al., 2015, RED). 

 

 

 

According to Lokesh and coworkers (2015) GHG emitted by Camelina Jet fuel 

production were 101 gCO2eq/MJ, our results have presented a considerable 

reduced GHG emission in Pisa using allocation and system expansion methods. 

The worst scenery (Bologna) has presented no reduction compared with fossil jet 

fuel nor camelina derived jet fuel produced in Canada. Regarding the Net Energy 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

BOLOGNA PISA Biodisel (Red) Jet Fuel (Fossil) Camelina JF (Can)

gC
O

2
eq

/M
J 

o
f 

Je
tF

u
el

Allocated Expanded



74 
 

Ratio (NER), Lokesh and coworker (2015) reported 1,16 MJ Fossil/ MJ of Jet Fuel 

and Li, X., & Mupondwa, E. (2014) reported 1,25 MJ Fossil/ MJ of Jet Fuel. In our 

results Pisa NER is closer to these results (1,29 MJ Fossil/ MJ of Jet Fuel), 

whereas, in Bologna it was considerable higher (2,13 MJ Fossil/ MJ of Jet Fuel) 

in concordance with GWP results. All results including energy balance and GHG 

emission were strongly influenced by Agricultural stage and its variable inputs 

requirement for GWP and NER.  
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4.2. LCA on Flax 

 

Global Warming Potential along the productive chain of Flax is mostly influenced 

by farming phase. In figure 20 it is observable mean values of GWP and energy 

requirement of Flax until oil extraction under the system frontiers, then using 

energy based allocation (mass and energy flow were considered) to reduce 

mainstream GWP.  

 

Table 12. Characterization of the agricultural phase input and outputs related to 

a hectare of Flax. Reporting mean and relative standard deviation of three years 

data. (DM dry matter; N nitrogenous content). 

 

Inputs and outputs Unit Bologna Pisa 

Farming inputs  Mean RSD (%) Mean RSD (%) 

Seeds kg/ha 30,00 0,00 39,22 3,00 

Organic N (Urea) kg/ha 16,00 43,31 0,00 0,00 

Inorganic N (Anhydrous ammonia) kg/ha 22,33 41,20 82,66 9,77 

P2O5 kg/ha 0,00 0,00 53,33 86,66 

K2O kg/ha 0,00 0,00 53,33 87,00 

Pesticide kg/ha 0,00 91,00 0,67 86,66 

Diesel kg/ha 167,00 0,00 118,67 16,54 

Farming outputs  Mean RSD (%) Mean RSD (%) 

Seed yield kg/ha 1633,33 39,83 1566,67 7,30 

Above ground residues kg/ha 6233,46 22,80 3891,03 5,08 

Below ground residues kg/ha 813,04 25,00 381,65 25,00 

DM seed oil % 44,40 1,62 45,67 1,22 

Seed LHV MJ/kg 25,11 1,01 22,24 5,00 

DM Below ground residues N % 0,81 15,07 0,40 37,68 
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In Table 12, it has been shown the comparative requirements of the tested sites 

along three years (2013-2015). The most important things to point out, regarding 

farming phase inputs were:  

 

i) the yield in Bologna and Pisa were very close, however in Bologna it 

was around 4% higher that Pisa one;  

ii) the diesel consumption in Bologna that was 29% higher than Pisa;  

iii) Fertilizer used in Bologna were lower (only N-fertilizers were applied); 

and; 

iv) In Pisa, few pesticides were used contrastingly with Bologna. 

 

Considering farming outputs, there is a big difference that influence GWP: adobe 

ground residues in Bologna is considerable higher (almost 100% higher than 

Pisa) as presented in table 7. Furthermore, Pisa has required phosphates and 

potassium fertilizers, that do not contribute to N2O production, however, they 

contribute to GWP as well as nitrogenated ones, considering their production.   

 

At the agricultural stage, these are the inputs to be under control in order to 

reduce GHG emissions in tested zones. Furthermore, it is noticeable that GWP 

per hectare, considering only inputs, present no difference in mean values. On 

the other hand, the variability among data is greater in Bologna due to organic 

and inorganic N-fertilizers used, and the variability observed in Pisa is mainly 

influenced by potassium fertilized applied, diesel consumption and inorganic N-

fertilizers used (as shown in table 13-14). 
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Table 13. Flax GHG (kg of CO2eq) for input in farming phase (Bologna). 
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Table 14. Flax GHG (kg of CO2eq) for input in farming phase (Pisa). 
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Considering total GWP associated to a hectare (inputs and emissions to air), the 

most influencing input was Diesel in Bologna and in Pisa was N2O emission, 

however in Bologna the influence of diesel was around 1.6 folds higher than Pisa 

and the second factor to take in count is GWP due to N2O emission in Bologna. 

N2O emission was evident higher in Pisa (263,21 kgCO2eq/ha more than 

Bologna). Concluding that Pisa has produced 24% more GHG emission per 

hectare than Bologna. 

 

Figure 20. Flax system considering oil as mainstream product and meal and 
straw as byproducts. 

 

 

 

In this analysis, N2O emission to air were calculated in base of N-fertilizers and 

below ground residues (% N-content) in farming stage (according to formulas 2-

5). These results have shown that Flax crop in Pisa produces around 50% more 

emission of N2O (1,771 kg/ha) than Bologna (0,894 kg/ha) as shown in figure 14. 

The variability or increasing of N2O emission is principally due to the difference 
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on N-fertilizers applied (82,66 kg in Pisa and 38,20 in Bologna, considering 

whether it was organic or inorganic ones) despising whether it was direct or 

indirect emitted as presented in figure 21. On the other hand, below ground 

residues has demonstrated no greater influence on results. Thus, variability is 

directly influenced by the same factors pointed out in farming phase. 

 

Figure 21. N2O emission from fertilizers use and below ground residues of Flax. 

 

 

 

Considering that GHG emission results are discussed based on GWP and it was 

computed in term of grams of CO2 as the equivalent substance released into 

atmosphere (only N2O and CO2 in this case, for emission to air produced by 

farming phase). It is noticeably that the diesel contribution is particularly high in 

Bologna (Figure 22), influencing negatively its GHG emissions. However, 

referring GHG to a hectare the results are similar between tested sites, counting 

the different factor influencing results. On the contrary, referring to the yield, there 
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are great differences, and Bologna had the greater yield between the compared 

sites (see table 12), rather it is close to yield in Pisa. It has been observed that 

N-fertilizers use is one of the most important factor influencing agricultural LCA 

results. Regarding that, N-fertilizer use in Bologna (closer to 38 kg/ha), is 

noticeably lower than in Pisa (82,66 kg/ha). However, diesel influence over GHG 

is greater than N-fertilizer in Bologna as showed in figure 22 and figure 23. 

 

Figure 22. Relative Global Warming Potential referred to a kilogram of grain 
produced (Flax). 
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In the extraction phase, the oil and meal production are mainly influenced by oil 

content and agro-production of seeds that increase the variability saw in farming 

phase considering that oil content in Bologna (44,40%) was lower than Pisa 

(45,67%) as shown in table 6. Contrastingly, oil produced in Bologna was lower 

due to it low yield, however, there was merely difference with Pisa. As 

consequence, electricity needed to extract oil in Pisa was higher (2,20%) due to 

a lower oil content raising its GWP as shown in table 15.  

 

Figure 23. Emission for a kilogram of grain of Flax (considering only extraction 
phase). 

 

 

 

When the GWP of a hectare is referred to yield (figure 23), the influence of inputs 
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shown). On the other hand, the GWP of a kilogram in clearly higher in Pisa 

(12,50%) as the results of GWP per hectare, this is due to GHG from N2O and 

inorganic N-fertilizers, in this case, yield and oil content have no greater influence 

over results in figure 23. The difference was over that 12,50% affecting negatively 

to environmental performance of Camelina grown in Pisa, however the 

performance of Flax in Pisa is also great compared with other crops in study. 

 

Table 15. Extraction production of oil and meal and electricity and heat 
consumption for Flax chain. 
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 2013 1000,000 43,7% 417,069 16265,708 582,931 13949,529 0,777 0,417 0,065 

2014 2300,000 45,8% 978,968 38179,768 1321,032 31612,286 0,761 0,426 0,064 

2015 1600,000 43,8% 645,356 25168,881 954,644 22844,633 0,803 0,403 0,068 

P
IS

A
 

2013 1500,000 46,4% 631,995 24647,805 868,005 20771,360 0,769 0,421 0,065 

2014 1700,000 45,4% 753,360 29381,040 946,640 22653,095 0,731 0,443 0,061 

2015 1500,000 45,3% 615,624 24009,322 884,376 21163,126 0,789 0,410 0,066 

 

 

Considering the GWP of oil and meal production inputs and outputs as shown in 

table 15, before allocation, in mean Bologna impact was lower that Pisa (around 

15%). Moreover, GWP is directly influenced by farming phase that represent over 

95% of impact of oil and meal in both sites, as shown in table 16.  
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Table 16. Total GWP of Flax Oil until extraction phase (not allocated) 

 

Total GWP referred to 1 ha GWP grain GWP heat GWP Electricity Total (kgCO2 eq) 

BOLOGNA 

2013 1041,55 3,42 24,70 1069,67 

2014 773,15 2,89 20,93 796,97 

2015 1228,82 3,08 22,56 1254,46 

PISA 

2013 829,71 4,41 31,81 865,93 

2014 1349,79 4,45 33,91 1388,15 

2015 1336,76 3,65 36,42 1376,83 

  

On the other hand, referring GWP to oil mass and oil energy content it is 

noticeable that Bologna reduces its impact due to a greater production compared 

to Pisa as shown in table 17. 

 

Table 17.  GWP of oil production referred to mass and energy output (not 
allocated) 

 

Not allocated GWP kg CO2/kg oil gCO2/MJ oil 

BOLOGNA 

2013 2,62 67,29 

2014 0,97 24,79 

2015 2,03 52,13 

Mean 1,87 48,07 

PISA 

2013 2,13 54,65 

2014 1,96 50,26 

2015 2,38 61,00 

Mean 2,16 55,30 
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After performing an energy based allocation to jet fuel system (see equation 1), 

GHG emission from Camelina derived bio-jet fuel were 73,67 gCO2eq/MJ in Pisa 

and 62,60 gCO2eq/MJ in Bologna. Taking as reference value of 83,8 gCO2eq/MJ 

of biofuel recommend by RED, there was quite reduction in Pisa and a bit greater 

reduction in Bologna. On the other hand, comparing results with conventional Jet 

Fuel reported by Lokesh (106 gCO2eq/MJ), there was a considerable reduction 

of around 30% in Pisa and 41% in Bologna.  

 

 

Figure 24. System expansion of Flax derived jet fuel in Bologna based on the 
functional unit. 
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Figure 25. System expansion of Flax derived jet fuel in Pisa based on the 
functional unit. 

 

 

 

 

 

Expanding system, using Flax straw as replace for eucalyptus wood into paper 

pulp mill (figures 23-24), it has reduced impact in both sites. GWP is considerable 

lower in every scenario under system expansion. In the best case, Bio-jet fuel 

produced in Bologna had a GWP of -148,44 gCO2eq/MJ that means that Bio jet 

fuel produced in Bologna and using its by-product (straw) as feedstock to produce 

paper can reduces the GHG (assuming replace 1:1 into paper pulp mill). On the 

other hand, Jet Fuel produced in Pisa has a GWP of 81,77 gCO2eq/MJ. 
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Table 18. Allocated GWP of Flax derived HR Jet Fuel  

 

Energy based Allocation 

Bologna Pisa 

Not allocated Allocated Not allocated Allocated 

Farming 61,84 33,18 81,11 44,31 

Oil extraction 6,47 3,47 6,25 3,41 

Jet Fuel production 24,95 24,95 24,95 24,95 

Transport 1,00 1,00 1,00 1,00 

Total (gCO2/MJ) 94,26 62,60 113,31 73,67 

 

 

Figure 26. System expansion of bio-jet fuel chain, results and comparison with 

several references of biofuels (Lokesh et al., 2015; Peng et al., 2015, RED). 
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It is important to point out that system expansion has increase the environmental 

performance in Bologna, it is due to a bigger straw production in this site that 

reduces the environmental impact of it (see table 12), furthermore, Pisa Jet Fuel 

has potential to reduce GWP in aircrafts (almost 25 gCO2eq/MJ). Moreover, Pisa 

performance was better considering an energy based allocation respect to the 

system expansion. 

 

According to Lokesh and coworkers (2015) GHG emitted by Camelina Jet fuel 

production were 101 gCO2eq/MJ, our results have presented a considerable 

reduced GHG emission in Bologna and Pisa using allocation and system 

expansion methods. The worst scenery (Pisa), under energy based allocation, 

has presented a greater reduction compared with fossil jet fuel (30%) nor 

Camelina derived jet fuel produced in Canada (26,7%). In Bologna, system 

expansion has produced a net reduction of -148,4 gCO2eq/MJ that makes 

feasible to produce bio-jet fuel to save emission in airlines operation. 

 

 Regarding the Net Energy Ratio (NER), Lokesh and coworker (2015) reported 

1,16 MJ Fossil/ MJ of Jet Fuel and Li, X., & Mupondwa, E. (2014) reported 1,25 

MJ Fossil/ MJ of Jet fuel derived from Camelina oil. In our results Pisa NER is 

closer to these results (1,18 MJ Fossil/ MJ of Jet Fuel), whereas, in Bologna it 

was considerable lower (1,03 MJ Fossil/ MJ of Jet Fuel) in concordance with 

GWP results. All results including energy balance and GHG emission were 

strongly influenced by Agricultural stage and its variable inputs requirement for 

GWP and NER.  
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4.3. LCA on Crambe 

 

Considering Crambe chain, it was mostly influenced by farming phase as pointed 

out before. In figure 27 it is observable mean values of GWP and energy invested 

to obtain oil and meal under the system frontiers, then using energy based 

allocation (mass and energy flow were considered) to reduce mainstream GWP.  

 

Table 19.  Characterization of the agricultural phase input and outputs related to 

a hectare of Crambe. Reporting mean and relative standard deviation of three 

years data. (DM dry matter; N nitrogenous content) 

 

Inputs and outputs Unit Bologna Pisa 

Farming inputs  Mean RSD (%) Mean RSD (%) 

Seeds kg/ha 12,50 0,00 12,50 0,00 

Organic N (Urea) kg/ha 16,00 43,31 0,00 0,00 

Inorganic N (Anhydrous ammonia) kg/ha 22,33 41,16 59,50 46,00 

P2O5 kg/ha 0,00 0,00 74,50 8,00 

K2O kg/ha 0,00 0,00 40,33 87,00 

Pesticide kg/ha 0,00 0,00 0,05 0,00 

Diesel kg/ha 167,50 0,00 118,67 13,00 

Farming outputs 
 

Mean RSD (%) Mean RSD (%) 

Seed yield kg/ha 1410,33 31,20 630,00 8,00 

Above ground residues kg/ha 3200,40 38,51 1570,67 29,00 

Below ground residues kg/ha 530,06 39,00 350,84 20,00 

DM seed oil % 33,70 15,41 23,09 30,00 

Seed LHV MJ/kg 22,83 1,22 22,70 5,00 

DM Below ground residues N % 0,60 18,75 0,80 18,00 
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In Table 19, it has been shown the comparative inputs of the tested sites along 

three years (2013-2015). The most important things to point out were:  

 

i) the yield in Bologna extremally higher than the yield in Pisa, at least 

2,25 folds high;  

ii) the diesel consumption in Bologna that was 14% higher than Pisa;  

iii) Fertilizer used in Bologna were lower (only N-fertilizers were applied); 

and; 

iv) In Pisa, few pesticides were used contrastingly with Bologna, where 

there was almost no pesticide use. 

 

Considering farming outputs, there was a big difference that influence GWP in 

every step: adobe ground residues in Bologna is considerable higher (almost 4,5 

folds higher than Pisa) as presented in table 8. Furthermore, Pisa has required 

phosphates and potassium fertilizers, that did not contribute to N2O production, 

however, they have contributed to GWP as well as nitrogenized ones, considering 

their production.   

 

At the agricultural stage diesel consumption and fertilizes use were the inputs to 

be under control to reduce GHG emissions in tested zones. Furthermore, it was 

noticeable that GWP per hectare, considering only inputs, present no difference 

in mean values. On the other hand, the variability among data was greater in 

Bologna due to organic and inorganic N-fertilizers used, and the variability 

observed in Pisa was mainly influenced by potassium fertilized applied, diesel 

consumption and inorganic N-fertilizers used (as shown in table 20-21). 
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Table 20. Crambe GHG (kg of CO2eq) for input in farming phase (Bologna). 
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Table 21. Crambe GHG (kg of CO2eq) for input in farming phase (Pisa). 
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Considering total GWP associated to a hectare (inputs and emissions to air), the 

most influencing input was Diesel in Bologna and; in Pisa was N2O emission, 

however in Bologna the influence of diesel was around 1,6 folds higher than Pisa 

and the second factor to take in count is GWP due to N2O emission in Bologna. 

N2O emission was evident higher in Pisa (263,21 kgCO2eq/ha more than 

Bologna). Concluding that Pisa has produced 24% more GHG emission per 

hectare than Bologna. 

 

Figure 27. Crambe system considering oil as mainstream product and meal and 
straw as byproducts. 

 

 

 

In this analysis, N2O emission to air were calculated in base of N-fertilizers and 

below ground residues (% N-content) in farming stage (according to formulas 2-

5). These results have shown that Flax crop in Pisa produces around 50% more 

emission of N2O (1,771 kg/ha) than Bologna (0,894 kg/ha) as shown in figure 14. 

The variability or increasing of N2O emission is principally due to the difference 
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on N-fertilizers applied (82,66 kg in Pisa and 38,20 in Bologna, considering 

whether it was organic or inorganic ones) despising whether it was direct or 

indirect emitted as presented in figure 21. On the other hand, below ground 

residues has demonstrated no greater influence on results. Thus, variability is 

directly influenced by the same factors pointed out in farming phase. 

 

Figure 28. N2O emission from fertilizers use and below ground residues of 
Crambe. 

 

 

 

 

Considering that GHG emission results are discussed based on GWP and it was 

computed in term of grams of CO2 as the equivalent substance released into 

atmosphere (only N2O and CO2 in this case, for emission to air produced by 

farming phase). It is noticeably that the diesel contribution is particularly high in 

Bologna (Figure 22), influencing negatively its GHG emissions. However, 

referring GHG to a hectare the results are similar between tested sites, counting 

the different factor influencing results. On the contrary, referring to the yield, there 
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are great differences, and Bologna had the greater yield between the compared 

sites (see table 19), rather it is close to yield in Pisa. It has been observed that 

N-fertilizers use is one of the most important factor influencing agricultural LCA 

results. Regarding that, N-fertilizer use in Bologna (closer to 38 kg/ha), is 

noticeably lower than in Pisa (82.66 kg/ha). However, diesel influence over GHG 

is greater than N-fertilizer in Bologna as showed in figure 22 and figure 23. 

 

Figure 29. Relative Global Warming Potential referred to a kilogram of grain 
produced (Flax). 
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In the extraction phase, the oil and meal production are mainly influenced by oil 

content and agro-production of seeds that increase the variability saw in farming 

phase considering that oil content in Bologna (44,40%) was lower than Pisa 

(45,67%) as shown in table 6. Contrastingly, oil produced in Bologna was lower 

due to it low yield, however, there was merely difference with Pisa. As 

consequence, electricity needed to extract oil in Pisa was higher (2,20%) due to 

a lower oil content raising its GWP as shown in table 22.  

 

Figure 30. Emission for a kilogram of grain of Crambe (considering only 
extraction phase). 
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inorganic N-fertilizers, in this case, yield and oil content have no greater influence 

over results in figure 23. The difference was over that 12,50% affecting negatively 

to environmental performance of Camelina grown in Pisa, however the 

performance of Flax in Pisa is also great compared with other crops in study. 

 

Table 22. Extraction production of oil and meal and electricity and heat 
consumption for Crambe chain. 
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 2013 1625,16 34,10% 554,18 21613,04 1070,98 25628,60 0,95 0,34 0,08 

2014 1700,00 36,20% 615,40 24000,60 1084,60 25954,48 0,90 0,36 0,08 

2015 903,46 30,70% 277,32 10815,45 626,14 14983,64 1,06 0,31 0,09 

P
IS

A
 

2013 599,67 27,94% 167,55 6534,35 432,12 10340,66 1,16 0,28 0,10 

2014 661,24 17,96% 122,64 4782,96 538,60 12888,77 1,75 0,19 0,15 

2015 0,00 0,00% 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

 

 

Table 23. Total GWP of Crambe Oil until extraction phase (not allocated). 

 

Total GWP referred to 1 ha GWP grain GWP heat GWP Electricity Total (kg CO2eq) 

BOLOGNA 

2013 1011,30 30,48 68,03 1109,80 

2014 762,47 33,85 71,16 867,48 

2015 1221,98 15,25 37,82 1275,05 

PISA 

2013 837,35 9,22 25,10 871,67 

2014 1361,31 6,75 27,68 1395,73 

2015 0,00 0,00 0,00 0,00 
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Considering the GWP of oil and meal production inputs and outputs as shown in 

table 17, before allocation, in mean Bologna impact was lower that Pisa (around 

15%). Moreover, GWP is directly influenced by farming phase that represent over 

95% of impact of oil and meal in both sites, as shown in table 23.  

 

On the other hand, referring GWP to oil mass and oil energy content it is 

noticeable that Bologna reduces its impact due to a greater production compared 

to Pisa as shown in table 24. 

 

Table 24. GWP of oil production referred to mass and energy output (not 
allocated).  

 

Not allocated GWP kg CO2/kg oil gCO2/MJ oil 

BOLOGNA 

2013 2,00 51,35 

2014 1,41 36,14 

2015 4,60 117,89 

Mean 2,67 68,46 

PISA 

2013 5,20 133,40 

2014 5,20 291,81 

2015 0,00 0,00 

Mean 5,20 212,61 

 

After performing an energy based allocation to jet fuel system (see equation 1), 

GHG emission from Crambe derived bio-jet fuel were 64,99 gCO2eq/MJ in 

Bologna and 129,40 gCO2eq/MJ in Pisa. Taking as reference value of 83,8 

gCO2eq/MJ of biofuel recommend by RED, there was quite reduction in Bologna 

and a bit greater increment in Bologna. On the other hand, comparing results with 

conventional Jet Fuel reported by Lokesh (106 gCO2eq/MJ), there was a 

considerable reduction of around 40% in Pisa.  
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Table 25. GWP of bio-jet fuel derived from Crambe oil. 

 

Energy based Allocation   

Bologna Pisa 

Not allocated Allocated Not allocated Allocated 

Farming 86,11 38,96 315,04 103,65 

Oil extraction 2,29 1,03 2,29 0,75 

Jet Fuel production  25,00 24,00 25,00 24,00 

Transport 1,00 1,00 1,00 1,00 

Total (gCO2/MJ) 114,40 64,99 343,33 129,40 

 

 

Regarding the Net Energy Ratio (NER), Lokesh and coworker (2015) reported 

1,16 MJ Fossil/ MJ of bio-jet fuel and Li, X., & Mupondwa, E. (2014) reported 1,25 

MJ Fossil/ MJ of Jet fuel produced from Camelina oil. In our results, bio-jet fuel 

derived from Crambe oil has shown; in Bologna NER was closer to these results 

(1,18 MJ Fossil/ MJ of Jet Fuel), whereas, in Pisa it was considerable higher (1,53 

MJ Fossil/ MJ of Jet Fuel) in concordance with GWP results. All results including 

energy balance and GHG emission were strongly influenced by Agricultural stage 

and its variable inputs requirement for GWP and NER.  
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4.4. LCA on Cartamo 

 

The environmental performance of Cartamo chain is mostly influenced by farming 

phase as the other crops in study. In figure 31 it is observable mean values of 

GWP and energy invested to obtain oil and meal under the system frontiers, then 

using energy based allocation (mass and energy flow were considered) to reduce 

mainstream GWP.  

 

Table 26. Characterization of the agricultural phase input and outputs related to 

a hectare of Cartamo. Reporting mean and relative standard deviation of three 

years data. (DM dry matter; N nitrogenous content) 

 

Inputs and outputs Unit Bologna Pisa 

Farming inputs  Mean RSD (%) Mean RSD (%) 

Seeds kg/ha 28,33 10,00 22,00 16,00 

Organic N (Urea) kg/ha 16,00 43,31 0,00 0,00 

Inorganic N (Anhydrous ammonia) kg/ha 22,33 41,20 84,00 34,00 

P2O5 kg/ha 0,00 0,00 76,33 8,00 

K2O kg/ha 0,00 0,00 53,33 87,00 

Pesticide kg/ha 0,39 91,00 2,53 100,00 

Diesel kg/ha 159,30 0,00 137,33 15,00 

Farming outputs  Mean RSD (%) Mean RSD (%) 

Seed yield kg/ha 2213,50 55,70 980,68 35,63 

Above ground residues kg/ha 16138,28 4,00 3557,49 63,60 

Below ground residues kg/ha 1500,00 15,00 549,64 80,00 

DM seed oil % 20,30 11,00 21,10 5,50 

Seed LHV MJ/kg 20,77 1,22 22,24 5,00 

DM Below ground residues N % 0,52 18,75 0,55 46,88 
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In Table 26, it has shown the comparative inputs of the tested sites along three 

years (2013-2015). The most important things to point out, regarding farming 

phase inputs were:  

 

v) the yield in Bologna extremely higher than the yield in Pisa, at least 

2,25 folds high;  

vi) the diesel consumption in Bologna that was 14% higher than Pisa;  

vii) Fertilizer used in Bologna were lower (only N-fertilizers were applied); 

and; 

viii) In Pisa, few pesticides were used contrastingly with Bologna, where 

there was almost no pesticide use. 

 

Considering farming outputs, there is a big difference that influence GWP: adobe 

ground residues in Bologna is considerable higher (almost 4,5 folds higher than 

Pisa) as presented in table 9. Furthermore, Pisa has required phosphates and 

potassium fertilizers, that do not contribute to N2O production, however, they 

contribute to GWP as well as nitrogenized ones, considering their production.   

 

At the agricultural stage, these are the inputs to be under control to reduce GHG 

emissions in tested zones. Furthermore, it is noticeable that GWP per hectare, 

considering only inputs, present no difference in mean values. On the other hand, 

the variability among data is greater in Bologna due to organic and inorganic N-

fertilizers used, and the variability observed in Pisa is mainly influenced by 

potassium fertilized applied, diesel consumption and inorganic N-fertilizers used 

(as shown in table 27-28). 
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Table 27. Cartamo GHG (kg of CO2eq) for input in farming phase (Bologna). 
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Table 28. Cartamo GHG (kg of CO2eq) for input in farming phase (Pisa). 
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Considering total GWP associated to a hectare (inputs and N2O), the most 

influencing input is Diesel in Bologna and Pisa, however in Bologna its influence 

is 1.6 folds higher than Pisa and the second factor to take in count is GWP due 

to N2O emission that is higher in Pisa (almost 298 kgCO2eq/ha more than 

Bologna). Concluding that Pisa has produced 33,30% more GHG emission per 

hectare than Bologna, affecting the chain along. 

 

Figure 31. Cartamo system considering oil as mainstream product and meal 
and straw as byproducts. 

 

 

 

In this analysis, N2O emission to air were calculated in base of N-fertilizers and 

below ground residues (% N-content) in farming stage (according to formulas 2-

5). These results have shown that Cartamo grown in Pisa produces almost 2 

times more emission of N2O (1,907 kg/ha) than Bologna (figure 28). The 

variability or increasing of N2O emission is principally due to the difference on N-

fertilizers applied (84 kg/ha in Pisa and 38,22 kg/ha in Bologna, considering 

whether it was organic or inorganic ones) despising whether it was direct or 

indirect emitted as presented in figure 31. On the other hand, below ground 
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residues has demonstrated no greater influence on results. Thus, variability is 

directly influenced by the same factors pointed out before. 

 

Figure 32. N2O emission from fertilizers use and below ground residues of 

Cartamo. 

 

 

 

Considering that GHG emission results are discussed based on GWP and it was 

computed in term of grams of CO2 as the equivalent substance released into 

atmosphere (only N2O and CO2 in this case, for emission to air produced by 

farming phase, using equivalence coefficients cited in methodology). It is 

noticeably that the diesel contribution to GWP is particularly high in Bologna 

(Figure 32). In other word 62% of GHG emitted by farming phase were due to 

diesel used in there, influencing negatively the total of GHG emissions in 

Bologna. However, referring GHG to a hectare the results are similar between 

tested sites, counting the different factor influencing results. On the contrary, 

referring to the yield, there are great differences, and Bologna had the greater 
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yield between the compared sites (see table 9). It has been observed that N-

fertilizers use is one of the most important factor influencing agricultural LCA 

results. Regarding that, N-fertilizer use in Bologna (closer to 38 kg/ha), is 

noticeably lower than in Pisa (82,66 kg/ha). However, diesel influence over GHG 

is greater than N-fertilizer in Bologna as showed in figure 31 and figure 32. 

Contrasting with the other crops under study, Cartamo in Pisa has required four 

times more phytosanitary compared with Camelina, Flax and Crambe. 

 

Figure 33. Relative Global Warming Potential referred to a kilogram of grain 
produced (Cartamo). 

 

 

 

In the extraction phase, the oil and meal production were mainly influenced by oil 

content and agro-production of seeds that increase the variability saw in farming 
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phase considering that oil content in Bologna (20,35%) was lower than Pisa 

(21,11%) as shown in table 6. Contrastingly, oil produced in Bologna was greater 

due to it higher yield (see table 28). As consequence, electricity requirement to 

extract oil in Pisa was lower (5,20%) due to a lower oil content raising Bologna 

oil`s GWP as shown in table 29.  

 

Figure 34. Emission for a kilogram of grain of Cartamo (considering only 
farming phase). 

 

 

 

When the GWP of a hectare is referred to yield (figure 34), the influence of inputs 

and N2O emission (relative) has no changed compared with figure 33 (data not 

shown). On the other hand, the GWP of a kilogram of grain in clearly higher in 

Pisa (58,30%) as the results of GWP per hectare, this is due to GHG from N2O 

and inorganic N-fertilizers, in this case, yield and oil content have the greater 

influence over results variability in figure 34. The difference was over that 50% 

affecting negatively to environmental performance of Camelina grown in Pisa. 
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Table 29. Extraction production of oil and meal and electricity and heat 
consumption for Cartamo chain. 
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N
A

 2013 1100,46 22,60% 248,70 9699,47 851,76 20382,55 1,43 0,23 0,12 

2014 2000,00 20,40% 408,00 15912,00 1592,00 38096,56 1,59 0,20 0,13 

2015 3540,05 18,05% 638,83 24914,25 2901,22 69426,25 1,80 0,18 0,15 

P
IS

A
 2013 1001,00 22,30% 223,22 8705,68 777,78 18612,17 1,45 0,22 0,12 

2014 1319,56 20,44% 276,90 10799,10 1042,66 24950,82 1,54 0,21 0,13 

2015 621,48 20,56% 127,78 4983,26 493,70 11814,29 1,58 0,21 0,13 

 

 

Considering the GWP of oil and meal production inputs and outputs as shown in 

table 30, before allocation, in mean Bologna impact was lower than Pisa (around 

28,02%) as shown in table 31. Moreover, GWP is directly influenced by farming 

phase that represent over 96% of impact of oil and meal in both sites, as shown 

in table 30.  

 

Table 30. Total GWP of Cartamo Oil until extraction phase (not allocated).  

 

Not Allocated (referred to 
a hectare) 

GWP grain GWP heat GWP Electricity Total (kg CO2eq/ha) 

BOLOGNA 

2013 1001,35 13,68 46,06 1061,09 

2014 743,87 22,44 83,72 850,02 

2015 1170,72 35,14 148,18 1354,04 

PISA 

2013 1440,55 12,28 41,90 1494,73 

2014 1395,22 15,23 55,23 1465,69 

2015 1542,74 7,03 26,01 1575,78 

 

On the other hand, referring GWP to oil mass and oil energy content it is 

noticeable that Bologna reduces its impact due to a greater production compared 
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to Pisa as shown in table 31 and the difference observable is greater than the 

observed in table 30.  

 

Table 31. GWP of oil production referred to mass and energy output (not 
allocated).  

 

Not allocated GWP kg CO2/kg oil gCO2/MJ oil 

BOLOGNA 

2013 4,27 109,40 

2014 2,08 53,42 

2015 2,12 54,35 

Mean 2,82 72,39 

PISA 

2013 6,70 171,70 

2014 5,29 135,72 

2015 12,33 316,21 

Mean 8,11 207,88 

 

 

After performing an energy based allocation to jet fuel system (see equation 1), 

GHG emission from Cartamo derived bio-jet fuel were 73,67 gCO2eq/MJ in Pisa 

and 62,60 gCO2eq/MJ in Bologna. Taking as reference value of 83,8 gCO2eq/MJ 

of biofuel recommend by RED, there was quite reduction in Pisa and a bit greater 

reduction in Bologna. On the other hand, comparing results with conventional Jet 

Fuel reported by Lokesh (106 gCO2eq/MJ), there was a considerable reduction 

of around 30% in Pisa and 41% in Bologna as shown in table 27. 
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Figure 35. System expansion of Flax derived jet fuel in Bologna based on the 
functional unit. 

 

 

 

Figure 36. System expansion of Flax derived jet fuel in Pisa based on the 
functional unit. 
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Expanding system, using Cartamo meal as replace for rapeseed/fish meal into 

trout feed system (figures 35-36), it has reduced impact only in Bologna 

comparing it with the GWP of fossil jet fuel (106 gCO2eq/MJ). GWP in Bologna 

was considerable lower in mean under system expansion (Figure 31). In the best 

case, Bio-jet fuel produced in Bologna had a GWP of -193,78 gCO2eq/MJ that 

means that Bio jet fuel produced in Bologna and using its by-product (meal) as 

feedstock to produce trout feed can reduces the GHG (assuming replace 1:1 until 

10% w/w as Camelina meal). On the other hand, Jet Fuel produced in Pisa has 

a GWP of 208,22 gCO2eq/MJ, this was one of the worst performance in this study 

compared with Camelina, Falx and Crambe. 

 

Table 32. Allocated GWP of Cartamo derived HR Jet Fuel 

 

Energy based Allocation   

Bologna Pisa 

Not allocated Allocated Not allocated Allocated 

Farming 93,61 28,08 289,95 86,98 

Oil extraction 2,29 0,69 2,29 0,69 

Jet Fuel production  25,00 25,00 24,00 24,00 

Transport 1,00 1,00 1,00 1,00 

Total (gCO2/MJ) 121,90 54,77 317,24 112,67 

 

 

It is important to point out that system expansion has increase the environmental 

performance in Bologna, it is due to a bigger straw production in this site that 

reduces the environmental impact of it (see table 26), furthermore, Pisa Jet Fuel 

has no potential to reduce GWP in aircrafts. Moreover, Pisa performance was 

better considering an energy based allocation respect to the system expansion 

as presented in figures 35-36 and table 32.  
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Figure 37. System expansion of bio-jet fuel chain, results and comparison with 
several references of biofuels (Lokesh et al., 2015; Peng et al., 2015, RED) 

  

 

 

According to Lokesh and coworkers (2015) GHG emitted by Camelina Jet fuel 

production were 101 gCO2eq/MJ, additionally, for Cartamo Bio-Jet fuel produced 

in United States it was reported an GWP of 81 gCO2eq/MJ (Stratton, 2010) 

considering allocation method to estimate it. Accordingly, our results have 

presented a considerable reduced GHG emission in Bologna (33% compared to 

Stratton 2010) and greater compared to fossil jet fuel using allocation method and 

system expansion method has shown that Bologna bio-jet fuel produces a 

reduction of -193,78 gCO2eq/MJ. The worst scenery (Pisa), under energy based 

allocation, has presented a greater reduction compared with system expansion. 

On the other hand, the allocation method and system expansion has shown no 

reduction compared with fossil jet fuel. 

 

-220.00

-200.00

-180.00

-160.00

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

BOLOGNA PISA Biodisel (Red) Jet Fuel (Fossil)

gC
O

2
eq

/M
J 

o
f 

Je
tF

u
el

Allocated Expanded



113 
 

Regarding the Net Energy Ratio (NER), Lokesh and coworker (2015) reported 

1,16 MJ Fossil/ MJ of Jet Fuel and Li, X., & Mupondwa, E. (2014) reported 1,25 

MJ Fossil/ MJ of Jet fuel derived from Camelina oil. In our results Pisa NER was 

higher than these results (1,76 MJ Fossil/ MJ of Jet Fuel), whereas, in Bologna it 

was considerable lower (1,01 MJ Fossil/ MJ of Jet Fuel) in concordance with 

GWP results. All results including energy balance and GHG emission were 

strongly influenced by Agricultural stage and its variable inputs requirement for 

GWP and NER.  
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4.5. Data analysis results 

 

 

The statistical analysis has shown no difference in mean comparing Flax derived 

jet fuel GWP (energy based allocation) produced in Bologna and Pisa (p < 0,05). 

On the other hand, Camelina, Cartamo and Crambe has shown differences in 

average values (p > 0,05). Moreover, Camelina was the only with lower GWP in 

Pisa contrastingly with the other three crops tendency (see figure 38-39). 

 

Figure 38. Statistical comparison on GWP (allocated), mean and typical error. 

 

 

Analysis similarities and dissimilarities throughout MDS in figure 40, additionally 

the stress of the classification model (goodness of fit for MDS) was 0,9998 for the 

first coordinate and 0,9905 for the second concluding that had a good fit to data 

used. It was evident two main groups one integrated by Camelina, Cartamo and 

Crambe in Pisa (yellow ellipse), as shown in Figure 38 those were non-well 

performed crops. On the other hand, the best performance was attributable to 

Flax and Cartamo in Bologna and Flax in Pisa (red ellipse). Nevertheless, out 

grouping in Bologna we had Cartamo and in Pisa Camelina.   
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Figure 39. GWP consolidated by experimental location (mean and SD).  

 

 

Figure 40. Multidimensional scaling clustering; legend Bologna (BO), Pisa (PI), 

Cartamo (Car), Camelina (Cam), Crambe (Cra) and Flax (Fla). 

 

 

 

 

 

 

 

 

 

 

Considering land use, it was evident that Flax has the best performance, besides 
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Table 33. Land use for all crops.  

 

Land Use 

 Bologna Pisa 

Mean SD Mean SD 

Camelina 

m2/GJ of Jet fuel 

2120.00 180.62 1560.00 168.79 

Cartamo 960.00 436.03 1980.00 714.58 

Crambe 650.00 242.78 1750.00 383.08 

Lino 620.00 257.49 620.00 69.94 

 

In term of energy investment and returned in the process, it was evident that flax 

has the best ratio, it has seemed to be related to inputs and energy required by 

the processes.  The tendency was the same all around the study (see table 34). 

 

Table 34. Net energy ratio resumes for all crops. 

 

Net energy ratio 

 Bologna Pisa 

Mean SD Mean SD 

Camelina 

GJ fossil/ GJ produced 

2.130 0.481 1.290 0.326 

Cartamo 1.010 0.607 1.760 0.363 

Crambe 1.180 0.272 1.580 0.523 

Lino 1.030 0.211 1.180 0.061 
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CHAPTER 5 

 

5. Discussion  

 

Farming outputs were very similar within the tested sites, only Cartamo crop has 

required pesticides in Pisa, differencing it from the other ones. On the other hand, 

inputs in Bologna were uniform considering that a great variability in yield. 

Furthermore, N2O emission produced in the farming phase were lower in any 

case in Bologna. Several studies (Gallejones et al., 2015; Lokesh et al., 2015; 

Miller & Kumar, 2013) have reported N2O for Camelina, Sunflower and other 

crops that are closer to our results; in Flax and Camelina in Pisa; and Flax and 

Cartamo in Bologna. In a study conducted in The Mediterranean zone (Bacenetti, 

Restuccia, Schillaci, & Failla, 2017), Flax has produced 1316 gCO2eq/kilogram 

of seed and Camelina has produced 1701 gCO2eq/kilogram of seed. In our 

results: 

 

i) Flax in Bologna has produced 710 gCO2eq/kilogram of seed; it 

represents 46% less emission compared with. 

ii) Flax in Pisa has emitted 819 gCO2eq/kilogram of seed; this 

assessment represents a reduction of 38% gCO2eq/kilogram of seeds. 

iii) Camelina in Bologna has shaped an GWP of 1913 gCO2eq/kilogram 

of seed; it shows GWP raising in almost 11%. 

iv) Camelina in Pisa has produced 1465 gCO2eq/kilogram of seed; this 

represents a reduction of 14%. 

 

Considering these results, Flax has shown the greatest environmental 

performance within crops evaluated reducing considerably GWP compared with 

the same crop in a zone like the tested ones. Moreover, Cartamo assessment 

has demonstrated a reduction of GWP compared with Camelia and Flax in 

Bacenetti and coworkers research.   
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Another point to consider within this analysis is land use or m2 of soil used to 

produce one functional unit, in this case food crops compete with non-food crops 

in order to use soil bringing problem to food supplies chain (Rebitzer et al., 2004; 

T. Schmidt, Fernando, Monti, & Rettenmaier, 2015). Indirect land use chance can 

be considering (land use changing from food to nonfood crops), in this regard the 

best performance is attributable to the crop which use less land to produce one 

functional unit (Bacenetti et al., 2017; Paper, 2002; Pawelzik et al., 2013). 

Actually, Flax has required less land to produce one GJ of bio-jet fuel considering 

the entire experiment. Furthermore, in Pisa Cartamo has required less land but it 

was under 10% lower than Flax (see table 33). 

  

Considering the bio-jet fuel chain, oil content was, before yield, the most 

influencing factor in GWP along productive chain. In several studies (Bacenetti et 

al., 2017; Carlsson, 2009; Li & Mupondwa, 2014; Mihaela et al., 2013), the oil 

content has shown high variability, e.g. Flax and camelina seeds oil content 

ranges 25-50%. In our study, flax oil content has ranged 40-47% despising tested 

zone, as consequence Flax has represented the best oil yield in Bologna and 

Pisa. On the other hand, Cartamo seeds has presented a range of oil content of 

18-24% indicative of the worst performance in terms of oil content. However, 

Cartamo seed yield in Bologna is one of the best in this study, making it up for a 

lower oil content. 

  

GHG emitted by Camelina bio-jet fuel and biodiesel production, as reference 

crop, ranged 30-101 gCO2eq/MJ (Bacenetti et al., 2017; Li & Mupondwa, 2014; 

Lokesh et al., 2015).  Camelina derived bio-jet fuel produced in Pisa was inside 

the range presented joined by Flax. On the other hand, in Bologna Flax and 

Cartamo derived jet fuel were within this range. It is remarkable that Flax derived 

jet fuel has represented the best crop considering the total assessment. 

Moreover, Cartamo in Bologna have presented a considerable reduced GHG 

emission Bologna. Regarding the Net Energy Ratio (NER), Lokesh and coworker 

(2015) reported 1,16 MJ Fossil/ MJ of Jet Fuel and Li, X., & Mupondwa, E. (2014) 

reported 1,25 MJ Fossil/ MJ of Jet Fuel. In our results Pisa NER is closer to these 
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results (1-1,87 MJ Fossil/ MJ of Jet Fuel), whereas, in Bologna it was 

considerable higher range (1-2,13 MJ Fossil/ MJ of Jet Fuel). All results including 

energy balance and GHG emission were strongly influenced by Agricultural stage 

and its variable inputs requirement followed by extraction phase.  

 

Considering by product system expansion, Flax-straw pulp produced in Bologna 

has evidenced a reduction of almost three times the GWP with respect to 

eucalyptus (Hermann et al., 2007; Lopes et al., 2003), hemp (González-García 

et al., 2010) and Ecoinvent wood-pulp reference value. With respect to GWP 

impact of flax-straw pulp our results are similar to those evaluated in Canada 

(Kissinger et al., 2007) and Spain (S. González-García, Hospido, Feijoo, & 

Moreira, 2010), ranging 400-650 kgCO2eq/ton (data not shown). Pesticides use 

was zero for Bologna crop and minimal for Pisa crop (lower than 0,01 kg/ha), 

amount that is lower than the value reported in similar studies (González-García 

et al., 2009; Warrand et al., 2005). System expansion was the best option to 

reduce GHG. In the best case, it has produced a real reduction of 160 kgCO2eq 

/GJ of bio-jet fuel. In the system that consider Cartamo meal as a replaced of fish 

meal. On the other hand, Flax system expansion represent a reduction over 140 

kgCO2eq /GJ of bio-jet fuel. Both due to their great byproduct yield (meal and 

straw). Camelina and Cartamo meal produced in Bologna has evidenced a 

reduction of almost 1,5 times the GWP with respect to fishmeal overseas (Avadí 

et al., 2015), and Ecoinvent fishmeal reference value. This has used to reduce 

the GWP associated to bio-jet fuel thought out system expansion. Other residues 

or wasted produced in the processes were assumed as zero impact ones due to 

the allocation was performed over the mentioned byproducts exclusively.  
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6. Conclusions 

 

• At the agricultural stage, three factors show higher influence over 

emissions variability: seed and straw yield, fertilizers applied, and diesel 

consumption, these two are the inputs to take under control to reduce the 

environmental burden associated to bio-jet fuel produced in Bologna and 

Pisa. Furthermore, Diesel consumption in Bologna has represent over 

50% of GHG in every crop. Making it the input to put under control to 

reduce GHG. 

 

• In general, using Crambe, Cartamo and Flax oils lead to a considerable 

reduction of environmental impacts compared with fossil jet fuel 

(considering production at Bologna). Furthermore, Flax is the best crops 

to be used in any site tested, from an environmental point of view. 

However, Cartamo has the best environmental performance in Bologna it 

seems statistical like Flax. It is due the greatest seed yield.  

 

• In Pisa the results were different, using Camelina and Flax oils lead to a 

considerable reduction of environmental impacts compared with fossil jet 

fuel. Furthermore, Flax is the best crops to be used in any site tested, from 

an environmental point of view. On the other hand, Cartamo has the worst 

environmental performance in Pisa. 

 

• Beyond the environmental assessment, using Flax may lead to a real 

reduction in GHG emission jointed with a less energy investment due to 

use of bio jet fuel in commercial ventures. Further research is needed. 

 

• In the last few years, it is important to point out new perspectives in green 

chemistry to revalue the flax by-products (seeds and straw) as feedstock. 

In our case, non-wood pulp derived from Flax straw represents an 

opportunity in order to replace conventional wood pulp in Italian paper 

industry due to its better environmental performance (Bologna crops).  
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• Camelina Cartamo, Crambe and Flax are oilseed crops with short growth 

cycle, high oil content and low agronomic inputs requirements, recognized 

as good feedstocks for bio-refinery. The LCA results have shown that 

Camelina Jet fuel from Pisa reduces GHG emission compared with 

Bologna, fossil jet fuel and RED recommend. As by-product, Camelina 

meal has shown prospective applications as: i) animal feed, replacing soy 

meal; ii) Biogas, as feedstock; and iii) used as fertilizer. However, these 

uses should be assessed in order to make a feasible environmental 

balance of its potential reduction or increasing of GHG emission in the 

system. Nowadays, green chemistry has opened up new interest for 

arousing a comprehensive valorization of all integrated biorefinery by-

products. When these products are raw materials providing an opportunity 

to replace highly polluting chemical, i.e. chemical origin N-fertilizer, 

pesticides and coal.  

 

• In the last few years, Camelina and Flax derived biofuels production has 

been described very well. However, it is important to point out new 

perspectives in green chemistry for use and revaluing the Camelina and 

Flax oils as feedstock. One of them is the potential use as feedstock to 

produce biopolymers with press-sensitive adhesion applications. Another 

remarkable use of cold-pressed Camelina oil is as food oil due it Omega-

3 profile and its high smoke point similar to linseed oil. Actually, there is a 

lack of productive and economic information in order to assess the 

alternative potential uses and the environmental impacts of Camelina oil-

seeds cultivated in Mediterranean zone. 
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